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Abstract

Advances in behavioral economics have made decision theoretic models
increasingly complex. Utility models incorporating insights from psychol-
ogy often lack additive separability, a major obstacle for decision theoretic
axiomatizations. We address this challenge by providing a representation
theorem for utility functions of the form u(x, y, z) = f(x, z) + g(y, z). We
call these representations conditionally additive as they are additively sep-
arable only when holding fixed z. We generalize the result to spaces with
more than three dimensions. We provide axiomatizations for consumption
preferences with reference points, as well as consumption preferences over
time with dependence across time periods. Our results also allow us to
generalize the theory of additive representations to simplexes.

1 Introduction

In an important contribution to utility theory, Debreu (1959) characterized
what is known as additively separable preferences. If preferences are defined on
a product space

∏

i∈I Xi of goods xi ∈ Xi, then
∑

i∈I fi(xi) is an additive utility
function. Debreu (1959) showed that certain assumptions on the preferences of a
consumer hold if and only if these preferences can be represented by an additive
utility function. A wide class of problems can be addressed with such utility
functions. In preferences over time, we often assume that the consumption in
one time period has no effect on the marginal utility of consumption in another
period. Constant elasticity of substitution preferences over goods spaces have
an additive representation. In economic policy evaluation, utilitarian policy
makers have additively separable preferences across individuals.

However, in the more recent literature, economic models have introduced
more nuanced preferences in many of these cases. Consumption preferences
for example may depend on reference points. In the case of preferences over
time, the marginal utility of consumption in one period may depend on the
consumption in the previous period. Policy makers who are not utilitarian may
care about inequality, diversity, or the freedom of individuals, which usually
lead to preferences which are not additively separable.

In the present paper, we generalize the idea of additively separable prefer-
ences to what we call conditionally separable preferences. Consider the exam-
ple of preferences over consumption xt in three periods of time t. To make
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the example more salient, let t = 1 be breakfast, t = 2 lunch, and t = 3
dinner. Additively separable preferences yield a utility representation such as
f1(x1) + f2(x2) + f3(x3). In this case, the breakfast has no bearing on what
one prefers to have for lunch or dinner. However, suppose an individual prefers
not to eat the same dish twice in a row or prefers to eat a small dinner if the
lunch was large. In this case we instead have a conditionally additive utility
representation f1(x1, x2) + f2(x2, x3). In this representation we say that break-
fast x1 and dinner x3 are additively separable conditionally on lunch x2. This
representation allows for interdependence of preferences between breakfast and
lunch and between lunch and dinner, but no interdependence between breakfast
and dinner.

We provide an axiomatization for such conditionally additive utility repre-
sentations. Maintaining the usual continuity and order assumptions, our ax-
iomatization differs from axiomatizations of additive utility representations in
two ways.

First, we weaken the independence assumptions such that we require only
x1 and x3 to be independent of each other for fixed x2:

(x1, x2, x3) % (x′
1, x2, x3)

⇔ (x1, x2, x
′
3) % (x′

1, x2, x
′
3)

and

(x1, x2, x3) % (x1, x2, x
′
3)

⇔ (x′
1, x2, x3) % (x′

1, x2, x
′
3). (1)

Additive utility functions over all three components would require x1 to be
independent of (x2, x3) and x2 to be independent of (x1, x3).

Second, we weaken the Reidemeister condition1 to a condition we call cosep-
arability. The Reidemeister condition is a necessary condition for additive rep-
resentations of the kind f(x1) + f2(x2). In two dimensions, it states:

(x1, x2) ∼ (x̄1, x̄2)

∧ (x′
1, x2) ∼ (x̄′

1, x̄2)

∧ (x1, x
′
2) ∼ (x̄1, x̄

′
2)

⇒ (x′
1, x2) ∼ (x̄′

1, x̄
′
2) (2)

In additive representation theorems with at least three dimensions the Rei-
demeister condition is implied by the independence conditions and continuity.
However, even though our representation contains three dimensions, we only
have two (conditionally) independent dimensions, requiring the use of an ad-
ditional assumption. If we apply the Reidemeister condition for fixed x2 only,
we would obtain representations of the type f1(f2(x1, x2) + f3(x2, x3), x2). Re-
quiring the Reidemeister condition on the entire space would be unnecessarily
strong and is not a necessary condition for conditionally additive representabil-

1This condition, which first appeared in Reidemeister (1929), is also often called the
hexagon condition (e.g., Karni (1998)).
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ity. Instead, our coseparability axiom requires:

(x1, x2, x3) ∼ (x̄1, x̄2, x̄3)

∧ (x′
1, x2, x3) ∼ (x̄′

1, x̄2, x̄3)

∧ (x1, x2, x
′
3) ∼ (x̄1, x̄2, x̄

′
3)

⇒ (x′
1, x2, x

′
3) ∼ (x̄′

1, x̄2, x̄
′
3) (3)

Coseparability ensures that the additive utility functions across each value of
x2 are cardinally comparable, yielding a representation f(x, z) + g(y, z).

We extend our results in several ways. Firstly, we extend our results to
finitely many dimensions. Unlike additive representations, conditionally addi-
tive representations have more than one natural extension to higher dimensions.
We provide axiomatizations for the following finite dimensional functional forms:

• A reference dependent representation of the form
∑

i ui(xi, x1) where x1

can be interpreted as a reference point according to which the other com-
ponents are evaluated. To show how our results can be used, we axioma-
tize a generalization of inequity aversion preferences of Fehr and Schmidt
(1999).

• A dynamic dependence representation of the form
∑

i ui(xi, xi−1) where
the utility gain of each component xi depends on xi−1. Such preferences
are naturally suited for modeling time preferences. In particular, we ax-
iomatize a generalization of preferences from the macroeconomic literature
used in Kydland and Prescott (1982).

• A generalization of rank-dependent utility models of the functional form
∑

i fi(xi, yi) + gi(xi, yi−1) where the components are ordered by some
order ⋗ such that xi+1 ⋗ xi and yi+1 ⋗ yi. A classical example of a rank-
dependent expected utility model is cumulative prospect theory (Tversky
and Kahneman (1992); Wakker and Tversky (1993)). Other potential
applications come from the literature on rank-dependent utility models
(Abdellaoui (2009)).

Secondly, we use our results to obtain additive representation theorems for
spaces previously not covered by the literature, simplices and special types of
surfaces. Simplices are often used in economics in division problems, where a
finite amount of a resource is shared between n players, and as lottery spaces
on finite states. We provide an axiomatization of additive and conditionally ad-
ditive representation on simplices and a class of hypersurfaces. Previously, the
difficulty in axiomatizing additive representations on simplices was their empty
interior when viewed as a subset of a product space. The empty interior implies
that the usual independence and Reidemeister conditions are either meaningless
or only hold when holding fixed the sum of several dimensions. This is where
we can use our main result to derive representation theorems despite these diffi-
culties. To our knowledge, this is the first representation theorem of additively
separable utility functions on spaces with an empty interior in the product topol-
ogy. Potential applications are utilitarian preferences in cake division problems,
von Neumann-Morgenstern preferences on lotteries with arbitrary probability
distortions, or measures of diversity and inequality.
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Thirdly, we show how our new axiom can also be used for conditionally linear
representation theorems on mixture spaces. In real valued vector space where
a point can be written as (x1, . . . , xn, z), a conditionally linear representation
has the form

∑n

i=1 xiui(z). We extend the results on measurable utility of
Herstein and Milnor (1953) to conditionally measurable utility. As an example
application we derive a representation theorem for simultaneous choices under
risk with known probabilities and under uncertainty with unknown probabilities.
The representation yields a decision maker who behaves like a von Neumann
Morgenstern expected utility maximizer on decisions under risk but may have
arbitrary preferences when facing uncertainty.

Our results are related to the literature on additive representations (Wakker
(1989)). When holding fixed the conditional dimension, we are similarly general
as Wakker and Chateauneuf (1993), in fact our main representation result builds
on their work. Our result on additive representations on simplices extends their
work to a space with a nonempty interior, though with the use of an additional
axiom. Other forms of conditional preferences have been explored in Drèze
and Rustichini (1999), Wang (2003), Chew and Sagi (2008), and Wakai (2007).
Other references specific to particular representations will be given in the main
text.

The paper continues as follows. First, we will introduce some basic notation
and definitions (Section 2). In Section 3, we state the main representation the-
orem for the case of subsets of three dimensional product spaces and provide
an intuition for the proof. The following Section 4 covers the finite dimensional
case. In Section 5 we cover representations on surfaces. Section 6 covers lin-
ear representations on mixture spaces. Unless otherwise noted, all proofs are
provided in the appendix.

We provide a set of example applications and connections to literatures where
conditionally additive representations are being used. In Section 4.1 we provide
an extensive example application of our reference dependent representation to
inequity aversion preferences. A short example application to preferences used
in macroeconomics is provided for our dynamically dependent representations in
Section 4.2. In Section 5 we discuss utilitarian preferences in cake division prob-
lems. Finally, Section 6 relates our results on mixture spaces to simultaneous
decisions under risk and uncertainty.

2 Model and Notation

Let S ⊆
∏n

i=0 Xi be a product space where all Xi are connected and separable
topological spaces. A generic element of S will be denoted by s and its i’th
component by xi. For notational convenience, we will often gather various
dimensions together such that S ⊆ X × Y × Z where X =

∏

i∈IX
Xi, Y =

∏

i∈IY
Xi, Z =

∏

i∈IZ
Xi. The X (and analogously the Y, Z) components of s

will be denoted by x (and y, z, respectively). Thus, s can be either written as
(x0, . . . , xn) or as (x, y, z).

We will often refer to cylinders of S, i.e. preimages of the canonical pro-
jections from S to its components X,Y, Z. If Ẑ ⊆ Z, then S

Ẑ
= {(x, y, z) ∈

S : z ∈ Ẑ} is the cylinder above Ẑ and the corresponding notations for X

and Y . For singletons, we denote the cylinder above x0 ∈ X, y0 ∈ Y by
Sx0,y0

= {(x, y, z) ∈ S : x = x0, y = yo}. Due to the special role of Z in
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the following we will often call Sz the z-layer for any z ∈ Z. For the images
of the canonical projections, we denote X

Ŝ
= {x ∈ X : (x, y, z) ∈ Ŝ}. We can

combine these notations, ZSx0,y0
= {z ∈ Z : (x0, y0, z) ∈ S}, etc..

S

S z0z0

(x0, y0)

Sx0,y0
ZSx0,y0

x

z

y

ZS

Figure 1: Example of cylinder set notation

As an example (see Figure 1) consider a sphere S as a subset of the product
space R3. Sz0 is a disc where all points have the same Z coordinate, z0, and may
also be called the z0-layer. Similarly, Sx0,y0

is an open segment of a vertical line.
ZSx0,y0

is the projection of Sx0,y0
to the Z dimension. If Z̄ = {z ∈ Z : z ≥ z0},

then SZ̄ is the spherical cap above z0.
% is a relation on S, i.e., a subset of S × S. We say that s is weakly

preferred to s′ if s % s′. We assume throughout the paper that % is complete
and transitive and then call it a preference relation.2 Let ≻ be the strict part of
% and ∼ the symmetric part. We say that two subsets S′, S′′ ⊆ S have strictly
overlapping indifference curves if there exist points s, s′ ∈ S′ and s′′, s′′′ ∈ S′′

such that s ≻ s′, s′′ ≻ s′′′ and s % s′′ ≻ s′. A representation is a real valued
function u : S → R such that u(s) ≥ u(s′) ⇔ s % s′ for all s, s′ ∈ S and we say
that u represents %.

All topological concepts used in this paper (product and order topologies,
connectedness, separability,. . . ) are standard definitions as can be found in
Munkres (2014). To keep track of the different topologies and the continuity

2The results can possibly be generalized by dropping the completeness assumption. Vind
(1991) gives a representation theorem for additive utility functions without completeness.
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properties of various functions, we introduce the following notation.

Definition 1. Topology notation:
i) t

∏
i∈I∗ Xi denotes the collection of all open sets induced by the product topol-

ogy on the space
∏

i∈I∗ Xi

ii) For a subset S ⊆
∏n

i=0 Xi, t
∏

i∈I∗ Xi

S denotes the projections of all open sets
induced by the subspace topology of t

∏n
i=0

Xi to
∏

i∈I∗ Xi

iii) For a subset S ⊆
∏n

i=0 Xi and a relation % on
∏n

i=0 Xi, τS denotes the
collection of all open sets induced by the order topology generated by % on S.

Since we assume that S is only a subset of a product space we require further
conditions to ensure that this subset is well behaved. The following assumptions
are adaptions from the requirements of Wakker and Chateauneuf (1993) to our
setting.

Definition 2. The subset S is well behaved given Z if for all z∗ ∈ Z

i) S is connected and open in t
∏n

i=1
Xi

ii,a) for all i 6∈ IZ and x∗
i ∈ Xi {(s) ∈ S : xi = x∗

i ∧ z = z∗} is connected
ii,b) Sz∗ is connected
iii) all equivalence classes in int(Sz∗) are connected.

If the sphere in Figure 1 does not contain its boundary points, it fulfills the
well behavedness assumptions subject to % fulfilling iii).

Our topological assumptions on each Xi guarantee that X,Y, Z are con-
nected, separable spaces. If X is a set of breakfast options this excludes finite
sets such as X = {boiled egg, sandwich} but allows for sets which specify the
weight or calorie value of the breakfast. For example, each x ∈ X may be a
statement of the kind “100 g of egg, 200 g of sandwich, 400 kcal total” making
X a subset of a three-dimensional vector space. However, X may also consist of
lotteries over breakfast options. In this case, X is a function space and connect-
edness and separability can be guaranteed by allowing the consumer to choose
any mixture of available lotteries. Later, in Remark 2 and Lemma 8 we will
argue that for the Z dimension finite sets such as Z = {vegetarian, beef, fish}
are also permissible.

