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Abstract

Sanchez Villalba (2015) claims inspection games can be modelled as global games

when agents face common shocks. For the tax evasion game �his leading example� he

prescribes that the tax agency should audit each individual taxpayer with a probabil-

ity that is a non-decreasing function of every other taxpayer�s declarations (�relative

auditing strategy�).

This paper uses experimental data to test the predictions of the model and �nds

supporting evidence for the hypothesis that the relative auditing strategy is superior

to the alternative �cut-o¤� one.

It also �nds that data �t the qualitative predictions of the global game model,

regarding both participants� decisions and the experiment�s comparative statics.
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1 Introduction

Common income shocks that a¤ect rather homogeneous agents in similar ways are well

documented: the fact that airlines� sales plummeted after 9/11, chicken breeders faced

low demand after the avian �u outbreak, and emergent markets have di¢culties attracting

investors every time the U. S. Federal Reserve increases interest rates are just a few examples

one can bring forward. Furthermore, they show that often these shocks are the main source

of income variability, greatly overshadowing the signi�cance of idiosyncratice shocks.

Hence, it is not surprising that a tax agency that ignores common shocks will choose a

clearly suboptimal auditing strategy. But this is exactly what happens if they follow the

most popular policy prescribed by the literature: the �cut-o¤ rule� (Reinganum and Wilde

(1985)). It states that the agency should not audit any �rm that declares above a certain

�xed cut-o¤ income level, and should audit with a su¢ciently high probability those who

declare below it. Combined with common income shocks, this policy leads to systematic

mistargeting: the agency audits �too much� in bad years and �too little� in good ones.

In this scenario, Sanchez Villalba (2015) �nds that the agency�s optimal policy (named

�relative auditing strategy� by the author) consists in auditing every �rm with a probability

that is a non-decreasing function of every other taxpayer�s declarations. This is because

other �rms� declarations give the agency information about the realisation of the shock and

so the probability of a given taxpayer being an evader is (weakly) higher the higher are her

fellow taxpayers� declarations.

The purpose of this paper is therefore to test Sanchez Villalba (2015)�s model (henceforth,

GIG model, or �Global Inspection Game� model). This is a relevant task because it will

help determining which of the alternative rules (relative or cut-o¤) is superior to the other

and, indirectly, whether the data is consistent with the modelling of tax evasion as a global

game and its associated predictions.

However, real-world data on tax evasion is not readily available. Those who engage in tax

evasion are not willing to indicate it for obvious reasons, but also tax agencies are reluctant

to provide data because of the con�dentiality of tax returns: even if the datapoints are not

labelled, in many cases it is quite easy to identify which individual �rm they belong to, thus

revealing sensitive information that could a¤ect the company negatively.

For this reason, the current paper will use the second-best available dataset, namely, the one

collected in a computerized experiment in which participants interacted with each other in

situations that resembled the scenario described by the GIG model. This methodology has

the obvious disadvantage of making di¢cult the extrapolation of results from the sample

to the population, but it gives the experimenter a greater control over the variables under

study and in the case of tax evasion it is, as mentioned before, the only available one anyway.
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The econometric analysis �nds that the agency is better o¤ when using the relative rule than

when using the cut-o¤ one, and so that the key prediction of the GIG model is strongly

supported. It also supports the hypothesis that people make decisions (qualitatively) con-

sistent with higher-order beliefs (which play an important role in ensuring the uniqueness

of the global game equilibrium) and that the comparative statics follow the ones predicted

by the global game technique.

To the best of my knowledge, nobody tested empirically (using either real-world or exper-

imental data) the predictions of a GIG-like model, but plenty of laboratory experiments

were framed as/based on tax compliance problems. The closest reference is Alm and McKee

(2004), which analyses tax evasion as a coordination game. In contrast, the present analysis

considers it as a global game, which requires not only the strategic uncertainty generated

by the coordination game but also the �fundamental uncertainty� created by the incom-

pleteness of information regarding the payo¤ functions. Tests of the global game technique

seem to support it in terms of predictive power (Cabrales et al. (2007)) and/or compara-

tive statics (Heinemann et al. (2004)), but are less supportive of the participants� use of

�higher-order beliefs� when making decisions. The latter result is also the conclusion of

other studies, like Stahl and Wilson (1994) and Bosch-Domenech et al. (2002).

The rest of the paper is organized as follows. Section 2 summarizes Sanchez Villalba (2015)�s

theoretical model and its predictions. Section 3 explains the experimental design and the

testable hypotheses. Section 4 presents the results and �nally section 5 concludes.

2 Tax Evasion as a Global Game

The global game methodology (Carlsson and van Damme (1993), Morris and Shin (2002))

is a mechanism that, thanks to the existence of some uncertainty about the payo¤ functions

of the players, selects one of the multiple equilibria of a coordination game.

Sanchez Villalba (2015) claims that, in the presence of common income shocks, tax evasion

can be modelled as a global game because the agency�s optimal policy generates a coordi-

nation game and taxpayers� imperfect information about the agency�s �type� creates the

uncertainty about payo¤s.

Drawing on the fact that most tax agencies worldwide partition the population of taxpayers

into categories where members share some non-manipulable characteristics, he analyses the

agency�s problem within each one of them. The high degree of homogeneity within a category

implies that the idiosyncratic shocks will be small compared to the common ones, and so,

for all practical purposes, one can assume that every member has the same income y: it is

high (y = 1) in �good� years (which occur with probability ) and low (y = 0) in �bad�

ones (with probability 1� ).
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The situation is thus modelled as a one-shot game, with the following timing: in the �rst

stage all actors learn their private information; in the second one taxpayers submit their

declarations and; in the third stage the agency (after observing all declarations) undertakes

audits (if any). An agency�s private information is its �type�, parameterized by � and

interpreted as the e¤ective budget the agency has for undertaking audits. In turn, the

private information of a taxpayer i consists of her income yi 2 f0; 1g and her signal si :=

�+ "i, where "i is a white noise error term. This signal embodies all the information about

the agency�s type available to the taxpayer (news, previous experience, conversations with

colleagues/friends, etc.). All actors (taxpayers and agency) know every parameter of the

game and their own private information. They also know the probability distributions of

other actors� private information, but not their realizations.1

Every taxpayer has to decide how much income to declare, di 2 f0; 1g, in order to maximize

her expected utility. The optimal declaration strategy follows the standard literature except

for the fact that, since the exact probability of detection ai is unknown to the taxpayer, her

declaration will be a (weakly) increasing function of her belief about ai.

The agency chooses ai in order to minimize the expected losses associated with making tar-

geting errors, subject to the e¤ective budget constraint determined by its type �. Targeting

errors can take two forms: zeal errors (Z) occur when resources are wasted on auditing

compliant taxpayers; negligence errors (N) take place when evaders are not caught and

the corresponding �nes are not collected.2 The agency minimizes a �loss function� that

aggregates errors into one metric and can be written as L = �N +(1� �)Z, where � is the

loss associated with letting an evader get away with her evasion.

Sanchez Villalba (2015) found that the agency�s optimal auditing policy regarding taxpayer

i, ai, is (weakly) increasing in the agency�s type, �, and the declarations of every other

taxpayer in the category, dj , j 6= i. The last result is especially important because it

generates a negative externality between taxpayers: the higher the declaration of a taxpayer

j, the higher the probability that another taxpayer i (i 6= j) is audited and the lower

the latter�s expected utility. Together with the optimal declaration strategy, this creates

the strategic complementarities between taxpayers� declarations that constitute the de�ning

feature of a coordination game. Speci�cally, the higher the declaration of taxpayer j, the

higher the incentives of taxpayer i to comply as well.

The associated problems of multiplicity of equilibria are, however, side-stepped because of

the taxpayers� uncertainty about the realized agency�s type, �, and the heterogeneous beliefs

1Except in the case of income y, of course, because it is assumed that everyone in a category has exactly
the same level of income. Adding some income heterogeneity avoids this �perfect observability� issue but
does not provide any new insight or a¤ect the predictions, so for simplicity this avenue is not pursued.

2Formally, if 1 is an indicator function that takes the value 1 if the taxpayer is audited and 0 if she
is not, then a zeal error (Z = 1) occurs when 1 (1� (1� d) y) = 1; a negligence one (N = 1) when
(1� 1) (1� d) y = 1. Implicit in the latter formula is the assumption that it is always pro�table for the
agency to audit a known evader (i.e., in such cases the �ne is greater than the cost of the audit). The
alternative possibility implies the uninteresting solution where nobody is audited, even known evaders.

4



about ai they derive from their disparate private signals, E (ai j si). This �fundamental

uncertainty�, plus the �strategic uncertainty� generated by the coordination game, create

the conditions for modelling tax evasion as a global game. This leads, through a process

akin to the �iterated deletion of strictly dominated strategies� (IDSDS) method, to a unique

equilibrium: in each iteration, signals provide information about what other taxpayers will

not do, and in the end it ensures that only one strategy survives, namely, one where taxpayers

with low signals (and hence low beliefs about being discovered) evade, while those with

high signals comply. Furthermore, equilibria with full, partial and zero evasion can arise,

depending on the value of the parameters.

The key prediction of the GIG model is that an agency that implements this �relative�

auditing policy will do (weakly) better than if it implemented the standard �cut-o¤� one,

ceteris paribus. Testing this hypothesis is the main purpose of the present study, though

the experimental dataset is rich enough as to allow for the investigation of others that will

also be analysed, like the use of higher-order beliefs or the comparative statics generated by

changes in the parameters of the problem.

3 Experiment design

The experiment took place at the ELSE computer laboratory of the University College

London (United Kingdom).3 76 people took part in four treatments (labelled GC; GE; LC

and LE for reasons to be explained later in this section), each involving a 60-to-90-minute

long session.4 They were not allowed to communicate for the entirety of the session and

could not see other people�s screens.

