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Abstract: Economic analysis assumes that consumer behavior can be rationalized by a

utility function. Previous research has shown that some decision-making quality can be captured

by permanent cognitive ability but has not examined how a temporary load in subjects’ working

memory can affect economic rationality. In a controlled laboratory experiment, we exogenously

vary cognitive load by asking subjects to memorize a number while they undertake an induced

budget allocation task (Choi et al., 2007a,b). Using a number of manipulation checks, we verify

that cognitive load has adverse affects on subjects’ performance in reasoning tasks. However,

we find no effect in any of the goodness-of-fit measures that measure consistency of subjects’

choices with the Generalized Axiom of Revealed Preferences (GARP), despite having a sample

size large enough to detect even small differences between treatments with 80% power. Our

finding suggests that researchers need not worry about economic rationality breaking down

when subjects are placed under temporary working memory load.
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1 Introduction

Economic analysis assumes that consumer behavior can be rationalized by a utility function.

The economic rationality assumption is by now well understood and described by the core axioms

of revealed preferences theory (Afriat, 1967; Varian, 1982). Revealed preferences theory also

provides the tools to test whether any given data set violates those axioms and how severe such

violations might be.

Choi et al. (2014) advance the view that heterogeneity in choices may be driven (on top

to other factors) by differences in decision-making ability; that is, the choices that some peo-

ple actually make may be different from the choices they would make if they had the skills

or knowledge to make better decisions. Thus, limited decision-making ability may also pro-

duce sub-optimal choices indicative of low decision-making quality. Choi et al. (2014) define

decision-making quality in terms of whether observable behavior is consistent with the utility

maximization model and explore, among others, the correlation of economic rationality with

measures of cognitive ability (i.e., the Cognitive Reflection Test - CRT by Frederick (2005)).

The results of their experiment suggest that the CRT captures some decision-making ability

related to decision-making quality.

We revisit this issue but instead of relying on correlational measures of cognitive ability,

we go one step further by exogenously impairing subjects’ cognitive resources in a laboratory

experiment. We do this by requiring subjects to memorize numbers of different lengths while

they are making choices. Our experimental treatment is designed to reduce availability of

cognitive resources for subsequent tasks. Imposing a burden on working memory has been shown

to have adverse effects on performance in a variety of tasks that involve logic or reasoning (see

Deck and Jahedi, 2015, and citations therein). Deck and Jahedi (2015) based on an extensive

review of the literature note that overall, increasing cognitive load leads to ‘. . . poorer reasoning

and math performance, more risk-aversion, and more impatient choices, although the evidence

is mixed for each of these’.

Specifically, Deck and Jahedi (2015) find in their experiment that higher cognitive load

reduces performance in math problems, leads to more risk-averse behavior, more impatience

over money, and a higher likelihood to anchor but find no evidence of cognitive load effects on

impatience or unhealthy snack choice. Similarly, Benjamin et al. (2013) and Gerhardt et al.

(2016) find that a cognitive load manipulation increases risk aversion. Many other studies that

are reviewed in Deck and Jahedi (2015) are exploring cognitive load in relation to math ability

and logic, risk, intertemporal choice, food choice, generosity, strategic behavior etc.

The closest to our study is the experiments in Castillo et al. (2017) which employ a sleepiness

manipulation through circadian mismatch. Circadian mismatch has been shown to be associ-

ated with impairment of cognitive abilities and is another way to temporarily deplete cognitive
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resources. To accomplish their manipulation, they recruited only young men and women who

were validated morning- and evening-type individuals. Subjects were then randomly assigned to

a session at a preferred time of the day relative to their diurnal preference (circadian matched)

or at a non-preferred time (circadian mismatched) and they then chose budget allocations using

the Choi et al. (2007a,b) allocation task. Castillo et al. (2017) find that adherence to the gen-

eralized axiom of revealed preference (GARP) is identical between mismatched and matched

participants.

One possible caveat with the Castillo et al. (2017) study is that their manipulation checks

rely on self-reported measures to demonstrate that their manipulation concurrently affects other

variables of interest in the expected direction. As such, the evidence of a successful manipulation

is fairly unconvincing and Castillo et al. (2017) rightfully acknowledge ‘. . . the complexity of

trying to separately manipulate circadian effects from sleep level effects in an experimental

design of this nature’.

In our study, in order to explore consistency with economic rationality, we employ the Choi

et al. (2007a,b) induced budget allocation task. This particular allocation task allows elicitation

of many decisions per subject from a wide variety of budget lines. In addition, the frequent

shifts in income and relative prices are such that budget lines cross frequently and so the

variety of budget lines produces data that can be used to test for consistency with revealed

preferences theory (Choi et al., 2007a). Our cognitive load manipulation, a number memorizing

task, is designed along with several incentivized manipulation checks that undoubtedly show

its effectiveness. We find that subjects’ performance in demanding reasoning tasks is affected

when under high cognitive load but less so in tasks that require low or no reasoning at all. We

employ several goodness-of-fit measures to measure consistency with economic rationality given

the trade-offs involved with using one over another, and generally find that cognitive load does

not affect economic rationality i.e., a null effect. We also show that our study was sufficiently

powered to detect even small effects, which gives us enough confidence to conclude that our null

effect is genuine and not the result of a small sample size.

The next section describes our experimental design with particular emphasis on the cognitive

load manipulation and the induced budget line allocation task. Section 3 describes the various

goodness-of-fit measures we use in this study to measure consistency with economic rationality

according to revealed preferences theory. In Section 4 we showcase the null effect of cognitive

load on economic rationality after first establishing the success of the treatment based on a

series of manipulation checks. We also complement our results with sample size calculations to

show that our null result is likely not a false negative.
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2 Experimental design

In May 2017, we recruited 178 subjects from the undergraduate population of the Agri-

cultural University of Athens in Greece to participate in a computerized experiment at the

Laboratory of Behavioral and Experimental Economics Science (LaBEES-Athens). Subjects

were recruited using ORSEE (Greiner, 2015) and participated in 10 sessions of 14 to 25 sub-

jects. All sessions started from 10 am and concluded by 2 pm. Although subjects participated

in group sessions, there was no interaction at any point between subjects and group sessions

only served as a means to economize on resources. In fact, given that we timed every decision

stage of our experiment (response times are discussed in Section 2.4), we chose to run individ-

ual instances of zTree (Fischbacher, 2007) to avoid any time lags in communication between

computers and allow every participant to proceed at their own pace. Although subjects knew

from the very beginning that they could move through the screens at their own pace, they were

also told that they could leave the room only when all the subjects have made their decisions

for reasons related to collection of all data and the printing of the individual receipts. This was

also done to slow down the pace of subjects who just wanted to minimize their stay in the lab.

Subjects were randomly split into two within-subjects treatments and each subject was only

exposed to one of them: 87 subjects experienced the high cognitive load treatment (HCL) and

91 subjects experienced the low cognitive load (LCL) treatment.

Upon arrival, subjects were given a consent form to sign and were randomly seated to one of

the PC private booths. The instructions were computerized, interactive and included thorough

examples for each type of task that would appear in the experiment (see Experimental Instruc-

tions section in the Electronic Supplementary Material). Subjects were specifically instructed to

raise their hand and ask any questions in private and that the experimenter (one of the authors)

would then share his answer with the group. Subjects received a show-up fee of e3 and a fee

of e4 for completing the experiment so that each subject would receive e7 with certainty upon

successful completion of the experiment, which lasted about an hour. They could also earn

additional money during the experiment (described momentarily), and so the average of total

payouts was e13.05 (S.D.=3.64, min=7, max=20.53).

