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Abstract

We complement the theory developed in Preinerstorfer and Pötscher (2016) with further

finite sample results on size and power of heteroskedasticity and autocorrelation robust

tests. These allows us, in particular, to show that the sufficient conditions for the existence

of size-controlling critical values recently obtained in Pötscher and Preinerstorfer (2016) are

often also necessary. We furthermore apply the results obtained to tests for hypotheses on

deterministic trends in stationary time series regressions, and find that many tests currently

used are strongly size-distorted.

1 Introduction

Heteroskedasticity and autocorrelation robust tests in regression models suggested in the liter-

ature (e.g., tests based on the covariance estimators in Newey and West (1987, 1994), Andrews

(1991), and Andrews and Monahan (1992), or tests in Kiefer et al. (2000), Kiefer and Vogelsang

(2002a,b, 2005)) often suffer from substantial size distortions or power deficiencies. This has

been repeatedly documented in simulation studies, and has been explained analytically by the

theory developed in Preinerstorfer and Pötscher (2016). Given a test for an affine restriction on

the regression coefficient vector, the results in Preinerstorfer and Pötscher (2016) provide several

sufficient conditions that imply size equal to one, or severe biasedness of the test (resulting in low

power in certain regions of the alternative). The central object in that theory is the set of possible

covariance matrices of the regression errors, i.e., the covariance model, and, in particular, its set

∗Financial support of the second author by the Danish National Research Foundation (Grant DNRF 78,
CREATES) is gratefully acknowledged. Address correspondence to Benedikt Pötscher, Department of Statistics,
University of Vienna, A-1090 Oskar-Morgenstern Platz 1. E-Mail: benedikt.poetscher@univie.ac.at.
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of concentration spaces. Concentration spaces are defined as the column spaces of all singular

matrices belonging to the boundary of the covariance model (cf. Definition 1 in Preinerstorfer

and Pötscher (2016)). In Preinerstorfer and Pötscher (2016) it was shown that the position of

the concentration spaces relative to the rejection region of the test often lets one deduce whether

size distortions or power problems occur. Loosely speaking, if a concentration space lies in the

“interior” of the rejection region, the test has size equal to one, whereas if a concentration space

lies in the “exterior” (the “interior” of the complement) of the rejection region, the test is biased

and has nuisance-minimal power equal to zero.1 These interiority (exteriority) conditions can be

formulated in terms of test statistics and critical values, can be easily checked in practice, and

have been made explicit in Preinerstorfer and Pötscher (2016) at different levels of generality

concerning the test statistic and the covariance model (cf. their Corollary 5.17, Theorem 3.3,

Theorem 3.12, Theorem 3.15, and Theorem 4.2 for more details).

Given a test statistic, the results of Preinerstorfer and Pötscher (2016) just mentioned – if

applicable – all lead to implications of the following type: (i) size equals one for any choice

of critical value (e.g., testing a zero restriction on the mean of a stationary AR(1) time series

falls under this case); or (ii) all critical values smaller than a certain real number (depending

on observable quantities only) lead to a test with size one. While implication (i) certainly

rules out the existence of a size-controlling critical value, implication (ii) does not, because it

only makes a statement about a certain range of critical values. Hence, the question when a

size-controlling critical value actually exists has not sufficiently been answered in Preinerstorfer

and Pötscher (2016). Focusing exclusively on size control, Pötscher and Preinerstorfer (2016)

recently developed conditions under which size can be controlled at any level.2 It turns out

that these conditions can, in general, not be formulated in terms of concentration spaces of the

covariance model alone. Rather, they are conditions involving a different, but related, set J, say,

of linear spaces obtained from the covariance model. This set J consists of nontrivial projections of

concentration spaces as well as of spaces which might be regarded as “higher-order” concentration

spaces (cf. Section 5.3.2 of Pötscher and Preinerstorfer (2016) for a detailed discussion). Again,

the conditions in Pötscher and Preinerstorfer (2016) do not depend on unobservable quantities,

and hence can be checked by the practitioner. Pötscher and Preinerstorfer (2016) also provide

algorithms for the computation of size-controlling critical values, which are implemented in the

R-package acrt (Preinerstorfer (2016)).

Summarizing we arrive at the following situation: Preinerstorfer and Pötscher (2016) provide

sufficient conditions for non-existence of size-controlling critical values in terms of the set of

concentration spaces of a covariance model, whereas Pötscher and Preinerstorfer (2016) provide

sufficient conditions for the existence of size-controlling critical values formulated in terms of

1The situation is a bit more complex. For example, sometimes a modification of the rejection region, which
leaves the rejection probabilities unchanged, is required in order to enforce the interiority (exteriority) condition;
see Theorem 5.7 in Preinerstorfer and Pötscher (2016).

2We note that, apart from the results mentioned before, Preinerstorfer and Pötscher (2016) also contains
results that ensure size control (and positive infimal power). The scope of these results is, however, substantially
more narrow than the scope of the results in Pötscher and Preinerstorfer (2016).
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a different set of linear spaces derived from the covariance model. Combining the results in

Preinerstorfer and Pötscher (2016) and Pötscher and Preinerstorfer (2016) does in general not

result in necessary and sufficient conditions for the existence of size-controlling critical values.

[This is partly due to the fact that different sets of linear spaces associated with the covariance

model are used in these two papers.] Rather, there remains a range of problems for which the

existence of size-controlling critical values can be neither disproved by the results in Preinerstorfer

and Pötscher (2016) nor proved by the results in Pötscher and Preinerstorfer (2016).

In the present paper we close the “gap” between the negative results in Preinerstorfer and

Pötscher (2016) on the one hand, and the positive results in Pötscher and Preinerstorfer (2016)

on the other hand. We achieve this by obtaining new negative results that are typically more

general than the ones in Preinerstorfer and Pötscher (2016). Instead of directly working with

concentration spaces of a given covariance model (as in Preinerstorfer and Pötscher (2016))

our main strategy is essentially as follows: We first show that size properties of (invariant)

tests are preserved when passing from the given covariance model to a suitably constructed

auxiliary covariance model which has the property that the concentration spaces of this auxiliary

covariance model coincide with the set J of linear spaces derived from the initial covariance

model (as used in the results of Pötscher and Preinerstorfer (2016)). Then we apply results in

Preinerstorfer and Pötscher (2016) to the concentration spaces of the auxiliary covariance model

to obtain a necessary condition for the existence of size-controlling critical values. [This result

is first formulated for arbitrary covariance models, and is then further specialized to the case of

stationary autocorrelated errors.] The so-obtained new result now allows us to prove that the

conditions developed in Pötscher and Preinerstorfer (2016) for the possibility of size control are

not only sufficient, but are – under certain (weak) conditions on the test statistic – also necessary.

Additionally, we also study power properties and obtain results showing that frequently (but not

always) a critical value leading to size control will lead to low power in certain regions of the

alternative.

Obtaining results for the class of problems inaccessible by the results of Preinerstorfer and

Pötscher (2016) and Pötscher and Preinerstorfer (2016) is not only theoretically satisfying. It

is also practically important as this class contains empirically relevant testing problems: As a

further contribution we thus apply our results to the important problem of testing hypotheses

on polynomial or cyclical trends in stationary time series, the former being our main focus.

Testing for trends certainly is an important problem (not only) in economics, and has received

a great amount of attention in the literature. Using our new results we can prove that many

tests currently in use (e.g., conventional tests based on long-run-variance estimators, or more

specialized tests as suggested in Vogelsang (1998) and Bunzel and Vogelsang (2005)) suffer from

severe size problems if the covariance model is not too small (that is, contains all covariance

matrices of stationary autoregressive processes of order two or a slight enlargement of that set).

Furthermore, our results show that this problem can not be resolved by increasing the critical

values used.
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The structure of the article is as follows: Section 2 introduces the framework and some

notation. In Section 3 we present results concerning size properties of nonsphericity-corrected

F-type tests. This is done on two levels of generality: In Subsection 3.1 we present results for

general covariance models, whereas in Subsection 3.2 we present results for covariance models

obtained from stationary autocorrelated errors. In these two sections it is also shown that the

conditions for size control obtained in Theorems 3.2, 6.2, 6.5, and Corollary 5.6 of Pötscher

and Preinerstorfer (2016) are not only sufficient but are also necessary in important scenarios.

In Section 4 we present negative results concerning the power of tests based on size-controlling

critical values. Finally, in Section 5 we discuss consequences of our results for testing restrictions

on coefficients of polynomial and cyclical regressors. All proofs as well as some auxiliary results

are given in the appendices.

2 Framework

2.1 The model and basic notation

Consider the linear regression model

Y = Xβ +U, (1)

where X is a (real) nonstochastic regressor (design) matrix of dimension n×k and where β ∈ Rk

denotes the unknown regression parameter vector. We always assume rank(X) = k and 1 ≤

k < n. We furthermore assume that the n× 1 disturbance vector U = (u1, . . . ,un)
′ is normally

distributed with mean zero and unknown covariance matrix σ2Σ, where Σ varies in a prescribed

(nonempty) set C of symmetric and positive definite n×n matrices and where 0 < σ2 < ∞ holds

(σ always denoting the positive square root).3 The set C will be referred to as the covariance

model. We shall always assume that C allows σ2 and Σ to be uniquely determined from σ2Σ.4

[This entails virtually no loss of generality and can always be achieved, e.g., by imposing some

normalization assumption on the elements of C such as normalizing the first diagonal element of

Σ or the norm of Σ to one, etc.] The leading case will concern the situation where C results from

the assumption that the elements u1, . . . ,un of the n × 1 disturbance vector U are distributed

like consecutive elements of a zero mean weakly stationary Gaussian process with an unknown

spectral density, but allowing for more general covariance models is useful.

The linear model described in (1) together with the Gaussianity assumption on U induces a

collection of distributions on the Borel-sets of Rn, the sample space of Y. Denoting a Gaussian

probability measure with mean µ ∈ Rn and (possibly singular) covariance matrix A by Pµ,A, the

3Since we are concerned with finite-sample results only, the elements of Y, X, and U (and even the probability
space supporting Y and U) may depend on sample size n, but this will not be expressed in the notation.
Furthermore, the obvious dependence of C on n will also not be shown in the notation.

4That is, C has the property that Σ ∈ C implies δΣ /∈ C for every δ 6= 1.
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induced collection of distributions is then given by

{

Pµ,σ2Σ : µ ∈ span(X), 0 < σ2 < ∞,Σ ∈ C
}

. (2)

Since every Σ ∈ C is positive definite by assumption, each element of the set in the previous

display is absolutely continuous with respect to (w.r.t.) Lebesgue measure on Rn.

We shall consider the problem of testing a linear (better: affine) hypothesis on the parameter

vector β ∈ Rk, i.e., the problem of testing the null Rβ = r against the alternative Rβ 6= r, where

R is a q × k matrix always of rank q ≥ 1 and r ∈ Rq. Set M = span(X). Define the affine space

M0 = {µ ∈ M : µ = Xβ and Rβ = r}

and let

M1 = {µ ∈ M : µ = Xβ and Rβ 6= r} .

Adopting these definitions, the above testing problem can then be written more precisely as

H0 : µ ∈ M0, 0 < σ2 < ∞, Σ ∈ C vs. H1 : µ ∈ M1, 0 < σ2 < ∞, Σ ∈ C. (3)

We also define Mlin
0 as the linear space parallel to M0, i.e., M

lin
0 = M0 − µ0 for some µ0 ∈ M0.

Obviously, Mlin
0 does not depend on the choice of µ0 ∈ M0. The previously introduced concepts

and notation will be used throughout the paper.

The assumption of Gaussianity is made mainly in order not to obscure the structure of

the problem by technicalities. Substantial generalizations away from Gaussianity are possible

exactly in the same way as the extensions discussed in Section 5.5 of Preinerstorfer and Pötscher

(2016); see also Section 7 of Pötscher and Preinerstorfer (2016). The assumption of nonstochastic

regressors can be relaxed somewhat: If X is random and, e.g., independent of U, the results of

the paper apply after one conditions on X. For arguments supporting conditional inference see,

e.g., Robinson (1979).

We next collect some further terminology and notation used throughout the paper. A (non-

randomized) test is the indicator function of a Borel-set W in Rn, with W called the correspond-

ing rejection region. The size of such a test (rejection region) is the supremum over all rejection

probabilities under the null hypothesis H0, i.e.,

sup
µ∈M0

sup
0<σ2<∞

sup
Σ∈C

Pµ,σ2Σ(W ).

Throughout the paper we let β̂X(y) = (X ′X)
−1

X ′y, where X is the design matrix appearing

in (1) and y ∈ Rn. The corresponding ordinary least squares (OLS) residual vector is denoted

by ûX(y) = y −Xβ̂X(y). If it is clear from the context which design matrix is being used, we

shall drop the subscript X from β̂X(y) and ûX(y) and shall simply write β̂(y) and û(y). We

use Pr as a generic symbol for a probability measure. Lebesgue measure on the Borel-sets of Rn
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will be denoted by λRn , whereas Lebesgue measure on an affine subspace A of Rn (but viewed

as a measure on the Borel-sets of Rn) will be denoted by λA, with zero-dimensional Lebesgue

measure being interpreted as point mass. The set of real matrices of dimension l×m is denoted

by Rl×m (all matrices in the paper will be real matrices). Let B′ denote the transpose of a

matrix B ∈ Rl×m and let span(B) denote the subspace in Rl spanned by its columns. For a

symmetric and nonnegative definite matrix B we denote the unique symmetric and nonnegative

definite square root by B1/2. For a linear subspace L of Rn we let L⊥ denote its orthogonal

complement and we let ΠL denote the orthogonal projection onto L. For an affine subspace A of

Rn we denote by G(A) the group of all affine transformations on Rn of the form y 7→ δ(y−a)+a∗

where δ 6= 0 and a as well as a∗ belong to A. The j-th standard basis vector in Rn is written as

ej(n). Furthermore, we let N denote the set of all positive integers. A sum (product, respectively)

over an empty index set is to be interpreted as 0 (1, respectively). Finally, for a subset A of a

topological space we denote by cl(A) the closure of A (w.r.t. the ambient space).

2.2 Classes of test statistics

The rejection regions we consider will be of the formW = {y ∈ Rn : T (y) ≥ C}, where the critical

value C satisfies −∞ < C < ∞ and the test statistic T is a Borel-measurable function from Rn

to R. With the exception of Section 4, the results in the present paper will concern the class of

nonsphericity-corrected F-type test statistics as defined in (28) of Section 5.4 in Preinerstorfer

and Pötscher (2016) that satisfy Assumption 5 in that reference. For the convenience of the reader

we recall the definition of this class of test statistics. We start with the following assumption,

which is Assumption 5 in Preinerstorfer and Pötscher (2016):

Assumption 1. (i) Suppose we have estimators β̌ : Rn\N → Rk and Ω̌ : Rn\N → Rq×q that

are well-defined and continuous on Rn\N , where N is a closed λRn -null set. Furthermore, Ω̌(y)

is symmetric for every y ∈ Rn\N . (ii) The set Rn\N is assumed to be invariant under the group

G(M), i.e., y ∈ Rn\N implies δy + Xη ∈ Rn\N for every δ 6= 0 and every η ∈ Rk. (iii) The

estimators satisfy the equivariance properties β̌(δy+Xη) = δβ̌(y)+ η and Ω̌(δy+Xη) = δ2Ω̌(y)

for every y ∈ Rn\N , for every δ 6= 0, and for every η ∈ Rk. (iv) Ω̌ is λRn -almost everywhere

nonsingular on Rn\N .

Nonsphericity-corrected F-type test statistics are now of the form

T (y) =

{

(Rβ̌(y)− r)′Ω̌−1(y)(Rβ̌(y)− r), y ∈ Rn\N∗,

0, y ∈ N∗,
(4)

where β̌, Ω̌, and N satisfy Assumption 1 and where N∗ = N ∪
{

y ∈ Rn\N : det Ω̌(y) = 0
}

. We

recall from Lemmata 5.15 and F.1 in Preinerstorfer and Pötscher (2016) that N∗ is then a closed

λRn -null set that is invariant under G(M), and that T is continuous on Rn\N∗ (and is obviously

Borel-measurable on Rn). Furthermore, T is G(M0)-invariant, i.e., T (δ(y − µ0) + µ′
0) = T (y)

holds for every y ∈ Rn, every δ 6= 0, every µ0 ∈ M0, and for every µ′
0 ∈ M0.
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Remark 2.1. (Important subclasses) (i) Classical autocorrelation robust test statistics (e.g.,

those considered in Newey and West (1987), Andrews (1991) Sections 3-5, or in Kiefer et al.

(2000), Kiefer and Vogelsang (2002a,b, 2005)) fall into this class: More precisely, denoting

such a test statistic by Tw as in Pötscher and Preinerstorfer (2016), it follows that Tw is a

nonsphericity-corrected F-type test statistics with Assumption 1 above being satisfied, provided

only Assumptions 1 and 2 of Pötscher and Preinerstorfer (2016) hold. Here β̌ is given by the

ordinary least squares estimator β̂, Ω̌ is given by Ω̂w defined in Section 3 of Pötscher and Prein-

erstorfer (2016), and N = ∅ holds (see Remark 5.16 in Pötscher and Preinerstorfer (2016)).

