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Abstract

This note revisits the role of time-invariant observed covariates in the Synthetic Control (SC) method.
We first derive conditions under which the original result of Abadie et al. (2010) regarding the bias of the
SC estimator remains valid when we relax the assumption of a perfect match on observed covariates and
assume only a perfect match on pre-treatment outcomes. We then show that, even when the conditions
for the first result are valid, a perfect match on pre-treatment outcomes does not generally imply an
approximate match for all covariates. This will only be true for those that are both relevant and whose
effects (over time) are not collinear with the effects of other observed and unobserved covariates. Taken
together, our results show that a perfect match on covariates should not be required for the SC method,
as long as there is a perfect match on a long set of pre-treatment outcomes.
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1 Introduction

Social scientists are often interested in evaluating the effect of a policy or a treatment on an outcome of

interest. To perform such an analysis, both a control and a treatment group are needed. In the absence of

randomized experiments, however, it is often difficult to find a suitable control group. The synthetic control

(SC) method, developed in a series of papers by Abadie and Gardeazabal (2003), Abadie et al. (2010), and

Abadie et al. (2015), allows practitioners to construct a control group from a set of potential control groups.

The method uses a data-driven weighted average of the selected groups to construct a synthetic control

group that is “more similar to the treatment group than any of the individual control groups,” c.f. Athey

and Imbens (2017). This fact has contributed to the method’s success, earning it its distinction of being

“arguably one of the most important innovations in the policy evaluation literature in the last 15 years,” c.f.

Athey and Imbens (2017).

A crucial step in applications of the SC method is the choice of predictors used to estimate the weights.

Although there is little guidance on which variables to be used as predictors, see e.g. Ferman et al. (2016), the

original article on the SC method mentions using pre-treatment outcomes and other time-invariant observed

covariates. In fact, when potential outcomes follow a linear factor model, Abadie et al. (2010) show that

the existence of weights that achieve a perfect match on both pre-treatment outcomes and time-invariant

covariates implies that the bias of the SC estimator is bounded by a function that approaches zero as the

number of pre-treatment periods increases.

In this note, we revisit this result. First, we consider whether the results of Abadie et al. (2010) remain

valid without imposing a perfect match on time-invariant covariates.1 We show that this will be the case if

we impose additional assumptions on the effects of observed covariates on potential outcomes relative to the

assumptions in Abadie et al. (2010). Second, we derive conditions under which a perfect match on a long set

of pre-treatment outcomes also implies an approximate match on time-invariant covariates.2 We show that

this is true for covariates that are both relevant and whose effects on the potential outcomes are linearly

independent from the effects of other observable and unobservable covariates. Therefore, a perfect match

on pre-treatment outcomes does not necessarily imply a perfect match on all covariates that are relevant in

determining the potential outcomes. However, this does not invalidate the result that the bias of the SC

estimator is bounded by a function that goes to zero when the number of pre-treatment periods increases.

1In parallel with our work, Kaul et al. (2015) claim (without formalizing it) that ignoring covariates is not expected to lead
to asymptotic bias when the number of pre-treatment periods goes to infinity.

2We refer to “approximate match” for a covariate as the difference between the covariate for the treated unit and for the
SC unit being bounded by a function that goes to zero with the number of pre-treatment periods.
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Taken together, our results show that a perfect match on observed time-invariant covariates should not be

required for the SC method, as long as there is a perfect match on a long set of pre-treatment outcomes.

The remainder of paper is organized as follows. In Section 2 we set-up the model and briefly review the

results of Abadie et al. (2010), while in Section 3 we present the new results. All proofs are contained in the

Appendix.

2 The model in Abadie et al. (2010)

Let Yit (1) and Yit (0) be potential outcomes in the presence and in the absence of a treatment, respectively,

for unit i at time t. Consider the model:





Yit(0) = δt + θtZi + λtµi + εit

Yit(1) = αit + Yit(0)

(1)

where δt is an unknown common factor with constant factor loadings across units; λt is a (1 × F ) vector

of common factors; µi is a (F × 1) vector of unknown factor loadings; θt is a (1 × r) vector of unknown

parameter; Zi is a (r × 1) vector of observed covariates (not affected by the intervention), and the error

terms εit are unobserved transitory shocks. As in Abadie et al. (2010), we treat θt and λt as parameters and

µi as random. We say that a covariate Zki is relevant if its associated coefficient θkt 6= 0 for some t, and we

refer to µi as an unobserved covariate. The observed outcomes are given by

Yit = DitYit(1) + (1−Dit)Yit(0), (2)

where Dit = 1 if unit i is treated at time t.

