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YON NEUMANN-MORGENSTERN UTILITIES AND
CARDINAL PREFERENCES*y

GRACIELA CHICHILNISKY
Colymbia Liniversity

We study the ageregation of preferences when intensities are taken inlo account: the
aggregation of cardinal preferences. and also of von MNeumann-Morgenstern utilities for
choices under uncerlainty. We show that with a finite nember of choices there exist no
continuous anonymous sgpregation rules that respect unanimily, for such preferences or
utilities. With infinitely many (discrete seis of) choices, such rules do exist and they are
constructed here. However, their existence is not robust: each is a limil of rules that de not
respect unanimily. Both results are for a finite number of individuals,

The rezults are oblained by studying the global topological structure of spaces of cardinal
preferences and of von Neumann-Morgenstern ulilities, With a finite number of chaoices,
these spaces are proven to be noncontraclible. With infinitely many choices, on the other
hand, they are proven to be contractible.

1. Introduction. The methods of preference aggregation studied in social choice
theory typically describe an individual preference as a ranking among choices, ie., in
ordinal terms. In most of the literature following Black [3] and Arrow [1], intensities of
preferences are not recorded; in particular, given three choices x, ¥, z, individuals are
not able o say whether x is preferred to y by more than y is preferred to z. Since most
of the results in the aggregation of ordinal preferences are negative, it seems natural to
inguire whether more positive results can be obtained when this property is relaxed
and intensities of preferences are recorded.

A significant step in allowing the consideration of intensities is introduced with
cardinal preferences. These preferences express precisely the notion that x is preferred
to y by more than y is preferred to z. The space of cardinal preferences can be shown
to have the same mathematical structure as the space of von MNeumann—Morgenstern
utilities, the numerical representations of preferences over lotteries for the case of
choice under uncertainty. These utilities are denoted NM utilities, and have frequently
been used in the operations research literature and in decision theory ever since their
ntroduction by von Neumann and Morgenstern [19). NM utilities are also widely used
to represent individual behavior in game theory, see Fishburn [13],

Both cardinal preferences and NM utilities can be represented by ‘utilities’, ie. by
real valued functions over the choice space. However, a whole (equivalence) class of
such functions will define ome preference or NM utility; the representation assigns
therefore a family of real valued functions to each preference or NM utility, Ordinal
preferences are also represented by classes of real valued functions.

The main distinction between ordinal and cardinal preferences lies in the size of the
equivalence classes of their utility representations. Cardinal preferences have smaller
equivalence classes than ordinal preferences: the representation of a cardinal preference
by a utility function is unique up to (and only up to) positive linear transformations of
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the real line. For ordinal preferences, however, the representation 1% unigue up to any
positive transformation.

The weaker the invariance, the ‘closer’ are preferences to utilities, and utilities pose
no problem of aggregation, since they define a linear space.' Therefore one may expect
that the task of aggregation is easier with cardinal rather than ordinal preferences.
However, this is not the case. It was shown in Chichilnisky [4] and in Chichilnisky and
Heal [10] that the crucial element in our ability to aggregate preferences is the global
topological structure of the space of preferences considered. In order to admit
appropriate aggregation rules, these spaces must be contractible, i.e. topologically
trivial. However, the topological structure of spaces of preferences may be complex
even when less invariance is required. For instance, NM utilities with finite prizes are
shown here to define a noncontractible spare, i.e. a space with a nontrivial topological
structure (see §4).

By investigating the global topology of spaces of cardinal preferences and of NM
utilities, we prove here that, with finitely many choices, there exists no continucus
anonymous social aggregation rule that respects unanimity.” Such forms of aggregation
are impossible for cardinal preferences and for NM utilities.

With infinitely many choices we show instead that such aggregation rules do exist.
However, their existence is not robust in the sense that they are the limit of rules which
are defined on subsets of finitely many choices and which do not respect unanimity.
The same results apply to von Neumann-Morgenstern utilities defined over infinitely
many lotteries. A finite number of individuals is considered through the paper.

The rest of the paper is organized as follows: §2 gives notation and definitions; §3
discusses previous literature; and §4 gives the results.

2. Notation and definitions. In the case of finite choices the choice space X is a
finite set of points in Euclidean space X = {x;},i=1,...,mn 2 3.

