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Abstract

In a school choice problem each school has a priority ordering over the

set of students. These priority orderings depend on criteria such as whether

a student lives within walking distance or has a sibling already at the school.

I argue that by including just the priority orderings in the problem, and not

the criteria themselves, we lose important information. More particularly, the

priority orderings fail to capture important aspects of the information from

which they are derived when a student may satisfy a given criterion across

multiple schools. This loss of information results in mechanisms that discrim-

inate between students in ways that are not easy to justify. I propose an ex-

tended formulation of the school choice problem wherein a “priority matrix”,

indicating which criteria are satisfied by each student-school pair, replaces the

usual profile of priority orderings.
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1 Introduction

In many school districts in the United States students are assigned to public schools

via a matching mechanism. Districts vary in the particular mechanism that they

use. Each mechanism is a solution to a matching problem called the school choice

problem.

This problem was first formulated as a mechanism design problem by Ab-

dulkadiroğlu and Sönmez (2003). Their article and the literature that followed it

have led to many school districts adopting mechanisms based on the Deferred Ac-

ceptance algorithm and the Top Trading Cycles algorithm. Indeed, this literature is

notable for its direct connection to policy making (see Roth, 2008). Certainly, the

formulation of the school choice problem as a problem of mechanism design has

had a highly significant and very positive impact, greatly improving how student-

school matching is conducted in many districts.

That formulation, which is the subject of this paper, is based on the classic

college admissions problem of Gale and Shapley (1962). It consists of five items:

(i) a set of students, (ii) a set of schools, (iii) a list of school capacity numbers, (iv)

a profile of student preference orderings over the schools and (v) a profile of school

priority orderings over the students. A school’s priority ordering is a ranking of

students based on criteria such as having a sibling already at the school or living

within walking distance of the school.

In this paper I argue that item (v), the profile of school priority orderings, can

fail to capture important aspects of the information from which it is derived. In

particular, important information is lost when a student satisfies a priority criterion

across multiple schools. This loss of information means that matching mechanisms

must treat situations that are substantively different from one another as though they

were identical. I show how this can result in unfair matches and how it disqualifies

mechanisms that are reasonable.

I define the school choice problem more fully in the next section and I use

simple examples in section 3 to show that this formulation can suppress crucial

information. I elaborate on those examples in section 4. On the basis of that dis-

cussion I propose a new formulation of the problem in section 5. Then I show in
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sections 6 and 7 how the concept of justified envy and the Deferred Acceptance al-

gorithm can be adapted to this new version of the school choice problem. I discuss

in section 9 the difference between my contribution and some recent literature on

the school choice problem. Section 10 concludes the paper.

2 The school choice problem

The standard formulation of the school choice problem consists of five items:

1. a set I of students,

2. a set S of schools,

3. a list of natural numbers, each indicating the capacity of a school,

4. a list of strict preference orderings over S, one for each student, and

5. a list of weak priority orderings over I, one for each school.

The total number of available seats across all of the schools must be at least as

great as the number of students, with each school having at least one available seat.

This list of five items can be found in, for example, Ergin and Sönmez (2006) and

Abdulkadiroğlu et al. (2017).

A matching assigns each student to a school. The number of students assigned

to a school must not exceed the capacity of that school, and each student must be

assigned to exactly one school. A method of assigning students to schools may in-

volve some randomization. A mechanism is a function that associates a probability

distribution over the set of possible matchings to each school choice problem. An

expected matching is a matrix that gives each student’s probability of being matched

to each school.

It is important to note here that the schools do not set their priority orderings

autonomously. This is a key point of difference between the school choice problem

and the older college admissions problem. Priority criteria are chosen by the district

school board and these criteria induce priority orderings for all of the schools in the

district. One consequence of this is that schools are not considered to be strategic
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agents in the school choice problem. By contrast, colleges are considered to be

strategic agents in the college admissions problem. Similarly, in the case of the

school choice problem the usual definition of Pareto efficiency is “one-sided” (only

the preferences of students matter) whereas for the college admissions problem it is

“two-sided”.

3 Motivating examples

To help motivate a change to the standard formulation of the school choice problem

let us consider two simple scenarios. In scenario A there are three students i, j and

k and three schools s1, s2 and s3. Student i and schools s1 and s2 are in the Oak Hill

neighbourhood. Students j and k and school s3 are in Elm Hill. There is just one

available place at each school.

All three students agree that school s1 is excellent and that s3 is a low-performing

school. The students share the same preference ordering over the schools; they all

rank s1 first, s2 second and s3 third. This means that the preferences of the stu-

dents, without any other information, do not provide us with any reason to prefer

any particular matching over any other one.

However, when we take priority criteria into account we may find cause to dis-

criminate between possible matchings. The district school board has determined

that two priority criteria are applicable. We denote them by p and q. Criterion p

can be read as “lives within walking distance” and q as “has a sibling already at

the school”. These criteria are satisfied by student-school pairs as indicated in the

following priority matrix.

s1 s2 s3

i p,q p −

j − − p

k − − p

(1)

We see that schools s1 and s2 are within walking distance of i while s3 is within

walking distance of j and k. We also see that student i has a sibling who already

attends s1.
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How should we match the three students to the three schools in this scenario?