Furthermore, Ω̌ = Ω̂w is then nonnegative definite on all of Rn (see Section 3.2 of Preinerstorfer

and Pötscher (2016) or Section 3 of Pötscher and Preinerstorfer (2016)). We also recall from

Section 5.3.1 of Pötscher and Preinerstorfer (2016) that in this case the set N∗ can be shown to

be a finite union of proper linear subspaces of Rn.

(ii) Classical autocorrelation robust test statistics like Tw, but where the weights are now

allowed to depend on the data (e.g., through data-driven bandwidth choice or through prewith-

ening, etc.) as considered, e.g., in Newey and West (1994), Andrews (1991), and Andrews and

Monahan (1992), also fall into the class of nonsphericity-corrected F-type tests under appropriate

conditions (with the set N now typically being nonempty), see Preinerstorfer (2017) for details.

The same is typically true for test statistics based on parametric long-run variance estimators

or test statistics based on feasible generalized least squares (cf. Section 3.3 of Preinerstorfer and

Pötscher (2016)).

(iii) A statement completely analogous to (i) above applies to the more general class of test

statistics TGQ discussed in Section 3.4B of Pötscher and Preinerstorfer (2016), provided Assump-

tion 1 of Pötscher and Preinerstorfer (2016) is traded for the assumption that the weighting

matrix W∗
n appearing in the definition of TGQ is positive definite (and Ω̌ is of course now as

discussed in Section 3.4B of Pötscher and Preinerstorfer (2016)); see Remark 5.16 in Pötscher

and Preinerstorfer (2016). Again, Ω̌ is then nonnegative definite on all of Rn (see Section 3.2.1

of Preinerstorfer and Pötscher (2016)), N = ∅ holds, and N∗ is a finite union of proper linear

subspaces of Rn (see Section 5.3.1 of Pötscher and Preinerstorfer (2016)).

(iv) The (weighted) Eicker-test statistic TE,W (cf. Eicker (1967)) as defined in Section 3.4C

of Pötscher and Preinerstorfer (2016) is also a nonsphericity-corrected F-type test statistic with

Assumption 1 above being satisfied, where β̌ = β̂, Ω̌ is as in Section 3.4C of Pötscher and

Preinerstorfer (2016), and N = ∅ holds. Again, Ω̌ is nonnegative definite on all of Rn, and

N∗ = span(X) holds (see Sections 3.4 and 5.3.1 of Pötscher and Preinerstorfer (2016)).

(v) Under the assumptions of Section 4 of Preinerstorfer and Pötscher (2016) (including

Assumption 3 in that reference), usual heteroskedasticity-robust test statistics considered in the

literature (see Long and Ervin (2000) for an overview) also fall into the class of nonsphericity-

corrected F-type test statistics with Assumption 1 being satisfied. Again, the matrix Ω̌ is then

nonnegative definite everywhere, N = ∅ holds, and N∗ is a finite union of proper linear subspaces

of Rn (the latter following from Lemma 4.1 in Preinerstorfer and Pötscher (2016) combined with
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Lemma 5.17 of Pötscher and Preinerstorfer (2016)).

We shall also encounter cases where Ω̌(y) may not be nonnegative definite for some values of

y ∈ Rn\N . For these cases the following assumption, which is Assumption 7 in Preinerstorfer

and Pötscher (2016), will turn out to be useful. For a discussion of this assumption see p. 314 of

that reference.

Assumption 2. For every v ∈ Rq with v 6= 0 we have λRn

({

y ∈ Rn\N∗ : v′Ω̌−1(y)v = 0
})

= 0.

3 Negative results on the size of nonsphericity-corrected

F-type test statistics

3.1 A result for general covariance models

In this subsection we provide a negative result concerning the size of a class of nonsphericity-

corrected F-type test statistics that is central to many of the results in the present paper. In

particular, it allows us to show that the sufficient conditions for size control obtained in Pötscher

and Preinerstorfer (2016) are often also necessary. The result complements negative results

in Preinerstorfer and Pötscher (2016) and is obtained by combining Lemmata A.1 and A.3

in Appendix A with Corollary 5.17 of Preinerstorfer and Pötscher (2016). Its relationship to

negative results in Preinerstorfer and Pötscher (2016) is further discussed in Appendix A.1. We

recall the following definition from Pötscher and Preinerstorfer (2016).

Definition 3.1. Given a linear subspace L of Rn with dim(L) < n and a covariance model C,

we let L(C) = {L(Σ) : Σ ∈ C}, where L(Σ) = ΠL⊥ΣΠL⊥/‖ΠL⊥ΣΠL⊥‖. Furthermore, we define

J(L,C) =
{

span(Σ̄) : Σ̄ ∈ cl(L(C)), rank(Σ̄) < n− dim(L)
}

,

where the closure is here understood w.r.t. Rn×n. [The symbol ‖·‖ here denotes a norm on

Rn×n. Note that J(L,C) does not depend on which norm is chosen.]

The space L figuring in this definition will always be an appropriately chosen subspace related

to invariance properties of the tests under consideration. A leading case is when L = Mlin
0 .

Loosely speaking, the linear spaces belonging to J(L,C) are either (nontrivial) projections of

concentration spaces of the covariance model C (in the sense of Preinerstorfer and Pötscher

(2016)) on L⊥, or are what one could call “higher-order” concentration spaces. For a more

detailed discussion see Section 5.3.2 of Pötscher and Preinerstorfer (2016).

Theorem 3.1. Let C be a covariance model. Let T be a nonsphericity-corrected F-type test

statistic of the form (4) based on β̌ and Ω̌ satisfying Assumption 1 with N = ∅. Furthermore,

assume that Ω̌(y) is nonnegative definite for every y ∈ Rn. If an S ∈ J(Mlin
0 ,C) satisfying

S ⊆ span(X) exists, then

sup
Σ∈C

Pµ0,σ
2Σ(T ≥ C) = 1 (5)
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holds for every critical value C, −∞ < C < ∞, for every µ0 ∈ M0, and for every σ2 ∈ (0,∞).

Remark 3.2. (On the necessity of the sufficient conditions for size control in Pötscher and

Preinerstorfer (2016)) (i) The preceding theorem can be used to show that the conditions for size

control obtained in Corollary 5.6 of Pötscher and Preinerstorfer (2016) are not only sufficient, but

are actually necessary in some important scenarios: Suppose T is as in Theorem 3.1, additionally

satisfying N∗ = span(X). Then Corollary 5.6 of Pötscher and Preinerstorfer (2016) (with V =

{0}, i.e., L = Mlin
0 ) is applicable (since Lemma 5.15 in that reference shows that T satisfies the

assumptions in that corollary with N† = N∗) and yields “S " span(X) for all S ∈ J(Mlin
0 ,C)”

as a sufficient condition for the possibility of size control. [Application of this corollary actually

delivers the just given condition but with S " span(X) replaced by µ0 + S " span(X) where

µ0 ∈ M0. Because µ0 ∈ M0 ⊆ span(X) and the latter set is a linear space, both formulations

are seen to be equivalent.] Theorem 3.1 above then implies that this sufficient condition is also

necessary.

(ii) The discussion in (i) showing necessity of the sufficient condition for size control applies,

in particular, to the (weighted) Eicker-test statistic TE,W in view of Remark 2.1(iv) above. Note

that N∗ = span(X) is here always satisfied.

(iii) Next consider the classical autocorrelation robust test statistic Tw with Assumptions 1

and 2 of Pötscher and Preinerstorfer (2016) being satisfied. Then the discussion in (i) showing

necessity of the sufficient condition for size control also applies to Tw in view of Remark 2.1(i)

above, provided N∗ = span(X) holds. While the relation N∗ = span(X) need not always hold

for Tw (see the discussion in Section 5.3.1 of Pötscher and Preinerstorfer (2016)), it holds for

many combinations of restriction matrix R and design matrix X (in fact, it holds generically in

many universes of design matrices as a consequence of Lemma A.3 of Pötscher and Preinerstorfer

(2016)). Hence, for such combinations of R and X, the above mentioned sufficient conditions for

size control are in fact necessary.

(iv) For test statistics TGQ with positive definite weighting matrix W∗
n a statement completely

analogous to (iii) above holds in view of Remark 2.1(iii). The same is true for heteroskedasticity-

robust test statistics as discussed in Remark 2.1(v).

Remark 3.3. While Theorem 3.1 applies to any combination of test statistic T and covariance

model C as long as they satisfy the assumptions of the theorem, in a typical application the

choice of the test statistic used will certainly be dictated by properties of the covariance model

C one maintains. For example, in case C models stationary autocorrelated errors different test

statistics will be employed than in the case where C models heteroskedasticity.

3.2 Results for covariance models obtained from stationary autocor-

related errors

We next specialize the results of the preceding section to the case of stationary autocorrelated

errors. i.e., to the case where the elements u1, . . . ,un of the n×1 disturbance vector U in model
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(1) are distributed like consecutive elements of a zero mean weakly stationary Gaussian process

with an unknown spectral density, which is not almost everywhere equal to zero. Consequently,

the covariance matrix of the disturbance vector is positive definite and can be written as σ2Σ(f)

where

Σ(f) =

[
∫ π

−π

e−ι(j−l)ωf(ω)dω

]n

j,l=1

,

with f varying in F, a prescribed (nonempty) family of normalized (i.e.,
∫ π

−π
f(ω)dω = 1) spectral

densities, and where 0 < σ2 < ∞ holds. Here ι denotes the imaginary unit. We define the

associated covariance model via C(F) = {Σ(f) : f ∈ F}. Examples for the set F are (i) Fall,

the set of all normalized spectral densities, or (ii) FARMA(p,q), the set of all normalized spectral

densities corresponding to stationary autoregressive moving average models of order at most

(p, q), or (iii) the set of normalized spectral densities corresponding to fractional autoregressive

moving average models, etc. We shall write FAR(p) for FARMA(p,0).

We need to recall some more concepts and notation from Pötscher and Preinerstorfer (2016);

for background see this reference. Let ω ∈ [0, π] and let s ≥ 0 be an integer. Define En,s(ω)

as the n × 2-dimensional matrix with j-th row equal to (js cos(jω), js sin(jω)). For L, a linear

subspace of Rn with dim(L) < n, let ω(L) and d(L) be as in Definition 3.1 of Pötscher and

Preinerstorfer (2016). Recall that the coordinates ωj(L) of ω(L) are precisely those angular

frequencies ω ∈ [0, π] for which span(En,0(ω)) ⊆ L holds. And, for each j, the coordinate dj(L)

of d(L) is the smallest natural number d such that span(En,d(ωj(L))) " L. As shown in Pötscher

and Preinerstorfer (2016), the vector ω(L) (and hence d(L)) has a finite number, p(L) say, of

components; it may be the case that p(L) = 0, in which case ω(L) and d(L) are 0-tupels. As in

Pötscher and Preinerstorfer (2016), for d a natural number we define κ(ω, d) = 2d for ω ∈ (0, π)

and κ(ω, d) = d for ω ∈ {0, π}. Furthermore, we set κ(ω(L), d(L)) =
∑

κ(ωj(L), dj(L)) where

the sum extends over j = 1, . . . , p(L), with the convention that this sum is zero if p(L) = 0.

We next define ρ(γ,L) for γ ∈ [0, π] as follows: ρ(γ,L) = dj(L) in case γ = ωj(L) for some

j = 1, . . . , p(L), and ρ(γ,L) = 0 else. For ease of notation we shall simply write ρ(γ) for

ρ(γ,Mlin
0 ).

The subsequent theorem specializes Theorem 3.1 to the case where C = C(F). For a definition

of the collection S(F,L) of certain subsets of [0, π] figuring in this theorem see Definition 6.3 of

Pötscher and Preinerstorfer (2016).

Theorem 3.4. Let F be a nonempty set of normalized spectral densities, i.e., ∅ 6= F ⊆ Fall. Let

T be a nonsphericity-corrected F-type test statistic of the form (4) based on β̌ and Ω̌ satisfying

Assumption 1 with N = ∅. Furthermore, assume that Ω̌(y) is nonnegative definite for every

y ∈ Rn. Suppose there exists a linear subspace S of Rn that can be written as

S = span
(

Π(Mlin
0 )⊥

(

En,ρ(γ1)
(γ1), . . . , En,ρ(γp)

(γp)
))

for some Γ ∈ S(F,Mlin
0 ), (6)

where the γi’s denote the elements of Γ and p = card(Γ), such that S satisfies S ⊆ span(X) (or,
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equivalently, span(En,ρ(γ1)
(γ1), . . . , En,ρ(γp)

(γp)) ⊆ span(X)). Then dim(S) < n − dim(Mlin
0 )

holds. Furthermore,

sup
f∈F

Pµ0,σ
2Σ(f)(T ≥ C) = 1

holds for every critical value C, −∞ < C < ∞, for every µ0 ∈ M0, and for every σ2 ∈ (0,∞).

This theorem is applicable to any nonempty set F of normalized spectral densities. In case

more is known about the richness of F, the sufficient condition in the preceding result can some-

times be simplified substantially. Below we present such a result making use of the subsequent

lemma.

Lemma 3.5. Let F ⊆ Fall satisfy F ⊇ FAR(2) and let L be a linear subspace of Rn with dim(L) <

n. Let γ ∈ [0, π]. Then {γ} ∈ S(F,L) if and only if κ(ω(L), d(L)) + κ(γ, 1) < n. And {γ} ∈

S(F,L) holds for every γ ∈ [0, π] if and only if κ(ω(L), d(L)) + 2 < n.

Remark 3.6. (i) A sufficient condition for κ(ω(L), d(L)) + κ(γ, 1) < n (κ(ω(L), d(L)) + 2 < n,

respectively) is given by dim(L) + κ(γ, 1) < n (dim(L) + 2 < n, respectively). This follows from

κ(ω(L), d(L)) ≤ dim(L) established in Lemma D.1 in Pötscher and Preinerstorfer (2016).

(ii) In the case L = Mlin
0 the latter two conditions become k−q+κ(γ, 1) < n and k−q+2 < n,

respectively. Note that the condition k − q + κ(γ, 1) < n is always satisfied for γ = 0 or γ = π

(as then κ(γ, 1) = 1). For γ ∈ (0, π) this condition coincides with k − q + 2 < n, and is always

satisfied except if k = n− 1 and q = 1.

Armed with the preceding lemma we can now establish the following consequence of Theorem

3.4 provided F is rich enough to encompass FAR(2), which clearly is a very weak condition.

Theorem 3.7. Let F ⊆ Fall satisfy F ⊇ FAR(2). Let T be a nonsphericity-corrected F-type test

statistic of the form (4) based on β̌ and Ω̌ satisfying Assumption 1 with N = ∅. Furthermore,

assume that Ω̌(y) is nonnegative definite for every y ∈ Rn. Suppose there exists a γ ∈ [0, π] such

that span(En,ρ(γ)(γ)) ⊆ span(X). Then κ(ω(Mlin
0 ), d(Mlin

0 )) + κ(γ, 1) < n holds, and we have

sup
f∈F

Pµ0,σ
2Σ(f)(T ≥ C) = 1 (7)

for every critical value C, −∞ < C < ∞, for every µ0 ∈ M0, and for every σ2 ∈ (0,∞).

Remark 3.8. (On the necessity of the sufficient conditions for size control in Pötscher and

Preinerstorfer (2016)) (i) Theorem 3.4 can be used to show that the conditions for size control

obtained in Part 1 of Theorem 6.2 of Pötscher and Preinerstorfer (2016) are not only sufficient,

but are actually also necessary in some important scenarios: Suppose T is as in Theorem 3.4,

additionally satisfyingN∗ = span(X). Then Part 1 of Theorem 6.2 of Pötscher and Preinerstorfer

(2016) (with L = Mlin
0 ) is applicable and yields “S " span(X) for all S satisfying (6) and

dim(S) < n−dim(Mlin
0 )” as a sufficient condition for the possibility of size control (cf. Theorem

6.4 in the same reference and note that N† = N∗ = span(X)). [Application of this theorem
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actually delivers the just given condition but with S " span(X) replaced by µ0 + S " span(X)

where µ0 ∈ M0. Because µ0 ∈ M0 ⊆ span(X) and the latter set is a linear space, both

formulations are seen to be equivalent.] Theorem 3.4 above now implies that the before mentioned

sufficient condition is also necessary.

(ii) In a similar vein Theorem 3.7 can be used to show necessity of conditions for size control

obtained from Part 2 of Theorem 6.2 of Pötscher and Preinerstorfer (2016) (with L = Mlin
0 ) in

important cases: Suppose T is as in (i). Then Part 2 of Theorem 6.2 of Pötscher and Prein-

erstorfer (2016) delivers “span(En,ρ(γ)(γ)) " span(X) for all γ ∈
⋃

S(F,Mlin
0 )” as a sufficient

condition for possibility of size control (cf. Theorem 6.4 in Pötscher and Preinerstorfer (2016)).

Consider now the case where F satisfies F ⊇ FAR(2). We can then conclude from Theorem 3.7

that the just mentioned sufficient condition is also necessary. Similarly, the even stricter sufficient

condition “span(En,ρ(γ)(γ)) " span(X) for all γ ∈ [0, π]” also mentioned in Part 2 of Theorem

6.2 of Pötscher and Preinerstorfer (2016) is seen to be necessary.