The space S is an open subset of X × Y × Z. This means that choosing
a certain breakfast may preclude the consumer to choose a certain dinner (for
example due to financial or dietary constraints). The openness of S in the
product topology is automatically implied in case S = X × Y × Z. Thus, a
product of closed subsets of R such as [0, 400]× [0, 900]× [0, 1000] is permissible.
Spaces excluded by this condition are for example spaces such as (x, y, z) ∈ R3

≥0

with the constraint x + y + z ≤ 100. The reason for this is the “Eiffel-tower
problem” according to which on certain points of the boundary of S we may
have infinite utility values. Wakker and Chateauneuf (1993) carefully discuss
this problem and state conditions under which additive utility representations
can be obtained also on closed subsets of product spaces. Our remaining well-
behavedness assumptions imply the well behavedness assumptions of Wakker
and Chateauneuf (1993) on every z-layer. In essence, “holes” in the space and
cases where indifference curves are disconnected present problems for additive
representability, and thus conditionally additive representability.3

3Segal (1992) showed some of these conditions can be relaxed for subsets of real spaces.
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Definition 3. Continuity:
% is continuous if the sets S(s) = {s′ ∈ S : s′ ≻ s} and S(s) = {s′ ∈ S : s ≻ s′}

belong to t
∏n

i=0
Xi

S for all s ∈ S.

The continuity assumption is standard. It requires that for every alternative
the sets of strictly better and strictly worse options are open in the subspace
topology of the product topology.

Definition 4. Essentiality:
X is essential if for all x ∈ X there exist (y, z) ∈ Y × Z and (y′, z′) ∈ Y × Z

such that (x, y, z) ≻ (x, y′, z′).
X is essential given Z if for all x ∈ X and all z ∈ Z there exist y ∈ Y and
y′ ∈ Y such that (x, y, z) ≻ (x, y′, z).
% is essential if X,Y, Z are essential.
% is essential given Z if X and Y are essential given Z.

Essentiality given Z requires the choice of X and Y “to matter” at every
point. Having an amazing dinner does not mean that breakfast is irrelevant.
However, essentiality given Z allows lunch Z to have no impact on preferences.

Before we discuss the axioms driving our main result, it makes sense to
revisit the standard axioms used in additive representation theorems.

Definition 5. Independence:
X is independent (of Y ) if for all x, x′ ∈ X and y, y′ ∈ Y such that the following
points are in S, we have:

(x, y) % (x′, y)

⇔ (x, y′) % (x′, y′). (4)

% is independent with respect to X and Y if X and Y are independent.

Definition 6. Reidemeister Condition:
% fulfills the Reidemeister condition with respect toX and Y if for all x, x′, x̄, x̄′ ∈
X and all y, y′, ȳ, ȳ′ ∈ Y such that the following points are in S, we have:

(x, y) ∼ (x̄′, ȳ′)

∧ (x′, y) ∼ (x̄, ȳ′)

∧ (x, y′) ∼ (x̄′, ȳ)

⇒ (x′, y′) ∼ (x̄, ȳ). (5)

Together with continuity and essentiality, independence with respect to X

and Y , and the Reidemeister condition with respect to X and Y guarantee
additive representability of X and Y (Wakker (1989), Wakker and Chateauneuf
(1993)). We now present weakenings of the above two axioms which allow for
conditionally additive representations.

Definition 7. Conditional independence:
X is independent (of Y ) given Z if for all x, x′ ∈ X, y, y′ ∈ Y , and z ∈ Z such
that the following points are in S, we have:

(x, y, z) % (x′, y, z)

⇔ (x, y′, z) % (x′, y′, z). (6)

% is independent with respect to X and Y given Z if X and Y are independent
given Z.

7



Independence given Z states that if a change in breakfast from x to x′ is
beneficial, this change in X is beneficial independently of any change in the
dinner y. Similarly, a change in dinner may not influence the preferences over
breakfast. However, a change in breakfast or dinner may change the preferences
over lunch options Z. For example, switching from no breakfast to a large
breakfast may make large lunch options worse.

If X is independent of (Y, Z), then X is independent of Y given Z. There-
fore, our conditional independence axiom can be seen as a weakening of the
independence axiom.

Definition 8. Coseparability:
% fulfills coseparability with respect to X and Y given Z if for all z, z̄ ∈ Z and
all x, x′, x̄, x̄′ ∈ X and all y, y′, ȳ, ȳ′ ∈ Y such that the following points are in S,
we have:

(x, y, z) ∼ (x̄′, ȳ′, z̄)

∧ (x′, y, z) ∼ (x̄, ȳ′, z̄)

∧ (x, y′, z) ∼ (x̄′, ȳ, z̄)

⇒ (x′, y′, z) ∼ (x̄, ȳ, z̄). (7)

Coseparability given Z strengthens the notion of conditional independence.
We can interpret coseparability as an independence in improvements and wors-
enings. Suppose a change from (x, y, z) to (x′, y, z) yields an improvement which
is as good as an improvement from (x̄, ȳ, z̄) to (x̄′, ȳ, z̄). Since we only changed x

to x′ and x̄ to x̄′, these changes can be seen as improvements in the breakfast of
the consumer. The indifferences imply that both improvements are equally ben-
eficial. Similarly, the changes from (x, y, z) to (x′, y, z) and (x̄, ȳ, z̄) to (x̄, ȳ′, z̄)
can be seen as equally beneficial dinner improvements. Coseparability given Z

holds if combining the breakfast and the dinner improvement for some lunch
yields the same improvement as combining equally beneficial breakfast and din-
ner improvements for another lunch. This is plausible in the case where im-
provements in breakfast and dinner are comparable. If we instead assume X

and Y are the consumption of two different persons (and maybe Z their con-
sumption of a public good), this assumption would imply cardinal comparability
of preferences. In welfare analysis, many economists would feel comfortable as-
suming conditional independence of the consumption of two persons but may
not feel comfortable assuming cardinal comparability of their preferences. As a
necessary condition for conditionally additive representability, it is important to
consider whether one is indeed willing to commit to the coseparability condition
before using a conditionally additive utility representation.

If % fulfills the Reidemeister condition with respect to X and (Y × Z) then
it fulfills coseparability of X given Z, but not vice versa. Thus, coseparability
is a weakening of the Reidemeister condition. However, assuming that % fulfills
the Reidemeister condition with respect to X and Y on every subspace Sz for
all z ∈ Z is weaker than coseparability given Z. This is why assuming an
additive representation on each Sz only yields a global representation of the
form h(f(x, z) + g(y, z), z).
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To have a clean notation, we summarize conditional independence and cosep-
arability in the following way.

Definition 9. To simplify notation, in the following we will write X ⊥ Y | Z if

• % is independent with respect to X and Y given Z and

• % fulfills coseparability with respect to X and Y given Z.

We say that % fulfills restricted solvability given Z if for all x, x′ ∈ X,
y, y′ ∈ Y , z ∈ Z, and s ∈ S: If (x, y, z) % s % (x′, y, z) then there exists x′′ such
that (x′′, y, z) ∼ s. If (x, y, z) % s % (x, y′, z) then there exists y′′ such that
(x, y′′, z) ∼ s.

3 Representation theorem for 3 dimensions

In this section, we will state our representation theorems for three dimensions
and prove a lemma from which the main intuition of our result follows. The
three dimensional case is the key building block for higher dimensional cases.

Theorem 1. Let % be a continuous preference relation on a well behaved space
S ⊆ X × Y × Z. Let % fulfill essentiality given Z.
a) Then the following statements are equivalent:

(i) % fulfills X ⊥ Y | Z.

(ii) There exists a representation

v : (S, τS) → R,

f : (XS × ZS , t
XS×ZS

S ) → R,

g : (YS × ZS , t
XS×ZS

S ) → R, and

v(x, y, z) = f(x, z) + g(y, z). (8)

b) v is continuous and unique up to positive affine transformations. f and g

are continuous if Z is normal or if ZSx0,y0
= ZS. In the latter case, v(x, y, z) =

f(x, z) + g(y, z) + h(z) where f(x0, z) = 0, g(y0, z) = 0 and f, g are unique up
to linear transformations and h is unique up to affine transformations.

Remark 1. If S = X × Y × Z, we do not need S to be well behaved. All
assumptions summarized by S being well behaved are either trivially fulfilled
by product spaces or not needed. In particular if each Sz is a product space
we can drop Definition 2 iii,b) which states that all indifference classes of a well
behaved space need to be connected on each subset Sz.

Remark 2. According to our assumptions, Z is connected and separable. In-
stead, we could also assume Z to be countable as long as for any two z0, zK
there exists a finite sequence (zk)

K
k=1 of elements of Z such that for all k the

indifference curves of Szk and Szk+1
strictly overlap.
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It is important to note that continuity of f and g requires further conditions.
For most practical applications, the assumption of normality of Z is not restric-
tive. The main exception are function spaces from non-compact metric spaces
to uncountable spaces. In additive representations, this problem never arises
since we can replace the topology of each dimension with the order topology.

Due to its length, we delegate the proof of the representation theorem to
the appendix with the exception of a Lemma which provides the main intuition
behind the result and the proof of which links well with proofs of additive
representations, in particular the proof of Theorem III.4.1. in Wakker (1989).

Lemma 1. Let % be a continuous preference relation on S = X ×Y ×Z where
X,Y, Z are connected and separable topological spaces. Let % be essential given
Z and fulfill X ⊥ Y | Z. Then:
For any pair z′, z′′ ∈ Z for which Sz′ and Sz′′ have strictly overlapping indif-
ference curves there exists a utility representation on S{z′,z′′} such that:

u(x, y, z) = f(x, z) + g(y, z) + h(z). (9)

We included Lemma 1 and its proof into the main text for two reasons. First,
it gives an insight into the utility construction process and how this process
differs from the procedure for additive representations. Second, Lemma 1 is of
independent interest: it proves Remark 2 since given the result for two z-layers,
the extension to countably many layers is trivial.

Proof. We start out by constructing a utility function on Sz′ = X × Y × {z′}.
We use the same utility construction process as in Wakker (1989). Using a
standard argument, we can ensure % satisfies restricted solvability given Z (see
Lemma 2 in the appendix). Essentiality given Z guarantees that there exist
x0,x1 ∈ X and y0 y1 ∈ Y such that

(x0, y0, z
′) ≺ (x1, y0, z

′)

(x0, y0, z
′) ≺ (x0, y1, z

′)

(x1, y0, z
′) ∼ (x0, y1, z

′). (10)

By independence given Z we have (x1, y1, z
′) ≻ (x1, y0, z

′) ≻ (x0, y0, z
′) and we

assign utility values

u(x1, y1, z
′) = 2, u(x1, y0, z

′) = 1, u(x0, y0, z
′) = 0. (11)

Next, since coseparability with respect to X and Y given Z implies the Reide-
meister condition with respect to X and Y on each z-layer X × Y × {z}, we
can construct an order grid on the z′-layer such that for any rational numbers
n, n′,m,m′ we have

(xn, ym, z′) ∼ (xn′ , ym′ , z′)

⇔ u(xn, ym, z′) = n+m = n′ +m′ = u(xn′ , ym′ , z′). (12)

We provide an intuition for this construction process in Figure 2. For details of
how to construct this grid, see Wakker (1989).

We next extend this representation to the z′′-layer (Figure 3). Since the
indifference curves of Sz′ and Sz′′ strictly overlap, we can find points

(x′, y′, z′) % (x′′, y′′, z′′) ≻ (x′′, y′′, z′′) % (x′, y′, z′) (13)

10



z′
′

(x 0,
y 0)

(x 1,
y 0)(x 0,

y 1)

(x 0,
y 2)

(x 2,
y 0)(x 1,

y 2)

(x 2,
y 1)

z′

Figure 2: Construction of the utility grid on the z′-layer.
By restricted solvability given Z, the points (x0, y1, z

′), (x1, y0, z
′) are chosen to be in-

different to each other. Similarly, the points (x0, y2, z
′), (x2, y0, z

′) are chosen to be

indifferent to (x1, y1, z
′) (dashed indifferences). Coseparability given Z then guarantees

(x2, y1, z
′) ∼ (x1, y2, z

′) (dotted indifference). These indifferences allow us to guarantee

(xn, ym, z′) ∼ (xn′ , ym′ , z′) iff n + m = n′ + m′. In a next step, this grid is made dense

in Sz′ .

Since our grid is dense in the z′-layer, we can find a grid point (xn1
, yn2

, z′) on
the z′-layer such that (x′, y′, z′) ≺ (xn1

, yn2
, z′) ≺ (x′, y′, z′). Therefore, by re-

stricted solvability given Z, we can find a point (x̄, ȳ, z′′) ∼ (xn1
, yn2

, z′). Next,
we construct the grid on both z-layers in the following way. We use the point
(x̄0, ȳ0, z

′′) on the z′′-layer satisfying (x̄0, ȳ0, z
′′) ∼ (xn1

, yn2
, z′) as the center

on the z′′-layer and construct the grid with an initial point x̄1, ȳ0 satisfying
(x̄1, ȳ0, z

′′) ∼ (xn1+1, yn2
, z′). These points exist by restricted solvability given

Z and by the fact that we can choose our initial points (x0, y0, z
′) and (x1, y0, z

′)
to be arbitrarily close to each other.

We now show that the grid points are indeed consistent on both layers (Fig-
ure 4). That is, we want to show that

(xn+1, ym, z′) ∼ (xn, ym+1, z
′)

(x̄n+1, ȳm, z′′) ∼ (x̄n, ȳm+1, z
′′)

(xn, ym, z′) ∼ (x̄n1+n, ȳn2+m, z′′) (14)

for all n,m.
Similar to the argument of Wakker (1989), we use induction on our subcripts.