Each session consisted of 6 sections, namely, instructions, short quiz, trial rounds, exper-

imental rounds, questionnaire and payment. The instructions were read aloud by the in-

structor and, in order to ensure their correct understanding, the participants were asked to

complete a �short quiz� (shown in appendix A; correct answers and the rationale for them

were provided by the instructor after a few minutes). For the same reasons, participants

then played two �trial� (practice) rounds whose outcomes did not a¤ect their earnings. Af-

ter each of these �rst three stages the instructor answered subjects� questions in private.

Twenty independent experimental rounds were then played, and after that, subjects com-

pleted a questionnaire with information regarding personal data and the decision-making

3The pool of participants was recruited by ELSE from their database of about 1,000 people (most of
them UCL students). Two hundred of them were chosen randomly and invited to take part and the �rst
100 who accepted the o¤er were allocated to sessions according to their time preferences. Five �reserve�
people were invited to each session and 7 of them had to be turned down because the target number (20
per session) was reached or because the treatment required an even number of participants (treatments GC
and GE). Each one of them was paid the £5 show-up fee before being dismissed. No person was allowed to
participate in more than one session.

4Participants were lined up outside the lab according to their arrival time. At the designated time they
entered and freely chose where to sit.
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process they followed. Finally, each participant was paid an amount of money consisting of a

�xed show-up fee (£5) and a variable component equal to the earnings accumulated over the

20 experimental rounds.5 Table 1 shows the exchange rate used to translate experimental

currency into money, as well as other payment-related summary statistics.6

Treatment Participants £ per 1000 points Min/Avg/Max Payment
GC 18 0.50 10.80 11.52 11.80
GE 18 0.90 7.40 9.30 9.80
LC 20 0.50 11.60 11.65 11.80
LE 20 0.90 9.80 11.20 11.60
All 76 7.40 10.95 11.80

Note: £ per 1000 points is the exchange rate at which 1000 �experimental points� where
transformed into pounds.

Table 1: Treatments. Participants and Money.

Each experimental round consisted of two stages: the �Choice� one, where participants had

to make a decision that would a¤ect their payo¤s, and the �Feedback� one, where they got

information about the round outcome.

Column player
Y Z

Row player Y x (Y; Y; q) x (Y;Z; q)
Z x (Z; Y; q) x (Z;Z; q)

Note: Only Row player�s payo¤s (x) are shown. Payo¤�s components
are Row player�s action, Column player�s action and the realisation
of the random variable q. Column player�s payo¤s are symmetrical.

Table 2: Stage game.

In the �choice� stage a one-shot game was played where the subjects had to choose one

of two possible actions (Y or Z) interpreted as Evasion and Compliance, respectively (the

game�s normal form for the 2-person case is shown in table 2). In the experiment we focus

on the case in which all taxpayers/players have high income (y = 1). The reasons for this

are that introducing the possibility of low income periods will not add to our knowledge

(trivially, if y = 0 everyone declares truthfully) and that all interesting hypotheses to test are

related to the high-income scenario (not to mention the extra cost and time that running this

expanded experiment will demand). Thus, in the experiment choosing Y (Z) corresponds

to declaring low (high) income: di = 0 (di = 1) in the terminology of section 2.

A participant i�s payo¤ is a function of her own decision, di 2 D := fY;Zg, the decisions of

5 In other experimental studies (Heinemann et al. (2009) among them) participants were paid according
to the result of one randomly-chosen round. The rationale for this is that it avoids hedging, something that
is not a problem here: the maximum payment a person can receive in any given round is £0.50 or £0.90
(depending on the treatment), with expected values in the £0.30-£0.35 range.

6 In order to minimize delays and computational hassle, every person�s payment was rounded up to the
closest multiple of £0.20. Participants were not told about this arrangement until after they completed
their questionnaires in order to avoid strategic play with respect to this peripheral matter.
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the other n � 1 people in her category, d�i := (d1; :::; di�1; di+1; :::; dn), d�i 2 D
n�1, and

the realisation of a random variable, q 2 Q := fA;B;Cg. Formally,

xi := x (di;d�i; q) (1)

Di¤erent choices have di¤erent e¤ects on payo¤s, and so, while the payo¤ of choosing Y

(evasion) can vary, that of option Z (compliance) is a known, �xed quantity. Formally, for

every d�i;d
0
�i 2 D

n�1; q; q0 2 Q,

x (Z) := x (Z;d�i; q) = x
�
Z;d0�i; q

0
�

(2)

The random variable q can take values A, B and C with probabilities Pr(A) = 0:20, Pr(B) =

0:60 and Pr(C) = 0:20, respectively. It represents the di¤erent possible �types� of agency

regarding evasion (A : soft, B : medium, C : tough) and corresponds to the ��� mentioned

in section 2. It a¤ects evasion payo¤s negatively: the tougher the agency, the more likely the

evader will be audited and the lower her expected payo¤.7 Formally, for every d�i 2 D
n�1;

x (Y;d�i; A) > x (Y;d�i; B) > x (Y;d�i; C) (3)

At the time of making a decision participants do not know the value of q; but each one of

them gets a private signal si 2 S := fa; b; cg (called �hint� in the experiment) that is related

to the realized value of q as shown in table 3 (and in the Instructions sample in appendix

A). The instructions highlighted the fact that di¤erent people could get di¤erent hints but

q was the same for everyone. No other probabilities were provided explicitly, though the

instructions did supply the information required for their computation, namely, the prior

probability distribution of q; Pr(q); and the conditional one, Pr (qjsi).
8

If hint =... ...then q =... ...with probability Pr (qjsi) =...
a A 1:000

b
A
B
C

0:125
0:750
0:125

c C 1:000

Table 3: Hints and q.

7 In the theoretical model x(Y;d�i; q) corresponds to the expected payo¤ taxpayer i gets if she evades:
with some probability she is caught and pays a �ne (low payo¤) and with the remaining probability she gets
away with her evasion (high payo¤).
In the experiment, however, audits are not undertaken and therefore payo¤s are �xed. This is so because

the experimental setup is already quite demanding for subjects as to increase the level of complexity by
introducing uncertainty and, furthermore, doing so is not expected to provide any signi�cant insight beyond
the ones obtained with this simpler, neater setup.
Of course, subjects do face uncertainty regarding the choices made by other players (d�i) and the type

of agency they face (q), as suggested by the theoretical model.
8A �Choice stage� screenshot (labelled �Choice screen� in the experiment) can be seen in the instructions

sample in appendix A. The programme used was z-Tree (Fischbacher (2007)).
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The participant�s submission of her decision (Y or Z) ended the �Choice� stage and gave

way to the �Feedback� one, in which the person was informed about the realized value of q,

the signal she received, her choice and her payo¤ for the round.9 At no stage was a subject

given any information about the signals or choices of any other participant, since usually

taxpayers have little information about what other taxpayers know or how much income

they declare.

By clicking on the �Continue� button, participants exited the �Feedback� stage and moved

on to the next round (if any was left). Rounds were identical to each other in terms of

their structure (Choice and Feedback stages) and rules (payo¤ computations, prior and

conditional probability distribution of q), but may have di¤ered in the realized values of the

random variables (q and s). Participants were told explicitly about this and informed that

each round was independent from every other one.

3.1 Treatments

The experiment�s treatments were de�ned according to the policy used (relative v cut-o¤, or

�global� (G) v �lottery� (L)) and the predicted optimal strategy of the participants (which

for this experiment, as will be shown later, reduces to determining the optimal choice when

hint b is received: to evade E (corresponding to choosing Y ) or to comply C (corresponding

to choosing X).10 This way the experimental setup can be visualized as in table 4.

Participant�s optimal
strategy if hint = b

Comply (C) Evade (E)
Auditing Relative (G) GC GE
rule Cut-o¤ (L) LC LE

Table 4: Treatments.

The di¤erence between Global and Lottery treatments is related to the e¤ect of other sub-

jects� choices on the payo¤s of individual participants. In the Lottery treatments the rule

implemented by the agency is of the cut-o¤ type, and so what other people do does not

9A �Feedback stage� screenshot (labelled �Results screen� in the experiment) can be seen in the instruc-
tions sample in appendix A.
10Tax evasion has often been compared to a gamble in which the taxpayer �wins� (i.e., gets away with

evasion) with probability w; and �loses� (i.e., is caught and has to pay a �ne on top of the unpaid taxes)
with probability 1 � w. The cut-o¤ rule is equivalent to a standard lottery (and hence the name of the
treatment) because it �xes the chances of winning (say w = 1 � p) and losing (1 � w = p). Evasion can
therefore be seen as equivalent to buying (1� p)N out of a total pool of N rae tickets, each one of them
equally likely to be the winner.
In the Global treatments, on the other hand, those probabilities are not �xed, because they are a¤ected

by what other people do. In particular, since other people�s compliance has a negative impact on my payo¤,
the fact that other people comply is equivalent to having the total number of tickets increased to, say,
N 0 > N; so that my probability of winning w0 (in spite of my holding the same number of tickets as before,

(1� p)N) is now comparatively lower: w0 =
(1�p)N
N0

<
(1�p)N

N
= w:
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a¤ect player i�s payo¤. Formally, for every q 2 Q,11

x(Y; Y; q)=x(Y;Z; q) if treatment 2 fLC;LEg (4)

In Global treatments, on the other hand, the auditing policy followed is the relative one,

implying that other people�s declarations do have an impact on player i�s payo¤ via the

probability of detection. Formally, for every q 2 Q,

x(Y; Y; q)>x(Y;Z; q) if treatment 2 fGC;GEg (5)

It is worth mentioning here that the Lottery treatment can be interpreted as a special (limit)

case of the Global one in which the e¤ect of other people�s decisions on a certain participant�s

payo¤ is arbitrarily small. Consequently, and without loss of generality, henceforth the

analysis will be restricted to the Global case, with the occasional reference to the Lottery

one provided only when relevant.