A preference with intensity or cardinal preference p 1s identified with a nonnegative
real valued function on X, ie. with a nonnegative vector in R", p € R, p=
(Pys -0 po)s p: denotes the utility value attached to the choice x,. The toral indiffer-
ence preference is thus the vector with all coordinates equal. Our space of preferences
contains this total indifference preference as well.

The following step is to normalize utility vectors in order to obtain a unique
representation of each cardinal preference by a vector in Euclidean space. This
normalization is a standard one; see, e.g. Kalai and Schmeidler [14]. Formally, if

p={pi: s fn) is a utility vector in R", p 18 normalized by subtracting from its
coordinates the vector with all components identical to the minimum utility value
p—>(p,—m,...,p,— m)where m = min,{ p;], and then dividing the outcome by its

""The problem of aggregation of ordinal preferences is significantly different from that of apgregating
utility functions hecause the aggregation of ordinal preferences must be independent of the choice of their
utility representation. For instance, if u is a utility funciton and £ is a strictly increasing numerical function,
the ordinal prefercnee associated with the utility & must be the same as that associated with the [unction
Fa . Therefore, the rule for aggregating utilities will only induce a rule for aggregating ordinal preferences
if it is invariant under any such increasing transformation of utilities. This is indeed a rather strong
condition, and several possible relaxations have been studied, for instance, by Sen [16}, [17], Kalai and
Schmeldler [14] and more recently by d'Aspremont and Gevers [11]. Sen [17] concentrates on the relaxation
of the assumption of no interpersonal comparisons. d’Aspremont and Gevers discuss the characterize 4 wide
combination of assumptions that relax both the interpersonal comparison and the ordinality assumplicns.
Our framework here is most closcly related eo axiom (CN) of d"Aspremont and Gevers, which assumes that
individual utilily functions are cardinal and noncomparable, and to the cardinality assumptions of Sen and
of Kalai and Schmeidler.

Respect of unanimity requires that if all individuals agree unanimously over afl chaices, so does the
aggregate. This condition does not imply that if one choice x is preferred o another y by all individuals,
then Lhe aggregate prefers x (o .
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maximum component M if M =0, Le.,

e LM

M M
where M = max,{p, — m}. The total indifference preference is identified therefore
with the vector (0, ..., 0). The fact that all normalized preferences have the same
minimum and maximum utility values can be considered a weak form of interpersonal

comparison.”

It follows therefore that with finitely many choices the space of cardinal preferences
is P=Q U [0), where Q is the subspace of nonzero cardinal preferences,

Q={peR":ip<l p=0andp, =lforsomek, jE{l, ..., n}}

and (0} denotes the total indifference preference. In order to define continuity of the
social choice rule, P is given the natural topology it inherits from R". The space P has
mwo connected components, @ and [0}.' An equivalent way of defining the space P of
cardinal preferences over n choices is as the space of equivalence classes of positive
vectors in R", where the equivalence relation is p'~p® iff p' = a + bp°, where b is a
nonnegative number and @ is a nonnegative vector with all ils coordinates equal.

We shall now define the space of cardinal preferences P™ for the case of infinitely
many choices.

Assume now that the choice space is N, the sel of positive integers. A preference p is
assumed to be a nonnegative real valued function on N, i.e, a sequence of nonnegative
numbers, Since we are concerned with bounded sequences, without loss of generality,
we may assume that 3 p(n)u(n) < oo, for some finite measure p on N given by a
density function pia).

The space of preferences P™ is therefore strictly contained in the space of all
bounded sequences, and this is in turn a subset (the positive cone) of weighted /|
space.”

As in the case of finitely many choices, we normalize the vector p in order to obtain
a unique representation of cardinal preferences. An equivalence relation — is defined
by p'~p* if and only if p' = a + bp’, b a nonnegative number and @ a nonnegative
element in /, with all coordinates equal.

A preference over N is thus an equivalence class of positive vectors under the
relation ~. A space which is in a one-to-one correspondence with the space of

¥ This normalization has in particular the effect that the sum total of intensities over choices 15 uniformly
bounded over agents; this was a suggestion of L. Gevers.