It surely is sensible to match i to s1. After all, i has a sibling at that school and

lives within walking distance. We can then use a fair coin to decide how to match

j and k to s2 and s3. Under this approach, the students face the following expected

matching. The entries show each student’s probability of being assigned to each

school.
s1 s2 s3

i 1 0 0

j 0 1/2 1/2

k 0 1/2 1/2

(2)

This is in fact the solution that all three of the standard mechanisms generate

for this scenario. Under the Boston mechanism, we assign as many students as

possible to their first-choice schools. Where a school is over-subscribed we refer

to that school’s priority ordering to determine which students are accepted. So

the Boston mechanism would give the available place at s1 to i. The other two

standard mechanisms, the Gale-Shapley student-optimal stable mechanism and the

top trading cycles mechanism, are slightly more complex. For now it suffices to

say that they satisfy a principle called “Mutual Best” (see Morrill, 2013), just as

the Boston mechanism does. This principle says that if school s is the top choice

of student i, and student i is at the top of the priority ordering for school s, then i

should be assigned to s (unless the school cannot accommodate all such “mutual

best” students). Thus those two mechanisms agree with the Boston mechanism in

this case; student i should be assigned to s1 while j and k should assigned s2 and s3

according to a lottery.

Students j and k, and their parents, may be unhappy that the place at the most

desirable school, s1, is given to i with a probability of one and not included in

the lottery. But this assignment is entirely defensible. It can be defended on the

grounds that i has a sibling at s1. So the standard mechanisms have delivered a

perfectly reasonable outcome here.

Now let us consider scenario B. This is the same as scenario A but with one

feature removed. We now suppose that i does not have a sibling at s1. That is, the

priority criteria are satisfied as follows.
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s1 s2 s3

i p p −

j − − p

k − − p

(3)

This is a significant change. The s1 and s2 columns are now identical. This

means that schools s1 and s2 differ from each other only in their desirability. They

do not differ with regard to the criteria set out by the district school board; s1 is

within walking distance of i but so is s2, s1 is beyond walking distance for j and k

but so is s2 and no student has a sibling at either s1 or s2. How should we match

students and schools in this scenario?

3.1 Three proposals for scenario B

Consider the following proposal. First, select one of the students j and k by lottery

and assign that student to s3. It seems appropriate to assign either j or k to s3

rather than forcing i to travel beyond walking distance. This means that either j or

k will travel to Oak Hill for their schooling. The limited capacity of the sole Elm

Hill school makes this unavoidable. Thus one Elm Hill student together with i will

attend school in Oak Hill. Let us say that k is the student who is matched to s3.

We must now match i and j to s1 and s2. Regardless of how we match them, i

will be attending a school within walking distance and j will not. So in choosing

between the two possible ways to match i and j to s1 and s2 the issue of walking

distance is not a discriminant. And both students have the same preference over the

schools. I propose, then, that we use a fair coin to decide who will be assigned to

s1 and who to s2.

In summary, by using a coin to decide who of the Elm Hill students will attend

s3 and then using a coin again to decide who of the remaining students will attend
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s1, we have the following expected matching.

s1 s2 s3

i 1/2 1/2 0

j 1/4 1/4 1/2

k 1/4 1/4 1/2

(4)

This seems like a reasonable solution for scenario B. However, it is not the only

approach we could take. An alternative approach would be the following. We begin

by assigning the place at s1 by fair lottery over all three students. This means that

every student has a probability of one third of being matched to s1. If student i is

not given the place at s1 then i is matched to s2. This ensures that i is not forced to

travel to Elm Hill. If the place at s1 is given to i then the place at s2 is assigned to j

or k according to a fair coin.

It is easy to see that j and k each have a probability of one third of being matched

to s1 and a probability of one half of being matched to s3. It follows that they each

have a probability of one sixth of being matched to s2. Hence, under this second

proposal we have the following expected matching.

s1 s2 s3

i 1/3 2/3 0

j 1/3 1/6 1/2

k 1/3 1/6 1/2

(5)

A third proposal is the following. Let us assign a distinct number to each student

by lottery. The students queue up to choose a school in ascending order of their

lottery numbers. Under this simple approach there is a risk that i may be left with

the place at s3. To avoid this, we add a caveat as follows. We reserve a place at

either s1 or s2 for i, using a fair coin to choose which one. The other students may

not take this reserved place unless i has already been matched to another school.

For example, suppose that we reserve the seat at s2 for i and also that i receives the

lowest lottery number. Then i will choose to take the seat at s1 and the reserved seat

at s2 is released so that the next student in the queue may take it. To take another
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example, suppose again that the seat at s2 is reserved for i but this time student i

receives the highest lottery number and j receives the lowest number. Then, first

in the queue, j takes the place at s1. Though second in the queue, k must take the

place at s3 because s2 is reserved for i. Finally, i takes the reserved place at s2.

Under this approach student i has a probability of two thirds of being matched

to s1. This is because i is matched to s1 if i comes first in the lottery (a probability

of one third) or if the place at s1 is reserved for i (a probability of one half). When

we subtract the probability of both events occurring (one sixth) we arrive at a prob-

ability of two thirds. Thus, under this third proposal the students face the following

expected matching.

s1 s2 s3

i 2/3 1/3 0

j 1/6 1/3 1/2

k 1/6 1/3 1/2

(6)

I submit that these three proposals are among a number of reasonable solutions

that are worth considering in the case of scenario B.

3.2 An unexpected difficulty

Naturally, these proposals would entail treating scenario B differently from scenario

A. This seems sensible given that the scenarios are indeed quite different from one

another. Yet, when we represent scenarios A and B as school choice problems, that

is, using the five items listed in section 2, we find something surprising. We find

that the difference between the two scenarios is lost. Both scenarios correspond

to exactly the same school choice problem. This is because no school’s priority

ordering changed when we moved from scenario A to B.

The school priority orderings are given by the following three columns. Let us

refer to this as a profile of priority orderings. Students j and k rank equally in each

school’s priority ordering.

s1 s2 s3

i i j,k

j,k j,k i

(7)
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Of course, in scenario B we removed i’s sibling from s1 but this does not change the

priority ordering for s1. Student i continues to have higher priority for that school.