In total, subjects played 75 periods and in every period they went through one of the following

decision tasks: 1) an induced budget line allocation task, 2) an arithmetic (addition) task, 3)

an arithmetic (multiplication) task, and 4) a click-a-button task. The budget allocation task

was repeated for 60 consecutive periods (reasons for this number of repetitions is explained in

Section 2.2) and every other decision task was repeated for 5 consecutive periods (thus, 1 task

× 60 periods + 3 tasks × 5 periods = 75 periods). Subjects were not provided with any kind

of feedback between periods for any of the tasks. Each subject was randomly exposed to one of

the possible orders of the tasks, however, the induced budget task was always placed either at
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the very beginning of the experiment or at the very end. Figure 1 shows sample screen shots

illustrating the various decision tasks.

Subjects were specifically instructed to remove from their desks anything that could be used

to take notes (e.g., cellphones, paper, pen, pencil etc.). This was part of their instructions (see

Experimental Instructions - Screen 1 at the Electronic Supplementary Material) but they were

also reminded orally by the experimenter before the start of the experiment. In addition, two

research assistants and the experimenter supervised the lab to make sure that this would be

enforced during the experiment so that subjects could not cheat in any way at the memorization

task by, for example, typing the number they had to memorize in an intermediate screen. This

also affected the way we designed all other tasks in that we avoided having input boxes (which

subjects could use to temporarily type the number they had to memorize) and only included

buttons as input items. Shortcut keys for copy-paste (i.e., ctrl+c and ctrl+v) were disabled in

all computers during the experiment.

2.1 Cognitive load manipulation

To manipulate cognitive load, we implemented an incentivized number memorization task

(Benjamin et al., 2013; Deck and Jahedi, 2015).1 Specifically, in each period and just before the

main decision tasks described above, a number appeared for four seconds on the participant’s

computer screen (see Figure 1a and 1b for sample screen shots). Subjects were then asked to

keep this number in their memory and recall it after the main decision task (see Figure 1g for

a sample screen shot). If they recalled (typed) the number correctly within a time limit of ten

seconds, their memorization payoff for the period was e9.2 Otherwise it was zero. Subjects

in the HCL treatment were shown 8-digit numbers while subjects in the LCL treatment were

shown 1-digit numbers to memorize. Numbers to memorize where drawn randomly in each

period and independently from other subjects.

1Benjamin et al. (2013) note that requiring participants to memorize a string of numbers while they are
engaged in the task of interest, is a common cognitive load manipulation in the psychology literature (e.g.,
Hinson et al., 2003; Shiv and Fedorikhin, 1999).

2Subjects would see a counter counting down from 9 seconds but the counter took an extra second before
countdown initiation so that actual count down time was 10 seconds. Similarly, in the memorization task the
counter would start counting down from 3 although the counter took an extra second before doing so, so that
the number was always displayed for 4 seconds.
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Figure 1: Sample screen shots of various tasks

(a) Memorize number in the HCL treatment (b) Memorize number in the LCL treatment

(c) Induced budget allocation task (d) Multiplication task

(e) Addition task (f) Click-a-button task

(g) Recall number
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2.2 The induced budget line allocation task

We used the graphical representation of simple portfolio choice problems of Choi et al.

(2007b) where subjects are asked to select a bundle of commodities from a standard budget

set. Subjects saw a graphical representation of a budget line on the computer screen and made

choices on the budget line through a simple point-and-click action (see Figure 1c). In our

implementation of the interface in zTree, we also allowed subjects to make refined grid choices

by using buttons that could add/subtract very small amounts in the commodity space in an

interactive way.

This particular interface allows elicitation of many decisions per subject from a wide variety

of budget lines which produces a very rich individual-level dataset. The shifts in income and

relative prices are such that budget lines cross frequently and the variety of budget lines pro-

duces data that have been used in the literature to test if the Generalized Axiom of Revealed

Preferences (GARP) holds (Choi et al., 2007a). If GARP holds, then individual’s choices are

consistent with maximization of a well-behaved utility function.3 Choi et al. (2014) use this con-

sistency of choices with economic rationality as a measure of decision-making quality (economic

rationality defined by having a complete and transitive preference ordering).

In the induced budget line allocation task, subjects were asked to choose an allocation

of points (constrained to lie on the budget line) between the ‘Orange account’ and the ‘Brown

account’ (corresponding to the horizontal and vertical axis, respectively) with the understanding

that one of the accounts would be randomly selected at the end of the experiment and that

each account was equally likely. Each task started with the computer selecting a budget line

randomly from the set of budget lines that intersect with at least one of the axis at 50 or more

points and the other axis at 30 or more points. No intercept could exceed 100 points. The

budget lines selected were independent between periods and between subjects (the full set of

budget lines shown to each subject can be found in the Electronic Supplementary Material).

The pointer was set by default to the origin, if subject had not yet made a choice. Although

a timer was implemented for consistency with the other tasks, subjects were not forced out of

the task if they had not made a choice. The exchange rate between points and Euros was set

to 1 point = e0.15.

The number of periods in the induced budget line allocation task was determined based on

Bronars’s (1987) power measure of revealed preferences tests. Bronars (1987) adopted Becker’s

3 Varian (1988) shows that if we only observe demand for a subset of goods (as in a typical laboratory
experiment), then GARP is no longer necessary. Therefore, testing a data set for consistency with GARP
characterizes utility maximization only when the demand for all available goods is observed. Otherwise, the
utility maximization hypothesis imposes no restrictions on observable data. However, a theorem in van Bruggen
and Heufer (2017) shows that consistency of the observed data with GARP is still a necessary and sufficient
condition for utility maximization over all observed and unobserved goods, if unobserved prices and expenditure
remain constant (a condition which is naturally satisfied in the lab, as we can plausibly assume that the world
outside the lab remains constant during an experiment).
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(1962) notion of irrational behavior where the representative consumer is assumed to choose

consumption bundles randomly from her budget hyperplane. We randomly generated consump-

tion data for 50,000 hypothetical subjects who randomize uniformly among all allocations on

each budget line and repeated this procedure over 10 to 60 budgets tasks with a step of 10.

We then calculated Afriat’s Critical Cost Efficiency index (CCEI) which measures the amount

by which each budget constraint must be relaxed in order to remove all violations of GARP

(Afriat, 1972; Varian, 1993, 1990) (see also section 3.1 for a detailed description of this index).

Varian (1993) proposes a 95% efficiency level as the critical level for “sentimental reasons [sic]”.

Table 1 shows that increasing the number of budget tasks from 10 to 60 significantly reduces

the chance that random behavior will pass the GARP test. With 60 budget tasks, only 2 out

of 50,000 hypothetical subjects have a CCEI larger than 0.95. The number of repetitions is

an important detail in our design because under cognitive load, there might be a tendency for

subjects towards random choice. Therefore, we wanted to make sure that by design, there is

a very low chance of random behavior passing as consistent with GARP. Given the trade-off

involved with adversely affecting the duration of any given session when increasing the number

of periods, we opted to repeat the induced budget allocation task for 60 periods.

Table 1: Number of budget tasks and Afriat’s Critical Cost Efficiency index (CCEI) for randomly
generated consumption data

N of budget
tasks

Average CCEI min CCEI max CCEI N of Subjects
with CCEI≥0.95

% of Subjects
with CCEI≥0.95

10 0.957 0.655 1 32,796 65.59
20 0.891 0.600 1 8,755 17.51
30 0.848 0.581 0.999 1,504 3.01
40 0.819 0.589 0.992 197 0.39
50 0.797 0.579 0.977 32 0.06
60 0.780 0.579 0.963 2 0.004

2.3 Arithmetic and click-a-button tasks

The arithmetic and click-a-button tasks were used as manipulation checks in order to identify

whether the number memorization task actually manipulates cognitive load. The tasks were

meant to differ in terms of task difficulty in order to assess the severity of the manipulation on

decision making.