A connected component of a lopological space ¥ is a maximum connected subspace of Y. A space X s
connected if il cannot be decomposed as a wnion X = X, U X;, where X, = @, X, @, and X and X; arc
both open and closed sets. This extends the notion that any point in X can be joined o another in X by a
path contained in X

*{!,. n}is the Banach space of infinite sequences of real numbers {x,) n= 1,2, .., such thai

|ty = EI [%almtm} = o2,

sei [12]. The measure p is fimite iF 5, pin) < oo

Mote that we could instead embed £ into /., the space of all bounded sequences with the sup norm,
[l€ ] = $Upyay s %) However, the space /, with the (finite} weight pin) contains [ as o subspace.
Therefore, if one defines an apgrepation map ¢ for {, one has automatically defined an aggregation map for
!,.. given by the restriction of ¢ on [, considered az a subspace of /y, The topology induced by ¢, is different
than the sup norm on J: bul since our aim is to prove an existence theorem for some adequate topology,
this procedure seems appropriate, In any case, P™ is a siriet subset of £ as well as of [, and is significantly
smaller than either /_ or /., Thereforg, neither /, nor §; coincides with #* and thus the choice of wpology
is best made on the hasis of mathematical adequacy. Theorem 2 shows that () is an adequate space; the
spaces /y, or more generally [ (with | < p < o) have been used previously in the economic literature; see
c.g. Chichilnisky [8].
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preferences is obtained by considering all vectors with coordinates smaller than 1, with
at least one coordinate zero, and with one of its nonzero coordinates (if it exists) equal
to 1. Therefore with infinitely many choices the space of cardinal preferences is
pP* == (0}, where Q= ={fe /" forall i, f < L; f=0and f, =1 for some
j.k1. P™ inherits the topology of 1, and is a closed subset of a Banach space. As P, f ool
consists of exactly two connected components.

We consider now the case of choice under uncertainty. There are finitely many
prizes x, . . ., X,. Von Neumann—Morgenstern axioms [19] characterize choice under
uncertainty by the maximization of expected utility over, lotteries. A von Neumann—
Morgenstern utility, denoted NM, assigns the expected value 3. ,4.(U(x)) to the
lottery x which offers the prize (or outcome) x; with probability g;, for i=1,...,n
The vector of real numbers U= (U, ..., U,) where U, = U(x)), characterizes there-
fore the NM utility,. However, any positive linear transformation of this vector of the
form ¥ = a + bU, where b is a positive real number and a is a nonnegative vector with
all coordinates equal, defines also the same NM utility. This is because the expected
value of a lottery x is higher than the expected value of another lottery y according to
U, if and only if it is higher according to V. The space of von Neumann utilities on »
prizes is therefore the space of equivalence classes of nonnegative vectors in R" with
the equivalence relation U~V iff V' = all + b, where a is a nonnegative number and b
is a nonnegative vector with all its coordinates equal. The definitions of the spaces of
von Neumann-Morgenstern utilities and of cardinal preferences are identical. These
two spaces are therefore the same mathematical ohject.

Assume now there are k agents, k > 2. With finite choices a profile of cardinal
preferences is a vector {p', ..., p*) € (P*)". Similar definitions apply to profiles of
M utilities,

An aggregation rule for k individuals is a map from profiles into preferences
$: P*— P. ¢ is said to respect unanimity when $(p,....p)=p YpE P, ie if all
individuals have identical preferences over all choices, so does the social preference.’

A rule ¢ is anonymous when the outcome is independent of the order of the
individuals, i.e.,

o(p' . py=g(p"s oo p™) where (L. k)2 (M T

is any permutation of the set {1,....k}

Continity of a rule is defined with respect to the usual product topologies of the
spaces of preferences as subsets of R or (1, in the finite and infinite cases,
respectively.

We now discuss a basic topological concept used in the following.

A topological space A is contractible if there exists a continuous map f: A > [0.1]

» A such that f(x,0) = x ¥x in 4, and f(x, 1) = x,, for some x, € A. Intuitively, 4 is
contractible if it can be deformed continuously through itself, into one of its points, xq.
Linear spaces and convex sets are contractible. Spaces of real valued utility functions
are contractible, since they are linear. Topologically speaking, these are all trivial
spaces, since they are topologically equivalent to (Le., continuously deformable into)
points. A hollow sphere in R is not contractible. As we shall prove below, both the
nontrivial connected component of the space of cardinal preferences ¢, and that the
von Neumann—Morgenstern utilities, are nor contractible. This proves to be important
for the aggregation results of this paper.