Since all five of the items that define the school choice problem, as given in sec-

tion 2, are unchanged across these two scenarios, a matching mechanism receives

exactly the same input for both scenarios. An immediate consequence of this is that

all mechanisms must generate the same probability distribution for both scenarios.

Therefore, if we are to assign the place at s1 to i in scenario A, on the basis that i has

a sibling at that school, then we must assign the place at s1 to i in scenario B too.

Indeed, this is what all three of the standard mechanisms do. Similarly, in scenario

B whomever of the Elm Hill students travels to Oak Hill for their schooling is auto-

matically assigned to the inferior Oak Hill school, s2. This is in spite of the fact that

our reason for making s1 exclusive to i in scenario A is absent in scenario B.

The way in which the school choice problem is defined imposes this cross-

scenario restriction. It severely limits the set of mechanisms that we can consider

and makes it impossible to treat students fairly in both scenarios. Expected match-

ing (2) is fair in scenario A but quite unfair in scenario B. Expected matchings (4),

(5) and (6) are arguably fairer than (2) in scenario B but they would be inappropriate

in scenario A. Yet we must choose a single expected matching to fit both scenarios.

The standard mechanisms generate expected matching (2) for both scenarios. In

doing this they impose a degree of unequal access to better schools that appears to

be needlessly high in the case of scenario B.

Of course, part of the inequality of expected matching (2) in that scenario can

readily be justified. In particular, the fact that i will definitely not be assigned to

the least desirable school s3 can be justified on the grounds that there is sufficient

capacity in local Oak Hill schools for i. However, another part of the inequality, the

exclusion of j and k from s1, arises because crucial information is missing from the

school choice problem itself.

4 The structure of priority

The scenarios that we have considered motivate us to reconsider the definition of the

school choice problem. The first step in developing a new definition of the problem
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is to identify precisely the particular issue that is revealed by those examples and to

discuss that issue in more general terms. That is what I do in this section.

In the preceding section we encountered two kinds of priority structure: the

priority matrix, as in (1), and the profile of priority orderings, as in (7). A priority

matrix indicates which priority criteria are satisfied by each student-school pair.

A profile of priority orderings consists of a ranking of students for each school,

wherein students are ranked according to the strength of their respective claims to

priority for each school. The earlier scenarios A and B are essentially about the

relationship between these two structures.

These two kinds of priority structure are, of course, very closely related. If we

have a priority matrix and we know the relative importance of the priority criteria

then we can determine the relative strength of each student’s claim to a place at

each school. That is, we can derive a profile of priority orderings. To see why

the relative importance of criteria matters, consider the case that one student has a

sibling at a particular school but does not live within walking distance while another

student does live within walking distance but does not have a sibling at the school.

To construct a profile of priority orderings in this case we must know which of these

criteria is the more important (or that they are of equal importance). Indeed, since

each student-school pair may satisfy multiple criteria, we need a ranking not just of

individual criteria but of combinations of criteria.

To make this more formal, let P be a set of priority criteria and let 2P denote

the power set of P. Let f be a mapping from I × S to 2P. For each student i in I

and each school s in S, f (i,s) is the set of priority criteria that are satisfied by the

pair (i,s). Thus, the mapping f describes the priority matrix (since the ordering

of the columns and rows is not important). As we have noted, f by itself is not

sufficient to induce a profile of priority orderings. Let � be a weak ordering over

2P that ranks criteria, and combinations of criteria, by importance. Let us write iRs j

to mean that student i is ranked equal to or above student j in the priority ordering

for school s. Then iRs j if and only if f (i,s)� f ( j,s). In this way, f and � together

induce a profile of priority orderings.

As we have noted, it is the profile of priority orderings, and not the pair ( f ,�),

that is primitive in the formulation of the school choice problem. This formula-

10



tion implies, then, that the profile of priority orderings captures all of the relevant

information contained in the pair ( f ,�) from which it is derived. However, the

examples that we considered in section 3 show that this is not the case.

To help clarify this point it is useful to make the argument more specific. If

f (i,s) contains p then let us say that student i has a claim to a place at school s on

the basis of p. The strength of this claim depends on the importance of the criterion

that underpins it, p. A student who satisfies multiple priority criteria for a given

school has multiple claims to a place at that school. In the following subsection I

make a distinction between connected and unconnected claims. Then I further di-

vide connected claims into two kinds: conjunctive and disjunctive. I argue that the

profile of priority orderings can be taken as primitive only if the claims they rep-

resent are unconnected or conjunctive in nature. However, I argue that, for matters

of school choice, connected claims are disjunctive in nature and so this approach is

not appropriate.

4.1 The nature of claims

The distinction between these kinds of claims is central to my discussion of the

school choice problem. However, this distinction is not special to school choice.

Indeed, let us briefly step away from the school choice problem and consider the

following set of four very simple economic problems.

In each problem there are two individuals i and j. In two of the problems we

are tasked with allocating two items of food to these individuals, and we must give

one item to each person. In the other two problems we must allocate a place on a

program at a professional school to each of i and j, with just one place available at

each school. There are two priority criteria involved in the problems and they are

labelled p and q. Let criterion p be, “this person is a vegetarian and this food is

suitable for vegetarians”, and let q be, “this person has achieved excellent grades in

subjects relevant to this program”.

The following grid of four priority matrices describes the four problems.
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Apple pie Meatloaf Apple pie Turnip

i p − i p p

j − − j − −

Medical Law Medical Business

i q − i q q

j − − j − −

In the upper-left problem individual i satisfies a priority criterion for one item, the

apple pie, and thereby obtains a relatively strong claim to that item. This is an

example of an unconnected claim. This means that the criterion that i satisfies for

this item is not satisfied by i for any other item. Similarly, in the lower-left problem

individual i has an unconnected claim to a place at the medical school. By contrast,

in each of the two problems on the right, individual i satisfies a single priority

criterion over multiple items. In the case of the upper-right problem, individual i

has a connected claim that is based on p and that spans the apple pie and the turnip.