For the experiment, participants in the Global treatments were divided in 9 groups of

2 people each, the matching protocol being random (equi-probable) within rounds and

independent across them.12 The experimental setup reproduced the three typical scenarios

described by the global game literature:

y The two extreme cases in which the �fundamentals� are �so bad�/�so good� that there

exists a strictly dominant strategy. In the experiment the fundamental is the agency�s

�toughness�, q, and so strict dominance requires that everyone should evade when the

agency is very soft (q = A) and that everyone should comply when it is very tough

(q = C). Formally, for every d0 2 D;

x (Y; d0; A) > x (Z) (6)

x (Y; d0; C) < x (Z) (7)

y The intermediate one in which the �fundamentals� are neither �so bad� nor �so good�.

In this case a coordination game is created and, consequently, no strategy dominates

all others: which one is optimal depends on what other people do. In the experiment,

this corresponds to the scenario in which the agency�s type is �medium� (q = B): if

the other person in my group evades, it is optimal for me to evade as well; if the other

person complies, I am better o¤ complying too.13 Formally,

x (Y; Y;B) > x (Z) > x (Y; Z;B) (8)

11 I restrict my attention to the 2-person case, which will be the relevant one throughout the paper. The
extension to the n-person case is straightforward.
12For the rest of the paper, the variables corresponding to the two members of a group will be denoted

by lowercase letters (e.g., signal s, decision d, etc.) and by primed lowercase letters (e.g., signal s0, decision
d0, etc.), respectively.
13Clearly, this does not apply to the Lottery case.
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Turning now to the other dimension that de�nes treatments, the di¤erence between the Eva-

sion and Compliance ones is due to their di¤erent predictions regarding what a participant�s

optimal strategy should be if signal b is observed. Thus, distinguishing E from C treatments

demands the solving of the taxpayer problem, namely, choosing between Evasion (Y ) and

Compliance (Z) using all the information available (s) in order to maximize expected util-

ity. In this setup, therefore, a taxpayer�s strategy � is a vector of decisions, one for each

possible signal s 2 S. Formally, � := (� (a) ; � (b) ; � (c)), where � : S ! D is a function

that maps signals into decisions.14 Therefore, �nding the solution requires comparing the

(certain) utility of compliance, u(Z), and the expected utility of evasion:

Eu (Y;k0 (s0) js) :=
P

q2Q

Pr (qjs)
P

s02S

Pr (s0jq) fk0 (s0)u (Y; Y; q) + [1� k0 (s0)]u (Y; Z; q)g

(9)

where u (Y; d0; q) := u (x (Y; d0; q)) is the utility I derive from receiving payo¤ x (Y; d0; q) ;

s0 2 S and d0 2 D are respectively the signal and decision of the other member of my group;

Pr (s0jq) 2 [0; 1] is the conditional probability of the other member getting signal s0 given

that the agency�s type is q; and k0(s0) := (k0(a); k0(b); k0(c)), such that k0(s0) and 1� k0(s0)

are my beliefs regarding what the other member of my group would do if she received signal

s0: if I expect her to choose Y then k0(s0) = 1 (and 1� k0(s0) = 0), if I expect her to choose

Z then k0(s0) = 0 (and 1� k0(s0) = 1).

This comparison depends crucially on the beliefs a player holds about the actions to be

followed by the other member of her group, k0(s0), and, thus, on the ability and sophistication

of the subjects at forming them, a matter that is directly related to the concepts of common

knowledge and higher-order beliefs (HOBs, Carlsson and van Damme (1993)). HOBs refer

to the levels of reasoning involved in reaching a conclusion and are neatly connected to the

(game theoretical) method of Iterated Deletion of Strictly Dominated Strategies (IDSDS):

with each iteration, the order of beliefs increases one level. Furthermore, HOBs are the key

factor behind the uniqueness of the global game equilibrium: in the �rst iteration, t = 1,

my private signal gives me information about the set of strategies (out of the original set,

�0) that are strictly dominated by others and will therefore never be played. In the second

iteration, t = 2, the set of those strategies that survived the previous round of deletions is

the new feasible set, �1. Via an analogous mechanism, a new group of strictly dominated

strategies will be discarded and after that a new iteration t = 3 with feasible set �2 will

begin. The theory of global games proves that in the limit, after an arbitrarily large number

of iterations, the feasible set �1 has only one element, ��. In other words, the equilibrium

is unique.

In the experiment, only 2 iterations are needed to �nd the unique solution to the taxpayer

problem.15 Thus we can classify players based on the number of iterations used (1 or 2):

14Actually, it maps signals into probability distributions over decisions, if one allows for mixed strategies.
However, this possibility was explicitly ruled out here because its inclusion would not have provided any
extra, signi�cant insight as to justify the complexity-associated problems it would have entailed.
15This does not apply to Lottery treatments for the obvious reason that in those cases, by de�nition, a
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De�nition 1 A player who uses only 1 iteration is de�ned as �Rudimentary.�

De�nition 2 A player who uses 2 iterations is de�ned as �Sophisticated.�

In other words, both types of players understand the game-theoretical concept of domi-

nant/dominated strategy, but di¤er in the scope of their understanding: while Rudimentary

players only recognize what is evident, Sophisticated ones go one step further and build up

on what Rudimentary players do. The following two propositions state how they rank the

available strategies.16

Proposition 1 (Rudimentary Dominance (RD)) According to Rudimentary players:

1. if s = a (signal is low), Evasion strictly dominates Compliance;

2. if s = b (signal is medium), no strategy strictly dominates the other; and

3. if s = c (signal is high), Compliance strictly dominates Evasion.

Proposition 2 (Sophisticated Dominance (SD)) According to Sophisticated players:

1. if s = a (signal is low), Evasion strictly dominates Compliance;

2. if s = b (signal is medium), then:

(a) in E treatments, Evasion strictly dominates Compliance; and

(b) in C treatments, Compliance strictly dominates Evasion; and

3. if s = c (signal is high), Compliance strictly dominates Evasion.

The rationale for taking into account both scenarios when s = b in proposition 2 re�ects,

above all, the lack of theoretical predictions or stylized facts about what strategy we should

expect to be played in that case.

The optimal strategy of a player is therefore:

Hypothesis 1 (Optimal Strategy (OS)) According to the global game technique, the op-

timal strategy of a player is as follows:

1. If signal is soft (s = a) then evade (d = Y );

2. if signal is medium (s = b) then:

taxpayer�s payo¤ does not depend on other people�s choices or the taxpayer�s beliefs about them.
16The derivation of these two results is shown in appendix B.
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(a) in E treatments, evade (d = Y ); and

(b) in C treatments, comply (d = Z); and

3. if signal is tough (s = c) then comply (d = Z).

If choices satisfy all three parts of the hypothesis, then one can say they are �consistent

with the SD predictions� and label the player as �Sophisticated�. If they only satisfy the

parts 1 and 3, they are �consistent with the RD predictions� and the player can be labelled

as �Rudimentary�.

3.2 Selection of payo¤s

The key hypothesis to test is the following one:

Hypothesis 2 (Superiority of Relative Auditing Strategy (SRAS)) For a given level

of enforcement, Global treatments generate less (expected) targeting errors than Lottery ones

for all possible types of agency, q 2 Q.

The payo¤s of the four treatments (shown on table 5) were chosen to make the satisfaction

of hypothesis 2 as di¢cult as possible. This way, if the data supports the global game

predictions in these most demanding conditions, then the theory could be expected to be

an even better predictor in more favorable environments.

Person 1�s choice Person 2�s choice Type of agency GC GE LC LE
Y Y A 1,000 1,000 715 1,000
Y Y B 655 145 655 145
Y Y C 579 6 579 1
Y Z A 658 156 715 1,000
Y Z B 651 135 655 145
Y Z C 0 0 579 1
Z {Y,Z} {A,B,C} 654 140 654 140

Note: Only payo¤s of Person 1 are shown. Those of Person 2 are symmetric.

Table 5: Payo¤s. All treatments.

It is worth noting at this point that the global game technique selects one of the equilibria

of a coordination game, an equilibrium that coincides (for 2 � 2 games like the ones used

here) with the one selected by the �risk dominance� criterion (Harsanyi and Selten (1988)).

Intuitively, the latter chooses the equilibrium which, if abandoned, in�icts the highest costs

on the players. In the experiment, the risk-dominant equilibrium depends on the treatment:

it is (Y; Y ) in the GE treatment and (Z;Z) in the GC one. These are, not surprisingly, the
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choices that proposition 1 predicted to be optimal in those treatments, thus con�rming that

both the global games theory and the risk-dominance criterion select the same equilibrium.

There is, however, an important competitor for the risk-dominance/global game criterion:

the payo¤-dominance criterion. It simply states that if all equilibria can be Pareto-ranked,

players will coordinate on the dominant one. In the experiment, the payo¤-dominant equi-

librium is always (Y; Y ), regardless of the treatment.

Thus, the payo¤-dominance and risk-dominance criteria select the same equilibrium in the

GE treatment but di¤erent ones in the GC one. The fact that the criteria reinforce each

other in GE but compete against each other in GC suggests the following hypothesis:

Hypothesis 3 (Relative Frequency (RF)) The frequency of choices that are consistent

with the global game/risk-dominance predictions is (weakly) higher in GE than in GC.