Snote (hat this condition is binding, vnly when all voters have identical prefercnces. It is therefore a
strictly weaker condition than the Pareto condition, since a Tule ¢ satisfies the Pareto condition if, whenever
a choice x © X is preferred 1o another y £ X for all preferences p', ..., g, then ¢ p', . .., p*)also prefers
X iy ¥
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3. Previous work, Before proving the results, it may be useful to discuss the
relationship of the spaces of preferences studied here with earlier concepts of cardinal
preferences used in the literature, and also earlier results in this area,

The space of non-zero cardinal preferences (0 was defined for instance, by Kalai
and Schmeidler [14]: two vectors p' and p* define the same cardinal preference when
there exist a nonnegative number & and a nonnegative vector a such that p' = a + bp?,
where @ has all its coordinates equal. As pointed out in §2, the space of vom
Neumann-Morgenstern utilities, i.e., numerical representation of preferences over
lotteries, corresponds precisely to this definition of the space of cardinal preferences.
For further discussion see, c.g., [14] and [19].

The specification of (0 given here is also related to one of the forms of relaxation of
usual ordinality and comparability assumptions discussed in d’Aspremont and Gevers
[11]. Their condition CN of cardinality and noncomparability requires that if w, and u,
are wo utilities, then they define the same preference whenever

u](‘xj =a, + ﬁu{uz{x]}

where p=1, .. ., /is the index for the individual, x denotes a choice, and where {a,)
and { f,} are nonnegative real numbers. In our framework CN means that for each
voler the vector p' represents the same preference as another p* when there exist a
nonnegative vector o with all its coordinates equal and a nonnegative number 8 such
that p' = & + fp*, which is precisely the cardinality condition discussed above:

Let p' and p? satisfy p' = a + fip?, Then they yield the same element in P, since for
anyp=(p,...,.p)andanyj=1 ... . n

a+ ﬂﬁ ") minl{ﬂ + IBPJ _ [E’ - lIliI]I{PJ-}]
MM:‘[“ + B(p;) — minfa + ﬂﬁﬂ [Mﬂlr(Pf - mi“a{Pf}] L

Conversely, if two utility vectors p' and p? in R" yield the same element in the space of
preferences @, then the kth coordinates of p' and p?, p! and p?, satisfy:

P.RE = min,( Pﬁl] . .“:‘.i‘l — min F.'J]
Max( p! = min( p/ )) Maxr{_ p? — min( p}))

which implies that g} = fp? for

(ming p7))Max( p! — min( p')) —_— Max( p! — min{ p/)
Max( p{ — min( p)) Max( p; — minf p?)) -

Therefore social choice rules which are well defined on our space of cardinal prefer-
ences () correspond to those satisfying condition CN in d'Aspremont and Gevers.

Several authors have studied the problems involved in aggregating cardinal prefer-
ences, eg., Sen [16] and Kalai and Schmeidler [14]. Tt has been shown [14] that
Arrow-like paradoxes may exist even with cardinal preferences, provided Arrow-like
conditions are required of the aggregation procedure. These are the conditions of
independence from irrelevant alternatives, Pareto and nondictatorship. Such condi-
lions may be too strong: it is of interest to examine weaker conditions than Pareto and
independence. Also, while making the problem amenable to a combinatorial analysis,
such conditions tend to leave out its intrinsic geometry. We study here different
conditions of the aggregation rule: continuity, anonymity and respect of unanimity.
These conditions admil a ready geometrical interpretation, and help to exhibit the
topological nature of the problem.

o= min[p,l] -
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4. The results. The following result establishes the impossibility of aggregation for
cardinal preferences on finitely many choices. The space of preferences is therefore
P = U (0}, as defined above. There are n choices.

THEOREM 1. There exists no conlinuous aggregation rule for cardinal preferences
& P*—> P which respects unanimity and is anonymous, k = 2. This includes cases where
individual and sovial preferences may be indifferent among all choices.

ProoF. An aggregation rule for cardinal preferences is a map ¢: P*— P. Now, as
discussed in §2, the space P has exactly two connected components, O and {0} (Figure
| illustrates the case of three choices). Therefore the product space P* has exactly 2*
connected components.