This is a connected claim because it is underpinned by the same criterion across

both items. In the lower-right problem we find again that i has a connected claim

spanning multiple items, this time on the basis of q.

We have made a distinction between unconnected and connected claims. To

make the next distinction, between connected claims that are conjunctive and those

that are disjunctive, let us carefully consider each of the four problems. Let us

suppose that in the two upper problems both individuals would most like to have

the apple pie, and that in the two lower problems both individuals would prefer to

attend the medical school. How then should we match the individuals to the items

in each case?

Let us first consider the two problems on the left-hand side of the grid, in which

i has an unconnected claim to an item. In the case of the upper-left problem it is

sensible to give the apple pie to i even though both individuals would like to have

that item. We can point to p as our reason for doing so: we should assign the apple

pie to i because i is a vegetarian. In the case of the lower-left problem it is sensible

to allocate the place at the medical school to i. This time we may point to q as the

reason: i is the more deserving of the place on that program. The two left-hand
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problems, then, seem to be just superficially different from one another.

The two right-hand problems, in which i has a connected claim spanning two

items, appear to differ just superficially too. But this appearance is deceptive. In the

case of the upper-right problem it would be nonsensical to point to p as a reason for

allocating the apple pie to i. We may well take the view that i is entitled to receive

a food item that is suitable for vegetarians but both items satisfy that entitlement.

Perhaps the best solution here would be to use a fair coin to decide who receives

the apple pie.

By contrast, in the case of the lower-right problem it is perfectly sensible to give

the place at the medical school to i on the basis of q. Indeed, the same reason applies

as in the lower-left problem: i is the more deserving of the place on that program.

Individual i’s meriting of a place on the medicine program is not diminished by the

fact that i is deemed to be more deserving of a place at the business school too.

When we compare the two problems on the right of the grid we find that they are

very different from one another even though they share the same formal structure.

This observation motivates a division of connected claims into the two aforemen-

tioned categories: conjunctive and disjunctive.

Priority criterion q, that refers to merit, is an example of one that grants a con-

junctive claim. In the case of the lower-right problem, criterion q grants i priority

for the medicine program and for the business program, with emphasis here on the

conjunction. If, say, we were to allocate the business program to individual i, she

could appeal to q, together with her preference ordering of the programs, to argue

that she should be given the place on the medicine program instead, even though q

applies to both programs for her.

Priority criterion p, that refers to a dietary requirement, is an example of one

that grants a disjunctive claim. In the case of the upper-right problem, criterion p

is satisfied by individual i in respective of both items. However, i cannot sensibly

invoke p to argue that she should be the one to receive the apple pie when the other

item is a turnip.
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4.2 Loss of information

Suppose again that we seek to match a set of individuals to a set of goods. Let i, j

and k be the individuals and a, b and c be the goods. Let us suppose that all three

individuals have the same preference ordering; they all prefer a to b and b to c.

There are two priority criteria r and t. To make the example more concrete let r be,

“this person adheres to religious laws and this good is compatible with those laws”,

while t is, “this good is fully wheelchair-friendly and this person uses a wheelchair”.

Now suppose that we have the following profile of priority orderings.

a b c

i i i, j,k

j,k j,k

(8)

Here we see that all three individuals i, j and k have equally strong claims to c, and

that i has highest priority for a and b.

In this situation we find that important information is suppressed by the profile

of priority orderings. For example, it could be the case that i adheres to religious

laws and that both a and b are compatible with those laws while c is not. In order

words, (8) is consistent with the following priority matrix.

a b c

i r r −

j − − −

k − − −

(9)

However, (8) is also consistent with a very different situation. Consider the

following priority matrix, for example, in which good a is the only one that is

compatible with i’s religious beliefs.

a b c

i r t −

j − − −

k − − −

(10)
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We cannot determine, then, whether i has a disjunctive claim spanning a and b,

as in (9), or unconnected claims to each of a and b, as in (10). Yet it is perfectly

reasonable to wish to distinguish between those two possibilities when assigning the

goods to the individuals. After all, in the case of (10) we may point to r, together

with the fact that i would prefer to have a rather than b, as a reason to assign a

to i with a probability of one whereas in the case of (9) we cannot. So we see

in this example how a profile of priority orderings can fail to convey important

information.

On the other hand, when connected claims are conjunctive in nature a profile

of priority orderings arguably does convey all of the important information. To ex-

plain this point, it may be helpful to draw an analogy to the rule of “conjunction

elimination” in propositional logic. According to this rule we may infer P and Q

from P∧Q. In a similar way, a conjunctive claim that spans, say, goods a and b, is

no different to having an unconnected claim to each of a and b. If we “eliminate”

conjunction in this way, then we can simply consider each column of a priority mat-

rix separately. In this case we may find that a profile of priority orderings captures

all of the important information about the claims of the individuals.

To clarify this point, let us consider again profile (8) but this time suppose that

r and t are criteria that, when satisfied by one person over multiple goods, grant a

conjunctive rather than a disjunctive claim to those goods. To make the example

more concrete, suppose that r means, “deserving in virtue of good behaviour”, and

t means, “deserving in virtue of hard work”. As before, we do not know the un-

derlying priority matrix. It could be (9) or (10), as they are both consistent with

(8), and there are other possibilities too. But, in this case does it matter which is

the underlying priority matrix? When we compare (9) and (10), for example, there

is no obvious reason to prefer one matching for (9) and then some other matching

for (10). Arguably, since we can eliminate conjunction and effectively apply the

criteria to each good separately, all that matters is the relative strength of the claims

within each column of the priority matrix. Indeed, it follows from this argument

that the profile of priority orderings is a suitable priority structure in this case since

that is exactly the information the profile conveys.