Finally, it is important to mention here that risk aversion could dramatically alter the

predictions of the model, and this may be especially important since evidence indicates that

attempts to induce risk-preferences seem not to work (Selten et al. (1999)). The solution

implemented in the experiment was to choose parameters such that all constraints will be

satis�ed for a large range of risk preferences. In particular, in E-treatments parameters

are robust for degrees of relative risk aversion as high as 0:4 (about 60% of the population,

according to Holt and Laury (2002)). In C-treatments, they are robust for values as low

as 0 (about 80% of the population, according to the same study). Also, it is acknowledged

in the experimental literature that when playing complex games people often avoids the

complications of utility maximisation and instead simply maximize payo¤s, which implies

that risk preferences should not be an important issue here.

4 Results

A total of 1,520 observations were collected in the experiment, and table 6 shows the break-

down by treatment. It also shows summary statistics of the key variables needed for testing

the hypotheses of the previous section:

Sophisticated Dominance measures the coincidence between the data and the global

game theoretical predictions about the subjects� choices (SD=1 if data �ts predictions

and 0 otherwise). Its name re�ects the fact that those predictions are based on the

concept of sophisticated dominance (proposition 2).

Errors quanti�es the number of tageting errors (per observation/datapoint) made by the

agency (ERR=1 if an error was made, 0 otherwise).

13



Note that Sophisticated Dominance is never lower than 50% and Errors never above 35%.

Treatment Observations
Sophisticated
Dominance (SD)

Errors (ERR)

Mean St. Dev. Mean St. Dev.
GC 360 0.7722 0.4200 0.1522 0.2252
GE 360 0.8639 0.3434 0.2028 0.3034
LC 400 0.5450 0.4986 0.3473 0.3303
LE 400 0.9300 0.2555 0.3243 0.3726
All 1,520 0.7757 0.4173 0.2608 0.3248

Note: SD=1 if subject�s choice coincides with global game�s prediction, 0 otherwise.
ERR=1 if agency made an error, 0 otherwise.

Table 6: Summary Statistics. Dominance and Errors.

For hypothesis testing, it would be useful to aggregate data in two di¤erent ways, depending

on the information available to the relevant actor. Thus, for hypotheses related to the

decisions of the taxpayers (OS and RF), data are aggregated by signal (columns 3-5 in table

7). For those related to actions of the agency (SRAS), on the other hand, the aggregation

is done according to the type of agency (columns 6-8 in the same table).

Treatment Observations Signal (s) Agency�s type (q)
a b c A B C

GC 360 7 295 58 18 234 108
GE 360 29 292 39 54 234 72
LC 400 29 330 41 60 260 80
LE 400 51 337 12 100 280 20
All 1,520 116 1,254 150 232 1,008 280

Note: Interpretation of s=q: a=A: �soft�; b=B: �medium�; c=C : �tough�.

Table 7: Number of observations, aggregated by signal and type of agency.

For the analysis, data from all subjects for all periods were pooled. This is justi�ed because

there is little variability in behavior after the �rst few rounds of each treatment:17 many

people choose exactly the same option every time they receive a given signal. This lack of

variability over time is not a bad thing in itself (the theory actually predicts such rigidity),

but it precludes the possibility of using other econometric techniques (e.g., panel data).

4.1 Optimal Strategy and Relative Frequency hypotheses

The set of variables that is going to be used for testing is described in table 8.

17Except in the GE one, that requires 10 rounds to become stable. This, however, does not usually have
an impact on results, and when it does, it will be mentioned in the text.
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Variable Role Type Description
SD Dependent Dummy 1 if choice coincides with prediction, 0 otherwise
Ds Dependent Dummy Idem SD, but for s 2 S given
RD Dependent Dummy Idem SD, but for s 2 fa; cg
AD Dependent Dummy Idem SD, but for s = b
g Explanatory Dummy 1 if G treatment, 0 otherwise
e Explanatory Dummy 1 if E treatment, 0 otherwise
ge Explanatory Dummy Interaction term: 1 if GE treatment, 0 otherwise
a Explanatory Dummy 1 if s = a, 0 otherwise
b Explanatory Dummy 1 if s = b, 0 otherwise
c Explanatory Dummy 1 if s = c, 0 otherwise

Note: �Predictions� as de�ned in hypothesis 1.

Table 8: Variables of the model. Dominance.

Dep. Var.! Da Db Dc RD AD SD
a 1.0205 0.7091

[0] [0]

b 0.5030
[0]

c 0.9855 0.7671
[0] [0]

g 0.0000 0.2803 -0.0345 -0.0201 0.2803 0.2227
[0.082] [0] [0.158] [0.35] [0] [0]

e -0.0196 0.4714 0.0000 -0.0297 0.4714 0.3928
[0.323] [0] [0.706] [0.072] [0] [0]

ge 0.0196 -0.3543 -0.0681 -0.0095 -0.3543 -0.2998
[0.323] [0] [0.217] [0.804] [0] [0]

cons 1.0000 0.4485 1.0000 0.4485
[.] [0] [0] [0]

Obs 116 1,254 150 266 1,254 1,520
LC 1.0000 0.4485 1.0000 1.0000 0.4485 .5450
LE 0.9804 0.9199 1.0000 0.9841 0.9199 .9300
GC 1.0000 0.7288 0.9655 0.9692 0.7288 .7722
GE 1.0000 0.8459 0.8974 0.9412 0.8459 .8639

Note: Top panel: Probability that estimate =0 is shown in brackets below estimate.
Bottom panel displays observed average values of the dependent variable.

Table 9: Estimation. Dominance. Overall and by signal.

Ds measures Dominance when only observations with a given signal s are considered. RD

means Rudimentary Dominance and considers only observations when signals are soft (a) or

tough (c). AD measures �Advanced Dominance� and only takes into account observations

with medium signals (hence, it is identical to Db).18 The unit of observation is the individual

18Thus, loosely speaking, we can say that Sophisticated Dominance is the sum of Rudimentary and
Advanced Dominance: Rudimentary people do only one iteration (see appendix B) and, consequently,
follow the optimal strategy (hypothesis 1) only when they receive soft or tough signals (parts 1 and 3 of the
hypothesis). In turn, Sophisticated people do two iterations meaning that, on top of following parts 1 and
3, the also follow part 2 of the hypothesis (when the signal is medium). This second, incremental iteration
is thus directly connected to the concept of Advanced Dominance as de�ned in the text.

15



player and the model used is

SD = �1g + �2e+ �3ge+ 1a+ 2b+ 3c+ " (10)

(analogous ones are used for the other dependent variables considered). The estimates are

shown in table 9.

Dep. Var.! Da Db Dc RD AD SD
LC X X X
LE X X X
GC X X X
GE X X X X X

LC=GC GC GC GC
LE=GE GE LE LE LE LE
LC=LE LC LE LE LE
GC=GE GE GE GE

Note: Top panel: Empty if data �ts prediction in hypothesis OS; �X� otherwise. Bottom panel:
Empty if no statistically-signi�cant di¤erence, treatment with higher dominance otherwise.

Table 10: Dominance tests. Predictions and inter-treatment comparisons.

Table 10 shows the results of the tests in a schematic way.19 The �rst panel tests the OS

hypothesis (see note below the table for interpretation of symbols). The null hypothesis is

that data are consistent with the predictions of the Global Games technique (hypothesis

1),20 a hypothesis that is supported in the cases of soft and tough signals (s = a and s = c)

and that implies that people are, at least, Rudimentary.21 When the signal is medium,

however, the Global Game predictions are rejected for all treatments and, therefore, the

OS hypothesis is quantitatively rejected as well (i.e., those aspects related to part 2 of

the hypothesis). Qualitatively, however, the results do support the predictions, as can be

seen in �gures 1 and 2, where the observed strategies resemble the shape of the predicted

ones (except for LC).22 Having in mind the discreteness of the model (which ampli�es

divergences) and that the parameters were chosen to make the test as di¢cult to pass as

possible for the Global Games theory, the result is still encouraging.

Result 1 (Qualitative Sophistication (QS)) People are, at least, Rudimentary: they

act as predicted by the OS hypothesis when signals are soft or tough. The hypothesis that

they make decisions in a way consistent with the second part of the OS hypothesis is rejected

in quantitative terms (and so is the OS hypothesis, consequently) but supported in qualitative

terms.

The bottom panel of table 10 compares the levels of Dominance of the di¤erent treatments.

19The tests are shown in table 17 in appendix E.
20The predicted value is 1 for all cases, which means that all observations should match predictions.
21The null hypothesis is rejected in the GE case because of an outlier. If discarded, the hypothesis cannot

be rejected.
22 In the �gures, 1 corresponds to Evasion (choice Y ) and 0 to Compliance (choice Z).
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Figure 1: Observed and Predicted choices. E-treatments.

Choice. Ctreatments. Treatment averages, by signal.
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Figure 2: Observed and Predicted choices. C-treatments.

The null hypothesis for the �rst two lines is that Dominance is the same in Global and

Lottery treatments, i.e., when the Relative Auditing Strategy (RAS) and the Cut-O¤ Rule

(COR) are used, respectively. The table shows that the hypothesis is supported for RD

but not for AD and SD. On the other hand, the theory cannot explain why AD and SD

are higher for Global in the C-treatments but higher for Lottery in the E-treatments. It is

worth noting, though, that the di¤erence between GE and LE vanishes when only the last

10 periods of both treatments are considered (see �gure 4). So we get that:

Result 2 (G v L Dominance (GLD)) Global treatments foster more Advanced and So-

phisticated Dominance than Lottery ones. There is no di¤erence between the two treatments

in terms of Rudimentary Dominance.
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For the last two lines, the null hypothesis is that Dominance is the same in Evasion and

Compliance treatments. Once again, it is satis�ed for RD but not for AD and SD. But

now AD and SE are higher in E treatments than in C ones, regardless of the auditing rule

used (RAS or COR). This can be explained �for the GC v GE case, last line of the panel�

by the coincidence of the risk- and payo¤-dominant equilibria in the GE treatment and the

discrepancy between them in the GC one.23 This is thus consistent with the RF hypothesis:

Result 3 (C v E Dominance (CED)) Evasion treatments foster more Advanced and So-

phisticated Dominance than Compliance ones. There is no di¤erence between the two treat-

ments in terms of Rudimentary Dominance. Thus, the RF hypothesis cannot be rejected.