For n + m = 0, the result directly follows from (x̄, ȳ, z′′) ∼ (xn1
, yn2

, z′). For
n+m = 1 the condition follows from the construction of the grid. For n+m ≥ 2,

11



z′
′

(x
′′ , y

′′ )

(x
′′ , y

′′ )(x̄ 0,
ȳ 0)

(x̄ 1,
ȳ 0)

(x n1
, y n2

)
(x n1

+1,
y n2

)
(x
′ , y

′ )

(x
′ , y

′ )

z′

Figure 3: Extension of the utility grid from the z′ layer to the z′′ layer.
The existence of points (xn1

, yn2
) and (xn1+1, yn2

) such that both are worse than (x′′, y′′)

and better than (x′′, y′′) follows from the gridpoints being dense in Sz′ . The existence of the

points (x̄0, ȳ0) and (x̄1, ȳ0) follows from restricted solvability given Z. indifference xn1
, yn1

∼

(x̄0, ȳ0)

we simply notice that coseparability given Z implies

(xn1+n−2, yn2
, z′) ∼(x̄n−2, ȳ0, z

′′)

(xn1+n−1, yn2
, z′) ∼(x̄n−1, ȳ0, z

′′)

(xn1+n−2, yn2+1, z
′) ∼(x̄n−2, ȳ1, z

′′)

and therefore

(xn1+n−1, yn2+1, z
′) ∼(x̄n−1, ȳ1, z

′′). (15)

We can extend the integer-valued grid on the z′′-layer to a rational-valued
grid by the same method as in Wakker (1989). Via transitivity and the fact
that for any xn, n ∈ Q we can find ym such that there exist xn′ , n′ ∈ Z and
ym′ ,m′ ∈ Z such that n +m = n′ +m′ and thus (xn, ym, z′′) ∼ (xn′ , ym′ , z′′),
the extended grid on the rationals is also consistent.

Next, we define the functions

f(xn, z
′) := n

f(x̄n, z
′′) := n

g(ym, z′) := m

g(ȳm, z′′) := m

h(z′′) := n1 + n2

h(z′) := 0 (16)

12



z′
′

(x̄ 0,
ȳ 0)

(x̄ 0,
ȳ 1)

(x̄ 1,
ȳ 0)

(x̄ 1,
ȳ 1)

(x n1
, y n2

)
(x n1

, y n2
+1)

(x n1
+1,

y n2
)(x n1

+1,
y n2

+1)

z′

Figure 4: Consistency of the utility grid between the z′-layer and the z′′-layer.
The dashed indifferences follow from the construction process of the grid. The dashed indif-

ference follows from coseparability given Z.

Since our grid is dense in the z′ and z′′-layers, due to continuity we can extend
the utility functions on the entire z′ and z′′-layers by taking the limit to obtain
a continuous additive utility representation u(x, y, z) = f(x, z) + g(y, z) + h(z)
on both layers.

In summary, the construction of the utility representation on a single layer
follows the construction by Wakker (1989). In this step, our coseparability
condition fulfills the same role as the Reidemeister condition in Wakker (1989):
if a preference relation over a product space X ×Y is continuous, essential, and
independent, the Reidemeister condition is necessary and sufficient to ensure
that an additive representation exists.

When extending the representation to the second layer, coseparability given
Z fulfills an additional role: it makes the additive representations on both layers
consistent with each other. Assuming only the Reidemeister condition on each
Sz without our generalization, we could obtain an additive representation on
each Sz. But notice that for example the preference relation induced by the
utility function (f(x)+ g(y))h(z) has an additive representation on each z-layer,
but does not necessarily have a utility representation of the desired form. The
coseparability condition excludes such preferences.
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4 Representation theorems for finitely many di-

mensions

In the following, we will extend our representation result to product spaces of
higher dimensions. Notice that as soon as there are more than three dimen-
sions, different extensions are possible. In terms of utility functions, we may for
example be interested in the conditions which yield a representation of the kind
f(x2, x1) + g(x3, x1) + h(x4, x1) or instead f(x1, x2) + g(x2, x3) + h(x3, x4). In
the following, we will consider some cases we found interesting. We hope that
our treatment of these cases is instructive for the cases we omit.

4.1 Reference dependent preferences

We start out with the simplest generalization to finite dimensional spaces, the
case where we have a conditionally additive representation on n− 1 dimensions
given the first dimension. We call these preferences reference dependent as we
can interpret the first dimension as a reference point by which the remaining
dimensions are evaluated.

Theorem 2. Let % be a continuous preference relation on a well behaved space
S ⊆ Z ×

∏n

i=1 Xi, 2 ≤ i < ∞ where all Xi and Z are connected and separable
topological spaces. Let % be essential given Z. Then the following statements
are equivalent:

(i) % fulfills for all i:

• Xi ⊥
∏

j 6=i Xj | Z and

• Xi ×Xi+1 ⊥
∏

k 6=i,i+1 Xk | Z.

(ii) % can be represented by a continuous function v(s) =
∑n

i=2 fi(xi, z) unique
up to affine transformations.

Remark 3. Continuity of the additive components fi can be guaranteed in a
similar manner as in Theorem 1 by assuming normality of Z or ZSx0,y0

= ZS .

In order to extend our results to more than three dimensions we need to
impose additional independence conditions Xi × Xj ⊥ . . . | Z. This is unsur-
prising given the work of Gorman (1968). Without the additional conditional
independence assumptions, additive representations on each z-layer may not
exist.

Sugden (2003) axiomatizes reference dependent preferences in a Savage (1972)
framework. Due to the differences in the framework, it is hard to compare the
two models in their generality. One difference is that our representation is ad-
ditive given the reference point, while Sugden (2003) axiomatizes a (reference
dependent) subjective expected utility representation. Sugden (2003) allows for
an uncountable event space as opposed to the finite number of dimensions in our
space. The functional form axiomatized by Sugden (2003) is therefore neither
a special case nor a generalization of Theorem 2.

We now provide an example application where we derive a generalization of
previous axiomatizations of Fehr and Schmidt (1999) using Theorem 2. In a
product space

∏

i∈I Xi let xi ∈ Xi = R≥0 be the income of individual i. Fehr

14



and Schmidt (1999) inequity aversion preferences of individual i are represented
by a utility function of the form:

ui(s) = xi −
∑

j 6=i

αi max(0, xj − xi)− βi max(0, xi − xj). (17)

Rohde (2010) axiomatized the functional form of Fehr and Schmidt (1999)
using the strong linearity assumptions fulfilled by the model. The linearity
assumptions prescribe (i) indifference about redistribution of income among
individuals with better income, and (ii) redistribution among indiviudals with
worse incomes. Neilson (2006) provides a more general representation theorem
by dropping linearity of the model but maintaining linearity in the comparisons
between individual i’s and any other j’s income. One avenue for generalizations
mentioned in Rohde (2010) are rank-dependent utility models. Here, we try the
conditionally additive utility approach.

It is straightforward to obtain the representation u(x1, . . . , xn) = ui(xi) +
∑

j∈I\{i} uj(xj , xi) via Theorem 2. Having obtained such a representation, the
remaining axioms for a theory of inequity aversion easily fall into place.

Definition 10. Anonymity:
If s, s′ ∈

∏

i∈I Xi, xi = x′
i and s′ is a perturbation of s, then s ∼ s′.

This axiom requires that the individual cares about others’ incomes in an
identical manner. The neighbor’s income, for example, has exactly the same
effect on the individual’s income as the income of any other person.

Definition 11. Envy:
If for all j, k 6= i we have xj > xj ≥ xi, then

(x1, . . . , xj−1, xj , xj+1, . . . , xn) ≻ (x1, . . . , xj−1, xj , xj+1, . . . , xn).

The envy axiom implies that the individual cares negatively about anybody’s
income exceeding their own.

Definition 12. Compassion:
If for all j, k 6= i we have xi ≥ xj > xj then

(x1, . . . , xj−1, xj , xj+1, . . . , xn) ≻ (x1, . . . , xj−1, xj , xj+1, . . . , xn).

The compassion axiom means that an individual cares positively about
anybody’s income below their own income. Envy and compassion are slight
strengthenings of the inequity aversion axiom in Rohde (2010).

Corollary 1. Let S =
∏n

i=1 Xi, and % be a continuous preference relation on
S. Let % be essential given Xi. Then the following statements are equivalent:

(i) % fulfills symmetry, envy, compassion, and for all j, k:

• Xj ⊥
∏

k 6=i,j Xk | Xi and

• Xj ×Xj+1 ⊥k 6=i,j,j+1 Xk | Xi.

(ii) % can be represented by:

u(x) = v(xi) +
∑

j 6=i

u(xj , xi) (18)

where u is continuous and strictly increasing (strictly decreasing) in xj if
and only if xj ≤ (≥)xi.
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The usefulness of Theorem 2 is the simplicity with which this result can be
proven. We provide the proof directly:

Proof. From Theorem 2, we have that % can be represented by:

u(x1, . . . , xn) = v(xi) +
∑

j∈I\{i}

uj(xj , xi).

Using a perturbation of the incomes of three individuals j, k, l, we have

uj(xj , xi) + uk(xk, xi) = uj(xk, xi) + uk(xj , xi)

uj(xj , xi) + ul(xl, xi) = uj(xl, xi) + ul(xj , xi)

uk(xk, xi) + ul(xl, xi) = uk(xl, xi) + ul(xk, xi).

If xj = xl = x∗ it is straightforward to derive uj(x
∗, xi)−uk(x

∗, xi) is constant.
Since our choice of x∗, xi, k, l was arbitrary and each uk is unique up to affine
transformations, we have for all k, l: uk = ul = u. Thus,

u(x1, . . . , xn) = v(xi) +
∑

j∈I\{i}

u(xj , xi).

The fact that u must be increasing/decreasing in its second argument for xj <

(>)xi follows directly from the remaining axioms.

Theorem 2 directly provides us with a functional form on which we can
impose axioms descriptive of the behavior we are interested in. The gener-
alization of the functional form of (17) would be of little interest if it could
not capture some plausible deviations from the behavior implied by (17). One
such deviation is a preference against inequity among the individuals poorer
than oneself. Suppose the individuals are ordered by their income such that
x1 ≤ x2 ≤ . . . ≤ xn. The linear structure of (17) forces individual i to have
preferences (0, . . . , 0, xi−1, xi, . . . , xn) ∼ (xi−1

i−1 , . . . ,
xi−1

i−1 , xi, . . . , xn). Instead, we
may want to impose that the individual also cares negatively about inequity of
incomes below herself. We can do this by assuming:

x ≻ (x1 − α, x2 + α, x3, . . . , xi, . . . , xn) (19)

for all x and α ∈ R>0 such that x2 + α ≤ xi and x2 ≤ x1. It is then easy to
show that u(xj , xi) is strictly concave in xj for xj ≤ xi.

4.2 Dynamic dependence preferences

The previous subsection covers the case where all additive component functions
fi share one argument z. Another interesting representation arises if for all
i we assume that the first i − 1 dimensions are independent of the last n − i

dimensions given the i-th dimension.

Theorem 3. Let % be a continuous preference relation on a well behaved space
S ⊆

∏n

i=1 Xi, 3 ≤ i < ∞ where all Xi are connected and separable topolog-
ical spaces. For all i, let % fulfill essentiality given Xi. Then the following
statements are equivalent:

(i) % fulfills for all i = 2, . . . , n− 1:
∏i−1

j=1 Xj ⊥
∏n

k=i+1 Xk | Xi.

(ii) % can be represented by v(s) =
∑n

i=2 fi(xi, xi−1).
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Remark 4. Continuity of each fi can be guaranteed by each Xi being normal
or S being a product space.

A natural application for this representation theorem are preferences over
time which exibit dependence across time periods. Preferences over consump-
tion streams need not be additively separable if individuals experience satiation
and addiction, or form consumption habits (a growth model with time inter-
dependence is given in Ryder and Heal (1973), for an axiomatization of habit
preferences, see Rozen (2010)). In this case, preferences over consumption peri-
ods sufficiently distant in time may be additively separable when holding fixed
the consumption in between. The above representation theorem captures the
case where the marginal utility of consumption depends on the previous period’s
consumption. The overlapping number of dimensions can of course be increased
by a corresponding change in the independence conditions.

More generally, time preferences provide a rich field of applications for our
main theorem in deriving axiomatizations in the spirit of Theorem 3. For exam-
ple, we may consider preferences as in Kydland and Prescott (1982) (for finite
time periods):

n
∑

i=0

βiu(xi,

i
∑

j=1

αiyi) (20)

where xi is consumption at time i, yi is leisure at time i, and αi is a preference
parameter. Using the exact same method of proof as in Theorem 3 we invite
the reader to derive:

Corollary 2. Let % be a continuous preference relation on S =
∏n

i=1 Xi × Yi,
3 ≤ i < ∞ where for all i Xi = R and Yi = R. For all i, let % fulfill essentiality
given

∏i

l=1 Yl. Then the following statements are equivalent:

(i) % fulfills for all i = 1, . . . , n− 1: Xi ⊥
∏n

j 6=i Xj ×
∏n

k=i+1 Yk |
∏i

l=1 Yl.

(ii) % can be represented by v(s) =
∑n

i=1 fi(xi, y1, . . . , yi) where each fi is
continuous.

The common element in Theorem 3 and Corollary 2 is that both representa-
tions originate from combining additive representations in a sequential manner.
In Corollary 2 each statement . . . ⊥ . . . | . . . tells us for some dimension i

which of the i − 1 dimensions before and n − i dimensions after are condition-
ally independent. Theorem 1 gives us conditionally additive representations for
each of these statements. The proof of Theorem 3 shows how to combine such
representations into a dynamically dependent representation.

4.3 Rank dependent preferences

Lastly, we can obtain a generalization of Rank-dependent expected utility. Rank-
dependent expected utility (Quiggin (1982)) has a representation:

n
∑

i=1

(v(yi)− v(yi−1))u(xi) (21)

where for all i = 1, . . . , n each xi is a payoff and yi is the probability of receiving
a payoff worse or equal to xi, thus y0 = 0.

17



Theorem 4. Let (X ,⋗), (Y,⋗) be ordered, connected, separable spaces en-
dowed with the order topology induced by ⋗. Assume a well behaved space
S ⊆

∏n

i=1 Xi × Yi such that for all i Xi = X , Yi = Y and:

(x1, y1, . . . , xn, yn) ∈ S ⇔ ∀i ∈ {1, . . . , n− 1} : xi+1 ⋗ xi, yi+1 ⋗ yi. (22)

Let % be a continuous preference relation on S fulfilling for all i essentiality
given Xi. Then the following statements are equivalent:

(i) For all i = 2, . . . , n− 1 the relation % fulfills

Xi ×
i−1
∏

j=1

Xj × Yj ⊥
n
∏

k=i+1

Xk × Yk | Yi, and

i−1
∏

j=1

Xj × Yj ⊥ Yi ×
n
∏

k=i+1

Xk × Yk | Xi. (23)

(ii) % can be represented by:

v(s) =
n
∑

i=1

fi(xi, yi) + gi(xi, yi−1) (24)

where each fi and gi is continuous.