(iii) Similarly as in Remark 3.2, the discussion in (i) and (ii) above covers (weighted) Eicker-

test statistics TE,W as well as classical autocorrelation robust test statistics Tw (the latter under

Assumptions 1 and 2 of Pötscher and Preinerstorfer (2016) and if N∗ = span(X) holds), and

thus applies to the sufficient conditions in Theorems 3.2 and Theorem 6.5 in Pötscher and

Preinerstorfer (2016) as well. Furthermore, the discussion in (i) and (ii) above also covers the

test statistics TGQ (provided the weighting matrix W∗
n is positive definite and N∗ = span(X)

holds).

The results so far have only concerned the size of nonsphericity-corrected F-type test statistics

for which the exceptional set N is empty and Ω̌ is nonnegative definite everywhere. We now

provide a result also for the case where this condition is not met.

Definition 3.2. Let Fext
AR(2) denote the set of all normalized spectral densities of the form c1f +

(2π)−1c2 with f ∈ FAR(2) and c1 + c2 = 1, c1 ≥ 0, c2 ≥ 0.

Obviously, FAR(2) ⊆ Fext
AR(2) ⊆ FARMA(2,1) holds. While the preceding result maintained that

F contains FAR(2), the next result maintains the slightly stronger condition that F ⊇ Fext
AR(2).

Theorem 3.9. Let F ⊆ Fall satisfy F ⊇ Fext
AR(2). Let T be a nonsphericity-corrected F-type test

statistic of the form (4) based on β̌ and Ω̌ satisfying Assumption 1. Furthermore, assume that

Ω̌ also satisfies Assumption 2. Suppose there exists a γ ∈ [0, π] such that span(En,ρ(γ)(γ)) ⊆

span(X). Then for every critical value C, −∞ < C < ∞, for every µ0 ∈ M0, and for every

σ2 ∈ (0,∞) it holds that

P0,In(Ω̌ is nonnegative definite) ≤ K(γ) ≤ sup
f∈F

Pµ0,σ
2Σ(f) (T ≥ C) , (8)

where K(γ) is defined by

K(γ) =

∫

Pr
(

ξ̄γ(x) ≥ 0
)

dP0,Iκ(γ,1)
(x)
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with the random variable ξ̄γ(x) given by

ξ̄γ(x) = (Rβ̂X(Ēn,ρ(γ)(γ)x))
′Ω̌−1 (G)Rβ̂X(Ēn,ρ(γ)(γ)x)

on the event where {G ∈ Rn\N∗} and by ξ̄γ(x) = 0 otherwise. Here G is a standard normal n-

vector, Ēn,ρ(γ)(γ) = En,ρ(γ)(γ) if γ ∈ (0, π) and Ēn,ρ(γ)(γ) denotes the first column of En,ρ(γ)(γ)

otherwise. [Recall that β̂X(y) = (X ′X)−1X ′y.]

The significance of the preceding theorem is that it provides a lower bound for the size of

a large class of nonsphericity-corrected F-type tests, including those with N 6= ∅ or with Ω̌ not

necessarily nonnegative definite. In particular, it shows that size can not be controlled at a given

desired significance level α, if α is below the threshold given by the lower bound in (8). Observe

that this threshold will typically be close to 1, at least if n is sufficiently large, since (possibly

after rescaling) Ω̌ will often approach a positive definite matrix as n → ∞.

Remark 3.10. (i) There are at most finitely many γ satisfying the assumption span(En,ρ(γ)(γ)) ⊆

span(X) in the preceding theorem. To see this note that any such γ must coincide with a coordi-

nate of ω(span(X)) (since trivially span(En,0(γ)) ⊆ span(X) in case ρ(γ) = 0 by this assumption,

and since span(En,0(γ)) ⊆ Mlin
0 ⊆ span(X) in case ρ(γ) > 0), and that the dimension of the vec-

tor ω(span(X)) is finite as discussed subsequent to Definition 3.1 in Pötscher and Preinerstorfer

(2016).

(ii) If G denotes the (finite) set of γ’s satisfying the assumption span(En,ρ(γ)(γ)) ⊆ span(X)

in the theorem, relation (8) in fact implies

P0,In(Ω̌ is nonnegative definite) ≤ min
γ∈G

K(γ) ≤ max
γ∈G

K(γ) ≤ sup
f∈F

Pµ0,σ
2Σ(f) (T ≥ C) .

(iii) Similar to Theorem 3.7, Theorem 3.9 also delivers (7) in case Ω̌ is nonnegative definite

λRn -almost everywhere. However, note that the latter theorem imposes a stronger condition on

the set F.

Remark 3.11. Some results in this section are formulated for sets of spectral densities F satisfy-

ing F ⊇ FAR(2) or F ⊇ Fext
AR(2), and thus for covariance models C(F) satisfying C(F) ⊇ C(FAR(2))

or C(F) ⊇ C(Fext
AR(2)), respectively. Trivially, these results also hold for any covariance model C

(not necessarily of the form C(F)) that satisfies C ⊇ C(FAR(2)) or C ⊇ C(Fext
AR(2)), respectively.

This observation also applies to other results in this paper further below and will not be repeated.

4 Negative results concerning power

We now show for a large class of test statistics, even larger than the class of nonsphericity-

corrected F-type test statistics, that – under certain conditions – a choice of critical value leading

to size less than one necessarily implies that the test is severely biased and thus has bad power
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properties in certain regions of the alternative hypothesis (cf. Part 3 of Theorem 5.7 and Remark

5.5(iii) in Preinerstorfer and Pötscher (2016)). The relevant conditions essentially say that a

collection K as in the subsequent lemma can be found that is nonempty. It should be noted,

however, that there are important instances where (i) the relevant conditions are not satisfied

(that is, a nonempty K satisfying the properties required in the lemma does not exist) and (ii)

small size and good power properties coexist. For results in that direction see Theorems 3.7,

5.10, 5.12, and 5.21 in Preinerstorfer and Pötscher (2016) as well as Proposition 5.2 and Theorem

5.4 in Preinerstorfer (2017).

The subsequent lemma is a variant of Lemma 5.10 in Pötscher and Preinerstorfer (2016).

Recall that H, defined in that lemma, certainly contains all one-dimensional S ∈ J(L,C).

Lemma 4.1. Let C be a covariance model. Assume that the test statistic T : Rn → R is Borel-

measurable and is continuous on the complement of a closed set N†. Assume that T and N†

are G(M0)-invariant, and are also invariant w.r.t. addition of elements of a linear subspace V

of Rn. Define L = span(Mlin
0 ∪ V) and assume that dimL < n. Let H and C(S) be defined

as in Lemma 5.10 of Pötscher and Preinerstorfer (2016). Let K be a subset of H and define

C∗(K) = infS∈K C(S) and C∗(K) = supS∈K C(S), with the convention that C∗(K) = ∞ and

C∗(K) = −∞ if K is empty. Suppose that K has the property that for every S ∈ K the set N† is

a λµ0+S-null set for some µ0 ∈ M0 (and hence for all µ0 ∈ M0). Then the following holds:

1. For every C ∈ (−∞, C∗(K)), every µ0 ∈ M0, and every σ2 ∈ (0,∞) we have

sup
Σ∈C

Pµ0,σ
2Σ(T ≥ C) = 1.

2. For every C ∈ (C∗(K),∞), every µ0 ∈ M0, and every σ2 ∈ (0,∞) we have

inf
Σ∈C

Pµ0,σ
2Σ(T ≥ C) = 0.

Part 1 of the lemma implies that the size of the test equals 1 if C < C∗(K). Part 2 shows

that the test is severely biased for C > C∗(K), which – in view of the invariance properties of T

(cf. Theorem 5.7 and Remark 5.5(iii) in Preinerstorfer and Pötscher (2016)) – implies bad power

properties such as (11) and (12) below. In particular, Part 2 implies that infimal power is zero for

such choices of C. [Needless to say, the lemma neither implies that supΣ∈C Pµ0,σ
2Σ(T ≥ C) is less

than 1 for C > C∗(K) nor that infΣ∈C Pµ0,σ
2Σ(T ≥ C) is positive for C < C∗(K). For conditions

implying that size is less than 1 for appropriate choices of C see Pötscher and Preinerstorfer

(2016).] Before proceeding we want to note that the preceding lemma also provides a negative

size result, namely that the test based on T has size equal to 1 for every C, if C∗(K) = ∞ holds

for a collection K satisfying the assumptions of that lemma.

The announced theorem is now as follows and builds on the preceding lemma.
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Theorem 4.2. Let C be a covariance model. Assume that the test statistic T : Rn → R is

Borel-measurable and is continuous on the complement of a closed set N†. Assume that T and

N† are G(M0)-invariant, and are also invariant w.r.t. addition of elements of a linear subspace

V of Rn. Define L = span(Mlin
0 ∪ V) and assume that dimL < n. Then the following hold:

1. Suppose there exist two elements S1 and S2 of H such that C(S1) 6= C(S2). Suppose

further that for i = 1, 2 the set N† is a λµ0+Si
-null set for some µ0 ∈ M0 (and hence for

all µ0 ∈ M0). Then for any critical value C, −∞ < C < ∞, satisfying5

sup
µ0∈M0

sup
0<σ2<∞

sup
Σ∈C

Pµ0,σ
2Σ(T ≥ C) < 1, (9)

we have

inf
µ0∈M0

inf
0<σ2<∞

inf
Σ∈C

Pµ0,σ
2Σ(T ≥ C) = 0. (10)

2. Suppose there exists an element S of H such that N† is a λµ0+S-null set for some µ0 ∈ M0

(and hence for all µ0 ∈ M0). Then (9) implies that C ≥ C(S) must hold; furthermore, (9)

implies (10), except possibly if C = C(S) holds.

3. Whenever (10) holds for some C, −∞ < C < ∞, it follows that

inf
0<σ2<∞

inf
Σ∈C

Pµ1,σ
2Σ(T ≥ C) = 0 (11)

for every µ1 ∈ M1. Also

inf
µ1∈M1

inf
Σ∈C

Pµ1,σ
2Σ(T ≥ C) = 0 (12)

for every σ2 ∈ (0,∞).

In the important special case where V = {0}, the assumptions on T and the associated set N†

in the second and third sentence of the preceding theorem are satisfied, e.g., for nonsphericity-

corrected F-type test statistics (under Assumption 1), including the test statistics Tw, TGQ,

and TE,W; see Remark 2.1 above as well as Section 5.3.1 in Pötscher and Preinerstorfer (2016).

Furthermore, for the class of test statistics T such that Theorem 3.1 applies (and for which

N† = N∗ = span(X) holds), it can be shown that N† is a λµ0+S -null set for any S ∈ H (in fact,

for any S ∈ J(L,C)) provided (9) holds. These observations lead to the following corollary.

Corollary 4.3. Let C be a covariance model and let T be a nonsphericity-corrected F-type test

statistic of the form (4) based on β̌ and Ω̌ satisfying Assumption 1 with N = ∅. Furthermore,

assume that Ω̌(y) is nonnegative definite for every y ∈ Rn and that N∗ = span(X).

5Because of G(M0)-invariance (cf. Remark 5.5(iii) in Preinerstorfer and Pötscher (2016)), the left-hand side
of (9) coincides with supΣ∈C Pµ0,σ

2Σ(T ≥ C) for any µ0 ∈ M0 and any σ2 ∈ (0,∞). Similarly, the left-hand side

of (10) coincides with infΣ∈C Pµ0,σ
2Σ(T ≥ C) for any µ0 ∈ M0 and any σ2 ∈ (0,∞).
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1. Suppose there exist two elements S1 and S2 of H (where H is as in Theorem 4.2 with

V = {0}) such that C(S1) 6= C(S2). If a critical value C, −∞ < C < ∞, satisfies (9), then

it also satisfies (10); and thus it also satisfies (11) and (12).

2. Suppose that H is nonempty (where H is as in Theorem 4.2 with V = {0}) but C(S) is the

same for all S ∈ H. Then (9) implies that C ≥ C(S) must hold; furthermore, (9) implies

(10) (and thus (11) and (12)), except possibly if C = C(S) holds.

Theorem 4.2 as well as the preceding corollary maintain conditions that, in particular, require

H to be nonempty. In view of Lemma 5.10 in Pötscher and Preinerstorfer (2016), H is certainly

nonempty if a one-dimensional S ∈ J(L,C) exists. The following lemma shows that for C = C(F)

with F ⊇ FAR(2) this is indeed the case; in fact, for such C typically at least two such spaces

exist.6

Lemma 4.4. Let F ⊆ Fall satisfy F ⊇ FAR(2). Define L = span((Mlin
0 )∪V), where V is a linear

subspace of Rn, and assume that dim(L)+1 < n. Then, for γ ∈ {0, π}, span
(

ΠL⊥

(

En,ρ(γ,L)(γ)
))

belongs to J(L,C(F)) and is one-dimensional.

The preceding lemma continues to hold for any covariance model C ⊇ C(FAR(2)) in a trivial

way, since J(L,C) ⊇ J(L,C(FAR(2))) then certainly holds.

5 Consequences for testing hypotheses on deterministic

trends

In this section we discuss important consequences of the results obtained so far for testing re-

strictions on coefficients of polynomial and cyclical regressors. Such testing problems have, for

obvious reasons, received a great deal of attention in econometrics, and are relevant in many

other fields besides economics, e.g., climate research. In particular, we show that a large class

of nonsphericity-corrected F-type test statistics leads to unsatisfactory test procedures in this

context. In Subsection 5.1 we present results concerning hypotheses on the coefficients of polyno-

mial regressors. Results concerning tests for hypotheses on the coefficients of cyclical regressors

are briefly discussed in Subsection 5.2.

5.1 Polynomial regressors

We consider here the case where one tests hypotheses that involve the coefficient of a polynomial

regressor as expressed in the subsequent assumption:

Assumption 3. Suppose that X = (F, X̃), where F is an n×kF -dimensional matrix (1 ≤ kF ≤

k), the j-th column being given by (1j−1, . . . , nj−1)′, and where X̃ is an n×(k−kF )-dimensional

6While the one-dimensional spaces given in the lemma typically will be different, it is not established in the
lemma that this is necessarily always the case.
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matrix such that X has rank k (here X̃ is the empty matrix if kF = k). Furthermore, suppose

that the restriction matrix R has a nonzero column R·i for some i = 1, . . . , kF , i.e., the hypothesis

involves coefficients of the polynomial trend.

Under this assumption one obtains the subsequent theorem as a consequence of Theorem 3.7.

Theorem 5.1. Let F ⊆ Fall satisfy F ⊇ FAR(2). Suppose that Assumption 3 holds. Let T

be a nonsphericity-corrected F-type test statistic of the form (4) based on β̌ and Ω̌ satisfying

Assumption 1 with N = ∅. Furthermore, assume that Ω̌(y) is nonnegative definite for every

y ∈ Rn. Then

sup
f∈F

Pµ0,σ
2Σ(f)(T ≥ C) = 1

holds for every critical value C, −∞ < C < ∞, for every µ0 ∈ M0, and for every σ2 ∈ (0,∞).

The previous theorem relies in particular on the assumption that N = ∅ and that Ω̌ is

nonnegative definite everywhere. While these two assumptions may appear fairly natural and

are widely satisfied, e.g., for the test statistics Tw, TGQ, and TE,W as discussed in Remark 2.1, we

shall see in Subsections 5.1.1 and 5.1.2 below that they are not satisfied by some tests suggested

in the literature. To obtain results also for tests that are not covered by the previous theorem

we can apply Theorem 3.9. The following result is then obtained.

Theorem 5.2. Let F ⊆ Fall satisfy F ⊇ Fext
AR(2). Suppose that Assumption 3 holds. Let T

be a nonsphericity-corrected F-type test statistic of the form (4) based on β̌ and Ω̌ satisfying

Assumption 1. Furthermore, assume that Ω̌ also satisfies Assumption 2. Then for every critical

value C, −∞ < C < ∞, for every µ0 ∈ M0, and for every σ2 ∈ (0,∞) it holds that

P0,In(Ω̌ is nonnegative definite) ≤ P0,In(R
′
·i0Ω̌

−1R·i0 ≥ 0) ≤ sup
f∈F

Pµ0,σ
2Σ(f) (T ≥ C) , (13)

where R·i0 denotes the first nonzero column of R. [Note that Ω̌ is P0,In-almost everywhere

nonsingular in view of Assumption 1.]

Theorem 5.2 shows that under Assumption 3 a large class of nonsphericity-corrected F-type

tests, including cases with N 6= ∅ or with N = ∅ but where Ω̌ is not necessarily nonnegative

definite everywhere, typically have large size. In particular, size can not be controlled at a given

desired significance level α, if α is below the lower bound in (13). Observe that this lower bound

will typically be close to 1, at least if n is sufficiently large.