Suppose that the treatment takes place after time t = T0 and let the index 1 denote the treated unit.

We observe the outcomes of the treated unit and of J control units for T0 pre-intervention periods and for

T − T0 post-intervention periods, that is, (Y1,t, ..., YJ+1,t) for t = 1, ..., T0, T0 + 1, ..., T .

The main goal of the SC method is to estimate the treatment effect on the treated, i.e.

α1t = Y1t (1)− Y1t (0) , t > T0. (3)

Since Y1t (0) for t > T0, is not observed, the main idea of the SC method is to consider a weighted average
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of the control units to construct a proxy for this counterfactual. That is, for a given set of weights

w ∈ {(w2, ..., wJ+1)|

J+1∑

j=2

wj = 1 and wj ≥ 0} (4)

the SC estimator for t > T0 is given by:

α̂1t = Y1t −
∑

j 6=1

wjYjt = α1t + θt


Z1 −

∑

j 6=1

wjZj


+ λt


µ1 −

∑

j 6=1

wjµj


+


ε1t −

∑

j 6=1

wjεjt


 .

Abadie et al. (2010) provide conditions under which the bias of the SC estimator is bounded by a function

that goes to zero as the number of pre-intervention periods grows. The authors assume the existence of

weights w∗ ∈ R
J that satisfy (4) and such that

Y1t =
∑

j 6=1

w∗
jYjt, t ≤ T0, (5)

Z1 =
∑

j 6=1

w∗
jZj , (6)

where (5) is the assumption of a perfect match on pre-treatment outcomes, and (6) is the assumption of

perfect match on time-invariant observed covariates. Given (5) and (6), and other additional assumptions,

Abadie et al. (2010) derive bounds on the bias of the SC estimator that go to zero when T0 increases. More

precisely, letting

α̂∗
1t = Y1t −

∑

j 6=1

w∗
jYjt, (7)

they show that there exists a function b (T0) such that for all t > T0:

|E (α̂∗
1t)− α1t| ≤ b (T0) with b (T0) → 0 as T0 → ∞. (8)

3 The role of covariates in the Abadie et al. (2010) method

We derive conditions under which result (8) remains valid when (6) is not assumed. We also derive conditions

under which assuming (5) implies that (6) holds approximately. The main idea of our proof is to treat

observed covariates (Zi) as factor loadings and their associated time-varying effects (θt) as common factors.

Define the 1×(r+F ) row vector γt ≡ (θt, λt), and denote by ξ(T0) the smallest eigenvalue of 1

T0

∑T0

t=1
γ′tγt.
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Consider the following assumptions, which are similar to those in Abadie et al. (2010).

Assumption 1

(i) εit are inid with E (εit) = 0 and σ2
it = E

(
ε2it
)
<∞ for all i and t;

(ii) E[εit|Zi, µi] = 0;

(iii) ∃ξ > 0 and T̄ ∈ N such that ξ(T0) > ξ for all T0 > T̄ ;

(iv) |γtm| ≤ γ for all t = 1, ..., T and m = 1, ..., r + F ;

(v) E (|εit|
p
) <∞ for p = 2m where 1 ≤ m ∈ N, and for all t = 1, ..., T0 and i = 2, ..., J + 1;

Remark 1 Assumption 1.(iii) excludes the possibility of covariates that are irrelevant in determining the

potential outcome (that is, θkt = 0 for all t). This assumption also excludes the possibility of covariates whose

effects are multicollinear with the effects of other observed or unobserved covariates. If we were considering a

setting with only unobserved covariates, then we would always be able to redefine the unobserved covariates

so that we have an observationally equivalent model with no covariates that are irrelevant or whose effects

are multicollinear with the effects of other covariates.3 However, this will not be the case if we have observed

covariates. We show later that it is possible to relax this assumption and still provide bounds on the bias of

the SC estimator.

Proposition 1 Consider the model (1) and (2). Let there be weights w∗ ∈ R
J such that (4) and (5) hold,

and let Assumption 1 hold. Then there exists a function bα(T0) with limT0→∞bα(T0) = 0 such that:

|E (α̂∗
1t)− α1t| ≤ bα(T0) for all t > T0. (9)

Additionally, there exist functions bµ,l (T0), l = 1, ..., F , and bZ,k(T0), k = 1, ..., r, with limT0→∞bµ,l(T0) =

0 = limT0→∞ bZ,k(T0) such that:

∣∣∣∣∣∣
E


Zk1 −

J+1∑

j=2

w∗
jZkj



∣∣∣∣∣∣

≤ bZ,k(T0) for all k = 1, ..., r, (10)

∣∣∣∣∣∣
E


µl1 −

J+1∑

j=2

w∗
jµlj



∣∣∣∣∣∣

≤ bµ,l(T0) for all l = 1, ..., F. (11)

3Note, however, that assumption 1.(iii) may still fail in this case. For example, we may have a simple example in which
λ1,t = 1 for t = 1 and λ1,t = 0 for t > 1. In this case, λ1,t is relevant, but ξ(T0) → 0 when T0 → ∞.
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Proof. We provide the proof of Proposition 1 in the Appendix.