For the connection to Rank-dependent Expected Utility, suppose X = R,
Y = [0, 1] ⊂ R, and the subset S is chosen such that for all i we have xi < xi+1,
yi < yi+1. xi can be interpreted as the ith lowest prize and yi as the probability
of receiving a prize lower or equal to xi. Then setting fi(xi, yi) = u(xi)w(yi)
and gi(xi, yi−1) = −u(xi)w(yi−1) gives the familiar rank-dependent expected
utility form. In fact, the representation is more general than Rank-linear utility
first axiomatized in Segal (1989) (see also Puppe (1990); Wakker (1993); Segal
(1993)). Rank-linear utility can be obtained by removing the subscript from fi
and gi.

Theorem 4 only generalizes rank-dependent utility models for decisions un-
der risk where the probabilities are known. Thus, the above result holds only
for decisions under risk but not uncertainty. However, many results on rank-
dependent representations for decisions under uncertainty with unknown proba-
bilities are derived using additive representation theorems.4 It would be interest-
ing to apply conditionally additive representation theorems to rank dependent
models of decisions under uncertainty.

5 Finite dimensional simplices

We can use Theorem 1 to provide an interesting new result on additive rep-
resentations. So far, additive representations have only been axiomatized for
sets with nonempty interiors in the product topology. However, an important
class of spaces in economics which do not fulfill this requirement are simplices

4For example, see Chapter VI of Wakker (1989).

18



of the form {(x1, . . . , xn) ∈ Rn :
∑n

i=1 xiθi = 1}. We encounter simplices
for example in lottery spaces, as income shares in fair division problems, or
as normalized price vectors. The literature lacks a result for such spaces be-
cause in this context the classical independence axiom is not well defined when
looking at the independence of a single dimension. Take a statement such as
(x, y) % (x′, y) ⇒ (x, y′) % (x′, y′) where x is the first dimension of the simplex
and y the remaining dimensions. Then by the properties of the simplex, x = x′

and the axiom is not meaningful. However, even if we consider x to contain
more than one dimension, we run into difficulties. To show why, let us focus on
a 4 dimensional simplex and let x = (x1, x2) contain the first two dimensions
and y = (x3, x4) contain the other two dimensions. Now a statement such as
(x, y) % (x′, y) ⇒ (x, y′) % (x′, y′) only imposes restrictions on preferences on
the subset of alternatives where x1 + x2 = x′

1 + x′
2. Yet, this is exactly the case

where conditionally additive representation theorems become useful.
Indeed, Theorem 1 helps us find conditionally additive representations of

the form f(x1, x1 + x2) + g(x3, x1 + x2). To see this, consider the following
preferences %∗ on a subset of a product set (0, 1)3:

(x1, x2, x3, x4) = (x, y) % (x′, y′) = (x′
1, x

′
2, x

′
3, x

′
4)

⇔ (x1, x3, x1 + x2) %
∗ (x′

1, x
′
3, x

′
1 + x′

2). (25)

It is straightforward to verify that independence of X and Y in the relation %

implies conditional independence of X1 and X3 given X1 +X2 in %∗:

(x1, x3, x1 + x2) %
∗ (x′

1, x3, x
′
1 + x′

2)

⇔ (x, y) % (x′, y)

⇔ (x, y′) % (x′, y′)

⇔ (x1, x
′
3, x1 + x2) %

∗ (x′
1, x

′
3, x

′
1 + x′

2) (26)

if x1 + x2 = x′
1 + x′

2. Similarly, the Reidemeister condition of X and Y in the
relation % implies coseparability given X1+X2 of %

∗. Together with essentiality
we obtain the representation f(x1, x1 + x2) + g(x3, x1 + x2) of %

∗ and thus %.
In the same fashion we can obtain a representation f̄(x1, x1+x3)+ ḡ(x2, x1+

x3). The existence of the two representations of the same relation gives us the
functional equation

f(x1, x1 + x2) + g(x3, x1 + x2) = T [f̄(x1, x1 + x3) + ḡ(x2, x1 + x3)] (27)
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for some monotone transformation T . However, this does not yet guarantee
additive representability. To make the representation additive among all di-
mensions, we need to introduce an additional axiom.

Definition 13. Comeasurability:
(Xi, Xn) and (Xj , Xn) are comeasurable if for all xi, xj , xk, xn, x

′
i, x

′
j , x

′
k, x

′
n,

x′′
i , x

′′
j , x

′′
k , x

′′
n for which the following elements of S are defined:

((xl)l 6=i,j,k,n, x
′
i, xj , xk, x

′
n)

∼((xl)l 6=i,j,k,n, xi, x
′
j , x

′
k, xn)

∼((xl)l 6=i,j,k,n, xi, x
′′
j , xk, x

′′
n)

∼((xl)l 6=i,j,k,n, x
′′
i , xj , x

′′
k , xn)

⇒

((xl)l 6=i,j,k,n, x
′
i, x

′
j , x

′
k, x

′
n)

∼((xl)l 6=i,j,k,n, x
′′
i , x

′′
j , x

′′
k , x

′′
n). (28)

Comeasurability is very similar to the Reidemeister condition. In fact, if we
set

x = (xi, xn) y = (xj , xk)

x̄ = (xi, xk) ȳ = (xj , xn)

x′ = (x′
i, x

′
n) y′ = (x′

j , x
′
k)

x̄′ = (x′′
i , x

′′
k) ȳ = (x′′

j , x
′′
n) (29)

in (5) then it becomes apparent that for a four-dimensional simplex, comeasur-
ability is simply the Reidemeister condition with a change of dimensions when
comparing the LHS to the RHS of (5). Comeasurability guarantees that in the
four-dimensional case discussed above, T is affine. In Lemma 12 we solve the
functional equation (27) for affine T using a result from Hosszú (1971).

We obtain the following representation theorem.

Theorem 5. Suppose S = {x ∈
∏n

i=1 Xi : xn = 1 −
∑n−1

i=1 xi} and for all i,
Xi = (0, 1). Let % be a continuous preference relation fulfilling for all i, j:

• (Xi, Xn) and
∏

k 6=i,n Xk are independent,

• (Xi, Xn) and
∏

k 6=i,n Xk are essential,

• (Xi, Xn) and
∏

k 6=i,n Xk fulfill the Reidemeister condition,

• comeasurability of (Xi, Xn) and (Xj , Xn).

Then % can be represented by a continuous function u : (S, τ
∏n

i=1
Xi

S ) → R:

u(x) =

n
∑

i=1

ui(xi). (30)

Remark 5. We can continuously extend the representation to the closure of
the simplex except points where for some i, xi = 1, since it may be that
limxi→1 ui(xi) = ∞.
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This result is very similar to additive representation theorems on product
spaces. The only differences are that the independence, essentiality, and Reide-
meister conditions have been imposed on pairs of dimensions instead of single
dimensions and the additional use of comeasurability between these pairs of
dimensions.

Theorem 5 provides an axiomatization for Utilitarianism in cake division
problems. In a cake division problem, a fixed resource is divided among n

individuals. If we normalize the amount of the resource to 1, we have
∑n

i=1 xi =
1 as a constraint. Therefore, the space on which preferences are defined is an
n-dimensional simplex.5 If the decision maker’s preference is consistent with
the axioms in Theorem 5, the decision maker is consistent with Utilitarianism
in the following sense. For each individual i, the decision maker can find a
utility function ui, which is cardinally comparable to the utility function of
any other j. The decision maker ranks allocations according to the sum of the
utility functions. This result can be generalized to cases where agents differ in
their productivity with which they convert the resource into some consumption
product:

Remark 6. Theorem 5 holds for any space S′ where we can find a homeomor-
phism h : S′ → S such that h(s′) = h(x′

1, . . . , x
′
n) = (h1(x

′
1), . . . hn(x

′
n)) and

each hi is a homeomorphism.

This follows from the fact that our independence, essentiality, coseparability,
and comeasurability assumptions do not refer in any way to the linear structure
of a simplex. In our cake division problem we could assume that each individual
i transforms the resource by multiplying it with a productivity parameter θi.
Then Theorem 5 holds for S′ = {x ∈

∏n

i=1 Xi : θnxn = 1−
∑n−1

i=1 θixi}.
Naturally, it is interesting to consider a reference-dependent version of the

Theorem 5. For this, we need to extend the definition of comeasurability to a
conditional version:

Definition 14. Conditional Comeasurability:
(Xi, Xn) and (Xj , Xn) are comeasurable given Z if for all xi, xj , xk, xn, x

′
i, x

′
j ,

x′
k, x

′
n, x

′′
i , x

′′
j , x

′′
k , x

′′
n for which the following elements of S are defined:

((xl)l 6=i,j,k,n, x
′
i, xj , xk, x

′
n, z)

∼((xl)l 6=i,j,k,n, xi, x
′
j , x

′
k, xn, z)

∼((xl)l 6=i,j,k,n, xi, x
′′
j , xk, x

′′
n, z)

∼((xl)l 6=i,j,k,n, x
′′
i , xj , x

′′
k , xn, z)

⇒

((xl)l 6=i,j,k,n, x
′
i, x

′
j , x

′
k, x

′
n, z)

∼((xl)l 6=i,j,k,n, x
′′
i , x

′′
j , x

′′
k , x

′′
n, z). (31)

5If we could force the decision maker to discard some of the resource, we would be back in
the standard case of a subset of a product space.
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Corollary 3. Suppose S = {x ∈
∏n

i=1 Xi : xn = 1 −
∑n−1

i=1 xi} and for all i:
Xi = (0, 1). Z is a connected, separable topological space. Let % be a continuous
preference relation on S × Z fulfilling for all i, j:

• essentiality given Z,

• Xi ×Xn ⊥
∏

k 6=i,n Xk | Z,

• conditional comeasurability of (Xi, Xn) and (Xj , Xn) given Z.

Then % can be represented by:

u(x, z) =
n
∑

i=1

ui(xi, z). (32)

This shows that our previous results for conditionally additive representa-
tions carry over to simplices under the additional assumption of comeasurability.

6 Mixture Spaces

In some cases, we are interested in even stronger independence conditions which
generate not only additive, but linear utility functions. The classical example
is expected utility axiomatized by von Neumann and Morgenstern (1944). Her-
stein and Milnor (1953) generalize their results to mixture spaces, which we will
study in the following.

Let Z be a connected, separable set and S an arbitrary set. Let ξ : S → Z

be continuous. For each z ∈ Z we assume a set Sz = {s ∈ S : ξ(s) = z} with an
operator ⊕ such that for all s, s′ ∈ S and µ, λ ∈ [0, 1] ⊆ R we have:

µs⊕ (1− µ)s′ ∈ Sz

1s⊕ 0s′ = s

µs⊕ (1− µ)s′ = (1− µ)s′ ⊕ µs

λ(µs⊕ (1− µ)s′)⊕ (1− λ)s′ = (λµ)s⊕ (1− λµ)s′. (33)

We call (S,Z,⊕) a conditional mixture space. We call it a continuous conditional
mixture space if for all s, s′ ∈ S the map α 7→ αs ⊕ (1 − α)s′ is a continuous
map.

Naturally, conditional independence in this context means:

Definition 15. Conditional independence:
For mixture spaces, % is conditionally independent given Z if for all z ∈ Z and
all s, s′, s′′ ∈ Sz and all µ ∈ [0, 1]:

s ∼ s′ ⇔
1

2
s⊕

1

2
s′′ ∼

1

2
s′ ⊕

1

2
s′′. (34)

As usual, we need the technical assumption of essentiality to avoid some
pathological cases.

Definition 16. Essentiality:
For mixture spaces, % is essential given Z if for all z ∈ Z there exist s, s′ ∈ Sz

such that s ≻ s′.
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The coseparability condition for product spaces can be translated to this
context as:

Definition 17. Coseparability:
For mixture spaces, % fulfills coseparability given Z if for all z, z̄ in Z:

s ∼ȳ

1

2
s⊕

1

2
s′ ∼

1

2
s̄⊕

1

2
s̄′

1

2
s⊕

1

2
s′′ ∼

1

2
s̄⊕

1

2
s̄′′

⇒
1

2
s′ ⊕

1

2
s′′ ∼

1

2
s̄′ ⊕

1

2
s̄′′ (35)

where s, s′, s′′ ∈ Sz and s̄, s̄′, s̄′′ ∈ Sz̄.

Compared to the earlier definition, we have slightly simplified the exposition
due to the commutativity of ⊕.

Theorem 6. Suppose (S,Z,⊕) is a continuous conditional mixture space and %

is a continuous preference relation on S. Let % fulfill the following conditions:

• conditional independence given Z,

• essentiality given Z, and

• coseparability given Z.

Then there exists a representation u : S → R and functions uz : Sz → R such
that

u(s) = uξ(s)(s) (36)

uz(µs⊕ (1− µ)s′) = µuz(s) + (1− µ)uz(s
′) (37)

for all s, s′ ∈ Sz and all µ ∈ [0, 1].

Remark 7. If S =
∏n

i=1 Xi × Z = Rn × Z, ξ(x1, . . . , xn, z) = z and ⊕ is
defined as vector summation for elements with identical z ∈ Z, then u(s) =
∑n

i=1 xiui(z).

We apply Theorem 6 to decisions under risk and uncertainty. Suppose Z is a
set of acts with uncertain (and possibly unknown) consequences. x1, . . . , xn are
known probabilities of lotteries over outcomes 1, . . . , n. Many everyday decisions
resemble this structure. In a medical context, a decision maker may be informed
about the probabilities of the effects of various medical treatments but may be
uncertain how choices such as smoking, exercising, or eating interact with the
outcomes. For fincancial decisions on insurances and investments, consultants
may be able to supply the decision maker with probabilities on the returns of an
asset or the payment probabilities of an insurance. However, for a simultaneous
decision on whether to switch occupations or employers, the decision maker may
not have such data. Nonetheless, the two decisions strongly interact: switching
to a lower paid, less stable job may change the risk preferences of the decision
maker over other financial decisions.
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In the above axiomatization, we impose von Neumann Morgenstern prefer-
ences over lotteries when holding the act z fixed. Coseparability ensures com-
parability of the von Neumann Morgenstern preferences across different acts z,
z′. Under these more stringent assumptions on the preferences given Z, the
coseparability condition is a powerful, yet highly plausible axiom for rational
decision makers. If a decision maker maximizes the expectation of her experi-
enced utility given a decision z, then there is no good reason to believe that
this expectation of the experienced utility should not be comparable with that
given a decision z′.