In the multiplication arithmetic task, subjects had to multiply a one-digit integer m1 ∼

U{5, . . . , 9} and a two-digit integer m2 ∼ U{13, . . . , 19}. In the addition arithmetic task, sub-

jects had to add a one-digit integer a1 ∼ U{1, . . . , 9} and a two-digit integer a2 ∼ U{11, . . . , 99}.4

4The addition and multiplication tasks were taken verbatim from Deck and Jahedi (2015).
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Subjects had to indicate their answer by clicking the right choice from a list of randomly deter-

mined 16 possible choices that were shown in two columns in an ordered manner; i.e., from low

values to high values (see Figures 1d and 1e). The correct answer was set randomly to one of

the buttons.

In the click-a-button task, subjects simply had to click a button. The arithmetic and click-

a-button tasks were set with a time limit of 11 seconds after which subjects would be forced

out if they had not made a decision.5 If subjects performed any of the tasks described above

correctly, their payoff for the period was e7. Otherwise it was zero.

The tasks varied in terms of difficulty in the following manner: multiplication ≫ addition

≫ click-a-button. Our intention with this manipulation check was to see whether memorizing

a large number affects ability to perform difficult tasks (like multiplication and addition) but

not ability to perform simple tasks (like clicking a button). We would expect that performance

in the multiplication task, a much harder task than addition, would be more adversely affected

under cognitive load.

2.4 Response times

Response times have not been recorded and analyzed in previous studies that involved

cognitive load manipulation (e.g., Benjamin et al., 2013; Deck and Jahedi, 2015) but have

been given prompt attention in more recent studies (Gerhardt et al., 2016). Response times

are particularly useful if one adopts the dual-system approach view in decision making whereby

there are two distinct kinds of reasoning widely known as ‘System 1’ and ‘System 2’ (Stanovich

and West, 2001). The two systems differ in terms of working memory capacity, consciousness

in reasoning, automaticity, speed etc (Kahneman, 2011). Therefore, response times could serve

as an indicator of which system is dominating as well as an as an indicator of the difficulty of

a task (Gerhardt et al., 2016).

By this account, our cognitive load manipulation (memorizing a number) is expected to load

the reasoning system (‘System 2’). Hence, any decision that the subjects perform when under

cognitive load should be the outcome of ‘System 1’ which is the impulsive and intuitive system.

If subjects really need to use ‘System 2’ to make a reasoning type decision, then they would

need to really try hard to engage this system, which would be reflected in their response time.

To achieve a high precision in recorded times, each computer run an individual session of

zTree/zLeaf for each subject, which factored out any latency due to network/computer commu-

nication.

5Subjects would see a counter counting down from 10 seconds but the counter took an extra second before
countdown initiation so that actual count down time was 11 seconds.
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2.5 Measured cognitive ability

The cognitive load manipulation allowed us to vary the working-memory (WM) load of

subjects while they completed other decision tasks. Working memory capacity has been shown

to be strongly correlated with general cognitive ability (Colom et al., 2004; Gray et al., 2003).

Therefore, before we apply the cognitive load manipulation, we first measured the cognitive

ability of all subjects using the Raven’s Standard Progressive Matrices (RSPM) test which is

used to assess mental ability associated with abstract reasoning and is considered a nonverbal

estimate of fluid intelligence (Gray and Thompson, 2004). The original RSPM test consists of 60

items and requires considerable time to complete. In this study, we used an abbreviated 9-item

form of the RSPM test (Bilker et al., 2012) consisting of items 10, 16, 21, 30, 34, 44, 50, 52, 57

from the original 60-item Raven’s test. Subjects were not provided with any feedback regarding

their performance in the RSPM test. The RSPM test allows us to sum correct responses and

form a measure of cognitive ability that we can use to assess the effect of WM capacity on

behavioral tasks’ performance.

2.6 Payoffs and payments

Participants were paid for one randomly drawn period (out of 75 periods) and for only one of

the (randomly determined) tasks of this randomly selected period (i.e., either the memorization

task or the decision task; depending on the period that was randomly drawn, the decision

task could be either the induced budget line task or the addition task or the multiplication

task or the click-a-button task). This was clearly explained beforehand in the instructions (see

Experimental Instructions - Screen 2 in the Electronic Supplementary Material).

Similar to Deck and Jahedi (2015), we set the payoff associated with memorization (e9)

higher than the payoff for the multiplication task (e7), the addition task (e7) and the click-a-

button task (e7), so that participants (even the ones with limited working memory capacity)

would devote their main attention to memorization. This increased the likelihood that the

cognitive load manipulation would be effective. Since the induced budget allocation task did

not involve certain payoffs, we calculated the expected payoff for the maximum induced budget

line (i.e., cutting both axes at 100 points) and then calculated the expected payoff for a subject

that either allocates everything to one account or splits points between both accounts. Given

an exchange rate of 1 point = e0.15, this expected payoff amounts to e7.5, which is very close

to the payoff of the other decision tasks.

Subjects received feedback about the randomly selected period and task only after they

made all their decisions. Monetary payouts were paid via bank transfer to subject’s preferred

bank account.6

6Money was paid via the ‘Pay a friend’ service of the bank ‘Eurobank’ which allows transferring money to
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3 Goodness-of-fit measures for rationality

We measure economic rationality in terms of whether our experimentally generated data

can be rationalized by a utility function. We know by revealed preferences theory (Afriat, 1967;

Varian, 1982) that individual’s choices can be rationalized by a utility function, if and only if

the data satisfy the Generalized Axiom of Revealed Preferences (GARP). GARP posits that if

allocation x
i is revealed preferred to x

j, then x
j is not strictly directly revealed preferred to x

i

or that if pi
x
i ≥ p

i
x
j then it cannot be that pj

x
j > p

j
x
i (Varian, 1982, p. 947).

The problem with empirically testing GARP is that the test is exact: data can either satisfy

GARP or not; i.e., the test allows no errors in measurement or choice so that a single choice

is enough to render a large choice set incompatible with rationality. Instead, goodness-of-fit

measures allow us to quantify the extent of such violations. Below we briefly summarize some

of these measures and describe how we went about it with our data.

3.1 Afriat’s Critical Cost Efficiency index (CCEI)

Afriat’s Critical Cost Efficiency index (CCEI) measures the amount by which each budget

constraint must be relaxed in order to remove all violations of GARP (Afriat, 1972; Varian,

1993, 1990). More formally, for 0 ≤ e ≤ 1 define the directly revealed preference relation

x
jRd(e)xi ⇔ epj

x
j ≥ p

j
x
i. If R(e) is the transitive closure of Rd(e), Afriat’s CCEI, e∗, is

the largest value of e such that the relation R(e) satisfies GARP. Andreoni et al. (2013) call

this version of Varian’s (1993) GARP as L-GARP(e) (where ‘L’ is for ‘Lower’) defined as:

x
jR(e)xk ⇔ p

k
x
j ≥ epk

x
k for e ≤ 1. If e∗ = 1, there is no violation of GARP while the larger

the deviation from 1, the more a set of data fails to satisfy GARP. Researchers often follow

Varian’s (1993) suggestion to use the 95% efficiency level as the critical level.

To illustrate the formulation of Afriat’s CCEI, consider Figure 2 where a simple revealed

preference violation is depicted for the bundles x1 and x
2. Bundle x

1 is revealed preferred to

bundle x
2 and vice versa. The left figure depicts a more severe violation than the right figure.