In summary then, a profile of priority orderings captures the important inform-
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ation from its underlying priority matrix when we may regard the claims of in-

dividuals as applying to each item separately. In the case of a conjunctive claim

that spans multiple items we may “eliminate” the conjunction, and consider each

column of a priority matrix separately. But we cannot eliminate disjunction in this

way. This is why a profile of priority orderings suppresses important information

when individuals have disjunctive claims spanning multiple items.

4.3 Relevance to school choice

Since the school choice problem includes just priority orderings, the standard school

choice mechanisms effectively treat all priority criteria as though they grant con-

junctive claims to priority. In the context of student-school matching, we can cer-

tainly conceive of criteria of this kind. Criteria that are based on deservingness and

merit typically belong in this category. A student may be deemed more deserving of

a place at a particular school on the basis of grades or good behaviour. And, though

it would be very controversial, one could also argue that deservingness derives from

financial contributions. In the United States public high schools are funded partly

by property taxes. Perhaps a student could be deemed especially deserving of a

place at a public school on the basis that his or her parents have paid a large amount

in property tax.

However, public school choice programs in the United States do not involve

criteria of this kind. Following its Roundtable on Public School Choice, the Of-

fice of Educational Research and Improvement (1992) noted that “on principle, all

members of the Roundtable do not favor student-based admissions criteria”. Ex-

amples of student-based criteria are those based on grades, behaviour and criminal

records. Consistent with the views of the Roundtable, the priority criteria that are

applied in public school choice programs are about practical issues, such as the cost

of transport, and not deservingness. Typical criteria refer to walking distance or the

availability of bilingual teaching programs. These are pragmatic criteria that would

seem to confer disjunctive claims to school places.

This also explains why my argument applies specifically to the school choice

problem and not to the college admissions problem. In the case of college admis-
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sions, each college ranks students according to some combination of test scores,

grades, interviews and so on. Thus, students do not have disjunctive claims span-

ning multiple colleges, and so it is sufficient to have a priority structure that consists

of a ranking of students for each college.

5 A new definition

In this section I propose a new definition of the school choice problem. We have

seen that a profile of priority orderings, item 5 in the original definition, can fail

to capture important information from the priority matrix when students have dis-

junctive claims spanning multiple schools. I propose that we include the priority

matrix and the ranking of priority criteria, themselves, in the definition of the prob-

lem, replacing the profile of priority orderings that is derivable from them. In other

words, I propose that we make f and � primitive notions in the problem. Crucially,

this allows us to see where a school’s priority ordering comes from. We can see

where there is a connected claim and we can identify the criterion that underpins it.

Accordingly, the seven items that constitute an extended school choice problem

are:

1. a set I of students,

2. a set S of schools,

3. a list of natural numbers, each indicating the capacity of a school,

4. a list of strict preference orderings over S, one for each student,

5. a set P of priority criteria,

6. a mapping f from I ×S to 2P, the power set of P, and

7. a weak ordering � over 2P such that A ⊆ B → A � B.

Returning to the earlier examples, let us observe that scenarios A and B become dis-

tinct from one another when they are represented as extended school choice prob-

lems. Let p denote one priority criterion, “lives within walking distance”, and let q
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denote the other criterion, “has a sibling at this school”. Then in the case of scenario

A f (i,s1) is {p,q} whereas in scenario B f (i,s1) is {p}. So item 6 is the formal

tool that accounts for the difference in this case.

One consequence of this extension of the school choice problem is that it ex-

pands the set of mechanisms that we may consider. Of course, this expansion is

worthwhile only if it encompasses mechanisms that are reasonable. To demonstrate

that this is the case, I provide in section 7 an example of how a standard mech-

anism can be adapted to the extended school choice problem in such a way that it

becomes sensitive to information about priority factors. In this case the mechanism

that I adapt is the Gale-Shapley student-optimal stable mechanism, which may be

implemented by the celebrated Deferred Acceptance algorithm.

A second consequence is that we may consider normative principles that are

precluded by the standard definition of the problem. Indeed, I suspect that important

normative aspects of student-school matching have been overlooked because of the

way in which the problem has been defined. In the next section I discuss a normative

concept that arises naturally once we extend the school choice problem.

Note also that the extended definition opens up a rich set of possible mechan-

isms and normative principles without removing anything that was possible under

the standard definition. Since we can construct a priority ordering for each school

we can derive a standard school choice problem from an extended problem. This

means that any of the standard mechanisms of student-school matching can be ap-

plied to an extended problem.

6 Justified envy

Justified envy, also called “priority violation” by Kesten (2010), is a central concept

in much of the normative analysis in the literature on the school choice problem. It

is defined as follows.

Justified envy. There is a student i and a school s such that (i) student i prefers

school s to the one that i has been assigned to and (ii) a student has been

assigned to s despite having lower priority for s than i has.
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Take either of the earlier scenarios A or B, for example, and suppose that student j

or k is assigned to s1 while i is assigned to s2. This is an instance of justified envy

because i prefers s1 to s2 and has higher priority for s1 than the student who has

been assigned to that school. However, I argue that this envy is rightly justified in

the case of scenario A only.

In scenario A, if student i is turned away from s1 then she misses out on attend-

ing the same school as her sibling. She and her family can justifiably feel that they

have been hard done by, and their complaint is clearly relevant to public policy. In

the case of scenario B, on the other hand, i’s claim to priority for s1 is based solely

on priority criterion p, that she lives within walking distance of the school. But, I

argue, this priority criterion grants her a disjunctive claim that encompasses both

s1 and s2. Since she has been assigned to s2 she cannot sensibly appeal to p to

justify her envy. Indeed, if we swap the assignments of the two students we achieve

no goal of public policy; the number of students attending a school within walking

distance is unchanged.