In particular, coseparability forbids separate “utility accounts” for z and
x1, . . . , xn: suppose the decision maker first determines the utility of the lottery
and in a second step transforms this utility depending on the act z using a non-
linear function. Then the utility function would instead be u(s) = v(

∑

i xiui, z).
We may call this a case of two “utility accounts” as the decision maker first forms
an account for the utility of the lottery and then combines this utility with the
utility from the act z. An example of an axiomatization which allows for such
behavior is given in Karni (2006) where the v function may be nonlinear. In-
stead, coseparability forces the decision maker to separately consider the utility
from each outcome i given act z and take the expectation over these utilities
ui(z).

A special feature of this axiomatization apart is the lack of a specification
of how acts relate to outcomes.6 This is intuitive for applications where there
may be unforeseen consequences of acts or where due to bounded rationality
it is impossible for a decision maker to relate acts, outcomes, and states of the
world. If our axioms are accepted, a decision maker facing a situation where
some outcomes are unknown should (when holding fixed z) behave in line with
expected utility for simultaneous choices over lotteries and should be able to
cardinally compare the expected utility functions across different acts z, z′.
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Appendix A Proof of Theorem 1

Necessity of the conditions for the representation and the uniqueness properties
are trivial. We therefore focus on proving sufficiency. In the steps up to Lemma
6 we show that for every interior indifference curve we can find a point such
that there exists a basic open set O = Ox ×Oy ×{z} ⊆ Sz containing the point
and points strictly better and worse. This ensures that across different z-layers
we can make the conditionally additive representations consistent using 1. In
the following steps to Lemma 9 we show sufficiency for the existence of the
representation v. The remainder of the proof derives the continuity properties.

A standard result used throughout this paper is:

Lemma 2. Suppose % is a continuous preference relation on S fulfilling essen-
tiality given Z. Then % satisfies restricted solvability given Z.

Proof. We can simply apply the proof of Wakker (1989) Lemma III.3.3. to each
Sz.

Definition 18. A point s = (x, y, z) is called locally X-nonsatiated if for every
open set O ∈ tX×Y×Z

Sy,z
containing s there exists a point s′ = (x′, y, z) ∈ O such

that s′ ≻ s.
s = (x, y, z) is called locally X,Y -nonsatiated if it is X-nonsatiated and Y -
nonsatiated.

Lemma 3. Suppose S ⊆ X × Y × Z is well behaved given Z. Let % be a
continuous preference relation on S with a continuous representation u. Then
for every i∗ ∈ u(Sx,z) such that i∗ 6= maxs∈Sx,z

u(s) there exists a point s ∈ Sx,z

such that u(s) = i∗ and s is locally Y -nonsatiated.

Proof. We prove the result by contradiction. By well behavedness of S, all
sets Sx,z are connected. Moreover, if u is continuous on S, tX×Y×Z

S , then it is
continuous on Sx,z, t

X×Y×Z
Sx,z

.

Suppose there exists no point s ∈ u−1(i∗) ∩ Sx,z that is locally nonsa-
tiated in Y for i∗ ∈ int(u(Sx,z)). Then, for every s ∈ u−1(i∗) there exists
an open set Os ∈ tX×Y×Z

Sx,z
such that s is maximal in Os. Take the union

O =
⋃

s∈u−1(i∗)∩Sx,z
Os. As a union of open sets, O is open. Moreover,

O′ = {s ∈ Sx,z : u(s) < i∗} ∈ tX×Y×Z
Sx,z

. Thus, {s ∈ Sx,z : u(s) ≤ i∗} =

O ∪ O′ ∈ tX×Y×Z
Sx,z

is both open and (by continuity) closed in tX×Y×Z
Sx,z

. Since

i∗ ∈ int(u(Sx,z)), O∪O′ 6= Sx,z and O∪O′ 6= ∅ which means Sx,z is disconnected
yielding the contradiction.

Note that the same argument applies to local X-nonsatiation of a nonmax-
imal indifference curve in any set Sy,z.

Lemma 4. Suppose S ⊆ X × Y × Z is well behaved given Z. Let % be a
continuous preference relation on S with a continuous representation u. Let
% fulfill independence given Z. Then if (x, y, z) is locally Y -nonsatiated all
s ∈ Sx,z are locally Y -nonsatiated.

Proof. Suppose (x∗, y, z) ∈ Sx,z is not locally Y -nonsatiated. Note that YSx∗,z

is open in tY . Therefore there exists an open set Oy ∈ tYYSx∗,z

such that for all
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y′ ∈ Oy, (x, y, z) % (x∗, y′, z). By independence given Z, for all y′ ∈ Oy ∩ YSx,z
,

we have

(x, y, z) % (x, y′, z)

⇔ (x∗, y, z) % (x∗, y′, z). (38)

But then, since Oy ∩ YSx,z
∈ tYYSx,z

and {x} × Oy × {z} ∈ tX×Y×Z
Sx,z

, the point

(x, y, z) is not locally Y -nonsatiated, yielding a contradiction.

Lemma 5. Suppose S ⊆ X × Y × Z is well behaved given Z. Let % be a
continuous preference relation on S with a continuous representation u. Let %
fulfill

• X ⊥ Y | Z and

• essentiality given Z.

Then for every i∗ ∈ int(u(Sz)) there exists a point s ∈ Sz such that u(s) = i∗

and s is locally X,Y -nonsatiated.

Proof. Figure 5 may be useful to follow the steps of the proof. Take a point
(x, y, z) such that u(x, y, z) = i∗ ∈ int(u(Sx,z)) which exists by essentiality. By
Lemma 3, there exists a locally Y -nonsatiated point (x, y∗, z) ∼ (x, y, z) in Sx,z.

We distinguish two cases:

• Case i∗ < maxs∈Sy∗,z
u(s): By Lemma 3, on Sy∗,z there exists a locally

X-nonsatiated point (x∗, y∗, z) ∼ (x, y∗, z). By Lemma 4 (x∗, y∗, z) is
locally Y -nonsatiated. Thus, (x∗, y∗, z) is locally X,Y -nonsatiated.

• Case i∗ = maxs∈Sy∗,z
u(s): By essentiality given Z and restricted solvabil-

ity, there exists a point (x∗∗, y∗, z) ∈ Sy∗,z such that (x∗, y∗, z) ≺ (x, y∗, z).
Since Sz is open in tX×Y×{z}, there exists a basic open set O = Ox ×
Oy × {z} of tX×Y×{z} such that O ⊆ Sz and (x∗, y∗, z), (x, y∗, z) ∈ O.
Since (x, y∗, z) is locally Y -nonsatiated, there exists a point (x, y∗∗, z) ≻
(x, y∗, z). Due to restricted solvability (Lemma 2), we can assume without
loss of generality that u(x, y∗∗, z) < maxs∈Sx,z

u(s).

By restricted solvability we can find (x∗∗∗, y∗∗∗, z) ∼ (x, y∗, z) in O: If
(x∗∗, y∗∗, z) ≻ (x, y∗, z) ≻ (x∗∗, y∗, z) then x∗∗∗ = x∗∗. If (x, y∗∗, z) ≻
(x, y∗, z) ≻ (x∗∗, y∗∗, z) then y∗∗∗ = y∗∗.

Next, take a locally X-nonsatiated point (x̄∗∗∗, y∗, z) ∼ (x∗∗∗, y∗, z) which
exists by Lemma 3. Similarly, let (x, ȳ∗∗∗, z) ∼ (x, y∗∗∗, z) be a locally
Y -nonsatiated point. Then by independence given Z and Lemma 4,
(x̄∗∗∗, ȳ∗∗∗, z) is locally X,Y -nonsatiated. By coseparability given Z,

(x, y∗, z) ∼ (x, y∗, z)

∧ (x∗∗∗, y∗, z) ∼ (x̄∗∗∗, y∗, z)

∧ (x, y∗∗∗, z) ∼ (x, ȳ∗∗∗, z)

⇒ (x∗∗∗, y∗∗∗, z) ∼ (x̄∗∗∗, ȳ∗∗∗, z)

and therefore u(x̄∗∗∗, ȳ∗∗∗, z) = i∗.
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Figure 5: Proof of local X,Y -nonsatiation for all indifference curves.
Case of i∗ = maxs∈Sy∗,z

u(s). The dashed outline marks the open set O. Dotted lines

connect indifferent points. The dashed indifferences follow from coseparability given Z. The

small arrows mark the direction of local nonsatiation.

Lemma 6. Suppose S ⊆ X × Y × Z is well behaved given Z. Let % be a
continuous preference relation on S with a continuous representation u. Let % be
conditionally independent given Z and essential given Z. Then for every z, z̄ ∈
Z such that their indifference curves strictly overlap, and every indifference
curve i∗ ∈ int(u(Sz) ∩ u(Sz̄)), there exist points in Sz ∪ Sz̄

(x0, y0, z) ∼ (x̄0, ȳ0, z̄)

≺ (x1, y0, z) ∼ (x̄1, ȳ0, z̄)

∼ (x0, y1, z) ∼ (x̄0, ȳ1, z̄) (39)

such that u(x0, y0, z) = i∗ and (x1, y1, z) ∈ Sz, and (x̄1, ȳ1, z̄) ∈ Sz̄.

Proof. By Lemma 5, we can find locally nonsatiated points s = (x0, y0, z), s̄ =
(x̄0, ȳ0, z̄) in both X and Y such that u(x0, y0, z) = u(x̄0, ȳ0, z̄) = i∗. Since S ∈
tX×Y×Z , we can find O = Ox×Oy×{z} and Ō = Ōx× Ōy×{z̄} where O ⊆ Sz,
Ō ⊆ Sz̄, Ox, Ōx ∈ tX , and Oy, Ōy ∈ tY . Since s, s̄ are locally nonsatiated in X

and Y , we can find x1 ∈ Ox, x̄
′ ∈ Ōx, y

′ ∈ Oy, ȳ
′ ∈ Ōy such that (x1, y, z) ≻ s,

(x, y′, z) ≻ s, (x̄′, ȳ, z̄) ≻ s̄, (x̄, ȳ′, z̄) ≻ s̄. Without loss of generality, let (x1, y, z)
be the worst among the four points. Then by restricted solvability, there exist
points

(x1, y0, z) ∼ (x̄1, ȳ0, z̄)

∼ (x0, y1, z) ∼ (x̄0, ȳ1, z̄) (40)

in O and Ō. Since O = Ox × Oy × {z} and Ō = Ōx × Ōy × {z̄}, we have
(x1, y1, z) ∈ o ⊆ Sz and (x̄1, ȳ1, z̄) ∈ Ō ⊆ Sz̄.
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Lemma 7. Suppose S ⊆ X × Y × Z is well behaved given Z. Let % be a
continuous preference relation on S with a continuous representation u. Let %
be independent and essential given Z. Then for every i∗ ∈ int(u(Sz)), there
exists a basic open set bx × by × {z} in tX×Y×Z

SZ
such that it contain elements

with strictly higher and lower utility value than i∗.

Proof. Using elementary set theory and openness of S, we can show Sz is a
union of basic open sets O =

⋃

Ob∈T⊆t
X×Y ×Z

X×Y ×{z}
Ob where for all Ob, we have

Ob = bx × by ×{z} and Ob ∈ tX×Y×Z
SZ

. We will show that if no set bx × by ×{z}

in tX×Y×Z
SZ

contains both points strictly better and worse than i∗, we can derive
a contradiction. Suppose for all Ob ∈ T , we have ∀s ∈ Ob : u(s) ≥ i∗ or
∀s ∈ Ob : u(s) ≤ i∗. Let T , T partition T into sets fulfilling ∀s ∈ Ob : u(s) ≥ i∗

and ∀s ∈ Ob : u(s) ≤ i∗, respectively. T and T are unions of open sets, and
thus elements of tX×Y×Z

Sz
. As an intersection of open sets, O′ = T ∩ T is an

element of tX×Y×Z
Sz

. By continuity, O′′ = T ∩ {s ∈ Sz : u(sz) > i∗} and

O′′′ = T ∩ {s ∈ Sz : u(sz) < i∗} are elements of tX×Y×Z
Sz

. O′, O′′, O′′′ partition
Sz. Since Sz is connected, it cannot be partitioned into open sets, yielding the
desired contradiction.

Lemma 8. Suppose S ⊆ X × Y × Z is well behaved given Z. Let % be a
continuous preference relation on S with a continuous representation u. Let %
be essential given Z and X ⊥ Y | Z. Then for every z, z̄ ∈ Z with strictly
overlapping indifference curves, we can find a continuous function v : (Sz ∪
Sz̄, τ

X×Y×Z
Sz∪Sz̄

) → R such that v represents % and v(x, y, z) = f(x, z) + g(y, z).

Proof. By continuity, we have a utility representation u : S → R. By Wakker
and Chateauneuf (1993), for each ẑ ∈ {z, z̄} we can construct a utility function
vẑ : Sẑ → R which is additive in X and Y . Therefore, vẑ(x, y) = fẑ(x) + gẑ(y),
where fẑ : (Xẑ, t

X×Y×Z
Xẑ

) → R and gẑ : (Yẑ, t
X×Y×Z
Yẑ

) → R.
We may now pick any indifference curve i∗ ∈ int(u(Sz)∩u(Sz̄)). By Lemma

6, we can find points

(x0, y0, z) ∼ (x̄0, ȳ0, z̄)

≺ (x1, y0, z) ∼ (x̄1, ȳ0, z̄)

∼ (x0, y1, z) ∼ (x̄0, ȳ1, z̄) (41)

such that (x1, y1, z) ∈ Sz and (x̄1, ȳ1, z̄) ∈ Sz̄. By coseparability given Z, we
then have (x1, y1, z) ∼ (x̄1, ȳ1, z̄).