The map & is a continuous function from a topological space with 2* components
into another with 2 components. It follows from continuity of ¢ that each of the
connected components of P* must be mapped by ¢ into one connected component of
P. Consider in particular Q*, which is the connected component of P* consisting of all
nonzero cardinal preferences. Then either ¢( @*) C Q, or else & Q%) C {0}. However,
by the condition of respect of unanimity &(p, ..., p)=p forall pin Q, implying that
& 0%) & {0): it follows that ¢( Q%) C 0.

Therefore, the axioms of continuity and of respect of unanimity taken together rule
out the possibility that a profile with all preferences different from the zero vector may
be mapped into the zero vector. A continuous rule for cardinal preferences which
respects unanimity will only assign the total indifference to a set of voters if at least
one of them is totally indifferent among all choices.”

The map ¢ induces therefore a continuous map $:0%- 0, which is also continu-
ous, anonymous and respects unanimity. Since Q* and Q are both connected spaces,
we can now use the results in [4], which establish that the existence of such a map ¢
depends on certain topological invariants of the space Q. The next step of the proof

(0L 0

Xy
(0,0

*3
Froume 1. The space of preferences P with three choices it indicated as the union of the point [0 with
the sel drawn with a heavy line. The nonzero connected component of F, @ {indicated with the heavy line) 15
on 2 one-io-one continuous correspondence with the boundary 85 of the simplex & in B3, In particular, it is
not eontractible.

TIn addition to violating our axioms, rules that assign zero oufcomes 10 RONZEre veclors are clearly
undesirable for other reasons: It is casy o check that if ¢ is a comtinuous map from {R" into B" that maps
a profile of three volers with nonzero vectors into the trivial (zero) gocial preference, it will necessarily map
the equivalent of some Condorcet triple into the trivial owteome (0, . . ., 0 The *Condorcet triple” we are
referring to is obtaned by choosing three points (xyz) in R", so that the three vectors giving the volers’
preferences rank these choices in the orders (xyz) (zxy) and { yzx) respectively. Such aggregation map would
give a rivia! (total indifference) solution to the Condorcet triple, which is clearly not an acceptahle solution;
for instance Arrow's impossibility theorem is based inter alia on the fact thal Condarcet triples cannot be
aggregated, 1f the total indifference was an acceplable aggregate of a Condoreet triple, Arrow's impossibility
thearem ceases [0 be valid.
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consists therefore of investigating the topology of the space of nonzero cardinal
preferences, for an finite number of choices n > 3.

Consider now a family of sets {V,},_;, ,CQ, ¥V,={pe< Q:p =0} The union
of the ¥s is . Each ¥, is a union of n sets ¥, j=1,...,n where V= {pE Q:p,
=0and p;=1}, e ¥V, = |Jj_ V. It is easy lo check that F; is a contractible set: it
can be continuously deformed tfuuugh iself into the point (1, ..., L0, 1,..., 1)
Consider any subfamily W, of the family {¥;},_, .. Then [}, W;, if nonempty, is
a contractible set. Tt follows that { ¥} is an acychic family in R”"; it can easily be made
into an open family by replacing the number 0 by the interval (— ¢,€) in the definition
of the sets V,. Since {¥,} is an acyclic family, the Cech homology of its nerve is
isomorphic to the singular homology of the union | J].,¥;: this is a Leray’s acyclic
cover theorem.

It suffices now to compute the Cech homology of the nerve of { ¥}, Note that all
subfamilies of (¥} with at most n — | elements have & nonempty intersection, while
the intersection of the whole family is empty. The nerve of { V;} is therefore an n — 2
sphere. Therefore Q is a homology-(n — 2) sphere. Because the sets V| are piecewise
linear, @ is also homeomorphic to an (n — 2) sphere.

In particular, @ is not contractible. We can now apply the results of Chichilnisky [4],
[9], to deduce that there exists no continuous anonymous rule ¢: Q*— @ which
respects unanimity, since ¢ is homeomorphic to a sphere of dimension at least one.
This completes the proof. #

Since as discussed above the space of NM utilities can be identified with P if there
are finitely many prizes, we have therefore obtained

CoROLLARY 1. The space of von Neumann—Morgenstern utilities with finitely many
prizes is not contractible. With n prizes, this space is a sphere of dimension n — 2, union
the origin {0},

Proor. This follows from the proof of Theorem 1. 1

CororrLary 2. With finitely many lotteries there exisis Ao COMHNUOUS aRORYMOUS
aggregation rule for von Neumann—Morgenstern utilities which respects unanimity. This
includes cases where individual and social utilities are indifferent among all lotteries.