These results can also be visualized in �gures 3 and 4. The �rst one con�rms that RD

is strongly supported by data and that di¤erent treatments do not a¤ect it. The second

one focuses on choices when the signal is medium and attests that AD and SD predictions

are quantitatively rejected, though they are qualitatively supported in all treatments but

LC. It also shows that treatments can be ranked as determined by the tests, namely, (from

higher to lower Sophisticated Dominance), LE; GE; GC and LC.24

Rudimentary Dominance. All treatments. Period averages.
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Figure 3: Rudimentary Dominance. All treatments. Period averages

4.2 Superiority of Relative Auditing Strategy hypothesis

The key prediction of theGIGmodel is that a tax agency would be advised to use the relative

auditing strategy (RAS) and to discard the cut-o¤ rule (COR). Following Sanchez Villalba

(2015), this means that �for given enforcement costs� the agency would make less targeting

23The theory is unable to explain the di¤erence between E and C in the Lottery treatments.
24Restricting attention to the last 10 periods so that the learning process in GE converges, the di¤erence

between GE and LE.
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Advanced Dominance. All treatments. Period averages
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Figure 4: Advanced Dominance. All treatments. Period averages.

errors if implementing the RAS than if using the COR. These targeting errors are the Zeal

and Negligence ones de�ned in section 2 (see especially footnote 2), though �for the reasons

explained on page 6� the analysis will focus on the Negligence errors only.

The unit of observation is the 2-person group of players in the G-treatments and it is the

individual player in the L-treatments. Thus, in order to be able to compare them, the

G-treatment errors were normalised and expressed in per capita terms. The model to be

estimated is thus:

ERR = �1g + �2e+ �3ge+ 1A+ 2B + 3C + " (11)

where the variables are de�ned as in table 11.

Variable Role Type Description

ERR Dependent Ordinal

�
In LC, LE: 1 if an error was made, 0 otherwise
In GC, GE: 1 if 2 errors, 1

2
if 1 error, 0 otherwise

ERRq Dependent Ordinal Idem ERR, but for q 2 Q given
g Explanatory Dummy 1 if G treatment, 0 otherwise
e Explanatory Dummy 1 if E treatment, 0 otherwise
ge Explanatory Dummy Interaction term: 1 if GE treatment, 0 otherwise
A Explanatory Dummy 1 if q = A, 0 otherwise
B Explanatory Dummy 1 if q = B, 0 otherwise
C Explanatory Dummy 1 if q = C, 0 otherwise

Note: ERR measures negligence errors per capita in a 2-person group in treatments GC, GE and individual negligence

erros in treatments LC, LE.

Table 11: Variables of the model. Errors.

The estimates can be seen in table 12.
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Dep. Var.! ERRA ERRB ERRC ERR
A 0.8610

[0]

B 0.2886
[0]

C 0.1526
[0]

g 0.0059 -0.1610 -0.1847 -0.1242
[0.956] [0] [0] [0]

e 0.3718 -0.2130 -0.1950 -0.1007
[0] [0] [0] [0]

ge -0.0967 0.1466 0.1856 0.0804
[0.423] [0] [0] [0]

cons 0.5482 0.3477 0.1954
[0] [0] [0]

Obs 232 1,008 280 1,520
LC 0.5482 0.3477 0.1954 0.3473
LE 0.9200 0.1346 0.0004 0.3243
GC 0.5541 0.1866 0.0107 0.1522
GE 0.8293 0.1203 0.0013 0.2028

Note: Top panel: Probability that estimate =0 is shown in brackets
below estimate. Bottom panel displays observed average values of
the dependent variable.

Table 12: Estimation. Errors. Overall and by type of agency.

In a fashion similar to the one used in section 4.1, several tests are shown in a schematic

form in table 13 (the values of the tests can be found in table 18 in appendix E).

Dep. Var.: ERRA ERRB ERRC ERR
LC + + + +
LE - -
GC + + +
GE - - -

LC=GC GC GC GC
LE=GE GE LE GE
LC=LE LC LE LE LE
GC=GE GC GE
Note: Top panel: Empty if data �ts predictions; �+� if observed errors
are higher than predicted; �-� otherwise. Bottom panel: Empty if no
statistically-signi�cant di¤erence, treatment with less errors otherwise.

Table 13: Errors tests. Predictions and inter-treatment comparisons.

The top panel tests the accuracy of predictions and shows that the data do not �t them. In

particular, errors are usually higher than predicted in C treatments but lower than predicted

in E ones. This is consistent with the Dominance results, which indicate that �too many�

people evade when they should comply (C treatments) and comply when they should evade

(E treatments). The main conclusion, thus, is basically the same as the one found for
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Figure 5: Errors. Soft agency. GC v LC.
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Figure 6: Errors. Medium agency. GC v LC.

Errors. Tough TA. GC v LC. Period Average
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Figure 7: Errors. Tough agency. GC v LC.
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Errors. Soft TA. GE v LE. Period Average
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Figure 8: Errors. Soft agency. GE v LE.
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Figure 9: Errors. Medium agency. GE v LE.

Errors. Tough TA. GE v LE. Period Average
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Figure 10: Errors. Tough agency. GE v LE.
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Dominance in Result 1, and subject to the same quali�cations.

The �rst two lines of the bottom panel are the important ones: they show the tests for the

SRAS hypothesis. Given the minimum variability in the extreme cases (when the agency

is too soft, q = A, or too tough, q = C), the relevant tests are those for the medium one,

and this one shows clearly that the Global treatments lead to less errors per capita than the

Lottery ones. In other words, the SRAS hypothesis is strongly supported.

Result 4 (Superiority of the Relative Auditing Strategy (SRAS)) From the agency�s

perspective, the Relative Auditing Strategy (RAS) is better than the Cut-O¤ Rule (COR).

The last two lines test whether there are signi�cant di¤erences between E and C treatments

and show (again focusing on the medium case) that the �rst lead to less errors than the

second. Again, this can be linked to the Dominance analysis, where E treatments show a

higher degree of coincidence with predictions than C ones. This means, in other words, than

in the latter many people evaded when they should have complied, and the higher number

of associated errors thus explains the present result.

Finally, it is important to notice that all these �ndings are also supported graphically, as

shown in �gures 5 to 10. It can be clearly seen there that G treatments (i.e., those in

which the Relative Auditing Strategy is implemented) lead to (weakly) less errors than L

ones (those in which the Cut-O¤ Rule is used). The �gures also show that errors are a

decreasing function of the agency�s �toughness�, which is consistent with the comparative

statics predicted by the Global Games theory.

Result 5 (E¤ect of agency�s type (EAT)) Errors decrease with the agency�s �tough-

ness�.

4.3 Characteristics and Decisions

The analysis can be deepened by using the information collected in the questionnnaire run

after the experimental rounds. The relevant variables are shown in table 14.
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Variable Role Type Description
AD Dependent Dummy 1 if data �ts proposition SD (part 2), 0 otherwise
g Explanatory Dummy 1 if G treatment, 0 otherwise
e Explanatory Dummy 1 if E treatment, 0 otherwise
ge Explanatory Dummy Interaction term: 1 if GE treatment, 0 otherwise

gender Explanatory Dummy 1 if female, 0 otherwise
age Explanatory Natural
study Explanatory Ordinal 0 : no study, 1 : non-economics, 2 : economics
# exp Explanatory Ordinal 0 : none, 1 : 1 to 4, 2 : 5+ experiments
math Explanatory Ordinal 0 : none, 1 : basic, 2 : advanced knowledge
prob Explanatory Ordinal 0 : none, 1 : basic, 2 : advanced knowledge
game Explanatory Ordinal 0 : none, 1 : basic, 2 : advanced knowledge

Note: �Study� refers to �area of study�. �Math�/�Prob�/�Game� refer to knowledge of
mathematics, probability theory and game theory, respectively.

Table 14: Questionnaire variables. Dominance.

The analysis will be restricted to that of AD. The reasons for this are two: �rst, the previous

section proved that RD is satis�ed almost perfectly for the whole sample of participants,

regardless of their individual characteristics; and second, AD is the main source of SD

variability, since in most observations the signal is medium (see table 7).

The question we want to address is: what (if any) are the personal characteristics that drive

players� choices?25 In order to answer it, the variables de�ned in table 14 were used to

estimate the following model (the unit of observation is the individual player):

AD = �+ �1g + �2e+ �3ge+

+ 1gender + 2age+ 3#exp+4math+ 5prob+ 6game+ " (12)

The results (shown in table 15) indicate that estimates are robust to the speci�cation of

the model (last three columns)26 and that most of the times there is not much di¤erence

between treatments or between individual treatments and the whole sample. The analysis

�nds that being male, young, not-knowledgeable at maths and not-knowledgeable at game

theory makes a subject more likely to make decisions that coincide with the predictions of

the Global Games theory. There is no rationale for the gender e¤ect (which, apart from the

whole sample, is signi�cant only in the LE treatment), though it is important to note that a

similar result is found by Heinemann et al. (2009). The age e¤ect may seem to re�ect that

most subjects are university students, but actually it is driven by a few older outliers: if

the analysis restricts its attention to �up-to-25-year-olds� (1,050 observations), age becomes

non-signi�cant. A similar story can be told about mathematics: it becomes insigni�cant

25To complement this enquiry, subjects were classi�ed into categories according to the strategies that
they followed in the experiment. The analysis is presented in appendix C of the appendix. The �Chance
Maximizers� category is particularly important, as it is postulated as the main factor that could explain
why treatment LC yields results signi�cantly di¤erent from the ones predicted by the Global Games theory
(together with the risk-dominance/payo¤-dominance equilibrium).
26For this very reason, only OLS estimates are shown throughout the whole paper.
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when the �young� sample is used (thus eliminating the puzzling result that the estimate�s

sign was negative). Area of study is not signi�cant and, surprisingly, neither are knowledge

of probability theory or participation in other experiments (though Heinemann et al. (2004)

�nd the same result regarding experience27).