Without loss of generality, we assume that vz and vz̄ fulfill:

vz(x0, y0) =vz̄(x̄0, ȳ0) = 0

vz(x1, y0) =vz̄(x̄1, ȳ0) = 1

vz(x0, y1) =vz̄(x̄0, ȳ1) = 1

vz(x1, y1) =vz̄(x̄1, ȳ1) = 2, (42)

since otherwise, we can use positive affine transformations of the representations
to ensure that this is the case and we can further assume that vz = fz(x)+gz(y)
vz̄ = fz̄(x) + gz̄(y).
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We now show that the two representations are consistent, i.e.,

vz(x, y) ≥(>)vz̄(x̄, ȳ)

⇔ (x, y, z) %(≻)(x̄, ȳ, z̄). (43)

Since both representations are complete and transitive, we only need to show
that

(x, y, z) ∼ (x̄, ȳ, z̄)

⇒ vz(x, y, z) = vz̄(x̄, ȳ, z̄). (44)

Without loss of generality, we can assume that u(x0, y0, z) = u(x̄0, ȳ0, z̄) = 0.
Therefore, by Lemma 7, for each rational utility level u∗ in the interval

[min(0, u(x, y, z)),max(0, u(x, y, z))], we can find corresponding open sets Bz
u∗

and Bz̄
i such that u∗ ∈ int(u(Bz

i ) ∩ u(Bz̄
i )). Note that we can assume that Bz

1

is a basic open set containing (x1, y1, z) and (x0, y0, z) and Bz̄
1 is a basic open

set containing (x̄0, ȳ0, z̄) and (x̄1, ȳ1, z̄). Moreover Bz
i and Bz̄

i has the utility
overlapping with Bz

i+1 and Bz̄
i+1.

Next, we want to show that vz and vz̄ are consistent in Bz
i ∪ Bz̄

i . We use
induction. For i = 1, it is clear that vz and vz̄ are consistent in Bz

1 ∪ Bz̄
1 by

Lemma 8. Suppose consistency holds for i = k, then when i = k + 1, since
Bz

i+1 and Bz̄
i+1 have common indifference curves, by Lemma 8, there exists

a consistent additive representation v∗ on Bz
i+1 ∪ Bz̄

i+1, unique up to affine
transformations. Since Bz

i and Bz̄
i have common indifference curves with Bz

i+1

and Bz̄
i+1, we can find points s, s′ ∈ Bz

i , s
′′, s′′′ ∈ Bz

i+1, s̄, s̄
′ ∈ Bz

i , and s̄′′, s̄′′′ ∈
Bz

i+1 such that
s ∼ s′′′ ∼ s̄ ∼ s̄′′′ ≻ s′ ∼ s′′′ ∼ s̄′ ∼ s̄′′′. We can then define the affine

transformations T (u) = αzu+ βz and T̄ (u) = αz̄u+ βz̄ where

αz =
vz(s)− vz(s

′)

v∗(s′′)− v∗(s′′′)
=

vz̄(s̄)− vz̄(s̄
′)

v∗(s̄′′)− v∗(s̄′′′)
= αz̄

βz = vz(s)−
vz(s)− vz(s

′)

v∗(s′′)− v∗(s′′′)
v∗(s′′) =vz̄(s̄)−

vz̄(s̄)− vz̄(s̄
′)

v∗(s̄′′)− v∗(s̄′′′)
v∗(s̄′′) = βz̄.

(45)

It follows that for all s∗ ∈ Bz
i+1 we have vz(s

∗) = αzv
∗(s∗) + βz and for all

s̄∗ ∈ Bz̄
i+1 s∗ ∈ Bz̄

i+1 vz̄(s̄
∗) = αz̄v

∗(s̄∗) + βz̄.
Since v∗ is unique up to affine transformations, T ◦ v∗ = T̄ ◦ v∗ is consistent

on Bz
i+1 ∪Bz̄

i+1. Thus, vz and vz̄ are consistent on Bz
i+1 ∪Bz̄

i+1.
Since (x, y, z) and (x̄, ȳ, z̄) belong to some Bz

i ∪ Bz̄
i , we have vz(x, y, z) =

vz̄(x
′, y′, z̄). Therefore, the following function represents the preference

v(x̂, ŷ, ẑ) =

{

vz(x̂, ŷ), ẑ = z

vz̄(x̂, ŷ), ẑ = z̄.
(46)

What is left to show is that v is continuous in the subspace topology of the order
topology on S. We show that for every open interval OR ⊆ R the preimage
v−1(OR) is open in the subspace topology of the order topology. Since vz is a
continuous representation on Sz, v

−1
z (OR) = O ∩ Sz where O ∈ τX×Y×Z

S is a
connected set. Similarly, v−1

z̄ (OR) = O′ ∩ Sz̄. Since the two representations are
consistent, we may choose O = O′. Since O ∩ Sz ∪ O ∩ Sz̄ = O ∩ (Sz ∪ Sz̄) =
v−1(OR) is open in Sz ∪ Sz̄, v is continuous.
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Lemma 9. Suppose S ⊆ X × Y × Z is well behaved given Z. Let % be a
continuous preference relation on S. Let % be essential given Z and X ⊥ Y | Z.
Then we can find a continuous function v : (S, τX×Y×Z

S ) → R such that v

represents % and v(x, y, z) = f(x, z) + g(y, z).

Proof. By continuity, there exists a continuous representation u : (S, tX×Y×Z
S ) →

R which we will use to track indifference classes.
We start by making all representations vz : (Sz, t

X×Y×Z
Sz

) → R for which
u(Sz) intersects with an open interval r consistent with each other. Then we
show how we can increase the size of r to int(u(S)).

We start with r = int(u(Sz0)) for some z0. r is nonempty and connected
by essentiality, connectedness of Sz0 , and continuity of u. Let vz0 be the addi-
tive representation on Sz0 , which we obtain from Lemma 8. By Lemma 8, we
can make vz0 consistent with any vz′ such that int(u(Sz0) ∩ u(Sz′)) 6= ∅, i.e.,
for all s ∈ Sz0 , s

′ ∈ Sz′ , vz0(s) ≥ (>)vz′(s′) iff s % (≻)s′. We show that any
vz′ , vz′′ made consistent with vz0 are also consistent with another: clearly, if
u(Sz′)∩ u(Sz′′) ⊆ u(Sz0), then vz′ , vz′′ are consistent by transitivity. We there-
fore consider the case where u(Sz′) ∩ u(Sz′′) 6⊆ u(Sz0). By the proof of Lemma
8, if vz′ , vz′′ are additive representations and consistent somewhere, they are
consistent everywhere due to coseparability given Z. Therefore, we can obtain

a representation vr(s) =
{

vz(s), s ∈ Sz on the domain u−1(r).

Next, we show that we can extend the set of indifference classes r (on which
all intersecting layers z with representations vz are consistent) to int(u(S)).

Since u is continuous, the sets A = {z ∈ Z : sups∈Sz
u(s) ≤ supi∈r i} and

B = {z ∈ Z : infs∈Sz
u(s) ≥ supi∈r i} are closed. By essentiality, A∩B is empty.

By connectedness, Z cannot be partitioned into two closed, disjoint sets. Thus,
there exists z∗ such that supi∈r i is in the interior of u(Sz∗). We can then
make all layers having indifference classes intersecting u(Sz∗) consistent with
one another, and consistent with all layers intersecting the indifference classes
in r. Thus, as long as supx∈r x < sups∈S u(s), we can always continue making
layers consistent. By an analogous argument we can extend our representation
until infx∈r x = infs∈S u(s).

Note that in case supi∈u(S) i = maxi∈u(S) i = u(s∗) (or in case infi∈u(S) i =
maxi∈u(S) i = u(s∗)), there must exist some z such that s∗ ∈ Sz and by essen-
tiality int(r ∩ u(Sz)) is nonempty. Therefore we can extend the representation
to all indifference classes.

We claim that v (but not necessarily f and g) is continuous. Since v rep-
resents the same relation as u, there must exist a monotone transformation
T : R → R such that T ◦ u = v. Since v is continuous on every Sz and u is
continuous when restricted to Sz, T must be continuous. To see this, note that
since T is increasing, it can only have jump discontinuities. Let T (u∗) = v∗

be such a discontinuity. Then A = {s ∈ Sz : vz(s) > v∗} is open in tX×Y×Z
Sz

by continuity of v on Sz and B = {s ∈ Sz : uz(s) ≥ u∗} is closed in tX×Y×Z
Sz

by continuity of u on Sz. However, A = B by monotonicity of T and thus A

is both closed and open in Sz, contradicting connectedness of Sz. Thus, T is
continuous everywhere and thus, v is continuous.
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Lemma 10. Suppose S ⊆ X × Y × Z is well behaved given Z. Let % be a
continuous preference relation on S. Let % be essential given Z and X ⊥ Y | Z.
Then on any set SZ′ , where Z ′ = ZSx0,y0

, we can find continuous functions

fZ′ : (SZ′ , tX×Y×Z
SZ′

) → R and gZ′ : (SZ′ , tX×Y×Z
SZ′

) → R such that v(x, y, z) =

fZ′(x, z) + gZ′(y, z).

Proof. By Lemma 9 we have a continuous representation v : (S, τX×Y×Z
S ) → R

with v(x, y, z) = f(x, z) + g(y, z). What remains to be shown is that f, g can
be made continuous.

Define hZ′ : (SZ′ , τSZ′ ) → R such that hZ′(z) = v(x0, y0, z). We prove
that hZ′ is continuous. For all open intervals r ⊆ R we have that v−1(r) ∩
Sx0,y0

∈ τX×Y×Z
Sx0,y0

⊆ τSx0,y0
and can be written as {x0}×{y0}×Oz ∈ τZ′ . Since

h−1
Z′ (OR) = X × Y ×Oz ∩ S ∈ tX×Y×Z

SZ′
and hZ′ is therefore continuous.

Next, let fZ′ : (SZ′ , tX×Y×Z
SZ′

) → R and gZ′ : (SZ′ , τSZ′ ) → R such that

fZ′(x, y, z) = f(x, z)−f(x0, z) and gZ′(y, z) = g(y, z)−g(y0, z). It then follows,
that

v(x, y, z) = f(x, z) + g(y, z)

= f(x, z) + g(y, z) + v(x0, y0, z)− v(x0, y0, z)

= fZ′(x, z) + gZ′(y, z) + hZ′(z). (47)

We claim that fZ′ , gZ′ are also continuous. By continuity of v and hZ′ , we only
need to show that fZ′ is continuous.

v(x, y0, z) = fZ′(x, z) + gZ′(y0, z) + hZ′(z)

= fZ′(x, z) + hZ′(z) (48)

Let f∗(x, z) = v(x, y0, z)− hZ′(z) with f∗ : (Sy0
, τSy0

) → R. Since tX×Y×Z
SZ′

is a
subspace topology of a product space, and fZ′ is constant in y, continuity of f∗

implies continuity of fZ′ . Since the restrictions of hZ′ and v to (Sy0
, tX×Y×Z

Sy0
)

are continuous, f∗, thus fZ′ , thus gZ′ are also continuous.

Lemma 11. Suppose S ⊆ X × Y × Z is well behaved given Z. Let % be a
continuous preference relation on S fulfilling essentiality given Z and X ⊥ Y |
Z. Further, assume that Z is a normal space. Let v be a representation of
%. Suppose for connected open sets Z ′, Z ′′ with cl(Z ′) ∩ cl(Z ′′) 6= ∅ there exist
continuous functions

fZ′ : (XSZ′ × Z ′, tX×Z
XS

Z′ ×Z′) → R, gZ′ : (YSZ′ × Z ′, tY×Z
XS

Z′ ×Z′) → R,

fZ′′ : (XSZ′′ × Z ′′, tX×Z
XS

Z′′ ×Z′′) → R, gZ′′ : (YSZ′′ × Z ′′, tY×Z
XS

Z′′ ×Z′′) → R (49)

such that v = fZ′ + gZ′ and v = fZ′′ + gZ′′ . Then defining Z̄ = cl(Z ′) ∪ Z ′′ we
can find continuous functions

f :(XSZ̄
× Z̄, tX×Z

XS
Z̄
×Z̄

) → R,

g :(XSZ̄
× Z̄, tX×Z

XS
Z̄
×Z̄

) → R (50)

such that v = f +g and fZ′ = f, gZ′ = g on the domain of fZ′ , gZ′ , respectively.
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Proof. Define S0 = S ∩X × Y × cl(Z ′) and S1 = S ∩X × Y × cl(Z ′′). We can
continuously extend fZ′ , gZ′ and fZ′′ , gZ′′ to S0 and S1, respectively.

Let s0 = (x0, y0, z0) ∈ S0 ∩ S1. By the assumption that S is open in the
product topology, s0 is an interior point and therefore there exists an open
set O = Ox × Oy × Oz containing s0. By Lemma 10 we can construct on
S∗ = S ∩X × Y ×Oz a representation v = f∗ + g∗ where f∗, g∗ are continuous
in the subspace topology of the product topology. Note that O intersects with
both S0 and S1.

On S∗∩SZ′ we have f∗+g∗ = fZ′+gZ′ . Define h∗ : Oz∩Z
′∩ZSx0,y0

→ R as
h∗(z) = g∗(y0, z)−gZ′(y0, z). h

∗ is continuous in (Oz∩Z
′∩ZSx0,y0

,τOz∩Z′∩ZSx0,y0
).

We can therefore extend h∗ to the closure of Oz ∩ Z ′ ∩ ZSx0,y0
in ZSx0,y0

.7

Since the topological space (Z,tZ) is normal, using the Tietze extension
theorem we can find a continuous extension of h∗ to Z. We now define the
function

f̂(x, z) =

{

fZ′(x, z), z ∈ cl(Z ′)

f∗(x, z) + h∗(z), z ∈ ZSx0,y0
\Z ′

(51)

ĝ(y, z) =

{

gZ′(y, z), z ∈ cl(Z ′)

g∗(y, z)− h∗(z), z ∈ ZSx0,y0
\Z ′.