To illustrate the scope and applicability of Theorems 5.1 and 5.2 above (beyond the test

statistics such as Tw, TGQ, and TE,W mentioned before), we shall now apply them to some

commonly used test statistics that have been designed for testing polynomial trends. First, in

Subsection 5.1.1, we shall derive properties of conventional tests for polynomial trends. Such

tests are based on long-run-variance estimators and classical results due to Grenander (1954). In

Subsection 5.1.2 we shall discuss properties of tests that have been introduced more recently by
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Vogelsang (1998) and Bunzel and Vogelsang (2005). While our discussion of methods is certainly

not exhaustive (for example, we do not discuss tests in Harvey et al. (2007) or Perron and Yabu

(2009), which have been suggested only for the special case of testing a restriction on the slope

in a “linear trend plus noise model”), it should also serve the purpose of presenting a general

pattern how one can check the reliability of polynomial trend tests. It might also help to avoid

pitfalls in the construction of novel tests for polynomial trends.

5.1.1 Properties of conventional tests for hypotheses on polynomial trends

The structure of tests that have traditionally been used for testing restrictions on coefficients of

polynomial trends (i.e., when the design matrix X satisfies Assumption 3, and in particular if

kF = k) is motivated by results concerning the asymptotic covariance matrix of the OLS esti-

mator (and its efficiency) in regression models with stationary error processes and deterministic

polynomial time trends by Grenander (1954) (cf. also the discussion in Bunzel and Vogelsang

(2005) on p. 383). The corresponding test statistics are nonsphericity-corrected F-type test

statistics as in (4). They are based on the OLS estimator β̂ and a covariance matrix estimator

Ω̌W(y) = ω̂W(y)R(X ′X)−1R′. (14)

Here the “long-run-variance estimator” ω̂
W

is of the form

ω̂W(y) = n−1û′(y)W(y)û(y), (15)

where W(y) is a symmetric, possibly data-dependent, n× n-dimensional matrix that might not

be well-defined on all of Rn.7 In many cases, however, W is constant, i.e., does not depend on y,

and is also positive definite. For example, this is so in the leading case where the (i, j)-th element

of W is of the form κ(|i− j|/M) for some (deterministic) M > 0 (typically depending on n) and

a kernel function κ such as the Bartlett, Parzen, Quadratic-Spectral, or Daniell kernel (positive

definiteness does not hold, e.g., for the rectangular kernel). Note that in case W is given by a

kernel κ the estimator ω̂W in the previous display can be written in the more familiar form

ω̂W(y) =

n−1
∑

i=−(n−1)

κ(|i|/M)γ̂i(y),

where γ̂i(y) = γ̂−i(y) = n−1
∑n

j=i+1 ûj(y)ûj−i(y) for i ≥ 0. For trend tests based on the OLS

estimator β̂ and a covariance estimator Ω̌W as in (14) we shall first obtain two corollaries from

Theorems 5.1 and 5.2 that cover the case where W is constant.8 Further below we shall then

7The matrix W may depend on n, a dependence not shown in the notation. Furthermore, assuming symmetry
of W entails no loss of generality, since given a long-run-variance-estimator as in (15) and based on a non-
symmetric weights matrix W∗, one can always pass to an equivalent long-run-variance estimator by replacing W∗

with the symmetric matrix W = (W∗ +W ′
∗)/2.

8The slightly more general case, where W is not constant in y (and is defined on all of Rn) but W∗ :=
Πspan(X)⊥WΠspan(X)⊥ is so, can immediately be subsumed under the present discussion, if one observes that
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address the case where W is allowed to depend on y. Note that the assumptions on W in the

subsequent corollary are certainly met if W is constant, symmetric, and positive definite, and

hence are satisfied in the leading case mentioned before (provided M is deterministic).

Corollary 5.3. Let F ⊆ Fall satisfy F ⊇ FAR(2) and suppose that Assumption 3 holds. Suppose

further that W is constant and symmetric, and that Πspan(X)⊥WΠspan(X)⊥ is nonzero and non-

negative definite. Then β̌ = β̂ and Ω̌ = Ω̌W satisfy Assumption 1 with N = ∅. Let T be of the

form (4) with β̌ = β̂, Ω̌ = Ω̌W , and N = ∅. Then

sup
f∈F

Pµ0,σ
2Σ(f)(T ≥ C) = 1

holds for every critical value C, −∞ < C < ∞, for every µ0 ∈ M0, and for every σ2 ∈ (0,∞).

We next consider the case where the matrix Πspan(X)⊥WΠspan(X)⊥ is nonzero, but not (nec-

essarily) nonnegative definite, and thus the previous corollary is not applicable. The subsequent

corollary covers this case and is obtained under the slightly stronger assumption that F ⊇ Fext
AR(2).

[Note also that the case where W is constant but Πspan(X)⊥WΠspan(X)⊥ is equal to zero is of no

interest as it leads to a long-run-variance estimator that vanishes identically.]

Corollary 5.4. Let F ⊆ Fall satisfy F ⊇ Fext
AR(2) and suppose that Assumption 3 holds. Suppose

further that W is constant and symmetric, and that Πspan(X)⊥WΠspan(X)⊥ is nonzero. Then

β̌ = β̂ and Ω̌ = Ω̌W satisfy Assumption 1 with N = ∅. Let T be of the form (4) with β̌ = β̂,

Ω̌ = Ω̌W , and N = ∅. Then

P0,In(ω̂W ≥ 0) ≤ sup
f∈F

Pµ0,σ
2Σ(f)(T ≥ C) (16)

holds for every critical value C, −∞ < C < ∞, for every µ0 ∈ M0, and for every σ2 ∈ (0,∞).

Furthermore, for every 0 ≤ C < ∞ the lower bound in the previous display is an upper bound

for the maximal power of the test under i.i.d. errors, i.e.,

sup
µ1∈M1

sup
0<σ2<∞

Pµ1,σ
2In(T ≥ C) ≤ P0,In(ω̂W ≥ 0). (17)

The previous corollary shows that the size of the test is bounded from below by the prob-

ability that the long-run-variance estimator ω̂
W

used in the construction of the test statistic is

nonnegative, where the probability is taken under N(0, In)-distributed errors. For consistent

long-run-variance estimators this probability approaches 1 as sample size increases, and hence

the size of tests based on such estimators ω̂
W

will exceed any prescribed nominal significance

level α ∈ (0, 1) eventually. Additionally, it is shown in that corollary that for nonnegative crit-

ical values (the standard in applications) the probability P0,In(ω̂W ≥ 0) also provides an upper

bound on the maximal power of the test under i.i.d. errors. Thus, if the lower bound in (16)

ω̂W coincides with ω̂W∗ and W∗ is constant.
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Figure 1: Numerical values of P0,In(ω̂W ≥ 0) for Wij = 1(−1,1)((i − j)/(bn)) as a function of
b ∈ (0, 1). Sample size n = 150 and Assumption 3 holds with kF = k and for different values
of k ∈ {2, 3, 4, . . . , 10}. The probabilities for k = 2 correspond to the function with the largest
value at the dashed vertical line, the probablities for k = 3 correspond to the function with the
second largest value at the dashed vertical line, etc.

is small, and hence (16) does not tell us much about size, the inequality in (17) shows that

power must then be small over a substantial subset of the parameter space (unless perhaps one

chooses a negative critical value). To get an idea of the magnitude of the lower (upper) bound

in (16) ((17)) in a special case, we computed P0,In(ω̂W ≥ 0) numerically for the rectangular

kernel, i.e., for Wij = 1(−1,1)((i − j)/M), for the cases when Assumption 3 is satisfied with

kF = k ∈ {2, 3, 4, . . . , 10}, respectively, sample size n = 150, and bandwidth parameter M = bn

for b ∈ {0.01, 0.02, . . . , 1}. The results are presented in Figure 1. For all values of b and k the

probability P0,In(ω̂W ≥ 0) is quite large, in particular is larger than 1/2, and thus exceeds com-

monly used significance levels. Thus, as a consequence of (16), one has strong size distortions

regardless of the value of b chosen if one decides to use a test based on the rectangular kernel.

Note also that the probability P0,In(ω̂W ≥ 0) can be easily obtained numerically in any other

case, as it is the probability that a quadratic form in a standard Gaussian random vector is

nonnegative (for the actual computation we used the algorithm by Davies (1980)).

The assumption of W being data-independent, i.e., constant as a function of y ∈ Rn, in the

previous two corollaries is not satisfied for the important class of long-run-variance estimators

that incorporate prewhitening or data-dependent bandwidth parameters (e.g., Andrews (1991),

Andrews and Monahan (1992) and Newey and West (1994)). An additional complication for such
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estimators is that the corresponding weights matrix W(y), and thus also Ω̌W , are in general not

well-defined for every y ∈ Rn. Nevertheless, after a careful structural analysis of such estimators

(similar to the results obtained in Section 3.3 of Preinerstorfer (2017)), one can typically show

that the resulting test statistic satisfies the assumptions of Theorem 5.2 above and thus one can

obtain suitable versions of the above corollaries tailored towards test statistics based on specific

classes of prewhitened long-run-variance estimators with data-dependent bandwidth parameters.

To make this more compelling, we provide in the following such a result for a widely used

procedure in that class. We consider a version of the AR(1)-prewhitened long-run-variance

estimator based on auxiliary AR(1) models for bandwidth selection and the Quadratic-Spectral

kernel as discussed in Andrews and Monahan (1992). This is a long-run-variance estimator as in

(15), where the weights matrix is obtained as follows (the set where all involved quantities are

well-defined is given in (19) further below): Let

ρ̂(y) =

∑n
i=2 ûi(y)ûi−1(y)
∑n−1

i=1 û2
i (y)

, (18)

and define v̂i(y) = ûi+1(y) − ρ̂(y)ûi(y) for i = 1, . . . , n − 1, which one can write in an obvious

way as v̂(y) = A(ρ̂(y))û(y) with ρ 7→ A(ρ) ∈ R(n−1)×n a continuous function on R. Define the

data-dependent bandwidth parameter MAM via

MAM(y) = 1.3221

(

n
4ρ̃2(y)

(1− ρ̃(y))4

)1/5

with ρ̃(y) =

∑n−1
i=2 v̂i(y)v̂i−1(y)
∑n−2

i=1 v̂2i (y)
.

The long-run-variance estimator ω̂WAM is now obtained (granted the involved expressions are

well-defined) by choosing W in (15) equal to

WAM(y) = (1− ρ̂(y))−2
A
′(ρ̂(y)) [κQS(|i− j|/MAM(y))]

n−1
i,j=1 A(ρ̂(y)),

where [κQS(|i − j|/MAM(y))]n−1
i,j=1 is defined as In−1 in case MAM(y) = 0 holds (cf., e.g., p. 821

in Andrews (1991) for a definition of the Quadratic-Spectral kernel κQS). The corresponding

covariance matrix estimator Ω̌WAM
is then given by plugging ω̂WAM

into (14). The set where

WAM (and hence Ω̌WAM
) is well-defined is easily seen to coincide with the set of all y ∈ Rn such

that ρ̂(y) and ρ̃(y) are both well-defined and are not equal to 1, i.e., with the set

{

y ∈ Rn :

n−1
∑

i=1

ûi(y)(ûi+1(y)− ûi(y)) 6= 0,

n−2
∑

i=1

v̂i(y)(v̂i+1(y)− v̂i(y)) 6= 0

}

. (19)

Define NAM as the complement of the set (19) in Rn. A result concerning size properties of poly-

nomial trend tests based on the long-run-variance estimator ω̂WAM
is now obtained by combining

Theorem 5.2 above with results obtained in Lemma D.3 in Appendix D, showing, in particular,

that β̂ and Ω̌WAM
satisfy Assumptions 1 with N = NAM, provided NAM 6= Rn holds. Note that
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(i) the condition NAM 6= Rn only depends on properties of the design matrix X and hence can

be checked, and that (ii) in case NAM = Rn, the matrix Ω̌WAM is nowhere well-defined, and tests

based on this estimator hence break down in a trivial way.

Corollary 5.5. Let F ⊆ Fall satisfy F ⊇ Fext
AR(2) and suppose Assumption 3 holds. Suppose

further that NAM 6= Rn. Then β̌ = β̂ and Ω̌ = Ω̌WAM satisfy Assumption 1 with N = NAM. Let

T be of the form (4) with β̌ = β̂, Ω̌ = Ω̌WAM , and N = NAM. Then

sup
f∈F

Pµ0,σ
2Σ(f)(T ≥ C) = 1

holds for every critical value C, −∞ < C < ∞, for every µ0 ∈ M0, and for every σ2 ∈ (0,∞).

5.1.2 Properties of some recently suggested tests for hypotheses on polynomial

trends

In this subsection we discuss finite sample properties of classes of tests for polynomial trends

that have been suggested in Vogelsang (1998) and Bunzel and Vogelsang (2005). We start

with a discussion of the tests introduced in the former article. Vogelsang (1998) introduces

two classes of tests for testing hypotheses on trends, in particular polynomial trends. From

Section 3.2 of Vogelsang (1998) it is not difficult to see that these classes of test statistics (i.e.,

the classes referred to as PSi
T and PSW i

T in that reference) are (possibly up to a constant

positive multiplicative factor that can be absorbed into the critical value) of the form (4). More

specifically, the test statistics in Vogelsang (1998) are based on a combination of one of the two

estimators

β̌V (y) = β̂V X(V y) = (X ′V ′V X)−1X ′V ′V y for V ∈ {A, In}, (20)

with a corresponding covariance estimator of the form

Ω̌Vo
c,U,i,V (y) = nj(V )s2A,X(y) exp(cJ i

n,U (y))R(X ′V ′V X)−1R′, (21)

for i ∈ {1, 2} and where j(V ) = 1 if V = A and j(V ) = −1 if V = In. Here A is the n × n-

dimensional matrix that has 0 above the main diagonal and 1 on and below the main diagonal,

c is a real number9, U is an n×m-dimensional matrix (with m ≥ 1) such that (X,U) is of full

column-rank k+m < n. [In Vogelsang (1998) the column vectors of U correspond to polynomial

trends of an order exceeding the polynomial trends already contained in span(X).] Furthermore,

J1
n,U (y) = n−1β̂

′

(X,U)(y)G
′
(

s2In,(X,U)(y)G((X,U)′(X,U))−1G′
)−1

Gβ̂(X,U)(y), (22)

9We here also allow for the value c = 0 in the formulation of the covariance estimators because this turns out
to be convenient in the proofs.
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and

J2
n,U (y) = n−1β̂

′

A(X,U)(Ay)G′
(

s2A,(X,U)(y)G((X,U)′A′A(X,U))−1G′
)−1

Gβ̂A(X,U)(Ay),

with G = (0, Im) ∈ Rm×(k+m), where we use the notation

s2D1,D2
(y) = n−1y′D′

1Πspan(D1D2)⊥D1y

for nonsingular D1 ∈ Rn×n and for D2 ∈ Rn×l of rank l ≤ n. It is obvious from the above

expressions that the covariance estimator Ω̌Vo
c,U,i,V is not well-defined on all of Rn. However, it

is also not difficult to see that the set where such an estimator is well-defined coincides with

Rn\ span(X,U), see the proof of Lemma D.4 in Appendix D. We stress once more that the

matrix U used in the construction above is chosen in a particular way in Vogelsang (1998). We

do not impose such a restriction here, because it would unnecessarily complicate the presentation

of the result below, and because this restrictions is actually not necessary for establishing the

result. The following result now shows that the tests suggested in Vogelsang (1998) suffer from

substantial size distortions in case F ⊇ Fext
AR(2).

Corollary 5.6. Let F ⊆ Fall satisfy F ⊇ Fext
AR(2) and suppose Assumption 3 holds. Let V ∈

{A, In}, c ∈ R, i ∈ {1, 2}, and let U be an n ×m-dimensional matrix with m ≥ 1, k +m < n,

such that (X,U) is of full column-rank. Then β̌ = β̌V and Ω̌ = Ω̌Vo
c,U,i,V satisfy Assumption 1

with N = span(X,U). Let T be of the form (4) with β̌ = β̌V , Ω̌ = Ω̌Vo
c,U,i,V , and N = span(X,U).

Then

sup
f∈F

Pµ0,σ
2Σ(f)(T ≥ C) = 1

holds for every critical value C, −∞ < C < ∞, for every µ0 ∈ M0, and for every σ2 ∈ (0,∞).

Next we turn to the tests introduced in Bunzel and Vogelsang (2005). We first discuss

tests introduced in that article with data-independent tuning parameters and data-independent

critical values: These tests are based on the OLS estimator β̂ and two classes of covariance

matrix estimators, both of which incorporate a tuning parameter c ∈ R, and which are defined

as

Ω̌BV,J
W,U,c(y) = ω̂W(y) exp(cJ1

n,U (y))R(X ′X)−1R′, (23)

where U is an n × m-dimensional matrix with m ≥ 1 such that (X,U) is of full column-rank

k +m < n (note that ω̂W and J1
n,U have been defined in (15) and (22) above), and

Ω̌BV
W,c(y) = ω̂W(y) exp

(

cn−2 û
′(y)A′Aû(y)

û′(y)û(y)

)

R(X ′X)−1R′ (24)

where A has been defined below (21). The subsequent result applies, in particular, if Wij =

κ(|i − j|/M) where M > 0 is a (fixed) real number and κ is a kernel function such that W

is positive definite, including the recommendation in Bunzel and Vogelsang (2005) to use the
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Daniell kernel. In that case, and more generally whenever Πspan(X)⊥WΠspan(X)⊥ is nonzero and

nonnegative definite (with W constant10 and symmetric), the subsequent corollary shows that

the above mentioned tests in Bunzel and Vogelsang (2005) have size equal to one if F ⊇ Fext
AR(2);

in case Πspan(X)⊥WΠspan(X)⊥ is nonzero but not nonnegative definite, a lower bound on the size

is obtained, which also provides an upper bound for the power in the case of i.i.d. errors. A

discussion similar to the discussion following Corollary 5.4 also applies here (cf. also Figure 1).