We can remove this violation by moving the budget line from B to A or from D to C. Afriat’s

CCEI is related to the smallest shift we have to make to remove the violation, so in this case

CCEI will be equal to OA/OB. Note that OA/OB will be closer to 1 in the right figure than in

the left figure which indicates a less severe violation.

Technically, Afriat’s CCEI requires the computation of the transitive closure and there have

been two approaches used in the literature for this. One of the approaches uses Warshall’s

(1962) algorithm as described in Varian (1982, 1996). The other approach computes the matrix

subject’s preferred bank account without knowing subject’s account number, only by using an email address or
a mobile phone number. All transactions were ordered in the same day of the sessions and every transaction
was completed within a maximum of one business day. All transactions went through. The service is similar to
the Zelle service operated by the Wells Fargo bank in the United States.
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Figure 2: A simple revealed preference violation
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Notes: Bundle x
1 is directly revealed preferred to bundle x

2 and vice versa. The left graph

indicates a more severe violation than the right graph.

power of the direct revealed preferences matrix (also described in Varian, 1996). In this paper,

we used both approaches and find that the computed CCEI is largely the same with the use of

either method (the correlation coefficient between the two indexes is 0.97).7

3.2 The Houtman-Maks Index (HMI)

The Houtman and Maks (1985) index follows a different approach and measures the maximal

number of observations in the observed sample consistent with rational choice. An advantage

is that, if desired, the researcher can restrict the analysis to choices that are consistent with

economic rationality.

Older attempts to calculate the HMI have cited computational intensity as the biggest

drawback of the method (e.g., Choi et al., 2007a). More recently, Heufer and Hjertstrand

(2015) introduced simple and efficient algorithms for computing the HMI: Gross and Kaiser’s

(1996) combinatorial algorithm and an algorithm based on solving a mixed-integer programming

problem. As noted in Gross and Kaiser (1996), their algorithm sometimes fails to provide a

maximal subset and only provides a lower bound. We confirm that this is sometimes the case

with our data and so we based the HMI calculation on solving the mixed-integer programming

problem as set up in Heufer and Hjertstrand (2015).8

7We used the codes from Dean and Martin (2016) for the application of the Warshall (1962) algorithm to
our data and the codes from Burghart et al. (2013) for the power matrix approach.

8More specifically, we further analyzed the retained choices from the two algorithms using Afriat’s CCEI
and found that for the mixed integer programming algorithm, all retained choices satisfy GARP while for the
Gross and Kaiser (1996) algorithm, retained choices for 5 out of 178 subjects do not satisfy GARP.
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3.3 The Money Pump Index (MPI)

A drawback of the HMI is that the method flags observations that violate revealed prefer-

ences, even if they only violate it by a small amount. An alternative is the MPI which measures

the severity of a violation in terms of a money metric (Echenique et al., 2011). This measure

received its name from the idea that a consumer who violates GARP could be potentially ex-

ploited as a ‘money pump’. This is because an arbitrager that knows the choices of a subject

that violates GARP could follow the opposite purchasing strategy and resell the goods to the

subject at a profit. Therefore, MPI is the amount of money that could be extracted from the

consumer, expressed as a percentage of expenditure.

To illustrate the MPI, consider Figure 2 depicting a revealed preference violation. Assume

a subject buys bundle x
1 at prices p

1 and bundle x
2 at prices p

2. An arbitrager would buy

bundle x
1 at prices p

2 and bundle x
2 at prices p

1 and then resell bundle x
1 at prices p

1

and bundle x
2 at prices p

2 to the subject. The arbitrager would then make a profit mp =

x
1 ∗ (p1 −p

2) +x
2 ∗ (p2 −p

1) = p
1 ∗ (x1 −x

2) +p
2 ∗ (x2 −x

1) = CD/OD+AB/OB. The left

graph in Figure 2 depicts a higher money pump cost than the right figure (mpleft > mpright),

rendering the violation more severe.

A practical difficulty in the computation of the MPI is that given multiple violations of

revealed preferences, there will be a money pump cost associated with each violation. To

summarize multiple money pump costs in a single metric, Echenique et al. (2011) proposed the

use of the mean and median money pump costs as an aggregate MPI. Given the computational

burden involved in computing these aggregate money pump costs, Echenique et al. (2011)

suggested to instead compute approximations of the mean and median MPIs. However, these

approximations focus on violations of revealed preference axioms that involve only a small

number of observations (in Echenique et al. (2011) they report mean/median MPI for cyclic

sequences of allocations of length up to 4).

Smeulders et al. (2013) proposed to measure the maximum and minimum MPIs for the most

severe and the least severe violations, respectively, as easy-to-apply alternatives. The advantage

is that max and min MPIs can be computed efficiently even for large datasets (i.e., defined over

all violations). In this paper, we use the Smeulders et al. (2013) approach and calculated the

min/max MPI for all possible violations.

3.4 The Minimum Cost Index (MCI)

The MCI, similar to MPI, is a money metric index which represents the minimum cost of

breaking all revealed preference cycles in a data set (Dean and Martin, 2016) where ‘A revealed

preference cycle is broken if a revealed preference relation is removed from that cycle and the

cost of removing a revealed preference relation is measured by the monetary difference between
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the chosen and non-chosen bundle that generated the relation’. The index combines features

from the HMI and the MPI since it takes into account both the number and severity of revealed

preference violations. In order to compare the MCI across subjects, there are two normalizations

that can be applied; i.e., cost can be divided either by the cost to remove all relations from a

data set (the sum of all relations) or by each subject’s total budget. We use both normalizations

in our paper.

4 Results

Before we analyze our data for treatment effects, we will first try to establish whether the

effect from our experiment can be interpreted as causal. Economic experiments rely on the

Neyman-Rubin model of causal inference (due to Neyman (his original work appeared in Polish

in a doctoral thesis submitted to the University of Warsaw; for excerpts reprinted in English

and some commentary see Rubin, 1990; Speed, 1990; Splawa-Neyman et al., 1990) and Rubin

(1974)) which stipulates that by randomly assigning the treatments, the difference between the

experimental and control units can be considered an unbiased estimate of the causal effect that

the researcher is trying to isolate (Rubin, 1974). However, the comparison between two groups

of units is valid only if the two groups have the same expectation in the distribution of all

covariates which are potentially relevant for the treatment outcome. This can be ensured by

the law of large numbers (LLN): enlarging the sample size, two randomly assigned groups will

indeed be comparable since the sample average of individual characteristics in larger samples

tends to become closer to the average of the population.

Typically, experimentalists use statistical tests (often called balance tests) to test for equal-

ity of various covariates between treatments. A failure to reject the null is interpreted as a good

balance of observable characteristics between treatments and a success of the randomization

process. However, many have pointed to the pitfalls of such balance tests (Briz et al., 2016;

Deaton and Cartwright, 2016; Ho et al., 2007; Mutz and Pemantle, 2015), a practice also charac-

terized as superfluous and misleading in the CONSORT (Consolidated Standards of Reporting

Trials) statement endorsed by prominent medical journals like BMJ and Lancet etc. (Moher

et al., 2010, pp. 17). Following Deaton and Cartwright’s (2016) advice, we report instead the

normalized difference in means (Imbens and Rubin, 2016; Imbens and Wooldridge, 2009).

Table 2 reports the descriptive statistics for a few observable characteristics of our subjects.

As evident, the means are very close between the two groups while the median values are

identical. Table 2 also reports a normalized difference measure |x̄1 − x̄2|/
√

(s2
1
+ s2

2
)/2 where

x̄j and s2j (j = 1, 2) are the group means and variances, respectively. The normalized difference

measure is a scale-free measure of differences in means scaled by the square root of the average

of the two group variances. Cochran and Rubin’s (1973) rule of thumb is that the normalized
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difference should be less than 0.25 and Imbens and Rubin (2016) devote a full chapter to show

that regression methods tend to be sensitive to the specification when normalized differences

are large. As evident, the observable characteristics in our data pass this rule of thumb.