(52)

which is continuous by the pasting lemma.
Next, we extend the representation to S1 in a similar way. On S1 we have the

representation v(x, y, z) = fZ′′(x, z) + gZ′′(y, z) where fZ′′ , gZ′′ are continuous
in the subspace topology of the product topology.

We define hZ′′ as the continuous extension of gZ′′(y1, z)− ĝ(y1, z) from the
closure of (cl(Z ′) ∪ ZSx0,y0

) ∩ cl(Z ′′) to Z. We obtain the continuous functions

f(x, z) =

{

f̂(x, z), z ∈ cl(Z ′) ∪ ZSx0,y0

fZ′′(x, z) + hZ′′(z), z ∈ Z ′′\(cl(Z ′) ∪ ZSx0,y0
)

(53)

and

g(y, z) =

{

ĝ(y, z), z ∈ cl(Z ′) ∪ ZSx0,y0

gZ′′(y, z)− hZ′′(z), z ∈ Z ′′\(cl(Z ′) ∪ ZSx0,y0
)

(54)

Since v(x, y, z) = f(x, z) + g(y, z) the conclusion follows.

We are now ready to state the proof of the main result.

Proof. We use Lemma 9 to construct a continuous utility representation v(x, y, z) =
f(x, z)+ g(y, z) on S. While v is continuous, Lemma 9 does not guarantee that
f and g are continuous. We show continuity of the additive components in two
cases.

If ZSx0,y0
= ZS , we can define f̂(x, z) = f(x, z) − f(x0, z) and ĝ(y, z) =

g(y, z) − g(y0, z) and h(z) = v(x0, y0, z). Since v is continuous in the order
topology τS , h is continuous in τSx0,y0

and by continuity tX×Y×Z
S . Since on Sx0

we have v(x, y, z)− h(z) = ĝ(y, z), ĝ is continuous in tX×Y×Z
S and thus tY×Z

YS ,ZS
.

On Sy0
, we have f̂(x, z) = v(x, y, z) − h(z), which is continuous in tX×Z

XS ,ZS
by

7By essentiality given Z, the limit points cannot have infinite utility.
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a similar argument. Since v(x, y, z) = f̂(x, z) + ĝ(y, z) + h(z), we have indeed
found a continuous additive representation where all components are continuous
as well.

If Z is normal, we use the Tietze extension theorem to prove continuity of
f and g:

We first show that we can find a sequence {xk, yk}
∞
k=1 such that for all k,

⋃k

i=1 cl(ZSxk,yk
) ∩ cl(ZSxk+1,yk+1

) 6= ∅ and
⋃∞

k=1 cl(ZSxk,yk
) is dense in ZS .

Let Ẑ be an dense subset of Z which exists by Z being separable. Suppose we
have constructed the sequence up to k. Then Ak =

⋃k

i=1 cl(ZSxk,yk
) is a closed

set as it is a finite union of closed sets. If there exists z′ in Ẑ\{ZSx1,y1
, . . . , ZSxk,yk

}
and x′, y′ such that (x′, y′, z′) ∈ S and Ak ∩ cl(ZSx′,y′ ) 6= ∅, we can choose
xk+1 = x′ and yk+1 = y′.

Otherwise, denote Bk =
⋃∞

i=k+1 cl(ZSxk,yk
). Since cl(Ak ∪ cl(Bk)) = Ak ∪

cl(Bk) = ZS and ZS is connected, Ak ∩ cl(Bk) 6= ∅. Take any element zk+1 ∈
Ak ∩ cl(Bk) with (xk+1, yk+1, zk+1) ∈ S. Then since ZSxk+1,yk+1

∋ zk+1 is open,

it intersects both Ak and Bk. Thus, there exists some xk+2, yk+2 such that
ZSxk+1,yk+1

∩ ZSxk+2,yk+2
6= ∅ and we can continue constructing the sequence.

To guarantee continuity, if Z is normal we start by making f and g contin-
uous on SZSx1,y1

via Lemma 10. Using Lemma 10, we can ensure the existence
of continuous functions

fZk
: (XSxk,yk

× ZSxk,yk
, tX×Z

XSxk,yk
×ZSxk,yk

) → R,

gZk
: (YSxk,yk

× ZSxk,yk
, tY×Z

XSxk,yk
×ZSxk,yk

) → R, (55)

such that v = fZk
+ gZk

. Since for all k the sets ZSxk+1,yk+1
and Ak fulfill the

assumptions of Lemma 11, we can make the functions f and g continuous on
the entire space.

Appendix B Proof of Theorem 2

Proof. By Theorem 1, we have the case where n = 3. Let k ≤ n be the
largest number such that there exists a representation with the form v(s) =
∑k

i=1 fi(xi, x1) + g(xk+1, . . . , xn, x1) + h(x1). Since X2 ⊥
∏

j 6=2,1 Xj | X1,
we have k ≥ 1. We prove k = n by contradiction. Suppose k < n. Since
Xk ×Xk+1 ⊥

∏

j 6=k,k+1,1 Xj | X1, we have the representation

vk,k+1(s) = Fk,k+1(x1, xk, xk+1) + gk,k+1(x1, (xj)j 6=1,k,k+1) + hk,k+1(x1)

and by our assumption, we have the representation

v(s) =
k

∑

i=1

fi(xi, x1) + g(xk+1, . . . , xn, x1) + h(x1).

Since v(s) and vk,k+1(s) represents the same preference in the space S, v(s) =
Tk,k+1(vk,k+1(s)) for some monotone function Tk,k+1. Fix any x∗

k+1 ∈ Xk+1S
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and x∗
1 ∈ X1S , we have

fk(xk, x
∗
1) +

k−1
∑

i=1

fi(xi, x
∗
1) + g(x∗

k+1, . . . , xn, x1) + h(x∗
1)

= Tk,k+1(Fk,k+1(x
∗
1, xk, x

∗
k+1) + gk,k+1(x

∗
1, (xj)j 6=1,k,k+1) + hk,k+1(x

∗
1)). (56)

which implies that v(s) and vk,k+1(s) are additive representation which
are unique up to an affine transformation with respect to the space Xk ×
∏

j 6=1,k,k+1 Xj × {x∗
1} × {x∗

k+1}. Thus, Tk,k+1 must be an affine function in
the domain vk,k+1(Xk×

∏

j 6=1,k,k+1 Xj×{x∗
1}×{x∗

k+1}). Since the x
∗
1 and x∗

k+1

are arbitrarily chosen,Tk,k+1 is affine function on the whole domain. Without
loss of generality, we can assume Tk,k+1 is the identity function. We therefore
have

k
∑

i=1

fi(xi, x
∗
1) + g(x∗

k+1, . . . , xn, x1) + h(x∗
1)

= Fk,k+1(x
∗
1, xk, x

∗
k+1) + gk,k+1(x

∗
1, (xj)j 6=1,k,k+1) + hk,k+1(x

∗
1). (57)

If we can show that Fk,k+1(x1, xk, xk+1) has the form f∗
k (xk, x1)+f∗

k+1(xk+1, x1),
then the right hand side of above equation is a conditional additive represen-
tation in k + 1 dimensions, yielding the contradiction. To show this, since
Xk+1 ⊥

∏

j 6=k+1,1 Xj | X1, we have the representation

vk+1(s) = Fk+1(x1, xk+1) + gk+1(x1, (xj)j 6=1,k+1) + hk+1(x1).

Fix any x∗
1 ∈ X1S and x∗

k ∈ XkS
, by a similar argument, we can show that

v(s) = T (vk+1) for an affine function T . Therefore, we can assume that v(s) =
vk+1(s) = vk,k+1(s). Therefore,

Fk,k+1(x1, xk, xk+1) =Fk+1(x1, xk+1)

+ hk+1(x1)− hk,k+1(x1)

+ gk+1(x1, xk, (xj)j 6=1,k+1,k)− gk,k+1(x1, (xj)j 6=1,k,k+1)
(58)

and the result follows.

Appendix C Proof of Theorem 3

Proof. We prove the result by induction on n. For n = 3 the result holds in
virtue of Theorem 1.

Suppose our result holds for n = k. We have X1 × . . .×Xk−1 ⊥ Xk+1 | Xk.
Thus, we have a representation u(x) = f(x1, . . . , xk) + g(xk, xk+1) by the case
of n = 3. Since our result holds for n = k,

T [f(x1, . . . , xk) + g(xk, xk+1)] =
k−1
∑

i=2

fi(xi, xi−1)

+ fk((xk, xk+1), xk−1) (59)
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for some montone transformation T . Fixing xl = x0
l for all l 6= k + 1, k − 2, we

have:

T [f((x0
l )

k−3
l=1 , xk−2, x

0
k−1, x

0
k) + g(x0

k, xk+1)] =

k−3
∑

i=2

fi(x
0
i , x

0
i−1)

+ fk−2(xk−2, x
0
k−3)

+ fk−1(x
0
k−1, xk−2)

+ fk((x
0
k, xk+1), x

0
k−1). (60)

Noticing that both the term inside T [. . .] and the RHS are additive represen-
tations on the Xk−2 × Xk+1 ×

∏

l 6=k−2,k+1{x
0
l } space, by the uniqueness of

additive representations it follows that T is affine. We may assume without loss
of generality that T [f ] = f . Thus,

f(x1, . . . , xk) + g(xk, xk+1) =

k−1
∑

i=2

fi(xi, xi−1)

+ fk((xk, xk+1), xk−1). (61)

From which follows

f(x0
1, . . . , x

0
k−2, xk−1, xk) + g(xk, xk+1) =

k−2
∑

i=2

fi(x
0
i , x

0
i−1)

+ fk−1(xk−1, x
0
k−2)

+ fk((xk, xk+1), xk−1). (62)

Thus, we can write fk in the form: fk((xk, xk+1), xk−1) = gk(xk, xk−1) +
gk+1(xk+1, xk) which concludes the proof.

Appendix D Proof of Theorem 4

Proof. We start out by deriving a representation of the form

v(x, y) =

n
∑

k=1

fk(xk, yk, yk−1) (63)

via induction. For the case n = 3, the conditions

X1 ⊥ X2 × Y2 ×X3 × Y3 | Y1, and

X1 × Y1 ×X2 ⊥ X3 × Y3 | Y2 (64)

give us a functional equation:

f1(x1, y1) + g(x2, x3, y1, y2, y3) = T [ḡ(x1, x2, y1, y2) + f3(x3, y2, y3)]. (65)

Being additive representations of X1 and X3, T is affine via the uniqueness
properties of additive representations. Without loss of generality, we assume
T [u] = u and obtain:

g(x2, x3, y1, y2, y3) =ḡ(x∗
1, x2, y1, y2) + f3(x3, y2, y3)− f1(x

∗
1, y1)

≡f2(x2, y1, y2) + f3(x3, y2, y3). (66)
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The representation is therfore:

v(x, y) = f1(x1, y1) + f2(x2, y1, y2) + f3(x3, y2, y3) (67)

where y0 is constant.
For the induction step we obtain the functional equation:

n−1
∑

k=1

fk(xk, yk, yk−1) + g(xn, xn+1, yn−1, yn, yn+1)

= T [ḡ((xk, yk)
n
k=1) + fn+1(xn+1, yn, yn+1)]. (68)

Again, we can set T [u] = u due to uniqueness of affine representations on X1

and Xn. Holding fixed x1, . . . , xn−1 and y1, . . . , yn−2, we get:

g(xn, xn+1, yn−1, yn, yn+1) = fn(xn, yn−1, yn) + fn+1(xn+1, yn, yn+1) + α (69)

for some constant α which we assume without loss of generality to be equal to
zero. Thus, we have

v(x, y) =

n
∑

k=1

fk(xk, yk, yk−1) (70)

for any n ≥ 3.
It is similarly straightforward to obtain the representation

w(x, y) =

n
∑

k=1

gk(xk, xk+1, yk) (71)

using the conditions of the form
∏i−1

j=1 Xj × Yj ⊥ Yi ×
∏n

k=i+1 Xk × Yk | Xi.
Note that for n ≥ 3, v and w are affine transformations of each other since

both are additive representations on X1 and Xn when holding fixed the other
dimensions. Thus,

n
∑

k=1

fk(xk, yk, yk−1) =
n
∑

k=1

gk(xk, xk+1, yk). (72)

Holding fixed all dimensions except xk, yk, yk−1, we get:

fk(xk, yk, yk−1) =gk−1(x
∗
k−1, xk, yk−1) + gk(xk, x

∗
k+1, yk) + α

≡f̄k(xk, yk−1) + ḡk(xk, yk). (73)

Appendix E Proof of Theorem 5

We first provide the solution to a functional equation which will be useful in the
remainder of the proof.

Lemma 12. Let S,+ be a cancellative abelian monoid and let f̄ , ḡ, f and g be
real valued functions defined on S2 and satisfy the relation

f̄(x3, x1 + x2) + ḡ(x1, x2) = f(x2, x1 + x3) + g(x1, x3)

for all x1, x2, x3 in S. Then f(x2, x1 + x3) + g(x1, x3) = v123(x1 + x2 + x3) +
v1(x1) + v2(x2) + v3(x3). In particular, f(a, b) = a1(a) + a2(b) + a3(a+ b).
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Proof. The functional equation to be solved is8

ḡ(x1, x2) = f(x2, x1 + x3) + g(x1, x3)− f̄(x3, x1 + x2). (74)

We set x3 = 0 and define ū1(x1) = g(x1, 0) and ū(x1) = f̄(0, x1) to obtain:

ḡ(x1, x2) = f(x2, x1) + ū1(x1) + ū3(x1 + x2). (75)

By a symmetric argument with x2 = 0, we have

g(x1, x3) = f̄(x3, x1) + u1(x1) + u3(x1 + x3). (76)

Inserting Equation (76) into Equation (74), we have

f(x2, x1 + x3) + f̄(x3, x1) + u1(x1) + u3(x1 + x3)

= f̄(x3, x1 + x2) + f(x2, x1) + ū1(x1) + ū3(x1 + x2). (77)

Let x1 = 0 in Equation (77). Then we get the following relation between f̄ and
f

f̄(x3, x2) = f(x2, x3) +A1(x2) +A2(x3)

for some suitably defined functions A1, A2. Inserting this result into Equation
(77) we get

f(x1 + x2, x3) + f(x2, x1) + Ū1(x1) + Ū2(x2) + Ū3(x1 + x2)

= f(x2, x1 + x3) + f(x1, x3) + U1(x1) + U2(x3) + U3(x1 + x3). (78)

We want to characterize the function f , for any (x1, x2) ∈ S2. Gathering terms,
we have

f(x1, x2) = f(x1, x2 + x3) + f(x2, x3)− f(x1 + x2, x3)

+v1(x2) + v2(x1) + v3(x3) + v12(x1 + x2) + v13(x2 + x3). (79)

Our goal is to prove f(x, x2) = a1(x) + a2(x2) + a3(x+ x2). To achieve this, we
provide the following lemma:

Lemma 13. Let g : S2 → R. Then g(x1, x2) = g1(x1) + g2(x2) if and only if
g(x′

1, x
′
2)− g(x′

1, 0)− g(0, x′
2) + g(0, 0) = 0 ∀ x1, x2.