Corollary 5.7. Let F ⊆ Fall satisfy F ⊇ Fext
AR(2) and suppose Assumption 3 holds. Suppose that W

is constant and symmetric, that Πspan(X)⊥WΠspan(X)⊥ is nonzero, and that c ∈ R. Furthermore,

for the statements that involve U , suppose U is an n×m-dimensional matrix with m ≥ 1 such that

(X,U) is of full column-rank k +m < n. Then, β̌ = β̂ and Ω̌ = Ω̌BV
W,c (β̌ = β̂ and Ω̌ = Ω̌BV,J

W,U,c,

respectively) satisfy Assumption 1 with N = span(X) (N = span(X,U), respectively). Let T be

of the form (4) with β̌ = β̂, Ω̌ = Ω̌BV
W,c, and N = span(X), or with β̌ = β̂, Ω̌ = Ω̌BV,J

W,U,c, and

N = span(X,U). Then

P0,In(ω̂W ≥ 0) ≤ sup
f∈F

Pµ0,σ
2Σ(f)(T ≥ C)

holds for every critical value C, −∞ < C < ∞, for every µ0 ∈ M0, and for every σ2 ∈ (0,∞).

The lower bound equals 1 in case Πspan(X)⊥WΠspan(X)⊥ is nonnegative definite. Furthermore,

for every 0 ≤ C < ∞ the lower bound in the previous display is an upper bound for the maximal

power of the test under i.i.d. errors, i.e.,

sup
µ1∈M1

sup
0<σ2<∞

Pµ1,σ
2In(T ≥ C) ≤ P0,In(ω̂W ≥ 0). (25)

We shall now turn to the approach Bunzel and Vogelsang (2005) suggest for practical ap-

plications. This approach is based on a data-driven selection of the weights matrix W and of

the tuning parameter c, and on a data-driven selection of the critical value C. Their approach

is as follows: Bunzel and Vogelsang (2005) focus on ω̂W based on the Daniell kernel. More

specifically, they set Wij = κD(|i− j|/max(bn, 2)) (cf. Bunzel and Vogelsang (2005), Appendix

B, for a definition of the Daniell kernel). Recall that, regardless of the value of b, the matrix

with elements Wij = κD(|i − j|/max(bn, 2)) based on the Daniell kernel is positive definite.

The authors recommend to choose b as a positive piecewise constant function of ρ̂ (which has

been defined in (18) above), i.e., for constants ai ∈ (0,∞), i = 0, . . . ,m′ (m′ ∈ N), and āi ∈ R,

i = 1, . . . ,m′, they suggest to use

bBV(y, a, ā) = a0 +

m′

∑

i=1

ai1[āi,∞)(ρ̂(y)).

For a recommendation concerning the choice of these constants see Bunzel and Vogelsang (2005),

p. 388. Furthermore, Bunzel and Vogelsang (2005) suggest to choose their data-driven critical

10Cf. Footnote 8
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value C and a data-driven tuning parameter c as a polynomial function of bBV(y, a, ā), respec-

tively. More precisely, for constants h0, . . . , hm′′ ∈ R (m′′ ∈ N, hm′′ 6= 0) and p0, . . . , pm′′′ ∈ R

(m′′′ ∈ N, pm′′′ 6= 0) they suggest to use

CBV(y, h) =

m′′

∑

i=0

hi(bBV(y, a, ā))
i and cBV(y, p) =

m′′′

∑

i=0

pi(bBV(y, a, ā))
i.

Then they set

WBV(y) = [κD(|i− j|/max(bBV(y, a, ā)n, 2))]
n
i,j=1 ,

and define, in correspondence with (23) and (24), the covariance estimators

Ω̌BV,J
U,a,ā,h,p(y) = ω̂WBV

(y) exp
(

cBV(y, p)J
1
n,U (y)

)

R(X ′X)−1R′

and

Ω̌BV
a,ā,h,p(y) = ω̂WBV(y) exp

(

cBV(y, p)n
−2 û

′(y)A′Aû(y)

û′(y)û(y)

)

R(X ′X)−1R′.

The vectors of (constant) tuning parameters a = (a0, . . . , am′)′, ā = (ā1, . . . , ām′)′, h = (h0, . . . , hm′′)′,

and p = (p0, . . . , pm′′′)′ this approach is based on are tabulated in Bunzel and Vogelsang (2005)

for certain cases, and need to be obtained via simulations, following the rationale in Bunzel and

Vogelsang (2005), for the cases not tabulated in that paper. Furthermore, the data-driven tuning

parameters bBV and cBV as well as the data-driven critical value CBV are well-defined for a given

y ∈ Rn if and only if ρ̂(y) is well-defined, i.e., these quantities are well-defined on the complement

of the closed set

Ñ :=

{

y ∈ Rn :
n−1
∑

i=1

û2
i (y) = 0

}

. (26)

Clearly, span(X) is contained in Ñ . Hence, it is not difficult to see that the estimator Ω̌BV
a,ā,h,p is

well-defined on Rn\Ñ and that the estimator Ω̌BV,J
U,a,ā,h,p is well-defined on Rn\(span(X,U)∪Ñ). In

fact, under Assumption 3 we have that Ñ = span(X) (see the proof of the subsequent corollary).

Consequently, under Assumption 3, the estimator Ω̌BV
a,ā,h,p is well defined on Rn\ span(X) and

Ω̌BV,J
U,a,ā,h,p is well-defined on Rn\ span(X,U). [In order that the data-driven critical value is also

defined for every y, we set CBV(y, h) equal to an arbitrary value (0, say) on the null-set Ñ . Of

course, the choice of assignment on this null-set is inconsequential for the result below.]

The following corollary shows that the tests for hypotheses concerning polynomial trends

based on data-driven tuning parameters and a data-driven critical value as suggested in Bunzel

and Vogelsang (2005) have size one in case F ⊇ Fext
AR(2). The proof of this is based on a similar

approach as used in the proof of Corollary 5.7 above, but has to deal with the fact that the choice

of the tuning parameters and the critical value is data-driven, and hence is more involved. In

particular, it turns out that in order for Assumption 1 to be satisfied for the covariance estimators

used here, one has to work with null-sets NBV,U and NBV that are larger than span(X,U) and

span(X), respectively.

25



Corollary 5.8. Let F ⊆ Fall satisfy F ⊇ Fext
AR(2) and suppose Assumption 3 holds. Let ai ∈ (0,∞)

for i = 0, . . . ,m′ (m′ ∈ N), āi ∈ R for i = 1, . . . ,m′, hi ∈ R for i = 0, . . . ,m′′ with hm′′ 6= 0

and m′′ ∈ N, and pi ∈ R for i = 0, . . . ,m′′′ with pm′′′ 6= 0 and m′′′ ∈ N. Furthermore, for the

statements that involve U , suppose U is an n × m-dimensional matrix with m ≥ 1 such that

(X,U) is of full column-rank k +m < n. Then, β̌ = β̂ and Ω̌ = Ω̌BV
a,ā,h,p satisfies Assumption 1

with N = NBV (defined in Lemma D.6 in Appendix D), and β̌ = β̂ and Ω̌ = Ω̌BV,J
U,a,ā,h,p satisfies

Assumption 1 with N = NBV,U (defined in Lemma D.6). Let T be of the form (4) with β̌ = β̂,

Ω̌ = Ω̌BV
a,ā,h,p, and N = NBV, or with β̌ = β̂, Ω̌ = Ω̌BV,J

U,a,ā,h,p, and N = NBV,U . Then

sup
f∈F

Pµ0,σ
2Σ(f)({y ∈ Rn : T (y) ≥ CBV(y, h)}) = 1

holds for every µ0 ∈ M0 and for every σ2 ∈ (0,∞).

Remark 5.9. Alternatively one can consider T ∗, where

T ∗(y) = (Rβ̂(y)− r)′
(

Ω̌BV
a,ā,h,p(y)

)−1
(Rβ̂(y)− r)

for all y ∈ Rn\ span(X) such that Ω̌BV
a,ā,h,p(y) is nonsingular, and where T ∗(y) = 0 else, (and we

can similarly define a test statistic T ∗∗ with Ω̌BV,J
U,a,ā,h,p and span(X,U) in place of Ω̌BV

a,ā,h,p and

span(X), respectively). While T ∗ and T ∗∗ are well-defined test statistics, we are not guaranteed

that β̂ and Ω̌BV
a,ā,h,p (β̂ and Ω̌BV,J

U,a,ā,h,p, respectively) satisfy Assumption 1 with N = span(X)

(N = span(X,U), respectively). However, T ∗ as well as T ∗∗ differ from the corresponding test

statistics considered in the preceding corollary at most on a null-set, hence the conclusions of

the corollary carry over to T ∗ and T ∗∗.

5.2 Cyclical trends

We here consider briefly the case when one tests hypotheses concerning a cyclical trend, i.e.,

when the following assumption is satisfied:

Assumption 4. Suppose that X = (En,0(ω), X̃) for some ω ∈ (0, π) where X̃ is an n× (k− 2)-

dimensional matrix such that X has rank k (here X̃ is the empty matrix if k = 2). Furthermore,

suppose that the restriction matrix R has a nonzero column R·i for some i = 1, 2, i.e., the

hypothesis involves coefficients of the cyclical component.

Under this assumption we obtain the subsequent theorem from Theorem 3.7.

Theorem 5.10. Let F ⊆ Fall satisfy F ⊇ FAR(2) and suppose Assumption 4 holds. Let T

be a nonsphericity-corrected F-type test statistic of the form (4) based on β̌ and Ω̌ satisfying

Assumption 1 with N = ∅. Furthermore, assume that Ω̌(y) is nonnegative definite for every

y ∈ Rn. Then

sup
f∈F

Pµ0,σ
2Σ(f)(T ≥ C) = 1
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holds for every critical value C, −∞ < C < ∞, for every µ0 ∈ M0, and for every σ2 ∈ (0,∞).

Under a slightly stronger condition on F, the following theorem is applicable in case the

assumption that N = ∅ or the nonnegative definiteness assumption on Ω̌ in the previous theorem

are violated.

Theorem 5.11. Let F ⊆ Fall satisfy F ⊇ Fext
AR(2). Suppose Assumption 4 holds. Let T be a

nonsphericity-corrected F-type test statistic of the form (4) based on β̌ and Ω̌ satisfying Assump-

tion 1. Furthermore, assume that Ω̌ also satisfies Assumption 2. Then for every critical value

C, −∞ < C < ∞, for every µ0 ∈ M0, and for every σ2 ∈ (0,∞) it holds that

P0,In(Ω̌ is nonnegative definite) ≤ K(ω) ≤ sup
f∈F

Pµ0,σ
2Σ(f) (T ≥ C) ,

where K(ω) is defined in Theorem 3.9.

Using these results, one can now obtain similar results as in Subsection 5.1.2 concerning the

tests developed in Vogelsang (1998) and Bunzel and Vogelsang (2005) under Assumption 4. Due

to space constraints, however, we do not spell out the details.

Remark 5.12. (The cases ω = 0 or ω = π) (i) In case ω = 0 (or ω = π) consider Assumption

4 with the understanding that X = (Ēn,0(ω), X̃), that X̃ is now n × (k − 1)-dimensional, and

that R·1 6= 0, where Ēn,0(ω) denotes the first column of En,0(ω). Then Theorems 5.10 and 5.11

continue to hold with this interpretation of Assumption 4. Also note that the case ω = 0 can be

subsumed under the results of Subsection 5.1 by setting kF = 1.

(ii) In case ω = 0 (or ω = π), Theorem 5.10 (with the before mentioned interpretation of

Assumption 4) in fact continues to hold under the weaker assumption that F ⊇ FAR(1). This

follows from Part 3 of Corollary 5.17 in Preinerstorfer and Pötscher (2016) upon noting that

Z = span(Ēn,0(ω)) is a concentration space of the covariance model C(F), and that Ω̌ vanishes

on span(X) ⊇ Z as a consequence of the assumption N = ∅ (see the discussion following (27) in

Preinerstorfer and Pötscher (2016)).

(iii) In case ω = 0 (or ω = π), Theorem 5.11 (with the before mentioned interpretation of

Assumption 4) also continues to hold under the weaker assumption that F ⊇ FAR(1) if ξ̄ω(x) in

the definition of K(ω) is now replaced by ξ̆ω(x) defined as

ξ̆ω(x) = (Rβ̂X(Ēn,0(ω)x))
′Ω̌−1

((

(

Ēn,0(ω)Ēn,0(ω)
′
)1/2

+D(ω)1/2
)

G
)

Rβ̂X(Ēn,0(ω)x)

on the event where {((Ēn,0(ω)Ēn,0(ω)
′)1/2 + D(ω)1/2)G ∈ Rn\N∗} and by ξ̆ω(x) = 0 oth-

erwise, and if the distribution P0,In appearing in the lower bound is replaced by P0,Φ where

Φ = Ēn,0(ω)Ēn,0(ω)
′ +D(ω). Here D(0) is the matrix D given in Part 3 and D(π) is the matrix

D given in Part 4 of Lemma G.1 in Preinerstorfer and Pötscher (2016). This can be proved by

making use of Theorem 5.19 and Lemma G.1 in Preinerstorfer and Pötscher (2016).
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A Appendix: Proofs and auxiliary results for Section 3.1

Lemma A.1. Let C be a covariance model and let L be a linear subspace of Rn with dim(L) =

l < n. Let C♯ =
{

Σ♯ : Σ ∈ C
}

and C♮ =
{

Σ♮ : Σ ∈ C
}

, where Σ♯ = L(Σ) + λl+1(L(Σ))ΠL and

where Σ♮ = L(Σ)+ΠL; here λl+1(L(Σ)) denotes the (l+1)-th eigenvalue of L(Σ) counting (with

multiplicity) from smallest to largest. Then C♯ and C♮ are covariance models. Furthermore, the

collection of concentration spaces of C♯ coincides with J(L,C), and the collection of concentration

spaces of C♮ coincides with the collection {S + L : S ∈ J(L,C)}.

Proof: 1. That C♯ and C♮ are covariance models is obvious since the elements of these two

collections are clearly symmetric and positive definite matrices (as λl+1(L(Σ)) > 0 by construc-

tion).

2. Suppose S ∈ J(L,C). Then S = span(Σ̄) for some Σ̄ ∈ cl(L(C)) with rank(Σ̄) < n − l.

In particular, Σ̄ is the limit of L(Σm) for a sequence Σm ∈ C. But then Σ♯
m = L(Σm) +

λl+1(L(Σm))ΠL belongs to C♯ and converges to Σ̄ for m → ∞, since λl+1(L(Σm)) converges to

λl+1(Σ̄), which equals zero as a consequence of rank(Σ̄) < n− l. This shows that span(Σ̄), and

hence S, is a concentration space of C♯. Conversely, suppose Z is a concentration space of C♯.

Then Z = span(Σ̆) for some singular matrix that is the limit of some sequence Σ♯
m ∈ C♯. In

particular, Σ♯
m = L(Σm) + λl+1(L(Σm))ΠL holds for some sequence Σm ∈ C. Since the matrices

L(Σm) reside in the unit sphere in Rn×n, we have convergence of L(Σmi
) to a limit Σ̄ ∈ Rn×n

along an appropriate subsequence mi; in particular, Σ̄ ∈ cl(L(C)) follows. Furthermore, we

conclude that Σ♯
mi

converges to Σ̄+λl+1(Σ̄)ΠL, and hence obtain the equality Σ̆ = Σ̄+λl+1(Σ̄)ΠL.

Since Σ̄ is certainly symmetric and nonnegative definite, we have that λl+1(Σ̄) ≥ 0. Note

that Σ̄x = 0 for every x ∈ L by construction of Σ̄. Hence rank(Σ̄) ≤ n − l must hold. If

rank(Σ̄) = n − l would hold we would have λl+1(Σ̄) > 0, implying that Σ̄ + λl+1(Σ̄)ΠL is

nonsingular, contradicting singularity of Σ̆. Consequently, rank(Σ̄) < n − l and λl+1(Σ̄) = 0

must hold, implying that S = span(Σ̄) belongs to J(L,C) and that Σ̆ = Σ̄ holds. But this shows

Z = S ∈ J(L,C).

3. Suppose S ∈ J(L,C). Then S = span(Σ̄) for some Σ̄ ∈ cl(L(C)) with rank(Σ̄) < n− l. In

particular, Σ̄ is the limit of L(Σm) for a sequence Σm ∈ C. But then Σ♮
m = L(Σm) +ΠL belongs

to C♮ and converges to Σ̄ + ΠL for m → ∞. Now Σ̄ + ΠL is singular since rank(Σ̄) < n − l.