Table 2: Means of observable characteristics per treatment

HCL LCL Normalized difference
Gender: Males 34.48% 31.87% 0.055
Household size 4.11 (1.04) [4] 4.30 (1.06) [4] 0.020
Age 21.33 (1.17) [21] 21.31 (1.35) [21] 0.173
Reference income 3.98 (1.49) [4] 4.23 (1.47) [4] 0.198
Raven test score 7.61 (1.43) [8] 7.32 (1.50) [8] 0.117
Raven test past experience 27.59% 32.97% 0.171

Notes: HCL (LCL) stands for the high (low) cognitive load treatment. Standard deviation in parenthesis.
Median value in brackets. Reference income was measured on a scale from 1=‘Household’s economic position
is very bad’ to 7=‘Household’s economic position is very good’ relative to the average national household
income at e12,300.

4.1 Difficulty of the memorization task

We now turn into exploring if the variation in the difficulty of the memorization task was

significantly different between treatments. The top panel in Table 3 shows the frequency of

correctly recalling the number in the memorization task (success rate) at the end of each period

by treatment. The table shows success rate after each task and when combined over all tasks.

When comparing between treatments, it is obvious that success rate in the HCL treatment was

significantly lower. In fact, a χ2 test rejects the null for all rows in the top panel of Table 3

(p-value < 0.001) indicating that memorizing and correctly recalling an 8-digit number was

significantly more difficult than memorizing and correctly recalling a 1-digit number. However,

the difficulty of recalling the number varied depending on the intermediate task that was per-

formed (while holding the number in memory). For example, correct recall was as low as 8.97%

after the multiplication task and was as high as 36.72% after the induced budget line task in

the HCL treatment. Success rates improved for the addition task and further improve for the

click-a-button task, suggesting the progressive difficulty of the tasks as we move from the click-

a-button task to the addition task and then to the multiplication task. A χ2 test indicates that

differences in success rate between tasks are statistically significant as well (p-value < 0.001)

for both the HCL and LCL treatments.

A similar interpretation emerges if one looks at response times in the recall task (note that

subjects had 10 seconds to type and submit their answer). The medium panel in Table 3 shows

how long it took subjects to recall (type in) the number they had memorized, irrespective

of whether they gave a correct answer or not. Recorded times reflect the difficulty of the
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number memorization task. It took around 7 seconds to type and submit an answer in the

HCL treatment and only about 2.3 secs in the LCL treatment. All differences are statistically

significant between treatments according to Kruskal-Wallis tests (p-value < 0.001). There is

also significant variation between tasks. It took significantly longer for subjects to recall the

number after the multiplication task than after the induced budget line task. Response times

between tasks are also statistically significantly different according to Kruskal-Wallis tests for

both the HCL and LCL treatments (p-value < 0.001).

The bottom panel in Table 3 shows the recall response times only for the subsample of

subjects that correctly recalled the number. The picture is similar to what was discussed above,

with response times reflecting the difficulty of the tasks in the sense that subjects spent a longer

time to recall the number after a task that was intended to be more difficult. One interesting

observation when we compare the bottom panel to the medium panel is that when subjects in

the HCL treatment correctly recalled the number, it took them less time to do so, suggesting

that spending more time trying to recall the number signified being less certain about the

correct answer. In contrast, the differences are not significant under the LCL treatment when

we compare the medium and bottom panels. This is probably because most of the subjects

were able to correctly recall the 1-digit number most of the time.

Table 3: Success rate and mean decision time (in secs) in the recall task

HCL LCL

Success rate

Combined over all tasks 33.64% 97.67%

After. . .

Budget line 36.72% 98.37%
Multiplication 8.97% 89.23%
Addition 20.69% 96.92%
Click-a-button 34.25% 98.46%

Decision time

Combined over all tasks 7.07 2.31

After . . .

Budget line 6.96 2.16
Multiplication 7.71 3.15
Addition 7.68 2.87
Click-a-button 7.21 2.67

Decision time for correct recall

Combined over all tasks 6.21 2.31

After . . .

Budget line 6.18 2.13
Multiplication 6.95 2.98
Addition 6.72 2.81
Click-a-button 6.17 2.61

Notes: HCL (LCL) stands for the high (low) cognitive load treatment. Differences between treatments
(HCL vs. LCL) are statistically significant (p-value < 0.001) for all rows of the table based on a χ2 test
(for the top panel) and a Kruskal-Wallis test (for the medium and bottom panels). Differences between
tasks are statistically significant (p-value < 0.001) based on a χ2 test (for the top panel; column-wise) and
a Kruskal-Wallis test (separately for the medium and bottom panel; column-wise).

We can further explore the differences in the success rate and recall time after the various
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decision tasks in an econometrics framework. Given the binary nature of the success/failure to

recall the number, we estimate a logit model for the success/failure of recalling the memorized

number. To condition response times on a set of independent variables, we have to consider

that subjects’ responses were censored from above due to the time limit of the recall task, so we

estimate a censored regression model with an upper limit of 10. All models are estimated with

clustered standard errors to take into account the multiple responses given by the same subject

and to allow for correlation between responses; i.e., it relaxes the independence assumption and

requires only that the observations be independent across the clusters.9 Table 4 exhibits the

results from a logit regression where success/failure is the dependent variable (model (1)) and

results from two censored regression models where response time is the dependent variable. In

model (2), we consider response times irrespective of whether subjects correctly recalled the

number, while in model (3) we restrict the model to the subsample of response times with a

correct recall of the number. All regressions control for the set of observable characteristics

shown in Table 2.

Table 4: Logit regression of recall success/failure and Censored regressions of recall time

Recall success Recall time
. . . for correct recall

(1) (2) (3)
Constant 1.902 (1.933) 5.704∗∗∗ (1.382) 5.549∗∗∗ (0.917)
Task: Budget line 1.896∗∗∗ (0.156) -0.930∗∗∗ (0.090) -0.836∗∗∗ (0.078)
Task: Addition 1.116∗∗∗ (0.193) -0.179∗∗ (0.082) -0.193∗∗∗ (0.074)
Task: Click-a-button 1.799∗∗∗ (0.171) -0.533∗∗∗ (0.094) -0.480∗∗∗ (0.087)
HCL treatment -4.682∗∗∗ (0.167) 4.865∗∗∗ (0.147) 4.029∗∗∗ (0.109)
Age -0.026 (0.079) -0.096∗∗ (0.048) -0.121∗∗∗ (0.036)
Females -0.104 (0.193) 0.114 (0.150) 0.059 (0.112)
Household size -0.022 (0.105) 0.008 (0.069) 0.088∗ (0.047)
Reference income 0.027 (0.069) -0.052 (0.048) -0.018 (0.037)
Raven’s test score 0.115∗ (0.060) -0.048 (0.065) -0.037 (0.035)
Experience with Raven’s test 0.252 (0.207) -0.301∗∗ (0.141) -0.173 (0.111)
σu 1.654∗∗∗ (0.062) 1.116∗∗∗ (0.029)
N 13350 13330 8861
Log-likelihood -4738.041 -24945.759 -13548.938
AIC 9498.082 49915.519 27121.876
BIC 9580.574 50005.492 27206.949

Notes: Standard errors in parentheses. * p<0.1, ** p<0.05 *** p<0.01. Base category is the
multiplication task. The different number of observations between regressions (1) and (2) is because
the software failed to record timing for 20 instances out of 13,350 (≈0.15%).