I propose therefore an alternative concept that I call strongly justified envy. To

help define this concept I introduce some notation here. Given a student i and a set

of priority criteria C, let S(C, i) be the set of all schools s such that C is a subset of

f (i,s). In other words, S(C, i) is the set of all schools that meet all of the criteria in

C with respect to student i.

Strongly justified envy. There is a student i and a set of priority criteria C such that

(i) student i prefers every school in S(C, i) to the one that i has been assigned

to and (ii) a student has been assigned to a school in S(C, i) despite having

lower priority for that school than i has.

The intuition behind strongly justified envy is the following. A student i cannot

sensibly appeal to C to justify his or her envy if it is the case either that i has in fact

been assigned to a school in S(C, i) or if there is a school in S(C, i) to which i would

not like to be moved.

The concepts of justified envy and strongly justified envy coincide in scenario

A and diverge in scenario B. In scenario A, if i is assigned to either s2 or s3 then

i regards the student assigned to s1 with strongly justified envy. This is because
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S({p,q}, i) contains just s1 in that scenario. In scenario B, on the other hand, the

matching exhibits strongly justified envy only in the case that i is assigned to s3. In

that scenario, S({p,q}, i) is empty and S({p}, i) is {s1,s2} and so there is no case

of strongly justified envy if i is assigned to s2.

The concept of strongly justified envy is relevant to the argument I make in this

paper because it is an example of a normative concept that is surely relevant to

school choice but that is excluded by the standard definition of the school choice

problem. In the next section I provide an example of a mechanism that, like the

concept of strongly justified envy, is sensitive to the additional information con-

tained in an extended school choice problem.

7 Deferred Acceptance

The famous Deferred Acceptance algorithm originates in a seminal article by Gale

and Shapley (1962). The algorithm is first applied to the school choice problem by

Abdulkadiroğlu and Sönmez (2003). The resulting mechanism is called the Gale-

Shapley student-optimal stable mechanism. A key property of the mechanism is

that it always generates a matching that is free from justified envy (and for this

reason is said to be stable).

The standard algorithm, applied to school choice, works as follows. First, we

assign a distinct number to each student in I by lottery. These numbers are used to

break ties in the school’s priority ordering so that the ordering becomes strict.1 In

each round of the procedure students “propose” to schools. In the first round each

student proposes to his or her top-choice school. Each school considers all of its

proposers and decides who to hold and who to reject. In subsequent rounds, each

rejected student proposes to his or her next most preferred school. If a student is

“held” by a school at the end of a round then he or she proposes again to the same

school in the following round. This is because the schools release all students at the

beginning of each round. The procedure continues until a round ends with every

student being held by a school.

1For analysis of the surprisingly complex issues around tie-breaking in school priority orderings
see Erdil and Ergin (2008), Abdulkadiroğlu, Che and Yasuda (2015) and Özek (2016).
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In each round of the procedure each school has a set of proposers. This set

includes those students who were held by the school at the end of the previous

round, and new proposers who were rejected by other schools in the previous round.

Let q be the capacity of a particular school. If the number of proposers is less than

or equal to q then the school holds all of its proposers in that round. If the number

of proposers is greater than q then the school holds the top q proposers according

to its priority ordering.

To motivate a change in the algorithm let us apply it to our earlier scenario B.

All three students i, j and k have the same preference ordering. They all rank s1 first,

s2 second and s3 third. Thus in the first round of the procedure all three students

propose to s1. Then s1 holds i and rejects j and k because i is highest in the school’s

priority ordering. In the second round, j and k move on to s2 while i proposes again

to s1. Whomever of j and k has the higher lottery number is held by s2 and the other

moves on to s3.

Note that during the first round i automatically took the place at s1 on the basis

that i lives within walking distance of s1 and j and k do not. However, we know

that s2 is also within walking distance of i. I argue that in this situation there should

be a non-zero probability that s1 holds j or k and rejects i on the basis that s2 can

accommodate i just as well as it can accommodate j or k.

The following definitions are helpful to me in describing a modification of this

mechanism.

High priority. A student has high priority for school s if he or she has a top-q posi-

tion in R∗
s , the school’s priority ordering after ties are broken according to the

student lottery numbers (favouring lower numbers), where q is the capacity

of school s. Let H(i) be the set of all schools for which student i has high

priority.

Exchangeable. A school s′ is exchangeable for school s with respect to student i if

f (i,s) is a subset of f (i,s′). That is, (i,s′) satisfies every priority criterion that

(i,s) satisfies (and perhaps more besides). Let E(i,s) be the set of all schools

that are exchangeable for s with respect to i.

Selection number. Separately from the lottery numbers assigned to students to de-
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termine the order in which they propose to schools, we randomly assign selec-

tion numbers to student-school pairs. For each student i we assign a distinct

number in {1, . . . , |S|} to each school in S by lottery. So a given student has

a distinct selection number for each school, but two students may share the

same selection number for a given school. Let Sel(i,s) denote the selection

number for the pair (i,s).

As we discussed earlier, the priority ordering Rs of school s is obtained as follows.

We have iRs j if and only if f (i,s)� f ( j,s). Now let us construct another ordering

Qs. Just as Rs is derived from � and f , this new ordering Qs is derived from � and

a new function g which we define as follows. For all schools s and students i, if

there is a school s′ in E(i,s)∩H(i) such that Sel(i,s) > Sel(i,s′) then let g(i,s) be

the empty set. Otherwise, let g(i,s) be the same as f (i,s). We have iQs j if and only

if g(i,s)� g( j,s). Finally, we obtain strict ordering Q∗
s by using the student lottery

numbers to break ties in Qs.