Proof. If g(x1, x2) = g1(x1)+g2(x2) then, g(x
′
1, x

′
2)−g(x′

1, 0)−g(0, x′
2)+g(0, 0) =

g1(x
′
1) + g2(x

′
2)− g1(x

′
1)− g2(0)− g1(0)− g2(x

′
2) + g1(0) + g2(0) = 0.

On the other hand, suppose g(x1, x2) satisfies the condition g(x′
1, x

′
2) −

g(x′
1, 0) − g(0, x′

2) + g(0, 0) = 0. Then we define the g1(x1) := g(x1, 0) and
g2(x2) := g(0, x2) − g(0, 0). Then, by the condition, g(x1, x2) = g(0, x2) +
g(x1, 0)− g(0, 0) = g1(x1) + g2(x2).

By Lemma 13, f(x1, x2) = a1(x1) + a2(x2) + a3(x1 + x2) if and only if
f(x1, x2)− f(x1, 0)− f(0, x2)− f(0, 0) = a3(x1 + x2)− a3(x1)− a3(x2) + a3(0).
Therefore, we define

G(x1, x2) ≡ f(x1, x2)− f(x1, 0)− f(0, x2)− f(0, 0). (80)

8In the remainder of the proof, we will omit stating that equations such as (74) hold for
all x1, x2, x3. It will be clear from the context whether a variable is a free variable or not.
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Substituting Equation (79) for f(x1, x2), we get

G(x1, x2) = f(x1, x2 + x3) + f(x2, x3)− f(x1 + x2, x3)− f(0, x2 + x3)

+(v12(x1 + x2)− v12(x1)− v12(x2) + v12(0)). (81)

Thus f has the desired functional form if and only if

N(x1, x2) ≡f(x1, x2 + x3) + f(x2, x3)− f(x1 + x2, x3)− f(0, x2 + x3)

=a(x1 + x2)− a(x1)− a(x2) + a(0) (82)

for some real-valued function a. To show that this is the case, notice that

N(x1 + x2, x3) =− [f(x1 + x2 + x3, c)− f(x3, c)]

+ [f(x1 + x2, x3 + c)− f(0, x3 + c)]

N(x1, x2) =− [f(x1 + x2, c)− f(x2, c)]

+ [f(x1, x2 + c)− f(0, x2 + c)]

N(x1, x2 + x3) =− [f(x1 + x2 + x3, c)− f(x2 + x3, c)]

+ [f(x1, x2 + x3 + c)− f(0, x2 + x3 + c)]

N(x2, x3) =− [f(x2 + x3, c)− f(x3, c)]

+ [f(x2, x3 + c)− f(0, x3 + c)]. (83)

We choose c = 0 in N(x1+x2, x3), N(x1, x2+x3) and N(x2, x3), and c = x3 in
N(x1, x2) to obtain N(x1 + x2, x3) + N(x1, x2) = N(x1, x2 + x3) + N(x2, x3).
By Hosszú (1971), N(x1, x2) = B(x1, x2) + a(x1 + x2) − a(x1) − a(x2) where
B(x1, x2) is a skew-symmetric biadditive function. Since N(0, 0) = N(x1, 0) =
N(0, x2) = 0, B(x, x2) = B(0, 0) = a(0) = 0. Thus, the function f has the
functional form

f(a, b) = a1(a) + a2(b) + a3(a+ b). (84)

To show that f(x2, x1 + x3) + g(x1, x3) has the desired functional form, we
substitute Equation (84) in Equation (78). Then we obtain

U1(x1) + U2(x2) + U3(x3) + U4(x1 + x2)

=Ū1(x1) + Ū2(x2) + Ū3(x3) + Ū4(x1 + x3). (85)

Letting x3 = 0, we obtain that U4(x1 + x2) is additively separable in variables
x1 and x2. Similarly, letting x2 = 0, Ū4 is additively separable in x1 and x3.
The desired result follows.

We now prove Theorem 5.

Proof. Define Ŝ = {(x, y1, . . . , yn−3, z) ∈ (0, 1)n−1 : 1 − x > z >
∑n−3

j=1 yj} ⊂

X̂ × Ŷ × Ẑ where X̂ = (0, 1), Ŷ = (0, 1)n−3, and Ẑ = (0, 1). We define a
homeomorphism

φi : (S, t
R

n

S ) → (Ŝ, tR
n−1

Ŝ
) such that:

φi(x1, . . . , xn) = (xi, x1, . . . , xi−1, xi+1, . . . , xn−2, 1− xi − xn). (86)

Define %i as s %i s
′ if and only if φ−1

i (s) % φ−1
i (s′). Notice that %∗ is continuous

if % is continuous since φi is a homeomorphism. As discussed in the main text
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for the case of n = 4, %∗ fulfills X̂ ⊥ Ŷ | Ẑ as can be easily shown by an
analogous proof. Similarly, %∗ is essential given Ẑ. Definition 2 i) and ii) are
fulfilled as can be easily verified. Definition 2 iii) is not necessary by Remark
1, since Sz is a product set for all z ∈ Ẑ. From Theorem 1 we then have the
following representation result for all i < n:

(x1, . . . , xn) % (x′
1, . . . , x

′
n)

⇔ (x, y, z) %i (x
′y′z)

⇔ fi(x, z) + gi(y, z) ≥ fi(x
′, z′) + gi(y

′, z′)

⇔ fi(xi,
∑

k 6=i,n

xk) + ĝi((xk)k 6=i,n−1,n,
∑

k 6=i,n

xk) ≥ fi(xi,
∑

k 6=i,n

xk) + ĝi((xk)k 6=i,n−1,n,
∑

k 6=i,n

xk)

⇔ Ui(x1, . . . , xn) ≥ Ui(x
′
1, . . . , x

′
n) (87)

where

φ−1
i (x, y, z) =(x1, . . . , xn)

φ−1
i (x′, y′, z′) =(x′

1, . . . , x
′
n)

Ui(x) =fi(xi,
∑

k 6=i,n

xk) + ĝi((xk)k 6=i,n−1,n,
∑

k 6=i,n

xk)

=fi(xi,
∑

k 6=i,n

xk) + gi((xk)k 6=i,n). (88)

Using comeasurability, we can ensure during the utility construction process
of Ui, Uj that

Ui(x) = Uj(x) = U(x). (89)

for all i, j < n. Therefore,

fi(xi,
∑

m 6=i,n

xm) + gi((xm)m 6=i,n)

=fj(xj ,
∑

m 6=i,n

xm) + gj((xm)m 6=i,n). (90)

Setting xm = ǫ for all m 6= i, j, k, we obtain:

fi(xi, xj + xk) + gi(ǫ, . . . , ǫ, xj , xk)

=fj(xj , xi + xk) + gj(ǫ, . . . , ǫ, xi, xk). (91)

By Lemma 12, this functional equation has the solution fi(xi, xj+xk) = ui(xi)+
ūi(xi + xj + xk) + ûi(xj + xk) and fj(xj , xi + xk) = uj(xj) + ūj(xi + xj + xk) +
ûj(xi + xk). We therefore have for all i

U(x) = ui(xi) + ūi(
∑

m 6=n

xm) + ĝi((xm)m 6=i,n)

= uj(xj) + ūj(
∑

m 6=n

xm) + ĝj((xm)m 6=j,n) (92)

where ĝi((xm)m 6=i,n) = gi((xm)m 6=i,n) − û(
∑

m 6=i,n xm) and ĝj((xm)m 6=j,n) =
gj((xm)m 6=j,n)− û(

∑

m 6=j,n xm). Setting un(xn) = ū(1− xn) we obtain:

U(x) = ui(xi) + un(xn) + ĝi((xm)m 6=i,n). (93)
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Our initial choice of n was arbitrary. We have thus shown that for any i, n, the
utility representation is additively separable. Thus,

U(x) =

n
∑

i=1

ui(xi). (94)

Appendix F Proof of Corollary 3

Proof. Using the same homeomorphism φi : (S, t
R

n

S ) → (Ŝ, tR
n−1

Ŝ
) in Theorem 5,

we can construct φ̂i : (S×Z, tR
n

S×Z) → (Ŝ×Z, tR
n−1

Ŝ×Z
) by φ̂i(s, z) = (φi(s), z). As

the argument in Theorem 5, φ̂i is a homeomorphism and there exist a equivalent
relation %∗ on Ŝ×Z where Ŝ×Z ⊂ X̂× Ŷ × Ẑ where X̂ = (0, 1) Ŷ = (0, 1)n−3

Ẑ = (0, 1)×Z. Since comeasurability given Z implies the Reidemeister condition
on each z-layer, using the remarks from the main text we can derive X̂ ⊥ Ŷ |Ẑ.
Similarly, essentiality given Z gives us essentiality on each z-layer. Therefore,
by Theorem 1 there exists a utility representation

u(x, z) = f(xi,
∑

k 6=i,n

xk, z) + g((Xk)k 6=i,n,
∑

k 6=i,n

xk, z). (95)

By Theorem 5, fixing each z we have an additive representation
∑

ui,z(xi) on
each layer z. Therefore

Tz(
∑

ui,z(xi)) = u(x, z)

for some monotone transformation Tz. Next, we claim that Tz is an affine
transformation. Indeed, since

∑

ui,z(xi) and u(x, z) are additive representations
on the space Sz = {(xi,

∏

k 6=i,n Xk, z)|Z = z} via the uniqueness of additive
representations Tz is affine. As a result, we can define ui(xi, z) := azui,z(xi) for
i 6= 1 and u1(x1, z) := azui,z(x1) + bz. Then we have the desired representation

u(x, z) =
∑

ui(xi, z). (96)

Appendix G Proof of Theorem 6

Proof. (Sketch) Note first that there exists a continuous representation w : S →
R. The representation on each z-layer follows directly from Herstein and Milnor
(1953).

Suppose now that we have two layers z, z′ which intersect in the indifference
classes as characterized by w. Given these two intersecting layers z, z′, we can
make the representations consistent as follows. There exist x1 ∼ y1 ≻ x0 ∼ y0
such that x0, x1 ∈ Sz and y0, y1 ∈ Sy. Next, we have utility representations
vz, vz′ . Without loss of generality, assume vz(x1) = vz′(y1) = 1 > 0 = vz(x0) =
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vz′(y0). We need to show that x ∼ y ⇒ vz(x) = vz′(y). For this, we construct
a sequence {xk}

∞
k=2 where

xk =











xk−1, xk−1 ∼ x
1
2xk−1 ⊕

1
2xk, xk−1 ≻ x

1
2xk−1 ⊕

1
2xk, x ≻ xk−1

(97)

with xk ∈ argmaxx′∈{(xl)l≤k−1:x≻xl} u(x
′) and xk ∈ argminx′∈{(xl)l≤k−1:xl≻x} u(x

′).
By continuity, {vz(xk)} → vz(x). Define {yk} analogously, then vz(xk) =

vz′(yk) if xk−1 ∼ yk−1 and vz(xk−1) = vz′(yk−1). We now argue that for all k,
xk ∼ yk. From coseparability given Z we get:

x ∼y

1

2
x⊕

1

2
x′ ∼

1

2
y ⊕

1

2
y′

⇒ x′ ∼y′. (98)

From this and the linear representations on each respective layer it is straight-
forward to obtain:

x ∼y

x′ ∼y′

⇒
1

2
x⊕

1

2
x′ ∼

1

2
y ⊕

1

2
y′. (99)

This proves both the case k = 2 as well as the induction step, thus for all k we
have xk ∼ yk. Therefore, vz(x) = limk→∞ vz(xk) = limk→∞ vz′(yk) = vz′(y)
for all x such that x1 ≻ x ≻ x0. Since our choice of points x0, y0, x1, y1 was
arbitrary, vz(x) = vz′(y) ⇔ x ∼ y in the entire intersection of indifference
classes.

The extension of the proof to all z-layers and thus the entire space is sim-
ilar to the proof of conditionally additive representations. We first show that
unless our representation covers all indifference classes, we can extend our
representations to an open set of indifference classes around the sup/inf of
the indifference classes covered so far. Therefore, we can cover all indiffer-
ence classes in a countable number of extensions. Having covered all indif-
ference classes, we can extend our representation to a countable dense subset
of layers Ẑ ⊆ Z. From here we can extend the representation to the entire
space by taking limits. The only interesting part remaining is to show that
vz̄(αx ⊕ (1 − α)x′) = αvz̄(x) + (1 − α)vz̄(x

′) on z̄ 6∈ Ẑ. To see this, note that
using the above procedure we can obtain a consistent, conditionally linear rep-
resentation v̄z, z ∈ {z̄, ẑ} on z̄ and ẑ ∈ Ẑ. Without loss of generality, assume z̄

and ẑ intersect in the indifference classes of x, x′. (Otherwise, extend the repre-
sentation to other z-layers until this is the case.) By an affine transformation,
this representation can be made consistent with vẑ. But then,

vz̄(αx⊕ (1− α)x′) =v̄z̄(αx⊕ (1− α)x′)

=αv̄z̄(x) + (1− α)v̄z̄(x
′)

=αvz̄(x) + (1− α)vz̄(x
′). (100)
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