9The robust estimator of variance that relaxes the assumption of independent observations involves a slight
modiffication of the robust (or sandwich) estimator of variance which requires independence across all observa-
tions (StataCorp, 2013, pp. 312).
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Results in Table 4 largely confirm our discussion above. The HCL treatment leads to a

statistically significant lower success rate in correctly recalling the number. The difficulty of

the 8-digit memorizing task is also reflected in the fact that subjects take more time to type

in an answer. With respect to differences between the various decision tasks, subjects exhibit

significantly better success rates in correctly recalling the memorized number after every decision

task than after the multiplication task (which was intended to be the hardest task in our

experiment). Overall, subjects do much better after the induced budget line task and the

click-a-button task. In fact, a Wald test of equality of coefficients of the induced budget line

task variable and the click-a-button task variable (in model (1)) does not reject the null (χ2 =

0.91, p-value = 0.34), indicating that subjects perform equally well in recalling the number after

these two tasks.

In terms of decision time, models (3) and (4) point to similar conclusions. Subjects take

significantly less time to recall the number after every decision task as compared to the mul-

tiplication task. All pairwise Wald tests of equality of decision task variables reject the null

(p-value < 0.001), indicating statistically significant differences between response times for re-

call after the various decision tasks. Overall, subjects spend significantly less time in recalling

the number after the induced budget line task, although the magnitude of the difference with

the click-a-button task is quite small (about 0.4 second). This is perhaps an indication that

the induced budget line allocation task did not impose a significant additional burden in the

working memory of subjects.

4.2 Manipulation checks

Having established in section 4.1 that the 8-digit number memorization task was indeed

difficult, in this section we ask whether the difficulty of the memorization task worked in the

expected direction. That is, we ask whether the cognitive load manipulation resulted in loading

the working memory capacity of subjects which in turned led to worse outcomes for tasks where

reasoning was required. Deck and Jahedi (2015) note the importance of these manipulation

checks because if memorizing a large number does not affect ability to do multiplication, then a

more extreme cognitive load manipulation would be warranted. On the other hand, if subjects

cannot perform a simple addition when memorizing a number, then the manipulation might be

too strong.

The top panel of Table 5 shows the success rate in the multiplication, addition and click-a-

button tasks across the two treatments. The click-a-button task has an almost perfect success

rate which is not statistically different between the two treatments. This indicates that the

task was easy to perform and that subjects could adequately execute the task even when their

working memory was loaded. Recall that the task was designed as a control task which does
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not require any reasoning to execute. The addition task was designed as a task of intermediate

difficulty (something between the click-a-button and the multiplication task in terms of diffi-

culty). Subjects did very good in this task when they were placed under low cognitive load

with a success rate of 91.87%. The HCL treatment successfully reduced this success rate to

85.98% which is a statistically significant reduction according to a χ2 test (p-value = 0.005).

The multiplication task was designed to be more cognitively demanding and this is exactly what

our data show: subjects show a success rate of 55.82% under the LCL treatment but only a

success rate of 39.08% in the HCL treatment (p-value < 0.001).

The medium and bottom panels in Table 5 show response times for each decision task sepa-

rately for each treatment. The bottom panel constraints the sample to only those that correctly

answered the decision task (i.e., they correctly responded to the multiplication, addition or

the click-a-button task). The pattern is similar to what was discussed in the previous section.

Subjects spent more time to respond to more difficult tasks; compared, for example, to the 8.66

seconds needed to respond to the multiplication task and the 2.25 seconds needed to respond to

the click-a-button task under the HCL treatment. In addition, subjects take slightly more time

when they respond incorrectly to the decision task, indicating that the extra time they take is

probably due to extra effort needed to solve the task.

Overall, the response times indicate that the multi-tasking demands of the high cognitive

load treatment led to an increase in the time needed to make a decision. This is in sharp

contrast to Gerhardt et al. (2016) where they find that subjects are 10% faster in the presence

of cognitive load than in the absence of it. This difference may be due to two design differences:

for one their control treatment was a no-load treatment rather than a low-load treatment as in

our case. Second, in their experiment subjects could not cause an earlier display of the recall

stage of the working memory task while in our design, since subjects could move at their own

pace, making a faster decision would lead to displaying the memory recall stage faster. It is

unclear how all these subtle differences may have produced different behaviors for the subjects.

This is an area that is still relatively under-developed in the academic literature.

Table 6 econometrically controls for the influence of observable characteristics and allows us

to explore the joint influence of the treatment variable and decision tasks. Model (1) shows the

coefficient estimates from a logit model where the dependent variable is success/failure in the

decision task while models (2) and (3) show the results from the censored regression models with

censoring from above at 11 seconds (this is the time limit imposed to all decision tasks). Model

(3) is constrained to the subsample of subjects that correctly answered the decision tasks.

Results in Table 6 confirm the descriptive analysis above. The HCL treatment results

in a lower success rate across all decision tasks. The subjects also take significantly more

time time to respond. The click-a-button task variable and the addition task variable are

positive and statistically significant in model (1) indicating a higher success rate as compared
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Table 5: Success rate and mean decision time (in secs) in decision tasks

HCL LCL p-value

Success rate
Multiplication 39.08% 55.82% <0.001

Addition 85.98% 91.87% 0.005
Click-a-button 99.77% 99.78% 0.975

Decision time
Multiplication 8.66 8.43 0.166

Addition 5.44 4.46 <0.001
Click-a-button 2.25 2.53 0.014

Decision time for correct decision
Multiplication 7.51 7.17 0.076

Addition 5.07 4.32 <0.001
Click-a-button 2.23 2.51 0.011

Notes: HCL (LCL) stands for the high (low) cognitive load treatment. Last column shows p-values comparing
the two treatment for all rows of the table based on a χ2 test (for the top panel) and a Kruskal-Wallis test
(for the other two panels). Differences between tasks are statistically significant (p-value < 0.001) based on
a χ2 test (for the top panel) and a Kruskal-Wallis test (for the other two panels; column-wise) separately
for each treatment and panel.

to the multiplication task. The larger coefficient of the click-a-button coefficient implies a

larger marginal effect and a larger probability of success in the respective task than that of

the addition task. A Wald test rejects equality of coefficients between the click-a-button and

the addition task variables across all models (p-value < 0.001). In terms of response times,

subjects responded statistically significantly faster in the addition task and even faster in the

click-a-button task. Decision times for providing correct answers are also slightly faster.

All in all, the results presented in this section show that the treatment was effective in

inducing the desired effect according to our manipulation check. A significant effect shows up

even in the task where low reasoning is required (addition task) but not in a task where no

reasoning is required (click-a-button task). Furthermore, we found that the effect increases in

magnitude in a task involving high reasoning such as the multiplication task.
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Table 6: Logit regression of success/failure in the decision task and Censored regression of
decision time

Success Decision time
Decision time for
correct answers

(1) (2) (3)
Constant -2.689∗ (1.435) 7.456∗∗∗ (1.184) 6.621∗∗∗ (0.922)
Task: Addition 2.245∗∗∗ (0.136) -3.984∗∗∗ (0.141) -2.658∗∗∗ (0.128)
Task: Click-a-button 6.268∗∗∗ (0.718) -6.555∗∗∗ (0.154) -4.964∗∗∗ (0.137)
HCL treatment -0.664∗∗∗ (0.141) 0.328∗∗∗ (0.124) 0.210∗∗ (0.097)
Age 0.107∗ (0.060) 0.093∗ (0.049) 0.051 (0.038)
Females -0.187 (0.152) 0.071 (0.122) 0.014 (0.102)
Household size 0.016 (0.065) 0.004 (0.060) 0.016 (0.045)
Reference income 0.054 (0.049) -0.077∗ (0.041) -0.044 (0.031)
Raven’s test score 0.059 (0.043) -0.040 (0.036) -0.038 (0.028)
Experience with Raven’s test 0.088 (0.153) -0.280∗∗ (0.132) -0.293∗∗∗ (0.100)
σu - - 2.367∗∗∗ (0.051) 1.819∗∗∗ (0.038)
N 2670 2670 2104
Log-likelihood -916.170 -5702.364 -4238.159
AIC 1852.341 11426.729 8498.318
BIC 1911.239 11491.517 8560.486

Notes: Standard errors in parentheses. * p<0.1, ** p<0.05 *** p<0.01. Base category is the multiplication
task.