We can now simply apply the usual Deferred Acceptance algorithm with Q∗
s

taking the place of R∗
s for every school s. To help clarify this mechanism, let us

apply it to scenario B.

First, we construct the Q orderings. In this case schools s1 and s2 are exchange-

able for one another with respect to student i. That is, we have E(i,s1) = {s1,s2}

and E(i,s2) = {s1,s2}. Note that a school is always exchangeable for itself. Since

i is at the top of the priority ordering for both s1 and s2 we have H(i) = {s1,s2}.

Student i has a unique selection number for each school. If Sel(i,s1) > Sel(i,s2)

then g(i,s1) is empty and g(i,s2) is {p}, the same as f (i,s2). Symmetrically, if

Sel(i,s2)> Sel(i,s1) then g(i,s2) is empty and g(i,s1) is {p}. This means that one

of these two schools will effectively ignore the priority criterion p when i proposes,

and the other will not.

Suppose that Sel(i,s1)> Sel(i,s2). Then g(i,s1) is empty. Yet it is still possible

for i to be held by s1. This is because g( j,s1) and g(k,s1) are also empty, since

students j and k do not satisfy any priority criterion for s1. When all three students

propose to s1 in the first round, the school will simply hold the student who has the

lowest lottery number. Thus each of the three students has a probability of one third

of being matched to s1 in this case. If i is rejected by s1 then i will be held by s2
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in the second round. This is because g(i,s2) is {p} while g( j,s2) and g(k,s2) are

empty.

Now suppose instead that Sel(i,s2)> Sel(i,s1). Then it is g(i,s2) that is empty,

and g(i,s1) is {p}, the same as f (i,s1). The fact that g(i,s1) is {p} while g( j,s1)

and g(k,s1) are empty means that i ranks above j and k in the ordering Qs. Thus

i will certainly be held by s1 in the first round, irrespective of the student lottery

numbers.

This means that before the student lottery numbers and selection numbers are

drawn, student i has a probability of two thirds of being matched to s1. This is

because i is matched to s1 if i has the lowest lottery number (probability of one third)

or if i’s selection number for s1 is lower than i’s selection number for s2 (probability

of one half) and those two events are independent. Indeed, the expected matching

that the students face in scenario B under this mechanism is (6).

8 Top trading cycles

A unique number is assigned to every school seat by lottery.

As before, all three students propose to s1 in the first round. Then s1 tentatively

holds j, the first proposer. Next s1 considers i’s proposal. Here we must identify

the schools s such that (i) school s is exchangeable for s1 with respect to i and (ii)

student i has high priority for s1. Only s1 and s2 meets these conditions. Thus

whether s1 holds i (displacing j) depends on the selection numbers that i has for

schools s1 and s2. If i has a lower selection for s1 then s1 holds i, otherwise s1

rejects i.

I propose that we replace the decision tree shown in figure ?? with the one

shown in figure 1.

The new decision node, the difference between the two mechanisms, is relevant

when a school receives a proposal from a student who (i) is not one of the first q

to propose to the school in that round and (ii) has higher priority than a student

who is tentatively being held by the school. Suppose that a school s receives such a

proposal from a student i. Let E be the set of all schools that are exchangeable for

s with respect to i. And let H be the (possibly empty) set of all schools at which i
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Do we have a free seat?
yes no

Hold

Does this applicant

have priority over a

student we are holding?

yes no

Is there an exchangeable

school for which this

applicant has high

priority and a lower

selection number?

yes no

Reject Hold

Reject

Figure 1: Alternative decision tree

has high priority. It is the intersection of these two sets, E ∩H, that matters at this

new decision node. It contains those schools that meet all the same criteria with i

as s does and from which i can never be displaced by a higher priority student. If i

has high priority for s then s itself is in E ∩H.

If E ∩H is empty or contains only s then s will hold i. Otherwise s decides

whether to hold i based on the selection numbers than have been issued to i for the

schools in E ∩H and for s. If i has a lower selection number for a school in E ∩H

than he or she has for s then s rejects i. If not then s holds i. This means that the

decision of a school in regard to a proposing student does not depend on the position

of that school in the student’s preference ordering, which is a key characteristic of

the original algorithm.

To help clarify this second decision tree, let us consider again the case of scen-

ario B in which student j has lottery number one and i has lottery number two.

Since the probability of i being assigned to s3 is zero we can be certain that

there will be no strongly justified envy in the outcome. In fact, this mechanism gen-

erates a matching free from strongly justified envy for all extended school choice

problems. To see that this is true, when a school rejects a student l it is implied that
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either (i) the school has already reached capacity, holding students who are equal

to or higher than l in its priority ordering, or (ii) there is exchangeable school that

is certain to hold l should he or she propose to it. Thus, l can fail to displace a

lower-priority student at a school but this can happen only if l is guaranteed a place

at an exchangeable school. Hence, strongly justified envy cannot arise.

Let us briefly consider the case of scenario A in which, as before, students i, j

and k receive lottery numbers two, one and three respectively. All three students

propose to s1 in the first round. Then s1 initially holds j only to reject j when

i proposes. Student j is immediately displaced here because school s2 is not ex-

changeable for s1 in scenario A. In the end, i is matched to s1, j is matched to s2

and k is matched to s3. We can see that, before the lottery number are drawn, the

students face expected matching (2).

This mechanism, then, yields a different expected matching over the two scen-

arios A and B. This is the crucial difference between this mechanism and the stand-

ard ones and it is the point of my presenting this mechanism here. I submit that this

is not an unreasonable mechanism. Yet it is excluded by the standard definition of

the school choice problem. This concludes my argument for an expansion of the set

of school choice mechanisms. In the next section I discuss the relationship of this

paper to some recent literature.