Proposition 1 provides conditions under which perfect matching on pre-treatment outcomes implies that

the bias of the SC estimator converges to zero with the number of pre-treatment periods, e.g. result (9).

Note that assumptions 1.(iii) and 1.(iv) refer to both the effects of observed and unobserved covariates

(θt and λt), while the equivalent result in Abadie et al. (2010) only requires conditions on the effects of

unobserved covariates (λt). Therefore, while we relax the assumption of perfect match on covariates, we

require additional assumptions on the effects of unobserved covariates relative to Abadie et al. (2010).4

The proposition also provides conditions under which a perfect match on pre-treatment outcomes is

sufficient for an approximate match on observed covariates, e.g. result (10), and an approximate match

on unobserved covariates, e.g. result (11). This will be the case if observed and unobserved covariates

are relevant and their effects on the potential outcomes are not linearly dependent. The intuition behind

this result is that it would not be possible to match on a large number of pre-treatment outcomes without

matching on both observed and unobserved relevant covariates.

We now relax assumption 1.(iii). We allow for covariates that are irrelevant or whose effects are multico-

linear with the effects of other observed and unobserved covariates. That is, we allow for γtb = 0 for all t for

some b ∈ R
r+F \{0}.5 Without loss of generality, suppose that the first r̃ covariates are relevant and have

effects that are not multicolinear (0 ≤ r̃ ≤ r), and let θ̃t be a 1× r̃ vector with the first r̃ components of θt

and Z̃i be a r̃ × 1 vector with the first r̃ components of Zi. Also, let ã be the dimension of the complement

of the space {b ∈ R
r+F \{0}|γtb = 0}. Then we can always find a 1 × ã vector γ̃t with first r̃ components

equal to θ̃t such that, for any b ∈ R
r+F , there will be a b̃ ∈ R

ã such that γtb = γ̃tb̃ for all t. Moreover, the

first r̃ components of b will be the same as the first r̃ components of b̃. Therefore, we can find a ã× 1 vector

X̃i with first r̃ components equal to Z̃i, such that model 1 can be rewritten as Yit(0) = δt + γ̃tX̃i + εit.

Therefore, if we assume that 1

T0

∑T0

t=1
γ̃′tγ̃t satisfies the conditions from assumption 1.(iii), then we can

apply Proposition 1. In this case, the bias of the SC estimator is bounded, and the first r̃ covariates are

approximately matched. However, in this case, it is not be possible to guarantee an approximate match for

all covariates if r > r̃. There are two reasons for this. First, some covariates may be irrelevant in determining

the potential outcomes. In this case, it is clear that a perfect match on pre-treatment outcomes may be

achieved even in the presence of a mismatch in such covariates. More interestingly, there may be a mismatch

even for covariates that are relevant. For example, imagine that there is a time-invariant common factor

4See Ferman and Pinto (2016) for the implications for the SC estimator when the effects of covariates are allowed to increase
without bounds, so that assumption 1.(iv) is violated.

5For example, this allows for irrelevant covariates or for two or more covariates with time-invariant effects.
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λ1t = 1 with associated factor loading µ1i, and a covariate Z1i with time-invariant effects θ1t = θ1. In this

case, we would guarantee an approximate match for (µ1i+Z1iθ1), but we would not be able to guarantee an

approximate match for µ1i and for Z1i separately. Intuitively, this multicollinearity implies that there would

be weighted averages of the control units that may provide a perfect match for the treated unit even if there

is a mismatch in these covariates. Importantly, these results suggest that a mismatch in observed covariates

does not necessarily imply an (asymptotically) biased SC estimator, even if such covariates are relevant in

determining potential outcomes.

4 Conclusion

We revisit the role of time-invariant covariates in the SC method. We formally derive two results. First,

we provide conditions under which the result in Abadie et al. (2010) regarding the bias of the SC estimator

remains valid when we relax the assumption of perfect match on covariates and assume only a perfect match

on pre-treatment outcomes. Second, we provide conditions under which a perfect match on pre-treatment

outcomes also provide an approximate match for the covariates. We show that an approximate match for

covariates may not be achieved even under conditions in which the bias of the SC estimator is bounded.