4.3 Economic rationality

Given that manipulation checks in section 4.2 show that the cognitive load treatment concur-

rently affects tasks that involve both low and high reasoning, we now more confidently turn to

examining the treatment effects for economic rationality. For this, we employ as the dependent

variable of interest the various goodness-of-fit measures discussed in Section 3.

Table 7 shows the mean, standard deviation, and median values for the various measures

separately for each treatment. The MPI comes in interval form (minimum/maximum) so we

employ the range as our dependent variable to use in the table. Table 7 shows that both

mean and median values are very close. The last two columns in Table 7 present results from

statistical tests comparing the two treatments. Every single test fails to reject the null indicating

a null treatment effect. In addition, Figure 3 graphs the distribution of the various measures

by treatment using kernel density estimators. A similar picture emerges since lines practically

overlap for the two treatments.

Table 8 shows the results from OLS regressions (for Afriat’s CCEI, HMI, MCI) and an

interval regression model (for the MPI which comes in interval form). The specifications control

for the observable characteristics listed in Table 2 and a time variable equal to the total decision

time a subject spent in the 60 periods of the induced budget line task. This allows us to control
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Figure 3: Kernel density estimators of goodness-of-fit measures for consistency with the Gen-
eralized Axiom of Revealed Preferences

(a) Afriat’s CCEI (matrix power algorithm) (b) Afriat’s CCEI (Warshall’s algorithm)

(c) HMI (d) MPI range

(e) MCI (normalized by total budgets) (f) MCI (normalized by total cost to remove violations)

Notes: CCEI, HMI, MPI, MCI stand for Critical Cost Efficiency index, Houtman-Maks index, Money Pump
index, Minimum Cost index, respectively.

22



Table 7: Descriptive statistics of goodness-of-fit measures by treatment

HCL LCL Kruskal-Wallis
p-value

Kolmogorov-
Smirnov p-value

Afriat’s CCEI (matrix
power algorithm)

0.939 (0.078) [0.966] 0.927 (0.097) [0.966] 0.964 0.606

Afriat’s CCEI (War-
shall’s algorithm)

0.917 (0.100) [0.955] 0.894 (0.136) [0.944] 0.737 0.684

HMI 51.736 (6.034) [53] 52.044 (6.453) [54] 0.554 0.981
MPI range 10.995 (12.174) [6.547] 13.271 (14.963) [8.597] 0.652 0.670
MCI (normalized by to-
tal budgets)

2.551 (5.573) [0.396] 4.082 (11.420) [0.496] 0.934 0.803

MCI (normalized by to-
tal cost to remove viola-
tions)

0.493 (0.987) [0.084] 0.709 (1.671) [0.097] 0.983 0.803

Notes: Standard deviation in parenthesis. Median value in brackets. Penultimate column shows p-values
comparing the two treatments for all rows of the table based on a Kruskal-Wallis test. Last column shows
p-values from a Kolmogorov-Smirnov equality of distributions test comparing the two treatments for all
rows of the table. HCL (LCL) stands for the high (low) cognitive load treatment. CCEI, HMI, MPI, MCI
stand for Critical Cost Efficiency index, Houtman-Maks index, Money Pump index, Minimum Cost index,
respectively. The MPI index is in interval form therefore the table presents summary statistics of the range
of the intervals.

for decision style differences. The table confirms our null result obtained in the descriptive

analysis. In fact, the only statistically significant variable emerging from our regressions is the

Raven test score suggesting that fluid intelligence might be a more important factor determining

economic rationality than a temporary cognitive load manipulation.
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Table 8: OLS regressions of goodness-of-fit measures and Interval regression (for MPI) with
clustered standard errors

Afriat’s CCEI HMI MPI MCI normalized by . . .
Matrix
Power
algorithm

Warshall’s
algorithm

total budget total cost

(1) (2) (3) (4) (5) (6)
Constant 0.733∗∗∗ 0.638∗∗∗ 41.696∗∗∗ 1.321 16.692 3.361

(0.135) (0.183) (9.464) (0.933) (14.043) (2.133)
HCL treatment 0.015 0.025 -0.156 0.044 -1.245 -0.196

(0.015) (0.020) (1.044) (0.099) (1.549) (0.235)
Age 0.005 0.008 0.185 -0.021 -0.531 -0.100

(0.005) (0.007) (0.372) (0.037) (0.552) (0.084)
Females -0.016 -0.025 -0.473 0.052 0.462 0.080

(0.014) (0.019) (1.005) (0.093) (1.492) (0.227)
Household size 0.003 0.002 0.053 0.044 0.162 0.017

(0.007) (0.009) (0.464) (0.041) (0.689) (0.105)
Reference in-
come

-0.000 -0.003 -0.268 0.007 0.272 0.032

(0.005) (0.006) (0.325) (0.031) (0.482) (0.073)
Raven’s test
score

0.010∗∗ 0.013∗∗ 0.866∗∗∗ -0.048 -0.526 -0.104

(0.005) (0.006) (0.320) (0.035) (0.475) (0.072)
Experience with
Raven’s test

-0.021 -0.032∗ -1.762∗ 0.110 2.435 0.363

(0.014) (0.019) (1.004) (0.098) (1.490) (0.226)
Total decision
time

0.000 0.000 0.004 -0.000 -0.001 -0.000

(0.000) (0.000) (0.003) (0.000) (0.005) (0.001)
ln(σ) - - - -0.966∗∗∗ - -

- - - (0.095) - -
N 178 178 178 178 178 178
R2 0.065 0.076 0.083 0.042 0.049
Adjusted R2 0.020 0.032 0.039 -0.003 0.004
Log-likelihood - - - -217.795 - -
AIC - - - 455.590 - -
BIC - - - 487.408 - -

Notes: CCEI, HMI, MPI, MCI stand for Critical Cost Efficiency index, Houtman-Maks index, Money Pump
index, Minimum Cost index, respectively. The table shows results from an interval regression for MPI and
OLS regressions for all other models.
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4.4 Was sample size large enough to detect treatment effects?

In this last section of the results we address whether our null effect is genuine. One could

rightly ask the question about what is the effect size that our sample size was powerful enough

to detect. Or alternatively, whether we could attribute our null result to a false negative.

Our per treatment sample size was decided based on sample size calculations and served

as a stopping rule for this experiment when we achieved the necessary per treatment sample.

Assuming α = 0.05 (Type I error) and β = 0.20 (Type II error), the per group (treatment)

minimum sample size required to compare two means µ0 and µ1, with common variance of σ2

in order to achieve a power of at least 1− β is given by (Kupper and Hafner, 1989):

n =
2(z1−α/2 + z1−β)

2

(µ0−µ1

σ
)2

(1)

For α = 0.05 and β = 0.20 the values of z1−α/2 and z1−β are 1.96 and 0.84, respectively;

and 2(z1−α/2 + z1−β) = 15.68, which can be rounded up to 16. The formula then collapses to

n = 16

∆2 (with ∆ = µ0−µ1

σ
), which is known as Lehr’s (1992) equation (see also Chapter 2 in

van Belle, 2008). To calculate a minimum sample size, one needs to feed the above formula

with values for σ and the minimum meaningful difference µ0 − µ1. To specify the necessary

parameters to feed the above formula, we looked at prior data collected by Choi et al. (2014).