Hence, span(Σ̄ + ΠL) is a concentration space of C♮ and span(Σ̄ + ΠL) = span(Σ̄) + L = S + L

clearly holds. This proves one direction. Conversely, suppose Z is a concentration space of C♮.

Then Z = span(Σ̆) for some singular matrix that is the limit of some sequence Σ♮
m ∈ C♮, where

Σ♮
m = L(Σm) + ΠL for some Σm ∈ C. By the same compactness argument as before, we have

L(Σmi
) → Σ̄ implying that Σ̄ ∈ cl(L(C)). Furthermore, we immediately arrive at Σ̆ = Σ̄ + ΠL.

As before it follows that rank(Σ̄) < n− l must hold and hence that S = span(Σ̄) ∈ J(L,C). But

then Z = span(Σ̆) = span(Σ̄ + ΠL) = span(Σ̄) + L holds, implying the result. �

Remark A.2. (i) By construction J(L,C) = J(L,C♯) = J(L,C♮). Furthermore, all three collec-

tions coincide with the collection of all concentration spaces of C♯ (the union over which is J(C♯)
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in the notation of Preinerstorfer and Pötscher (2016)).

(ii) The sum S + L is an orthogonal sum and hence S is uniquely determined.

(iii) The map Σ 7→ Σ♯ is surjective from C to C♯ by definition, and the analogous statement

holds for the map Σ 7→ Σ♮. But these maps need not be injective.

Lemma A.3. Let C be a covariance model and let L be a linear subspace of Rn with dim(L) < n.

Furthermore, let W ⊆ Rn be a rejection region of a test, which is G(a + L)-invariant for some

a ∈ Rn. Then for every σ, 0 < σ < ∞, and every Σ ∈ C we have

Pa,σ2Σ(W ) = Pa,σ2L(Σ)(W ) = Pa,σ2Σ♯(W ) = Pa,σ2Σ♮(W ).

Furthermore, these probabilities do not depend on σ and they are unaffected if a is replaced by

an arbitrary element of a+ L.

Proof: The first claim is essentially proved by the argument establishing (47) in Pötscher and

Preinerstorfer (2016). The second claim is an immediate consequence of the assumed invariance

(cf. also Proposition 5.4 in Preinerstorfer and Pötscher (2016)). �

Proof of Theorem 3.1: By monotonicity w.r.t. C we may assume C > 0. Note that

dim(Mlin
0 ) = k − q < n by our general model assumptions. Since T is G(M0)-invariant by

Lemma 5.15 in Preinerstorfer and Pötscher (2016), the preceding Lemma A.3, applied with

L = Mlin
0 and a = µ0, hence shows that it suffices to prove the theorem with C replaced by C♯.

By Lemma A.1, also applied with L = Mlin
0 , the space S appearing in the formulation of the

theorem is a concentration space of C♯. We now apply Part 3 of Corollary 5.17 of Preinerstorfer

and Pötscher (2016) to the linear model (1) considered in the present paper, but with C replaced

by C♯. All assumptions of that result, except for the assumption that Ω̌(z) = 0 and Rβ̌(z) 6= 0

simultaneously hold λS -almost everywhere, are easily seen to be satisfied. We verify the remain-

ing assumption now as follows: The discussion following (27) in Section 5.4 of Preinerstorfer

and Pötscher (2016) shows that in case N = ∅ (which is assumed here) Ω̌(z) = 0 holds for

every z ∈ span(X), and thus for every z ∈ S (since S ⊆ span(X) has been assumed). Hence,

Ω̌(z) = 0 λS -almost everywhere follows. Furthermore, Assumption 1 together with N = ∅ imply

that β̌(Xγ) = β̌(ε · 0 + Xγ) = εβ̌(0) + γ for every γ ∈ Rk and every ε 6= 0, which of course

implies β̌(Xγ) = γ for every γ ∈ Rk. Since we have assumed S ⊆ span(X), it follows on the one

hand that for every z ∈ S we have Rβ̌(z) = 0 if and only if z ∈ Mlin
0 . On the other hand, by

construction S ⊆ (Mlin
0 )⊥ holds, showing that Rβ̌(z) 6= 0 must hold for all nonzero z ∈ S in view

of the fact that S ⊆ span(X) has been assumed. Since S can not be zero-dimensional in view of

its definition (cf. the discussion in Pötscher and Preinerstorfer (2016) following Definition 5.1),

λS({0}) = 0 follows, which completes the proof. �

A.1 Some comments on Lemmata A.1 and A.3

Lemmata A.1 and A.3 allow one to derive results regarding the rejection probabilities under a

covariance model C by working with a different, though related, covariance model C♯. [Note that
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this covariance model has the property that its concentration spaces in the sense of Preinerstorfer

and Pötscher (2016) are precisely given by the elements S of J(L,C).] A point in case is Theorem

3.1 in Section 3.1, which provides a “size one” result for the covariance model C, and which has

been derived by applying Part 3 of Corollary 5.17 in Preinerstorfer and Pötscher (2016) to the

covariance model C♯, followed by an appeal to the aforementioned lemmata. In a similar vein

one can combine other results of Preinerstorfer and Pötscher (2016) with these lemmata, but we

do not spell this out here. Often this will lead to improvements over what one obtains from a

direct application of the respective result of Preinerstorfer and Pötscher (2016) to the covariance

model C. We illustrate this in the following by comparing the result in Theorem 3.1 with what

one gets if instead one works with the originally given C and directly applies Part 3 of Corollary

5.17 in Preinerstorfer and Pötscher (2016) to C.

Suppose C and T are as in Theorem 3.1 (again with N = ∅ and nonnegative definiteness

of Ω̌(y) for every y ∈ Rn). Applying Part 3 of Corollary 5.17 in Preinerstorfer and Pötscher

(2016) to the originally given covariance model C allows one to obtain the following result: If

a concentration space Z of C exists that satisfies Z ⊆ span(X) and Z " Mlin
0 , then (5) holds

(for every C, every µ0 ∈ M0, and every σ2 ∈ (0,∞)). [To see this note that by Corollary 5.17

in Preinerstorfer and Pötscher (2016) one only has to verify that Ω̌(z) = 0 and Rβ̌(z) 6= 0 hold

λZ -almost everywhere. The argument for Ω̌(z) = 0 λZ -a.e. is identical to the corresponding

argument given in the proof of Theorem 3.1. For the second claim a similar argument as in the

proof of Theorem 3.1 shows that for z ∈ Z we have Rβ̌(z) = 0 if and only if z ∈ Mlin
0 . In

other words, Rβ̌(z) = 0 for z ∈ Z only occurs when z ∈ Z ∩Mlin
0 , which is a λZ -null set, since

Z " Mlin
0 .]

We now show that Theorem 3.1 is indeed at least as good a result as the result obtained in

the preceding paragraph. For this it suffices to show that a concentration space Z of C satisfying

Z ⊆ span(X) and Z " Mlin
0 gives rise to an element S ∈ J(Mlin

0 ,C) satisfying the assumptions

of Theorem 3.1: To see this, set S = Π(Mlin
0 )⊥Z and observe that S ∈ J(Mlin

0 ,C) by Lemma

5.19(a) in Pötscher and Preinerstorfer (2016) (since Π(Mlin
0 )⊥Z 6= {0} in view of Z " Mlin

0 , and

since Π(Mlin
0 )⊥Z 6= (Mlin

0 )⊥ in view of Z ⊆ span(X), Mlin
0 ⊆ span(X), and rank(X) < n).11

Furthermore, observe that S ⊆ span(X) must also hold, since Z ⊆ span(X) andMlin
0 ⊆ span(X).

Theorem 3.1 will sometimes actually give a strictly better result for the following reason

(at least for covariance models C that are bounded and bounded away from zero, an essentially

costfree assumption in view of Remark 5.1(ii) in Pötscher and Preinerstorfer (2016)): Concen-

tration spaces Z of C, that satisfy Z ⊆ span(X) but also Z ⊆ Mlin
0 , can not be used in a direct

application of Part 3 of Corollary 5.17 in Preinerstorfer and Pötscher (2016) since such spaces

do not satisfy the relevant assumptions (note that Rβ̌(z) = 0 for all z ∈ Z holds for such spaces

Z); hence they do not help in establishing a result of the form (5) via a direct application of

Part 3 of Corollary 5.17 in Preinerstorfer and Pötscher (2016). Nevertheless, such concentration

spaces can have associated with them spaces S ∈ J(Mlin
0 ,C) in the way as described in Lemma

11Note that the boundedness assumptions on C in Lemma 5.19 in Pötscher and Preinerstorfer (2016) have not
been used in the proof of Part (a) of that lemma.
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5.19(b) in Pötscher and Preinerstorfer (2016), that then will allow one to establish (5) via an

application of Theorem 3.1 (provided the condition S ⊆ span(X) can be shown to hold).

B Appendix: Proofs and auxiliary results for Section 3.2

Proof of Theorem 3.4: First, that S ⊆ span(X) is equivalent to A ⊆ span(X) where A :=

span(En,ρ(γ1)
(γ1), . . . , En,ρ(γp)

(γp)) is obvious since any element of A is the sum of an element

of S and an element of Mlin
0 ⊆ span(X). Second, S ⊆ span(X), Mlin

0 ⊆ span(X), and the fact

that S is certainly orthogonal to Mlin
0 imply dim(S)+dim(Mlin

0 ) ≤ dim(span(X)) = k. Since we

always maintain k < n we can conclude that dim(S) < n− dim(Mlin
0 ) must hold. This together

with Proposition 6.1 of Pötscher and Preinerstorfer (2016) now shows that the linear subspace

figuring in the theorem belongs to J(Mlin
0 ,C(F)) as clearly dim(Mlin

0 ) = k − q < n holds. An

application of Theorem 3.1 then completes the proof. �

Proof of Lemma 3.5: If {γ} ∈ S(F,L) holds, the definition of S(F,L) (Definition 6.3 in

Pötscher and Preinerstorfer (2016)) immediately implies that κ(ω(L), d(L)) + κ(γ, 1) < n must

hold. To prove the converse, we first claim that there exists a sequence of spectral densities fm

in F so that the sequence of spectral measures mgm defined by their spectral densities

gm(ν) = |∆ω(L),d(L)(e
ιν)|2fm(ν)/

∫ π

−π

|∆ω(L),d(L)(e
ιν)|2fm(ν)dν

converges weakly to a spectral measure m that satisfies supp(m) ∩ [0, π] = {γ}. Here ∆ω(L),d(L)

is a certain differencing operator given in Definition 6.2 of Pötscher and Preinerstorfer (2016)

and supp(m) denotes the support of m. To prove this claim, let ρm ∈ (0, 1) converge to 1 as

m → ∞, and let ξj for j ∈ N be a sequence in [0, π]\{0, ω1(L), . . . , ωp(L), π}, where ω(L) =

(ω1(L), . . . , ωp(L)), that converges to γ as j → ∞. Now for every fixed j ∈ N the sequence of

spectral measures mhm,j
with spectral density

hm,j(ν) = (2π)−1
(1− ρ2m)((1 + ρ2m)2 − 4ρ2m cos2(ξj))

1 + ρ2m

∣

∣1− ρme−ιξje−ιν
∣

∣

−2 ∣
∣1− ρmeιξje−ιν

∣

∣

−2

converges weakly to (δ−ξj+δξj )/2 as m → ∞ (cf., e.g., the argument given in the proof of Lemma

G.2 in Preinerstorfer and Pötscher (2016)). Note that hm,j ∈ FAR(2) and thus hm,j ∈ F. Since

ξj /∈ {ω1(L), . . . , ωp(L)}, we can conclude that the map ν 7→ ∆ω(L),d(L)(e
ιν) does not vanish on

{−ξj , ξj}. It follows that the spectral measures mgm,j
with spectral densities

gm,j(ν) = |∆ω(L),d(L)(e
ιν)|2hm,j(ν)/

∫ π

−π

|∆ω(L),d(L)(e
ιν)|2hm,j(ν)dν

also converge weakly to (δ−ξj +δξj )/2, for fixed j and for m → ∞. Since (δ−ξj +δξj )/2 certainly

converges weakly to (δ−γ + δγ)/2 as j → ∞, a standard diagonal argument now delivers a

sequence fm = hm,j(m) as required above, for j(m) a suitable subsequence of j. Together with
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the condition κ(ω(L), d(L))+κ(γ, 1) < n we see that {γ} ∈ S(F,L) follows. This proves the first

claim. The second claim is a trivial consequence of the first claim, since κ(γ, 1) = 1 for γ = 0, π

and κ(γ, 1) = 2 for γ ∈ (0, π). �

Proof of Theorem 3.7: Since span(En,ρ(γ)(γ)) ⊆ span(X) but span(En,ρ(γ)(γ)) " Mlin
0 ⊆

span(X) in view of the definition of ρ(γ), it easily follows that

κ(ω(Mlin
0 ), d(Mlin

0 )) + κ(γ, 1) ≤ κ(ω(span(X)), d(span(X)))

must hold. The r.h.s. of the above inequality is now not larger than k in view of Lemma D.1 in

Pötscher and Preinerstorfer (2016). As we always maintain k < n, the first claim follows. Because

of the claim just established and since F ⊇ FAR(2), we conclude from Lemma 3.5 that {γ} ∈

S(F,Mlin
0 ) (note that dim(Mlin

0 ) = k − q < n always holds). Set S = span(Π(Mlin
0 )⊥En,ρ(γ)(γ))

and observe that S satisfies all the conditions of Theorem 3.4 (recall that S ⊆ span(X) if and

only if span(En,ρ(γ)(γ)) ⊆ span(X) holds as noted in that theorem). An application of Theorem

3.4 then establishes (7). �

Lemma B.1. For every γ ∈ [0, π] and every c > 0 there exists a sequence hm ∈ Fext
AR(2) and a

sequence σ2
m of positive real numbers such that

σ2
mΠ(Mlin

0 )⊥Σ(hm)Π(Mlin
0 )⊥ → Π(Mlin

0 )⊥

(

En,ρ(γ)(γ)E
′
n,ρ(γ)(γ) + cIn

)

Π(Mlin
0 )⊥ as m → ∞.

(27)

Proof: Let γ ∈ [0, π] and c > 0 be given. For ease of notation we set L = Mlin
0 in

the remainder of the proof. We can use the argument in the proof of Lemma 3.5 to obtain a

sequence of spectral densities fm in FAR(2) so that the sequence mgm with spectral density given

by

gm(ν) = |∆ω(L),d(L)(e
ιν)|2fm(ν)/

∫ π

−π

|∆ω(L),d(L)(e
ιν)|2fm(ν)dν

converges weakly to the spectral measure (δ−γ+δγ)/2. Now, set em :=
∫ π

−π
|∆ω(L),d(L)(e

ιν)|2fm(ν)dν,

which is a sequence of positive real numbers (since ∆ω(L),d(L) is a polynomial and fm is nonzero

a.e.). By Lemma D.2 in Pötscher and Preinerstorfer (2016) we have

e−1
m ΠL⊥Σ(fm)ΠL⊥

=e−1
m ΠL⊥Hn(ω(L), d(L))Σ(∆ω(L),d(L) ⊙mfm , n− κ(ω(L), d(L)))H ′

n(ω(L), d(L))ΠL⊥

=ΠL⊥Hn(ω(L), d(L))Σ(mgm , n− κ(ω(L), d(L)))H ′
n(ω(L), d(L))ΠL⊥

→ΠL⊥Hn(ω(L), d(L))En−κ(ω(L),d(L)),0(γ)E
′
n−κ(ω(L),d(L)),0(γ)H

′
n(ω(L), d(L))ΠL⊥

as m → ∞, where the convergence is due to weak convergence of mgm to (δ−ω + δω)/2; see

Pötscher and Preinerstorfer (2016) for a definition of Hn, Σ(·, ·), as well as ⊙. Lemma D.3 in
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the same reference now shows that the limit in the preceding display can be written as

aΠL⊥En,ρ(γ)(γ)E
′
n,ρ(γ)(γ)ΠL⊥

for some positive real number a = a(γ). Now set σ2
m = e−1

m

(

a−1 + cem
)

and set

hm =
(

a−1fm + (2π)−1cem
)

/
(

a−1 + cem
)

.