This may be the case even for relevant covariates. Taken together, our results show that a perfect match

on covariates should not be required for the SC method, as long as there is a perfect match on a long set of

pre-treatment outcomes.
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A Appendix

Proof of Proposition 1

The proof follows closely Abadie et al. (2010). We first prove result (9) of Proposition 1. First, notice that

Y1t (0)−

J+1∑

i=2

wiYit (0) = γt

(
X1 −

J+1∑

i=1

wiXi

)
+

J+1∑

i=2

wi (ε1t − εit) , (12)

where Xi = (Zi, µi)
′
is a (r + F )× 1 vector.

Stacking pre-treatment variables, i.e. Y P
i ≡ (Yi1, ..., YiT0

)
′
, we have that:

Y P
1 −

J+1∑

i=2

wiY
P
i = ΓP

(
X1 −

J+1∑

i=1

wiXi

)
+

J+1∑

i=2

wi

(
εP1 − εPi

)
(13)

where Y P
i and εPi are T0 × 1 vectors, and ΓP =

[
γ′1, ..., γ

′
T0

]′
is a T0 × (r + F ) matrix.

We solve (13) for
(
X1 −

∑J+1

i=1
wiXi

)
to obtain

(
X1 −

J+1∑

i=1

wiXi

)
=
(
ΓP ′

ΓP
)−1

ΓP ′

(
Y P
1 −

J+1∑

i=2

wiY
P
i

)
−
(
ΓP ′

ΓP
)−1

ΓP ′
J+1∑

i=2

wi

(
εP1 − εPi

)
(14)

where we used assumption 1(iii), which guarantees that
(
ΓP ′

ΓP
)−1

exists if T0 is large enough. Plugging
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this into (12) obtains

Y1t (0)−

J+1∑

i=2

wiYit (0) = γt

(
ΓP ′

ΓP
)−1

ΓP ′

(
Y P
1 −

J+1∑

i=2

wiY
P
i

)

−γt

(
ΓP ′

ΓP
)−1

ΓP ′
J+1∑

i=2

wi

(
εP1 − εPi

)

+

J+1∑

i=2

wi (ε1t − εit) .

Using (4) and (5) obtains:

Y1t (0)−

J+1∑

i=2

w∗
i Yit (0) (15)

= γt

(
ΓP ′

ΓP
)−1

ΓP ′
J+1∑

i=2

w∗
i ε

P
i (16)

−γt

(
ΓP ′

ΓP
)−1

ΓP ′
εP1 (17)

+
J+1∑

i=2

w∗
i (ε1t − εit) . (18)

Noting that the (r + F )× (r + F ) matrix ΓP ′
ΓP =

∑T0

j=1
γ′jγj , we write the right hand side of (16) as:

γt

(
ΓP ′

ΓP
)−1

ΓP ′
J+1∑

i=2

w∗
i ε

P
i =

J+1∑

i=2

w∗
i γt




T0∑

j=1

γ′jγj




−1
T0∑

s=1

γ′sεis

=

J+1∑

i=2

w∗
i

T0∑

s=1

ψtsεis (19)

where

ψts ≡ γt




T0∑

j=1

γ′jγj




−1

γ′s

Taking expectations on both sides of (15) and using expression (19) obtains for t > T0 :

E

(
Y1t (0)−

J+1∑

i=2

w∗
i Yit (0)

)
= E

(
J+1∑

i=2

w∗
i

T0∑

s=1

ψtsεis

)
(20)

where (17) and (18) equal to zero by assumption and since w∗
i is independent of εit for t > T0.
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We show below that there exists a positive function bα (T0) such that

∣∣∣∣∣E
(

J+1∑

i=2

w∗
i

T0∑

s=1

ψtsεis

)∣∣∣∣∣ ≤ bα (T0) with lim
T0→∞

bα (T0) = 0.

First, consider the following string of inequalities:

ψ2
ts ≤ ψttψss ≤

(
(r + F ) γ2

T0ξ

)2

where the first inequality follows by the Cauchy Schwarz inequality and by the fact that
∑T0

j=1
γ′jγj is positive

definite and symmetric, while the second inequality follows since
(

1

T0

∑T0

j=1
γ′jγj

)−1

is symmetric positive

definite with its largest eigenvalue given by ξ−1. Then

ψtt ≤
γtγ

′
t

T0ξ
=

∑r+F
m=1

γ2tm
T0ξ

≤
(r + F ) γ2

T0ξ

and, similarly,

ψss ≤
(r + F ) γ2

T0ξ
.