OLS Probit Logit
GC GE LC LE All All All

g 0.2914 0.8573 1.3932
[0] [0] [0]

e 0.4895 1.7349 3.0951
[0] [0] [0]

ge -0.3894 -1.4149 2.4897
[0] [0] [0]

gender -0.0306 0.0078 0.0967 -0.0738 -0.0616 -0.2761 0.4752
[0.745] [0.853] [0.31] [0.005] [0.011] [0.003] [0.004]

age -0.0385 -0.0282 -0.0251 0.0039 -0.0078 -0.0304 0.0540
[0] [0] [0] [0] [0] [0] [0]

study 0.1916 0.0349 -0.5397 -0.0149 -0.0306 -0.1446 0.2348
[0.004] [0.514] [0] [0.787] [0.369] [0.312] [0.382]

#exp 0.0006 0.1402 -0.0677 -0.0160 -0.0059 -0.0416 0.0729
[0.988] [0] [0.161] [0.575] [0.738] [0.513] [0.507]

maths -0.5119 0.0418 0.1660 -0.0788 -0.0993 -0.3749 0.6982
[0] [0.432] [0.196] [0.099] [0.002] [0.001] [0.002]

prob -0.0454 -0.0060 0.0033 0.1204 0.0047 0.0219 0.0314
[0.635] [0.893] [0.963] [0.007] [0.866] [0.834] [0.867]

game 0.3409 0.1840 0.0362 0.0242 0.0961 0.4249 0.6918
[0] [0] [0.464] [0.193] [0] [0] [0]

cons 2.0118 1.2868 1.3768 0.8555 0.7772 1.1536 2.1058
[0] [0] [0] [0] [0] [0] [0]

Obs 295 292 330 337 1,254 1,254 1,254
Note: Probability that estimate =0 is shown in brackets below estimate.

Table 15: Estimation. E¤ect of personal characteristics on choices.

The only robustly signi�cant variable seems to be knowledge of game theory, which has a

positive e¤ect on AD. Furthermore, it is signi�cant in both treatments in which strategic

(i.e., game theoretic) interactions took place. This may indicate that some degree of in-

doctrination may have played a role and so that training can breed �sophistication�. This

suggests that a typical population (in which knowledge of game theory is negligible for

most people) could make choices quite di¤erent from the ones suggested by the Global

Games theory. However, it is reasonable to assume that �rms (the targeted population in

Sanchez Villalba (2015)) are sophisticated, as they are used to take strategic interactions

into account when making �nancial, marketing, logistic, ... and tax-related decisions. There-

fore, the theory would be a good predictor of behavior for �rms. Moreover, a similar result

27Subjects were not asked what type of experiments they took part in, so previous experience may not
have been useful for solving the decision problem of this experiment. Medical or psichological experiments,
for example, usually do not provide much help in solving economic problems. I am grateful to Silvia Martínez
Gorricho for pointing this out.
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could be achieved if individual taxpayers had access to sophisticated professional advice,

something that is indeed likely to occur (especially for wealthy individuals).

5 Conclusions

The empirical analysis of tax evasion is problematic because of the reluctance of both tax-

payers and tax agencies to provide the relevant information. This study, therefore, uses

experimental data as a second-best alternative and focuses on the testing of some of the the-

oretical predictions obtained in Sanchez Villalba (2015), though the richness of the dataset

also allows for the investigation of other interesting hypotheses related to decision-making

processes and the global game theory, so that the results found can be extrapolated to other

similar games (�Global Inspection Games�), e.g., the allocation of welfare bene�ts or the

awarding of bonuses based on peer-evaluations.

Results are strongly supportive of the main prediction of the GIG model, namely, that a tax

agency using a relative auditing strategy would do better than if it used the standard cut-o¤

one. The negative externality between taxpayers generated by the relative policy and the

associated strategic uncertainty it creates seem to be the powerful forces behind this result.

Also supported by the data are the predictions derived from the comparative statics of global

games: evasion is higher in E treatments than in C ones, evasion is a decreasing function

of signals, and errors decrease with agency�s �toughness�.

The picture, so encouraging in qualitative terms, is however radically di¤erent when consid-

ering it quantitatively: in general, the numerical predictions of the theory are rejected by the

data. This is true for the medium cases (when the signal is medium), but not for the extreme

ones though: in the latter, data �t the predictions and support the idea that people are,

at least, �Rudimentary� and (intuitively) understand the concept of dominance in simple

scenarios. Medium cases, on the other hand, show that most people do not use higher-order

beliefs when making their decisions (not even in this simple experiment, in which only two

iterations are needed). In spite of this, many times they do choose the actions predicted by

the theory of global games, usually after playing the game a few times. This �learning� result

is not so surprising, as it was already hinted by Carlsson and van Damme (1993) and found

experimentally by Cabrales et al. (2007). Other factors also seem to a¤ect decisions, like

the tension between the risk-dominant and payo¤-dominant equilibria, with their predicted

e¤ects closely mimicked by the data. More worrying, however, is the apparently pervasive

presence of a signi�cant group of people (�chance maximizers�) who choose their strategies

without taking into account all the available information (in this particular experiment, the

payo¤s in di¤erent scenarios) and that lead to the largest di¤erences between observed and

predicted actions (treatment LC). This concern is connected to the main result derived

from the analysis of questionnaire data, which suggests that those with knowledge of game
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theory are more likely to play according to predictions than those without that knowledge

. This result can have an impact on policy-making, as one would expect higher degree of

�sophistication� among �rms than among individual taxpayers (though the latter group can

change their status if they have access to sophisticated professional advice).

The bottom line is, therefore, that though people may not use higher-order beliefs, many

times they end up choosing the same actions than the ones predicted by the Global Games

theory. Consequently, this ensures that predictions are usually supported in qualitative terms

(comparative statics and inter-treatment comparisons) but rejected in quantitative ones.

Nonetheless, the latter problem can be deemed as a minor one because of two mitigating

factors: First, the discreteness of the model can work against it because it ampli�es small

di¤erences and thus make the data-predictions matches more di¢cult (something already

highlighted by Heinemann et al. (2002)). And second, the parameters of the model were

explicitly chosen to discourage said matches. Thus, the fact that the data does support

(qualitatively) the predictions in these most demanding conditions suggests that the theory

would be an even better predictor in more favorable environments.
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A Instructions for treatment GC28

Introduction

First of all, thank you very much for taking part in this experiment. It is

important to start by saying that, though part of a serious research programme,

this experiment is NOT a test. There are no �right� or �wrong� answers.

How it works

Before we do anything, we have to run through a few ground rules and

instructions. After that we will move to the experiment proper, where you will

be asked to make decisions in a number of economic situations presented to you.

Finally you will get paid: on top of a show-up fee of £5, you will get a sum of

money that will depend on your performance in the situations mentioned before.

The experiment consists of 5 stages:

� Instructions

� Trial rounds

� Experiment rounds

� Questionnaire

� Payment

We will go through these in detail below.

Ground rules

For the experiment to work we need to run it according to fairly strict rules,

but there are not too many:

28 Instructions for the other treatments were similar to these ones, with the logical changes in rules and
parameters needed in each case.
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� From now until the end of the experiment, please do not talk (it will

not take long!)

� If there is something you need to ask about the way the experiment

works just raise your hand -the experimenter will come to your desk.

� Please do not use the computer until you are told to.

The Six Stages

1 Instructions

The experimenter will read out the instructions. If you have questions, this

is the time to deal with them. Just raise your hand and the experimenter will

answer them privately.

2 Short quiz

This is to ensure that you understand the instructions.

3 Trial rounds

The experiment is organised in a series of rounds. Each round is a period

in which you interact �via the computer only� with the other participants and

make decisions that determine the amount of money you will get at the end of

the session.

As a warm-up you will �rst take part in 2 trial rounds. These trial rounds

are identical to the experiment rounds in every respect with one exception: the

e¤ect on payment. Trial rounds do NOT a¤ect your reward at the end of the

experiment. They allow you to check out the interface and familiarise yourself

with the screen tables, buttons and commands. They also allow you to make

mistakes without losing money.

4 Experiment rounds

This is the real thing. What you do during these rounds will determine the

total amount of money you will get.

The following �Frequently Asked Questions� will lead you through the basic

mechanics of the rounds.

4.1. What is this all about?

Let us start by saying that the experiment will consist of 20 experiment

rounds. In each one of them the computer will pair you up with one other

participant. Each of the other participants in the room is equally likely to be

paired up with you.

4.2. What do I have to do?

You have to choose one of two possible actions, namely Y or Z. You choose

one or the other by clicking on your preferred option in the bottom left panel of

the choice screen (see �gure 1) and then pressing the �OK� button in the same

panel.

Figure 1: Choice screen
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4.3. How is my payo¤ for the round determined?

Your payo¤ for the round depends on your own action, the action of the other

participant, and an unknown parameter called q.

4.4. But exactly how is my payo¤ for the round determined?

There are two cases to consider:

a. If you choose action Z, your payo¤ is 654 �experimental points� with

certainty.

b. If you choose action Y, your payo¤ depends on both the value of q and

the action of the other participant, as shown in the table below (and also in the

top-left panel of the choice screen (see �gure 1)):

Value of q
A B C

Other participant�s Y 1000 655 579
choice Z 658 651 0

That is, if you choose Z, you always get 654 �experimental points�, regardless

of what the other participant does and what the value of q is. But if you choose

Y, then there are several cases to consider. Let us see some of them (remembering

that in all of them you choose Y and your payo¤ is measured in �experimental

points�):

If the other participant chooses Y and q equals A, then your payo¤ is 1000.