Observe that hm ∈ Fext
AR(2) holds. But then

σ2
mΠL⊥Σ(hm)ΠL⊥ = a−1e−1

m ΠL⊥Σ(fm)ΠL⊥ + cΠL⊥

obtains, implying (27). �

Proof of Theorem 3.9: It suffices to prove the result for C > 0, which we henceforth

assume. For ease of notation we set L = Mlin
0 in the remainder of the proof. Let γ ∈ [0, π]

satisfy span(En,ρ(γ)(γ)) ⊆ span(X). Observe that for µ0 ∈ M0, 0 < τ2 < ∞, and h ∈ Fext
AR(2) it

holds that

Pµ0,τ
2Σ(h)(T ≥ C) = Pµ0,τ

2Π
L⊥Σ(h)Π

L⊥
(T ≥ C) = Pµ0,τ

2[ΠL⊥Σ(h)Π
L⊥+ΠL](T ≥ C). (28)

This follows from G(M0)-invariance of T and is proved in the same way as is relation (47) in

Pötscher and Preinerstorfer (2016). Let now c > 0 and fix µ0 ∈ M0, 0 < σ2 < ∞. By Lemma

B.1 there exists a sequence hm ∈ Fext
AR(2) and a sequence σ2

m of positive real numbers such that

σ2
mΠL⊥Σ(hm)ΠL⊥ +ΠL → ΠL⊥

(

En,ρ(γ)(γ)E
′
n,ρ(γ)(γ) + cIn

)

ΠL⊥ +ΠL,

where the limit matrix is obviously nonsingular. Consequently,

Pµ0,σ
2
m[ΠL⊥Σ(hm)Π

L⊥+ΠL] → Pµ0,ΠL⊥En,ρ(γ)(γ)E
′

n,ρ(γ)
(γ)Π

L⊥+cΠ
L⊥+ΠL

for m → ∞ in total variation norm (by an application of Scheffé’s Lemma). By G(M0)-invariance

of T we also have

Pµ0,σ
2Σ(hm)(T ≥ C) = Pµ0,σ

2
mΣ(hm)(T ≥ C),

cf. Remark 5.5(iii) in Preinerstorfer and Pötscher (2016). Using (28), the preceding displays now

imply that

Pµ0,σ
2Σ(hm)(T ≥ C) = Pµ0,σ

2
m[ΠL⊥Σ(hm)Π

L⊥+ΠL](T ≥ C)

→ Pµ0,ΠL⊥En,ρ(γ)(γ)E
′

n,ρ(γ)
(γ)Π

L⊥+cΠ
L⊥+ΠL

(T ≥ C).

The limit in the preceding display coincides – using again G(M0)-invariance of T similarly as in
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(28) – with

P
µ0,σ

2
[

En,ρ(γ)(γ)E
′

n,ρ(γ)
(γ)+cIn

](T ≥ C).

Since F ⊇ Fext
AR(2) has been assumed and since c > 0 was arbitrary in the above discussion, it

follows that supf∈F Pµ0,σ
2Σ(f) (T ≥ C) is not smaller than supΣ∈C(γ) Pµ0,σ

2Σ(T ≥ C) where C(γ)

denotes the auxiliary covariance model

C(γ) = {En,ρ(γ)(γ)E
′
n,ρ(γ)(γ) + cIn : c > 0}.

To prove the right-most inequality in (8) it hence suffices to verify that for every µ0 ∈ M0 and

every 0 < σ2 < ∞ it holds that

K(γ) ≤ sup
Σ∈C(γ)

Pµ0,σ
2Σ(T ≥ C). (29)

To this end, we shall use Theorem 5.19 of Preinerstorfer and Pötscher (2016) applied to the linear

model (1) together with the covariance model C(γ). Let cm be a sequence of positive real numbers

satisfying cm → 0, and consider the corresponding sequence Σm = En,ρ(γ)(γ)E
′
n,ρ(γ)(γ) + cmIn

in C(γ). Obviously Σm → En,ρ(γ)(γ)E
′
n,ρ(γ)(γ) =: Σ̄ and span(Σ̄) = span(En,ρ(γ)(γ)) is κ(γ, 1)-

dimensional. Note that κ(γ, 1) is positive and that the n × n-matrix Σ̄ is singular because the

assumption span(En,ρ(γ)(γ)) ⊆ span(X) implies κ(γ, 1) ≤ k < n. Next, observe that

Πspan(Σ̄)⊥ΣmΠspan(Σ̄)⊥ = Πspan(En,ρ(γ)(γ))⊥ΣmΠspan(En,ρ(γ)(γ))⊥ = cmΠspan(Σ̄)⊥ ,

and that

Πspan(Σ̄)⊥ΣmΠspan(Σ̄) = 0.

Hence the additional assumption on Σm appearing in Theorem 5.19 of Preinerstorfer and Pötscher

(2016) is satisfied with sm = cm and D = Πspan(En,ρ(γ)(γ))⊥ . Note also that span(Σ̄) ⊆ M =

span(X) holds by our assumption on γ. Furthermore, since span(Σ̄) = span(En,ρ(γ)(γ)) is not

contained in L = Mlin
0 in view of the definition of ρ(γ), it follows that there exists a z ∈ span(Σ̄)

so that z /∈ L. As both spaces are linear it even follows that z /∈ L is true for λspan(Σ̄)-almost

all z ∈ span(Σ̄). In view of the span(Σ̄) ⊆ span(X), this implies that Rβ̂(z) 6= 0 holds λspan(Σ̄)-

almost everywhere. Thus Theorem 5.19 of Preinerstorfer and Pötscher (2016) is applicable,

and delivers (setting Z = Ēn,ρ(γ)(γ) in that theorem) the claim (29), upon observing that in

the definition of ξ̄(γ) in Theorem 5.19 of Preinerstorfer and Pötscher (2016) and in the event

following that definition given in Theorem 5.19 of Preinerstorfer and Pötscher (2016) one can

replace Σ̄1/2 by Πspan(Σ̄) due to span(Σ̄) ⊆ M, due to the equivariance property of Ω̌ expressed

in Assumption 1, and due to G(M)-invariance of N∗ (and noting that in the case considered

here Πspan(Σ̄) +D1/2 translates into In). It remains to show the left-most inequality in (8). But

this is obvious upon noting that the event where Ω̌(G) is nonnegative definite is contained in

the event
{

ξ̄γ(x) ≥ 0
}

for every x. �
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C Appendix: Proofs for Section 4

Proof of Lemma 4.1: In view of G(M0)-invariance of T we may set σ2 = 1. In case K is

empty there is nothing to prove. Hence assume K 6= ∅. To prove Part 1, observe that then

C∗(K) > −∞. Choose C ∈ (−∞, C∗(K)). Since C < C∗(K), there exists an S ∈ K with

C < C(S) ≤ C∗(K). Now repeat, with obvious modifications, the arguments in the proof of Part

2 of Lemma 5.10 of Pötscher and Preinerstorfer (2016) that establish (23) in that reference. To

prove Part 2, observe that C∗(K) < ∞, and choose C ∈ (C∗(K),∞). Then there exists an S ∈ K

with C∗(K) ≤ C(S) < C. Now repeat, with obvious modifications, the arguments in the proof

of Part 3 of Lemma 5.10 of Pötscher and Preinerstorfer (2016). �

Proof of Theorem 4.2: 1. Applying Part 1 of Lemma 4.1 with K = {S1,S2} shows that C

satisfying (9) must also satisfy C ∈ [C∗(K),∞). Since C(S1) 6= C(S2) by assumption, it follows

that C∗(K) < C∗(K). Hence, we arrive at C > C∗(K), which in view of Part 2 of Lemma 4.1

implies (10).

2. The same reasoning, but now with K = {S}, where S is as in the theorem, yields C ≥

C(S)(= C∗(K) = C∗(K)). Furthermore, note that C > C(S) obviously implies C > C∗(K) and

thus (10) follows from Part 2 of Lemma 4.1.

3. From G(M0)-invariance of T (cf. Footnote 5) we know that (10) implies

inf
Σ∈C

Pµ0,σ
2Σ(T ≥ C) = 0

for every µ0 ∈ M0 and every σ2, 0 < σ2 < ∞. Since G(M0)-invariance of T implies G({µ0})-

almost invariance of T for every µ0 ∈ M0, (11) now follows from the preceding display together

with Part 3 of Theorem 5.7 in Preinerstorfer and Pötscher (2016). Finally, (12) follows imme-

diately from the preceding display by noting that for every Σ ∈ C and every σ2 ∈ (0,∞) the

measures Pµ1,σ
2Σ converge to Pµ0,σ

2Σ in the total variation distance when µ1 converges to µ0

(cf. the proof of Theorem 5.7, Part 2, in Preinerstorfer and Pötscher (2016)). �

Proof of Corollary 4.3: Set V = {0}. The assumptions on T and on N† = N∗ in the second

and third sentence of Theorem 4.2 are obviously satisfied in view of Lemma 5.15 in Pötscher and

Preinerstorfer (2016). The assumption on the dimension of L := Mlin
0 is also satisfied since we

always maintain k < n. If (9) holds for a given C, Theorem 3.1 implies that any S ∈ J(Mlin
0 ,C)

must satisfy S " span(X); and thus S " N∗, since N∗ = span(X) is assumed in the corollary.

Since N∗ is G(M0)-invariant, we also have µ0 + S " N∗ for every µ0 ∈ M0. As µ0 + S and N∗

are affine subspaces of Rn, this implies λµ0+S(N
∗) = 0 for every µ0 ∈ M0. Since N† coincides

with N∗ for the class of test statistics considered, we obtain that N† is a λµ0+S -null set for every

µ0 ∈ M0 and for every S ∈ J(Mlin
0 ,C), and thus a fortiori for every S ∈ H. We now see that

Part 1 (Part 2, respectively) follows from the corresponding parts of Theorem 4.2 together with

Part 3 of that theorem. �

Proof of Lemma 4.4: Because of the assumption that F contains FAR(2) and that dim(L)+

1 < n, Lemma 3.5 implies (cf. Remark 3.6(i)) that {γ} ∈ S(F,L) for every γ ∈ {0, π} (recall
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that κ(γ, 1) = 1 for these γ’s). Furthermore, the dimension of

S := span
(

ΠL⊥

(

En,ρ(γ,L)(γ)
))

is 1 (since the dimension of span(En,ρ(γ,L)(γ)) is 1 for γ ∈ {0, π} and since En,ρ(γ,L)(γ) " L in

view of the definition of ρ(γ,L)). Therefore the dimension of S is smaller than n− dim(L), and

it follows from Proposition 6.1 in Pötscher and Preinerstorfer (2016) that S ∈ J(L,C(F)). �

D Appendix: Auxiliary results and proofs for Section 5

Proof of Theorem 5.1: We first show that span(En,ρ(0)(0)) ⊆ span(X) is satisfied: For any

i = 1, . . . , kF with R·i 6= 0, the i-th column of F does not belong to Mlin
0 . Observe that the i-th

column of F spans span(En,i−1(0)). Hence ρ(0) must satisfy 0 ≤ ρ(0) ≤ kF − 1. But clearly

span(En,ρ(0)(0)) ⊆ span(F ) ⊆ span(X). All the other assumptions being obviously satisfied,

Theorem 3.7 completes the proof. �

Proof of Theorem 5.2: We apply Theorem 3.9. It suffices to verify that γ = 0 sat-

isfies the assumption span(En,ρ(γ)(γ)) ⊆ span(X) in that theorem. But this can be estab-

lished exactly in the same way as in the proof of Theorem 5.1. It remains to verify that

K(0) = P0,In(R
′
·i0
Ω̌−1R·i0 ≥ 0): Recall that κ(0, 1) = 1, and note that

ξ̄0(x) = x2ξ̄0(1) for every x ∈ R.

This is trivial on the event {G ∈ N∗}. On the complement of this event, it follows from Ēn,ρ(0)(0)

being n × 1-dimensional, and by using that β̂X(Ēn,ρ(0)(0)x) = xβ̂X(Ēn,ρ(0)(0)) holds for every

x ∈ R. From the equation in the previous display, we now obtain K(0) = Pr(ξ̄0(1) ≥ 0).

To prove the statement, we thus need to show that Rβ̂X(Ēn,ρ(0)(0)) coincides with R·i0 , the

first nonzero column of R. From a similar reasoning as in the proof of Theorem 5.1, we see

that Ēn,i(0) = F·(i+1) holds for i = 0, . . . , ρ(0). Hence, β̂X(Ēn,ρ(0)(0)) = eρ(0)+1(k) holds.

Furthermore, from the definition of ρ(0), it follows that the first ρ(0) columns of R are zero, and

that the (ρ(0) + 1)-th column of R is nonzero. The statement follows. �

Lemma D.1. Let H ∈ Rn×n be nonsingular and define β̌(y) = β̂HX(y) = (X ′H ′HX)−1X ′H ′Hy.

Let ν : Rn\N ′ → R, for N ′ a subset of Rn, and set

Ω̌(y) = ν(y)R(X ′H ′HX)−1R′ for every y /∈ N ′.

Suppose that the following holds:

(a) N ′ is closed and λRn(N ′) = 0,

(b) δy+Xη ∈ Rn\N ′ and ν(δy+Xη) = δ2ν(y) holds for every y ∈ Rn\N ′, every δ 6= 0, and

every η ∈ Rk,

(c) ν is continuous on Rn\N ′
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(d) ν is λRn-almost everywhere nonzero on Rn\N ′.

Then β̌ and Ω̌ satisfy Assumption 1 with N = N ′, and Ω̌ satisfies Assumption 2. Furthermore,

if ν is nonnegative (positive) everywhere on Rn\N ′, then Ω̌(z) is nonnegative (positive) definite

everywhere on Rn\N ′.

Proof: Obviously β̌ is well-defined and continuous on all of Rn, and thus also when restricted

to Rn\N ′. Furthermore, Ω̌ is clearly well-defined and symmetric on Rn\N ′, and is continuous

on Rn\N ′ in view of (c). Since N ′ is a closed λRn -null set by (a), we have verified Part (i) of

Assumption 1 with N = N ′. Part (ii) of this assumption is contained in (b). That β̌ satisfies

the required equivariance property in Part (iii) of Assumption 1 is obvious. That Ω̌ satisfies the

required equivariance property in that assumption follows immediately from (b), completing the

verification of Part (iii) of Assumption 1. Part (iv) in that assumption follows from (d) together

with R(X ′H ′HX)−1R′ being positive definite. The same argument also shows that Ω̌ satisfies

Assumption 2. The final statement is trivial. �

Lemma D.2. Suppose W is constant and symmetric, and that Πspan(X)⊥WΠspan(X)⊥ is nonzero.

Then the estimators β̂ and Ω̌W satisfy Assumption 1 with N = ∅, and Ω̌W satisfies Assumption

2. If, additionally, Πspan(X)⊥WΠspan(X)⊥ is nonnegative definite, then Ω̌W(y) is nonnegative

definite for every y ∈ Rn.

Proof: We verify (a)-(d) in Lemma D.1 for H = In, ν = ω̂W , and N ′ = ∅. Obviously (a)

is satisfied, and (c) follows immediately from the constancy assumption on W, since ν = ω̂W

can clearly be written as a quadratic form in y. Concerning (d), note that ω̂W(y) = 0 is

equivalent to y′Πspan(X)⊥WΠspan(X)⊥y = 0. In view of the constancy assumption on W, the

subset of Rn on which ω̂W vanishes is the zero set of a multivariate polynomial, in fact of a

quadratic form, on Rn. Since the (constant) matrix Πspan(X)⊥WΠspan(X)⊥ is symmetric and

nonzero, the polynomial under consideration does not vanish everywhere on Rn, implying that

the zero set is a λRn -null set. This completes the verification of (d). That (b) is satisfied follows

immediately from ν(y) = ω̂W(y) = n−1y′Πspan(X)⊥WΠspan(X)⊥y, the constancy of W, and from

Πspan(X)⊥(δy + Xη) = δΠspan(X)⊥(y) for every δ ∈ R, every y ∈ Rn and every η ∈ Rk. Now

apply Lemma D.1. Note that the final statement concerning nonnegative definiteness follows from

the last part of Lemma D.1, since nonnegative definiteness of Πspan(X)⊥WΠspan(X)⊥ obviously

implies nonnegativity of ω̂W on Rn. �

Proof of Corollary 5.3: The statement follows upon combining Lemma D.2 with Theorem

5.1. �

Proof of Corollary 5.4: The first part of the corollary follows upon combining Lemma D.2

with Theorem 5.2 noting that Ω̌W(z) is nonnegative definite if and only if ω̂W(z) ≥ 0. For the

second statement, note that R(X ′X)−1R′ is positive definite, and hence

{T ≥ 0} = {ω̂W ≥ 0} ∪ {Rβ̂ = r},

from which it follows (note that {y : Rβ̂(y) = r} is an affine subspace of Rn that does not coincide
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with Rn, and is hence a λRn -null set) that Pµ,σ2In(T ≥ 0) coincides with Pµ,σ2In(ω̂W ≥ 0). For

C ≥ 0 we then have (using monotonicity w.r.t. C)

sup
µ∈M1

sup
0<σ2<∞

Pµ,σ2In(T ≥ C) ≤ sup
µ∈M1

sup
0<σ2<∞

Pµ,σ2In(ω̂W ≥ 0). (30)

But from the equivariance property ω̂W(δy + Xη) = δ2ω̂W(y) for δ 6= 0, y ∈ Rn and η ∈ Rk,

which was established in the proof of Lemma D.2, it follows straightforwardly that Pµ,σ2In(ω̂W ≥

0) = P0,In(ω̂W ≥ 0) holds for every µ ∈ M and every 0 < σ < ∞. This completes the proof. �

Lemma D.3. If NAM 6= Rn, then the estimators β̂ and Ω̌WAM
satisfy Assumption 1 with N =

NAM, and Ω̌WAM
satisfies Assumption 2; furthermore Ω̌WAM

(z) is positive definite for every

z ∈ Rn\NAM.

Proof: Observe that ρ̂, ρ̃, MAM, WAM, and ω̂WAM
are well-defined on Rn\NAM. We next

verify (a)-(d) in Lemma D.1 for H = In, ν = ω̂WAM
, and N ′ = NAM. We start with (a): Using

arguments as in the proof of Lemma 3.9 in Preinerstorfer (2017), or in the proof of Lemma B.1

in Preinerstorfer and Pötscher (2016), it is not difficult to verify that NAM is an algebraic set.