Define

εit ≡

T0∑

s=1

ψtsεis, i = 2, ..., J + 1

and consider

∣∣∣∣∣

J+1∑

i=2

w∗
i εit

∣∣∣∣∣ ≤

J+1∑

i=2

w∗
i |εit|

≤

(
J+1∑

i=2

(w∗
i )

q

)1/q (J+1∑

i=2

|εit|
p

)1/p

(21)

≤

(
J+1∑

i=2

|εit|
p

)1/p

(22)

where (21) follows by Holder’s inequality with p, q > 1 and 1

p +
1

q = 1 and (22) follows by norm monotonicity

and (4). Hence, applying Holder’s again obtains:

E

(
J+1∑

i=2

w∗
i |εit|

)
≤

[
E

(
J+1∑

i=2

|εit|
p

)]1/p

10



Applying Rosenthal’s inequality to

E (|εit|
p
) = E

(∣∣∣∣∣

T0∑

s=1

ψtsεis

∣∣∣∣∣

p)

obtains

E

(∣∣∣∣∣

T0∑

s=1

ψtsεis

∣∣∣∣∣

p)
≤ C (p)max





(
(r + F ) γ2

T0ξ

)p T0∑

s=1

E |εis|
p
,

(
(r + F ) γ2

T0ξ

)p
(

T0∑

s=1

E (εis)
2

)p/2




= C (p)

(
(r + F ) γ2

ξ

)p

max





1

T
p
0

T0∑

s=1

E |εis|
p
,

(
1

T 2
0

T0∑

s=1

E (εis)
2

)p/2




which follows since

T0∑

s=1

E |ψtsεis|
p

=

T0∑

s=1

|ψts|
p
E (|εis|

p
) ≤

(
(r + F ) γ2

T0ξ

)p T0∑

s=1

E |εis|
p

T0∑

s=1

E |ψtsεis|
2

=

T0∑

s=1

(ψts)
2
E (εis)

2
≤

(
(r + F ) γ2

T0ξ

)2 T0∑

s=1

E (εis)
2

Finally,

|E (α̂∗
1t − α1t)| ≤ E

(
J+1∑

i=2

w∗
i |εit|

)

≤

[
E

(
J+1∑

i=2

|εit|
p

)]1/p

≤

[
J+1∑

i=2

E

(∣∣∣∣∣

T0∑

s=1

ψtsεis

∣∣∣∣∣

p)]1/p

≤ C1/p (p)

(
(r + F ) γ2

ξ

)

J+1∑

i=2

max





1

T
p
0

T0∑

s=1

E |εis|
p
,

(
1

T 2
0

T0∑

s=1

E (εis)
2

)p/2






1/p

≤ (J × C (p))
1/p

(
(r + F ) γ2

ξ

)
max

{
m

1/p
p

T
1−1/p
0

,
σ

T
1/2
0

}

≤ (J × C (p))
1/p

(
(r + F ) γ2

ξ

)
max

{
m

1/p
p

T
1−1/p
0

,
σ

T
1/2
0

}
≡ bα (T0)
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where, using the same notation as in Abadie et al. (2010), we let:

σ2
is = E (εis)

2
, σ2

i =
1

T0

T0∑

s=1

σ2
is, σ =

(
max

i=2,...,J+1
σ2
i

)1/2

mp,is = E |εis|
p
, mp,i =

1

T0

T0∑

s=1

mp,is, mp = max
i=2,...,J+1

mp,i <∞

The proof for results (10) and (11) follow by similar arguments. First, define the 1 × (r + F ) vector

ρk ≡ [0, 0, ..., 1, ..., 0] where only the kth element equals to 1. Consider k such that 1 ≤ k ≤ r. From equation

(14), we have that:

(
Zk,1 −

J+1∑

i=1

wiZk,i

)
= ρk

(
X1 −

J+1∑

i=1

wiXi

)

= ρk

(
ΓP ′

ΓP
)−1

ΓP ′

(
Y P
1 −

J+1∑

i=2

wiY
P
i

)

−ρk

(
ΓP ′

ΓP
)−1

ΓP ′
J+1∑

i=2

wi

(
εP1 − εPi

)

If we define γ̄′ = max{γ̄, 1} > 0, then the proof of result (10) follows exactly the same steps as the proof of

result (9) if we use γ̄′ instead of γ̄, so we have that
∣∣∣E
(
Zk1 −

∑J+1

i=2
w∗

iZki

)∣∣∣ ≤ bZ,k (T0) with bZ,k (T0) → ∞.

Similarly, if we consider l > r we have that
∣∣∣E
(
µl1 −

∑J+1

i=2
w∗

i µli

)∣∣∣ ≤ bµ,l (T0) with bµ,l (T0) → ∞.
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