Since our induced budget allocation task was based on their study, it seemed natural to use

parameter values from the Choi et al. (2014) study. In their paper they calculated both Afriat’s

CCEI and the HMI. Panels A and C in Table 1 in Choi et al.’s (2014) online Appendix provided

us with the necessary information. For the CCEI, we used a range of σ values from 0.12 to

0.16 (which largely reflects the standard deviations of the CCEI in their study) and a range of

possible differences d from 0.05 to 0.1. For the HMI, we used σ values from 2 to 2.4 and a range

of possible differences d from 1 to 3.

Table 9 shows the result of equation 1 for various values of σ and d separately for the

CCEI and the HMI. It is obvious that the lower the minimum meaningful difference d and the

higher the standard deviation σ, a larger sample size is needed to detect the desired effect size

with 80% power. Our sample size can safely detect a minimum meaningful difference for CCEI

larger than 0.05 (but not smaller ones). The increase in the sample size needed to detect smaller

differences with sufficient power was deemed unrealistic given our resources. We can also safely

detect the smallest possible difference in the HMI (a value of 1). Thus, we conclude that our

sample size given a power of 80% was enough to detect even small differences in these two

particular goodness-of-fit measures. The fact that we observe no statistically significant effect

gives us enough confidence to conclude that our null effect is genuine and not the result of a

small sample size.
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Table 9: Per treatment sample size calculations for different values of σ, and d for Afriat’s CCEI
(top panel) and the HMI (bottom panel)

σ = 0.12 σ = 0.14 σ = 0.16

Afriat’s CCEI

d = 0.05 90 123 161
d = 0.06 63 85 112
d = 0.07 46 63 82
d = 0.08 35 48 63
d = 0.09 28 38 50
d = 0.1 23 31 40

σ = 2 σ = 2.2 σ = 2.4

HMI

d = 1 63 76 90
d = 2 16 19 23
d = 3 7 8 10

5 Conclusions

One of the fundamental and important questions in economics is whether economic ratio-

nality can be influenced by cognitive ability, to the extent that inconsistencies resulting from

low decision-making quality are due to limited cognitive resources. A number of papers have

found that increasing cognitive load can influence performance in reasoning and math tasks

as well as risk-aversion and impatience over choices (see Deck and Jahedi, 2015). With the

exception of Castillo et al. (2017), no other study has examined the effect of cognitive ability on

economic rationality. A possible caveat however to the Castillo et al. (2017) study is that their

manipulation was based on self-reported measures of sleepiness through circadian mismatch.

Hence, they were not able to convincingly show that their manipulation based on this measure

was successful.

In our study, we exogenously impaired subjects’ cognitive resources via cognitive load by

using a number memorization task. We designed several incentivized manipulation checks to

undoubtedly show the success of our manipulation. We then examined the effect of our ma-

nipulation on consistency in economic rationality using induced budget allocation tasks and

several goodness-of-fit measures for rationality. Our results generally suggest a statistically and

economically insignificant effect of cognitive load on economic rationality. We then showed that

our study has a large enough sample size, given a power of 80%, to detect even small effects,

which suggests that our null effect finding is genuine and not due to false negatives. Interest-

ingly, a measure of cognitive ability (i.e., the Raven test score) was statistically significant in

our regression models suggesting that fluid intelligence could be a more important correlate of

economic rationality than temporary cognitive loads in the working memory of subjects.

Our finding suggests that researchers need not worry about heterogeneity in subjects’ level

of cognitive resources when conducting studies in settings where economic rationality plays an
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important role in behavior or decision making. This is because our results suggest that subjects

with less cognitive resources could still optimally allocate their limited attention to behavioral

aspects related to economic rationality, akin perhaps to the assumption behind rational inat-

tention models (Sims, 2003, 2006).

Although our study is the first to test the effect of exogenously manipulated cognitive load

on economic rationality, this is just one study and so future studies should test the robustness of

our findings. One way that our design could be extended is by forcing subjects to make quicker

decisions under cognitive load. In our design, although subjects were cognitively loaded, they

could take their time responding to the induced budget allocation task. This is indicated by the

fact that, on average, response times were larger in the high cognitive load treatment. One way

to interpret this finding is that subjects could be trying to compensate being under cognitive

load by taking more time to decide, in order to engage their reasoning system more, i.e., ‘System

2’. Of course, this was not always effective since, for example, in a high reasoning multiplication

task, success rates were particularly low even though subjects took more time answering the

multiplication task. Limiting the time subjects could take when making allocations in the

budget task, e.g., when under time pressure, is another way one could force engagement of

‘System 1’ and disengagement of ‘System 2’.

Second, our point above reflects the importance of integrating the measurement of re-

sponse times as a standard part of any experiment, not just for ones that utilize cognitive

load paradigms. Given the prevalence of computerized experiments nowadays, this would be

a simple programming extension. Of course, latency/communication problems can always oc-

cur, especially in interactive experiments, and ways to account for potential measurement in

variables errors will be important in such instances.

27



References

Afriat, S. N. (1967). The construction of utility functions from expenditure data. International
Economic Review 8 (1), 67–77.

Afriat, S. N. (1972). Efficiency estimation of production functions. International Economic

Review 13 (3), 568–598.

Andreoni, J., M. A. Kuhn, and C. Sprenger (2013). On measuring time preferences. Working

paper, University of California at San Diego.

Becker, G. S. (1962). Irrational behavior and economic theory. Journal of Political Econ-

omy 70 (1), 1–13.

Benjamin, D. J., S. A. Brown, and J. M. Shapiro (2013). Who is ‘behavioral’? Cognitive ability
and anomalous preferences. Journal of the European Economic Association 11 (6), 1231–1255.

Bilker, W. B., J. A. Hansen, C. M. Brensinger, J. Richard, R. E. Gur, and R. C. Gur (2012).
Development of abbreviated nine-item forms of the raven’s standard progressive matrices test.
Assessment 19 (3), 354–369.

Briz, T., A. C. Drichoutis, and R. M. Nayga (2016). Randomization to treatment failure in
experimental auctions: The value of data from training rounds. Munich Personal RePEc

Archive No. 70139 .

Bronars, S. G. (1987). The power of nonparametric tests of preference maximization. Econo-

metrica 55 (3), 693–698.

Burghart, D. R., P. W. Glimcher, and S. C. Lazzaro (2013). An expected utility maximizer
walks into a bar. Journal of Risk and Uncertainty 46 (3), 215–246.

Castillo, M., D. L. Dickinson, and R. Petrie (2017). Sleepiness, choice consistency, and risk
preferences. Theory and Decision 82 (1), 41–73.

Choi, S., R. Fisman, D. Gale, and S. Kariv (2007a). Consistency and heterogeneity of individual
behavior under uncertainty. American Economic Review 97 (5), 1921–1938.

Choi, S., R. Fisman, D. M. Gale, and S. Kariv (2007b). Revealing preferences graphically: An
old method gets a new tool kit. American Economic Review 97 (2), 153–158.

Choi, S., S. Kariv, W. Müller, and D. Silverman (2014). Who is (more) rational? American

Economic Review 104 (6), 1518–50.

Cochran, W. G. and D. B. Rubin (1973). Controlling bias in observational studies: A review.
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Figure A1: The universe of budget lines shown to each subject
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