If the other participant chooses Y and q equals B, then your payo¤ is 655.

And so on.

4.5. So how much money do I get then?

Your payo¤s are transformed into money at a rate of: 1000 �experimental

points� = 50 pence

That is, if your payo¤ for the round is, for example, 655 �experimental

points�, your corresponding money earnings are 655� 50=1000 = 32:75pence.

Your session earnings are computed by adding up the money you got during the 20 experi-

ment rounds.

4.6. But, what is q?

q is a parameter that can only take one of 3 values: A, B or C. In any given round,

your computer will choose one of these 3 values, with probabilities 0.20, 0.60 and 0.20,

respectively.

Intuitively, you can think of these probabilities in the following way: Consider an urn with

100 balls. 20 of them are labelled �A�, 60 �B� and 20 �C�. The value of q will be determined

by the label of one of the 100 balls in the urn, chosen randomly (by the computer).
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4.7. Is there anything I could use to make a more informed decision?

Yes, there is. Before you make a decision you will get a �hint�. This hint will be known

only to you and can only take one of 3 values: a, b or c. It provides some information about

the value of the unknown parameter q, as shown in the following table (and in the top-right

panel of the choice screen (�gure 1)):

If hint is... ...then q is... ...with probability...
a A 1:000

b
A
B
C

0:125
0:750
0:125

c C 1:000

For any given round, your hint can be found immediately below this table in the choice

screen (�gure 1).

The table may seem a bit complicated but do not worry, it is not. It simply says that if

your hint is equal to a, then you can be sure that q is equal to A. Analogously, if your hint

is equal to c, then q is equal to C. When your hint is equal to b, however, you do not know

for sure what the value of q is, but you can tell how likely each value is: q is equal to B with

probability 0.750, while it is equal to A or C with probabilities 0.125 and 0.125, respectively.

Important note: Although q is the same for you and the other participant, your hints may

di¤er from each other.

4.8. Anything else I should know before making my choice?

If you want to make some computations before choosing your action, you can press the

calculator button on the choice screen (the small square button just above the darker area

(see �gure 1)). Pens and paper are available for those who prefer them: raise your hand

and an experimenter will take them to your desk.

Also, it is worth mentioning that there is no �Back� button, so please make your decisions

carefully and only press the �OK� or �Continue� buttons when you are sure you want to

move to the next screen.

4.9. So I made my decision, what now?

After you submit your decision, you will be shown the action you chose and the payo¤

you got for the round, as well as the value that q took (see �gure 2). By clicking on the

�Continue� button you will move to a new round (if there is any still to be played).

Figure 2: Results screen
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Figure 11:

4.10. And then? Is it the same over and over again?

Basically, yes. In every round, the structure is identical to the one described

above: �rst a new q will be selected by the computer and you will be paired up

with another participant, then you will be assigned a hint and will have to make

a decision, and �nally your payo¤ will be shown on the results screen.

You can check what happened in previous periods by taking a look at the

darker area in the bottom-right panel of the choice screen (see �gure 1). It

includes information about the values adopted by q, the hints you got and the

actions you chose in earlier rounds.

Important note: Every period is like a clean slate: the value of q, the par-

ticipant you are paired up with and the hint you get may vary from round to

round, but the RULES that determine them (explained in questions 4.6., 4.1.

and 4.7.) do not. In short, rounds are independent: for example, you can think

that in every round a new urn with 100 balls -20 �As�, 60 �Bs� and 20 �Cs� -

is used to determine the value of q, as explained in question 4.6. Similarly, the

pairings and hints of a given round are independent of the pairings and hints of

previous rounds.

5 Questionnaire

We will ask you a few questions that will help us to further understand the

data collected in the session.

6 Payment

Finally! You will be paid a show-up fee of £5 plus the sum earned during

the session, as explained in question 4.5.

And that is it. Once again, thank you very much for participating!
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SHORT QUIZ

1. What is your payo¤ (in �experimental points�) if you choose Y, the

person paired-up with you chooses Z and q is equal to A? . . . . . . . . . . . . . . .

2. What is your payo¤ (in �experimental points�) if you choose Z, the

person paired-up with you chooses Y and q is equal to C? . . . . . . . . . . . . . . .

3. If your hint is equal to b, what is the probability that q is equal to A?

. . . . . . . . . . . . . . .

B Rudimentary and Sophisticated Dominance

Let us start by de�ning the concepts of Soft, Medium and Tough games, which are simply

the games played by the members of a group when the agency is soft, medium and tough,

respectively (i.e., they are like the game shown in table 2, with q 2 fA;B;Cg). Clearly,

these games g 2 G := fS;M; Tg depend on the type of the agency, and so both g and q are

subject to the same probabilistic process.

Based on this taxonomy of games and on the conditional probability distribution of q (shown

in table 3), two di¤erent scenarios can be identi�ed: one in which the signals give perfect

information about the game being played (when s = a or s = c), and another one in which

precision is less than perfect (when s = b).

In the �rst iteration, therefore, a player who receives a soft signal (s = a) knows for sure

that she is playing the Soft game (g = S). Furthermore, because of equation 6, she can

immediately realize that Evasion strictly dominates Compliance, the very result indicated

in part 1 of proposition 1. Following a similar argument and using equation 7, part 3 is also

proved.

When the signal is medium (s = b), though, the person does not know the actual game g that

is played, but she does know its conditional probability distribution Pr(g(q)jb) = Pr(qjb).

Thus, the game that she faces is depicted in �gure 12, and her expected utility from evasion is

given by equation 9, where s is replaced by b. This expression is an increasing function of the

beliefs k0(s0), 8s0 2 S, because of the nature of the relative policy (equation 5). The worst-

case scenario for the optimizing person occurs, therefore, when k0(s0) = 0; 0 := (0; 0; 0),

such that the expected utility from evasion is Eu (Y;0jb) : Analogously, the best-case scenario

occurs when k0(s0) = 1; 1 := (1; 1; 1) and expected utility is Eu (Y;1jb). It is not di¢cult

to see that the no-strict-dominance condition of proposition 1 (part 2) requires

Eu (Y;0jb) < u(Z) < Eu (Y;1jb) (13)

and if it is satis�ed, a Rudimentary player will act as predicted by proposition 1.29

29Alternatively, this equation can be interpretated as follows. Let us construct a new, arti�cial 2x2 game
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f(A|b)=1/8

k’(a)

k’(b)

f(B|b)=6/8

f(C|b)=1/8

Pr(a|A)=1/2

Pr(b|B)=1

Pr(b|A)=1/2

N

SOFT

Pr(c|C)=1/2

Pr(b|C)=1/2

MEDIUM

SOFT

TOUGH

TOUGH k’(c)

k’(b)

k’(b)

N

N

N

Figure 12: Game tree if signal is medium (s = b)

A Rudimentary player would stop her analysis here, but the Sophisticated one will continue

to the next iteration. Furthermore, the sophisticated player will realize that, if the other

member of her group is (at least) Rudimentary, then (by symmetry) she would have also

worked out that Evasion (respectively, Compliance) is the strictly dominant strategy when

the signal received is soft (a) (respectively, tough (c)). Formally, the sophisticated player�s

beliefs about the other person�s choices will have precise numbers attached to them, namely,

k0(a) = 1 and k0(c) = 0. The expected utility will re�ect this: Eu (Y; (1; k0 (b) ; 0) jb) and

new worst- and best-case scenarios can be computed: Eu (Y; cjb) and Eu (Y; ejb) ;where

c := (1; 0; 0) and e := (1; 1; 0).

Depending on the position of the safe utility u(Z) with respect to the latter two, three cases

like the one in table 2, but which is a weighted average of the Soft, Medium and Tough games de�ned above,
A :=

P

q2Q

f (qjb) � g (q), so that the corresponding (expected) utility in each of its cells is

u
�
d; d0; E (qjb)

�
:=

P

q2Q

f (qjb) � u
�
d; d0; q

�
(14)

It can then be shown that u (Y; Z;E (qjb)) = Eu(Y;0jb); u (Y; Y;E (qjb)) = Eu(Y;1jb), and u (Z; Y;E (qjb)) =
u (Z;Z;E (qjb)) = u(Z); so that equation 13 implies that this �Average game� is a coordination game.
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can arise, of which we are interested only in the following two:30 ;31

Eu (Y; cjb) > u(Z) (17)

u(Z) > Eu (Y; ejb) (18)

The �rst one indicates that even in the new worst-case scenario, the expected utility from

Evasion is higher than that of Compliance or, equivalently, that Evasion strictly dominates

Compliance. The second one, on the other hand, implies that, even in the new best-case

scenario, the expected utility from Evasion is lower than that of Compliance, and so that

Compliance strictly dominates Evasion.

By de�nition these two conditions are mutually exclusive, and which one of them is satis�ed

determines the player�s optimal strategy: either �� = (Y; Y; Z) if equation 17 holds or

�
� = (Y; Z; Z) if the one that holds is equation 18. These strategies are of the �threshold�

type (Heinemann et al. (2004), Heinemann et al. (2009)) but can be indexed by their

second component, which is the only one that di¤erentiates one strategy from the other

and corresponds to the optimal choice when the signal is medium, �� (b). The value of this

component, therefore, is the one that de�nes the Evasion, �� (b) = Y , and Compliance,

�� (b) = Z, treatments. This is exactly what states the second part of proposition 2.

C Classi�cation of subjects based on questionnaire data

The questionnaire also asked participants about the strategies they followed and the ra-

tionale behind them. This information was then used to classify them according to some

stylized characteristics, in a fashion similar to the one used by Bosch-Domenech et al. (2002).