9 Literature on diversity and slot-specific priorities

Socio-economic and racial diversity in schools is an important matter of public

policy in the United States and many other countries. Much of the recent literature

on the school choice problem addresses this issue. In order to facilitate mechan-

isms that are sensitive to diversity-related concerns, a number of variations of the

standard school choice problem have been defined.

Upon a cursory inspection, this paper might seem to be about diversity in schools

too. A reader may wonder whether the issue that I have raised here has not already

been dealt with in some way in the extensive literature on that topic. However, this

paper is not about diversity in schools. The issue that I raise in this paper is fun-

damentally different from the issues analysed in the existing literature. In this final
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section I seek to clarify this point.

An exercise that is helpful in separating this paper from the existing literature is

to focus on the case that each school can accommodate just one student. The school

choice problem is normally a many-to-one matching problem but in this special case

it becomes a one-to-one matching problem. Though not realistic, this exercise will

help us to understand the fundamental difference between the topic of this paper

and the issues that are addressed in the existing literature. I begin by establishing

that, unsurprisingly, the various models of the school choice problem that address

the issue of diversity in schools all collapse into the standard model in this case,

because diversity is simply not an issue when each school has one student.

Let us turn first to an important variation of the school choice problem called

the controlled school choice problem. In the controlled problem, school enrolments

are subject to exogenously imposed constraints that maintain diversity in schools.

These constraints usually take the form of lower or upper limits for students in

particular ethnic, racial or socio-economic groups. For analysis of controlled school

choice problems see, for example, Kojima (2012), Hafalir, Yenmez and Yildirim

(2013) and Ehlers et al. (2014). When the number of students at each school is

exactly one then quotas and other limits intended to ensure diversity clearly do not

apply.

Echenique and Yenmez (2015) introduce a model in which schools regard some

student types as being complementary to others, reflecting a preference for diversity

in their classrooms. A model of this kind is also studied by Bó (2016). Each

school has a choice function that is defined over sets of students instead of just

having a ranking of individual students. Given a menu of possible sets of students,

the choice function identifies the student body that the school would most like to

have. This choice may reflect a preference for diversity across different types of

student. Of course, in the special (and unrealistic) case that we are considering in

this section, wherein the capacity of each school is just one, a ranking of possible

student populations is no different from a ranking of individual students.

In another departure from the standard school choice problem, Kominers and

Sönmez (2013) consider slot-specific school priorities. Boston is an example of a

city that implements slot-specific priorities. In Boston, a “walk zone” priority factor
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is applicable to just half of the seats (or slots) at each school. Previously, economists

had modelled this case by splitting each school into two schools, one sensitive to

the walk zone and the other not. Kominers and Sönmez argue convincingly that this

approach is unsuitable and they consider a school choice problem with slot-specific

priorities. Their work builds on the contribution of Sönmez and Switzer (2013). In

the special case that each school has just one slot, however, the idea of slot-specific

priorities is not relevant.

Yet, the extended school choice problem does not collapse into the standard

version of the problem when each school has one student. Indeed, whether schools

have one student or multiple students is not relevant to the topic of this paper. This

helps us to see that the contribution of this paper is independent of the existing

literature on diversity in schools. By discussing the special case in which there is

one student for each school I do not mean to imply that the difference exists only in

that case. Rather, focusing on the case of one-to-one matching brings the difference

into sharp relief. The two topics are quite distinct from one another irrespective of

the size of each school’s capacity. This explains why the existing literature, though

extremely rigorous on the topic of diversity, does not cover the same ground as this

paper.

This paper is about an alternative formulation of the school choice problem in

which normatively significant information is not lost. By retaining and using this

information we may find that we can construct mechanisms that are potentially

fairer than the existing mechanisms. Of course, it may be that a greater degree of

diversity emerges as a by-product of mechanisms that treat students more fairly.

Nevertheless, fairness is a different matter from diversity and it is fairness that we

are concerned with here.

10 Conclusion

I have argued that the canonical definition of the school choice problem excludes

some methods of student-school matching in a way that seems arbitrary. I proposed

an extended definition in section 5. Items 5–7 in that definition are new and they

replace the list of school priority orderings in the original definition.
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Items 5–7 have heretofore been “behind the scenes” in this literature. They have

always implicitly been the items from which school priority orderings are derived.

But they do not feature in the standard definition of the problem because it is tacitly

accepted in the literature that school priority orderings capture all of the relevant

information contained in those items. If this view is correct then it is convenient to

simply treat school priority orderings as primitive objects in the matching problem

and to discard those antecedent items.

I compared two simple scenarios to argue that, on the contrary, this approach

results in the loss of important information. We saw that this loss of information

limits the set of possible solutions to the extent that those two very different scen-

arios must be treated as though they were identical. It is for this reason that I

propose the extended school choice problem in which items 5–7 are restored.

This alternative definition of the problem expands the set of mechanisms that

we may consider. My view is that this produces the natural solution space for the

school choice problem. And let us note that one need not desire to design new

mechanisms in order to find this expansion to be worthwhile. For example, existing

impossibility/uniqueness theorems that are relevant to school choice may become

more conclusive or may be undermined in interesting ways when they are applied

to a larger set of mechanisms.

To provide an example of how a mechanism can be made sensitive to this addi-

tional information I proposed an adaptation of the Deferred Acceptance algorithm.

Crucially, it would be impossible to define this new mechanism under the standard

formulation of the school choice problem.

I have also sought to clarify the difference between the issue I address in this

paper and the issue of diversity in student-school matching that is the focus of much

of the recent literature. The special case in which each school can accommodate

just one student helps us to see that this paper is quite separate from that literature

both in its motivation and in its proposals.
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