Proor, This follows from Chichilnisky [4]. ®

ReMark. Even though our framework and conditions on the aggregation rule are
rather different from those of Kalai and Schmeidler, our impossibility result is
consistent with theirs in cases of finitely many choices.

However, this is not the case for infinitely many choices. Instead, we obtain in the
following a positive aggregation result for his latter case. This contrasts with Kalai and
Schmeidler, who obtain an impossibility resull with infinitely many choices. The
difference emerges because they require the axiom of independence of irrelevant
alternatives, which effectively reduces the problem of aggregation with infinitely many
choices to one of aggregation with finitely many choices. Different sets of axioms are
utilized: we do not require independence of irrelevant alternatives, but require continu-
ity: we do not require the Pareto condition, but rather a (weaker) condition of respect
of unanimity.

We now turn to the case of infinitely many choices. Our space of cardinal
preferences is therefore P ™. As before, there are a finite number of individuals, k = 1.

THEOREM 2. With infinitely many choices, there exists a continuous aggregation rule
g (P> P for cardinal preferences respecting unanimily and anonymity, given by a
continuous deformation of a Bergsonian rule i.e., a convex addition rule. However, any
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such rule is @ limit of rules defined on arbitrarily large finite sets of choices and which do
not respect unanimity; in particular they are not Pareto.

Froor. As in Theorem 1, we may consider a continuous aggregation rule ¢ : (=)
~» P* assigning to each profile of k (nontrivial) preferences in P*, an element of P,
where Pe=0% U {0}, and Q¥ ={pE I ip < | forall i,p;=0 and p, = | for
some f, k |

As in the finite dimensional case one can show that Q¢* is in a one-lo-one
continuous correspondence with the boundary of a disk in 7, ie., with an mfinite
dimensional sphere in /.

Now, by Corollary 5.1, p. 109 of Bessapa and Pelczynski [2] and Kuiper [15] the
space 07 15 homeomorphic to I, and, in particular, is contractible. This contrasts with
the finite dimensional case, where spheres are not contractible and indeed not
homeomorphic to euclidean space. Let H be the homeomorphism, H: @™ = /. Since
the convex addition C in /, exists and it satisfies anonymity, continuity and respect of
unanimity, the composition map ¢=H ~'e Ce H ¥ defined by

ool ol I AR
(@*)'—— () —h— ¢
is a continuous function ¢:( @ =y —» @ satisfying anonymity and respect of unanim-
ity. Since we can repeat this procedure for each connected component of (P=), this
proves existence. Clearly the map ¢ is a deformation of the convex addition rule C, i.e,,
a deformation of a Bergsonian rule.

Consider now the space of truncated sequences T C ¢,
T={{pPlE Q with py, =0for M = My).

This space is dense in I, with a (finite) measure. Consider the pointwise convergence
topology of the space F of continuous functions F = { f:{};)*—=1,}} The sequence of
maps |¢,), defined by the restrictions of ¢ to finite dimensional linear subspaces L,
whose dimensions define an unbounded seguence of integers {d}, converges W ¢.
Note that when restricted to any finite subspace of choices (ie., when restricted to
vectors of finite length) each map &, is anonymous. It follows by Theorem 1 that ¢y
cannot respect unanimity on such subspace; in particular, it is not Pareto. Since the
sequence of maps (¢, converges io the map ¢, this completes the proof. 1

From Theorem 2 we obtain immediately the analogue of Corollaries | and 2 for von
Neumann-Morgenstern utilities:

CoROLLARY 3. With infinitely many prizes, the space of von Neumann— Morgensiern
utilities is contractible. %

CorOLLARY 4. With infinitely many prizes there exisis @ CORHRUONS ARONYTIOUI
aggregation rule for von Newmann— Morgenstern utility functions which respects unaim-
ity. However, this rule is ot robust since it is the limit of non-Pareto rules on arbitrarily
large sets of lotteries. W

8The poinrwise COnVETgence topalogy v on £ is defined by the convergence rule

(f)—sfy if flp)—filpy ¥pimh,
sge [12].
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