The distribution of subjects in terms of categories and treatments is shown in table 16.

The di¤erent categories are de�ned as follows:32

Expected payo¤ maximizers (EPM): Those who indicated they played Y (Z) in E

(C) treatments, based on expected-payo¤ maximisation. Note that this category includes

everyone who played according to the OS strategy, even though they did not use HOBs.

30The third one does not lead to a unique solution, which goes against the spirit of the theory of global
games. The reason for the non-uniqueness is the discreteness of the model. Having continuous choices may
have avoided this problem, but at the cost (considered to be too high) of increasing the complexity of the
game and thus the noise in the observations.
31For L-treatments, the analysis is greatly simpli�ed since other people�s choices do not a¤ect one�s

decisions. Then, the equivalents of equations 17 and 18 are, respectively,

Eu(Y; b) > u(Z) (15)

u(Z) > Eu(Y; b) (16)

32Appendix D shows literal transcripts of questionnaire comments made by some subjects that are char-
acteristic of each one of these categories.
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Category GC GE LC LE All
Expected payo¤ maximizers (EPM) 10/11 8/11 5 5/13 28/40
Chance maximizers (CM) 1/2 0/3 6/7 0/8 7/20
Learners (L) 0 3 1 1 5
Mixers/Experimenters (M/E) 1 2 0 2 5
Non-independent (NI) 1 0 4 3 8
Randomizers (R) 1 2 1 0 4
Confused (C) 1 0 1/2 1 3/4
Risk-lovers (RL) 2 0 1 0 3
All 18 18 20 20 76
Note: Cells with two numbers separated by �/� re�ect uncertainty about the allocation
of some subjects to speci�c categories.

Table 16: Questionnaire. Classi�cation of subjects.

Chance maximizers (CM): Those who only considered the probabilities of outcomes

being higher or lower than the safe option, without weighting them using the associated

payo¤s.

Learners (L): Those whose decisions varied in the �rst periods, but chose always the

predicted action afterwards.

Mixers/Experimenters (M/E): Those that deviated just once or twice from the pre-

dictions of the OS hypothesis but, unlike the Ls, did so at times other than the �rst peri-

ods (Experimenters). An alternative rationale could be that they followed a strategy such

that they evaded and complied with probabilities that usually replicated the relevant odds

((1=8; 7=8) in C treatments and (7=8; 1=8) in E ones), and so could be labelled �Mixers�.

Non-independent (NI): Those who (despite the instructions clearly stating that rounds

were independent from each other) followed some kind of history-dependent strategy.

Randomizers (R) (also �Guessers� (G)): Those who chose randomly between Y and Z.

Confused (C): Those who seemed to be (or acknowledge they were) confused.

On top of these strategies, the degree of risk aversion is expected to play a role as well. In

particular, risk aversion fosters compliance (ceteris paribus) and hence makes the Global

Game predictions easier to be satis�ed in C treatments, but works against them in E ones.

Combining the strategies de�ned above and the degree of risk aversion, one can usually

categorize all subjects and �nd some interesting stylized facts.

The �rst one that can be stated is that categories seem to order themselves in three �Dom-

inance bands� according to their degree of coincidence with the Global Game predictions

(see �gures 13, ??, 14 and ??). Near the top we can �nd the EPMs (high dominance). In

the middle-ground there is a mixed bag of types (M=E, L; NI and C) who chose di¤erent

actions in di¤erent periods, even though they always got the same signal b. Risk lovers (RL)

are close to the top in E treatments and to the bottom in C ones, and the opposite is true
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for risk averse (RA) people.

All these results, however, are not surprising. The category that is really exciting to analyse

in detail, on the other hand, is that of the CMs, since it seems to be behind the case

with the largest deviations from predictions (that is, the LC treatment). Now, the �rst

thing to notice is that in some cases CMs cannot be distinguished from EPMs, because

the observed data are consistent with the predictions of both criteria (expected-payo¤ and

probability maximisation) and the questionnaire information is vague (this is the rationale

for the ambiguity in table 16). For this very reason, the most interesting scenarios are those

where the two criteria prescribe di¤erent actions, as is the case in C treatments (the Global

Game theory/Expected Payo¤ Maximization predicts Compliance, Chance Maximization

predicts Evasion). Focusing on these treatments, it can be seen that signi�cant deviations

from the Global Game predictions take place, thus con�rming the results of the tests that

compare the levels of dominance in C and E treatments (table 10). Also, since Chance

Maximization�s prescription to evade depends on what the other person does in GC but

not in LC, it is not surprising that the degree of dominance in the former is greater than

in the latter: the uncertainty about the other person�s action in GC works against the

incentives to evade and (as seen in �gure 13) only RLs end up evading all periods. Since

this interdependence does not play a role in LC; the number of subjects that evade all

periods is far greater (and most of them are CMs �see �gure 14), and explains the huge

divergence between predictions and data (and con�rms the ranking of treatments according

to Dominance found in the previous section).

D Examples of categories

Expected-Payo¤ Maximizers (EPM): �If the hint was a, I selected action Y; otherwise,

I selected action Z. There are only three outcomes that generate more than 654 points, and

two of them only generate a negligible increase (relative to their risk). The only way to

"gamble and win" is to play Y when the hint is b, and in that case, I am gambling that

either my "opponent" has a hint of a (very unlikely), or my opponent has a hint of b, is

risking that q is really A, and is right (also very unlikely). My risk is that my opponent

plays Z, which is safer, and that q is B or C, which is likely. The risk/reward is far too

high. When my hint is a or c the correct play is obvious - in the former case, playing Y

always nets me more than 654, and in the latter, playing Y always nets me less than 654,

no matter what my opponent does.� (Subject #10, GC).

Chance Maximizers (CM): �If the hint is c, the best decision is always Z with a higher

payo¤. If the hint is b, it worths choosing Y, because thereis a probablility of 0.875 getting

A or B, which are both higher than Z(654). If the hint is a, my decision is de�nitely Y.�

(Subject #20, LC).
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Figure 13: Advanced Dominance. Subject averages. GC treatment.

Figure 14: Advanced Dominance. Subject averages. LC treatment.
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Learners (L): �At �rst i played it safe and went with the guarantee button z and then i

took more of a risk by chosing the y button every time i got the hint "a" or "b". because

there was a higher probability of gaining more points.� (Subject #18, GE).

Mixers/Experimenters (M/E): �If the hint was A, choice was Y. If the hint was C,

choice was Z. If the hint was B, 80% of the time choice was Y and 20%, B.� (Subject #15,

LE).

Non-independent (NI): �If the hint came up as A i always selected choice Y as I would be

better o¤ (ie gaining more money) through doing so regardless of what the other participant

chose. Conversely, if the value of q was C i always chose Z since I would be worse o¤ if i

choice Y despite what the other person selected. If the value of q came up as b i would go

systematically throught the choices Y,Y,Z. This was my order since if q=b and q=a i would

be better o¤ selecting Y and if q=c i would be better o¤ selecting Z. Since the probability

of q=b was the highest i put Y at the beginning of the order. I used my knowledge of maths

and probablities to calculate the order in which to place my choices.� (Subject #2, GC).

Randomizers (R): �If the hint was a then i chose Y if the hint would have been c then i

would have chosen Z. apart from this i just guessed randomly. the last 3 i thought i may as

well take the risk as it was the end of the experiment.� (Subject #19, LC).

Confused (C): �If the probability was lower than the other option, i chose the other option.

I did not take risks in the cases where the probability could also go for the lowest amount.

Becasue i dont know much about the probability theory so i decided to go for the safest

method.� (Subject #7, LC).

Risk-lovers (RL): �I chose Y every time unless I knew it was C. I was not given the hint

a at any time. The di¤erence between playing it safe and gambling with the Y option was

small enough to make the experiment slightly more fun. I knew that I could lose 579, but

only gain 421, but preferred the gamble.� (Subject #7, GC).
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E Extra Tables

Da Db Dc RD AD SD
LC . 0.0000 . 1.0000 0.0000 0.0000
LE 0.3231 0.0000 . 0.3180 0.0000 0.0000
GC . 0.0000 0.1578 0.1552 0.0000 0.0000
GE . 0.0000 0.0390 0.0418 0.0000 0.0000

LC=GC . 0.0000 0.1578 0.1552 0.0000 0.0000
LE=GE 0.3231 0.0042 0.0390 0.1920 0.0042 0.0029
LC=LE 0.3231 0.0000 . 0.3180 0.0000 0.0000
GC=GE . 0.0005 0.2170 0.4359 0.0005 0.0014
Note: Values of F-tests. Values below 5% imply the null hypothesis is rejected. Dots
mean there is no variability in data as to compute the statistics.

Table 17: Dominance tests. Predictions and inter-treatment comparisons.

ERRA ERRB ERRC ERR
LC 0.3456 0.0000 0.0000 0.0518
LE 1.0000 0.1450 0.0004 0.3515
GC 0.2939 0.0000 0.0000 0.0147
GE 1.0000 0.1450 0.0010 0.2445
LC 0.0000 0.0000 0.0000 0.0000
LE 0.0038 0.0000 1.0000 0.1441
GC 0.0092 0.0000 0.1575 0.0000
GE 0.0006 0.0000 0.2612 0.0092

LC=GC 0.9556 0.0000 0.0000 0.0000
LE=GE 0.1082 0.0000 0.0034 0.0000
LC=LE 0.0000 0.0000 0.0000 0.3555
GC=GE 0.0135 0.0000 0.2160 0.0112
Note: Top panel: Predicted values of dependent variable. Middle
and bottom panels: Values of F-tests. Values below 5% imply the
null hypothesis is rejected.

Table 18: Errors tests. Predictions and inter-treatment comparisons.
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