We leave the details to the reader. This, and the assumption NAM 6= Rn, implies that NAM

is a closed λRn -null set. To verify (c) in Lemma D.1 it suffices to establish continuity of WAM

on Rn\NAM, since û(y) is certainly continuous on Rn. To achieve this note that, since ρ̂ is

obviously continuous on Rn\NAM, since ρ̂(y) 6= 1 for y ∈ Rn\NAM, and since A(·) is continuous

on R, it suffices to verify that [κQS(|i− j|/MAM)]n−1
i,j=1 is continuous on Rn\NAM. Now, MAM is

certainly continuous on Rn\NAM and κQS is continuous on R. Hence, [κQS(|i − j|/MAM)]n−1
i,j=1

is easily seen to be continuous at every y ∈ Rn\NAM that satisfies MAM(y) 6= 0. For y ∈

Rn\NAM satisfying MAM(y) = 0 continuity of [κQS(|i − j|/MAM)]n−1
i,j=1 follows from continuity

of MAM on Rn\NAM together with κQS(x) → 0 as |x| → ∞, κQS(0) = 1, and the convention

[κQS(|i − j|/MAM(y))]n−1
i,j=1 = In−1 for y so that MAM(y) = 0. That (b) in Lemma D.1 holds

is easily seen to follow from û(δy + Xη) = δû(y) for every δ ∈ R, every y ∈ Rn and every

η ∈ Rk, which in particular implies ρ̂(δy + Xη) = ρ̂(y) and ρ̃(δy + Xη) = ρ̃(y) for every

δ 6= 0, every y ∈ Rn\NAM and every η ∈ Rk. Finally, note that (d) in Lemma D.1 is satisfied,

because ω̂WAM(y) > 0 holds if y ∈ Rn\NAM. The latter follows from the well-known fact that

[κQS(|i− j|/MAM(y))]
n−1
i,j=1 is positive definite in case MAM(y) is well-defined (recall that this

matrix is defined as In−1 in case MAM(y) = 0), together with the observation that y ∈ Rn\NAM

implies A(ρ̂(y))û(y) = v̂(y) 6= 0. Now apply Lemma D.1. Note that the just established fact,

that ω̂WAM(y) > 0 holds if y ∈ Rn\NAM, also shows that the last part of Lemma D.1 applies,

and hence shows that Ω̌WAM(y) is positive definite for every y ∈ Rn\NAM. �

Proof of Corollary 5.5: This follows upon combining Lemma D.3 and Theorem 5.2, noting

that the lower bound obtained via Theorem 5.2 equals 1 due to nonnegative definiteness of

Ω̌WAM
(y) for every y ∈ Rn\NAM, which is the complement of a λRn -null set. �

Lemma D.4. Let V ∈ {A, In}, c ∈ R, let i ∈ {1, 2}, and let U be an n×m-dimensional matrix
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with m ≥ 1 such that (X,U) is of full column-rank k + m < n. Then the estimators β̌V and

Ω̌Vo
c,U,i,V satisfy Assumption 1 with N = span(X,U), and Ω̌Vo

c,U,i,V also satisfies Assumption 2;

furthermore Ω̌Vo
c,U,i,V is positive definite on Rn\ span(X,U).

Proof: We verify (a)-(d) in Lemma D.1 forH = V (which is invertible), ν = nj(V )s2A,X exp(cJ i
n,U ),

and N ′ = span(X,U). By assumption, k + m < n, hence span(X,U) is a closed λRn -null set,

showing that (a) in Lemma D.1 is satisfied. Next, note that s2A,X , s2In,(X,U), and s2A,(X,U) are

well-defined and continuous on Rn; and that J1
n,U and J2

n,U are well-defined and continuous on

the set where s2In,(X,U) and s2A,(X,U) are nonzero, respectively. Obviously, s2In,(X,U)(y) = 0 if

and only if y ∈ span(X,U). Similarly, s2A,(X,U)(y) = 0 if and only if Ay ∈ span(A(X,U)), or

equivalently, y ∈ span(X,U). Hence (c) in Lemma D.1 follows. For (b) note first that obviously

δy +Xη /∈ span(X,U) holds for every y /∈ span(X,U), every δ 6= 0 and every η ∈ Rk. Second,

concerning the equivariance property of ν, we note that for every y ∈ Rn, every δ ∈ R, and every

η ∈ Rk

s2A,X(δy +Xη) = δ2s2A,X(y) (31)

s2In,(X,U)(δy +Xη) = δ2s2In,(X,U)(y) (32)

s2A,(X,U)(δy +Xη) = δ2s2A,(X,U)(y). (33)

From Equations (31)-(33) we hence see that the required equivariance property follows if we can

show that

J i
n,U (δy +Xη) = J i

n,U (y) for every y ∈ Rn\ span(X,U), every δ 6= 0, and every η ∈ Rk. (34)

To see this let y ∈ Rn\ span(X,U), δ 6= 0, and η ∈ Rk. We consider first the case where i = 1.

Note that Gβ̂(X,U)(δy + Xη) = δGβ̂(X,U)(y), and recall from (32) that s2In,(X,U)(δy + Xη) =

δ2s2In,(X,U)(y) > 0 (positivity following from y /∈ span(X,U)), showing that J1
n,U (δy + Xη) =

J1
n,U (y). For i = 2, note that Gβ̂

′

A(X,U)(A(δy+Xη)) = δGβ̂
′

A(X,U)(Ay), and recall from (33) that

s2A,(X,U)(δy +Xη) = δ2s2A,(X,U)(y) > 0 (positivity following from y /∈ span(X,U)), showing that

J2
n,U (δy+Xη) = J2

n,U (y). This verifies the statement in (34) and thus (b). Concerning (d) (and

the final claim in the lemma) note that for y /∈ span(X,U) it holds that s2A,X(y) exp(cJ i
n,U (y)) >

0. �

Proof of Corollary 5.6: This follows upon combining Lemma D.4 and Theorem 5.2, noting

that the lower bound obtained via Theorem 5.2 equals 1 due to nonnegative definiteness of

Ω̌Vo
c,U,i,V on the complement of the λRn -null set span(X,U). �

Lemma D.5. Suppose that W is constant and symmetric, that Πspan(X)⊥WΠspan(X)⊥ is nonzero,

and that c ∈ R. Then the following holds:

1. If U is an n ×m-dimensional matrix with m ≥ 1 such that (X,U) is of full column-rank

k +m < n, then the estimators β̂ and Ω̌BV,J
W,U,c satisfy Assumption 1 with N = span(X,U),

39



and Ω̌BV,J
W,U,c satisfies Assumption 2. If, additionally, Πspan(X)⊥WΠspan(X)⊥ is nonnegative

definite, then Ω̌BV,J
W,U,c is nonnegative definite on Rn\ span(X,U).

2. The estimators β̂ and Ω̌BV
W,c satisfy Assumption 1 with N = span(X), and Ω̌BV

W,c satisfies

Assumption 2. If, additionally, Πspan(X)⊥WΠspan(X)⊥ is nonnegative definite, then Ω̌BV
W,c

is nonnegative definite on Rn\ span(X).

Proof: 1. We verify (a)-(d) in Lemma D.1 for H = In, ν = ω̂W exp(cJ1
n,U ), and N ′ =

span(X,U). That (a) holds follows from the same argument as in the proof of Lemma D.4. That

(c) holds, follows from continuity of ω̂W on Rn (cf. the proof of Lemma D.2), together with

continuity of exp(cJ1
n,U ) on the complement of span(X,U) (cf. the proof of Lemma D.4). The

first Part of (b) was established in the proof of Lemma D.4. The second Part of (b) follows from

the corresponding equivariance property of ω̂W , which was verified in the proof of Lemma D.2,

together with the invariance property in Equation (34) established in the proof of Lemma D.4.

Part (d) follows from ω̂W(y) 6= 0 for λRn -almost every y ∈ Rn (cf. the proof of Lemma D.2)

together with exp(cJ1
n,U (y)) > 0 for every y /∈ span(X,U). The final claim follows from the final

statement in Lemma D.1 since (cf. the proof of Lemma D.2) ω̂W(y) ≥ 0 holds for every y ∈ Rn

in case Πspan(X)⊥WΠspan(X)⊥ is nonnegative definite.

2. The proof is very similar to the proof of the first part. It follows along the same lines

observing that the function defined via

y 7→
û′(y)A′Aû′(y)

û′(y)û′(y)

is well-defined and continuous on Rn\ span(X), and is G(M)-invariant. We skip the details. �

Proof of Corollary 5.7: Noting that

P0,In(Ω̌ is nonnegative definite) = P0,In(ω̂W ≥ 0)

in our present context, the first part follows upon combining Lemma D.5 and Theorem 5.2 (the

statement concerning the lower bound being 1 if Πspan(X)⊥WΠspan(X)⊥ is nonnegative definite

follows from nonnegative definiteness of Ω̌BV,J
W,U,c, or of Ω̌

BV
W,c, respectively, on the complement of

λRn -null sets in that case). For the last part of the corollary, we can apply a similar argument

as the one that was given to verify the analogous statement in Corollary 5.4: Note that now

{T ≥ 0} = {ω̂W ≥ 0} ∪ {Rβ̂ = r} ∪ N , where N = span(X,U) if T is based on Ω̌BV,J
W,U,c, and

N = span(X) if T is based on Ω̌BV
W,c. In both cases N ∪ {Rβ̂ = r} is a λRn -null set, and we see

that (30) holds also in the situation of the present lemma. The remainder of the proof is now

analogous to the argument given at the end of the proof of Corollary 5.4. �

Lemma D.6. Let ai ∈ (0,∞) for i = 0, . . . ,m′ (m′ ∈ N), āi ∈ R for i = 1, . . . ,m′, hi ∈ R for

i = 0, . . . ,m′′ (m′′ ∈ N) with hm′′ 6= 0, and pi ∈ R for i = 0, . . . ,m′′′ (m′′′ ∈ N) with pm′′′ 6= 0.

Suppose further that en(n) /∈ span(X)⊥. Then, Ñ = span(X), and the following holds:
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1. If U is an n × m-dimensional matrix with m ≥ 1 such that (X,U) is of full column-

rank k + m < n, then the estimators β̂ and Ω̌BV,J
U,a,ā,h,p satisfy Assumption 1 with N =

NBV,U , where NBV,U = span(X,U) ∪ {y ∈ Rn\ span(X,U) : ρ̂(y) ∈ {ā1, . . . , ām′}} in case

ρ̂ attains at least two different values on Rn\ span(X), and NBV,U = span(X,U) else.

Furthermore, Ω̌BV,J
U,a,ā,h,p satisfies Assumption 2, and Ω̌BV,J

U,a,ā,h,p(y) is positive definite for

every y ∈ Rn\NBV,U (in fact, for y ∈ Rn\ span(X,U)).

2. The estimators β̂ and Ω̌BV
a,ā,h,p satisfy Assumption 1 with N = NBV, where NBV = span(X)∪

{y ∈ Rn\ span(X) : ρ̂(y) ∈ {ā1, . . . , ām′}} in case ρ̂ attains at least two different values on

Rn\ span(X), and NBV = span(X) else. Furthermore, Ω̌BV
a,ā,h,p satisfies Assumption 2, and

Ω̌BV
a,ā,h,p(y) is positive definite for every y ∈ Rn\NBV (in fact, for y ∈ Rn\ span(X)).

Proof: The assumption span(en(n)) /∈ span(X)⊥ implies non-existence of a y ∈ Rn\ span(X)

so that
∑n−1

i=1 û2
i (y) = 0, showing that ρ̂ is well-defined everywhere on Rn\ span(X), i.e., that

Ñ = span(X). We consider two cases: First, assume that the design matrix X is such that

ρ̂ = ρ holds everywhere on Rn\ span(X) for some fixed ρ ∈ R. Then, the statements in 1.

and 2., except for the positive definiteness claims, follow from Lemma D.5, because bBV(., a, A)

and cBV(., p) are then constant equal to b and c, say, respectively, on Rn\ span(X) and thus

Ω̌BV,J
U,a,ā,h,p(y) = Ω̌BV,J

W,U,c(y) holds for every y /∈ span(X,U), and Ω̌BV
a,ā,h,p(y) = Ω̌BV

W,c(y) holds for

every y /∈ span(X) where the matrix W = (Wij) = (κD(|i− j|/max(bn, 2))). Observe here that

W is constant in y, is symmetric, and is positive definite. The positive definiteness claims in 1.

and 2. finally follow since ω̂W(y) = 0 holds for y ∈ Rn\ span(X) in view of positive definiteness

of W.

Next, we consider the case where X is such that ρ̂ attains at least two different values on

Rn\ span(X). We start with the statement in 1.: First of all, NBV,U is easily seen to be G(M)-

invariant (because ρ̂ is so). Second, we can rewrite

NBV,U =

m′

⋃

i=1

{

y ∈ Rn :

n
∑

i=2

ûi(y)ûi−1(y)− āi

n−1
∑

i=1

û2
i (y) = 0

}

∪ span(X,U).

From that we see that NBV,U is a finite union of algebraic sets, and hence an algebraic set. Thus,

NBV,U is closed. Since we also work under the hypothesis that ρ̂ attains at least two different

values on Rn\ span(X), we can conclude that

{

y ∈ Rn :

n
∑

i=2

ûi(y)ûi−1(y)− āi

n−1
∑

i=1

û2
i (y) = 0

}

6= Rn

holds for every i = 1, . . . ,m′. It follows that the algebraic set in the previous display is a

λRn -null set for every i = 1, . . . ,m′. Hence NBV,U is a closed λRn -null set as span(X,U) 6=

Rn. To prove the statements of 1., we now verify (a)-(d) in Lemma D.1 for H = In, ν(.) =

ω̂WBV(.) exp(cBV(., p)J
1
n,U (.)), and N ′ = NBV,U . We have already verified (a). Furthermore,
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note that bBV(., a, ā) is continuous on Rn\NBV,U . As a consequence, cBV(., p), and WBV(.),

and thus ω̂WBV are continuous on Rn\NBV,U . We already know from the proof of Lemma

D.4 that J1
n,U is continuous on the complement of span(X,U) ⊆ NBV,U . It thus follows that

y 7→ ω̂WBV(y) exp(cBV(y, p)J
1
n,U (y)) is continuous on Rn\NBV,U . Hence, we have verified (c) in

Lemma D.1. To verify (b) we recall from above that NBV,U is G(M)-invariant. Furthermore, the

required equivariance property in (b) holds as a consequence of G(M)-invariance of ρ̂ and J1
n,U

(cf. (34)), and hence of cBV(., p) and WBV(.) on Rn\NBV,U , together with û(δy +Xη) = δû(y)

for every δ 6= 0, y ∈ Rn and η ∈ Rk. That ν(y) = ω̂WBV(y) exp(cBV(y, p)J
1
n,U (y)) is even positive

on Rn\NBV,U follows because WBV(y) is positive definite on Rn\Ñ and Ñ = span(X) holds.

This implies (d) in Lemma D.1, and also the sufficient condition for positive definiteness in the

same lemma. The statements in 2. for the case where ρ̂ attains at least two different values on

Rn\ span(X) are almost identical, and we skip the details. �

Proof of Corollary 5.8: From Assumption 3 it follows that the last row of X is not

equal to zero, i.e., en(n) /∈ span(X)⊥ must hold. Hence, all assumptions of Lemma D.6 are

satisfied. Combining this lemma with Theorem 5.2 proves the claims with CBV(y, h) replaced by

an arbitrary constant critical value C (noting that the lower bound obtained via Theorem 5.2

equals 1 due to nonnegative definiteness of Ω̌BV,J
U,a,ā,h,p (Ω̌BV

a,ā,h,p, respectively) on the complement

of the λRn -null set NBV,U (NBV, respectively)). But now we observe that y 7→ CBV(y, h) is

well-defined on Rn (recall the convention preceding Corollary 5.8), and by construction takes on

only finitely many real numbers C1 < . . . < Cl, say. Hence, for every f ∈ F, every µ0 ∈ M0,

every σ2 ∈ (0,∞) we can conclude that

Pµ0,σ
2Σ(f)({y ∈ Rn : T (y) ≥ CBV(y, h)}) ≥ Pµ0,σ

2Σ(f)({y ∈ Rn : T (y) ≥ Cl}).

Now apply what has been established before with C = Cl. This completes the proof �

Proof of Theorem 5.10: For any i = 1, 2 with R·i 6= 0, the i-th column of En,0(ω) does

not belong to Mlin
0 . Hence span(En,0(ω)) " Mlin

0 , implying that ρ(ω) must be zero. However,

span(En,0(ω) ⊆ span(X) clearly holds. All the other assumptions being obviously satisfied,

Theorem 3.7 completes the proof. �

Proof of Theorem 5.11: We apply Theorem 3.9. It suffices to verify that γ = ω satisfies

the assumption span(En,ρ(γ)(γ)) ⊆ span(X) in that theorem. But this can be established exactly

in the same way as in the proof of Theorem 5.10. �
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