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Abstract

In this paper, we propose a natural extension of time-invariant coefficients threshold GARCH (TGARCH) pro-

cesses to periodically time-varying coefficients (PTGARCH) one. So some theoretical probabilistic properties of such

models are discussed, in particular, we establish firstly necessary and sufficient conditions which ensure the strict sta-

tionarity and ergodicity (in periodic sense) solution of PTGARCH. Secondary, we extend the standard results for the

limit theory of the popular quasi-maximum likelihood estimator (QMLE) for estimating the unknown parameters of

the model. More precisely, the strong consistency and the asymptotic normality of QMLE are studied in cases when

the innovation process is an i.i.d (Strong case) and/or is not (Semi− strong case). The finite-sample properties of

QMLE are illustrated by a Monte Carlo study. Our proposed model is applied to model the exchange rates of the

Algerian Dinar against the U.S-dollar and the single European currency (Euro).

MR(2010) subject classification: 62G20, 62M10.
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1 Motivation

Autoregressive conditionally heteroskedastic (ARCH) processes were introduced firstly by Engle [10] and their generalized

GARCH version by Bollerslev [6], are certainly the great deal of research on modelling volatility dynamics (denoted by

(hn)n∈Z
throughout) clustering in financial and econometric time-series (εn)n∈Z

. These models belong to symmetric

models (in the sense that hn is formulated as a linear function of the past values of ε2n−i, i ≥ 1) and hence past positive

and negative values of observed process have the same effect on the current volatility which is in contradiction with

many empirical evidences of volatilities arising mainly from the series of stocks. Indeed, it is well known that if ht

were symmetric, a negative correlation between the squared current innovation and the past one would be equal to zero

and hence the asymmetry property is violated. However, and to remedy this fact, some issue were proposed in the

literature, citing, among the asymmetric GARCH models, threshold GARCH (TGARCH) models, already pioneered

by Zaköıan [29], is now the most popular model in asymmetric volatility (see also Rabemananjara and Zaköıan [26]

for a comprehensive review). It become increasingly important in modelling and forecasting financial time series and

continues to gain a growing interest of researchers. The main purpose of TGARCH processes is to allow the parameters

in volatility to depend on the sign of observed process (εn)n∈Z
in order to capture asymmetric and leverage effects

on the volatility dynamics. In other words the volatility may be regarded as a switched process between two regimes
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often specified by {n : εn < 0} and {n : εn ≥ 0}. This structural changes, we allows to assume that the parameters of

each regime are different or more generally varying according with time. This assumption can cause however unstable

(integrated or explosive) volatility process which plays an important interest in macroeconomic and in financial datasets

(see for instance Francq and Zakoian [14] and the references therein). This interest is due to the fact that the unstable

volatility present a persistent property, contrary to the stable case. So, this paper is mainly concerned with stable (but

non-stationary) volatility in TGARCH models in which the parameters may be depending on a known periodic sequence

(sn)n which refers to the stage of the periodic cycle at time n. This specification is inherent in many economic time

series. Seasonal fluctuations have been found to significantly account for most of the variation in many macroeconomic

time series (see Bibi and Aknouche [3] for further discussions). Periodicity is often removed either by using seasonally

adjusted data or by including seasonal intercept dummies in the models. In this paper, periodicity is treated as one of

the features to be explained within the TGARCH model.

The mains purposes of the present paper are twofold, the first one is related to the probabilistic properties of

PTGARCH specification. In particular, after a general presentation of the threshold processes and its Markovian

representation, in next section, in Sec. 3, our attention is focussed on traditional and alternative formulations of the

PTGARCH model, emphasizing the strict relation between its structure and the so-called periodic random coefficients

autoregressive (PRCA) models. Starting from this relation, we study the necessary and sufficient conditions ensuring

the strict (in periodic sense) of the PTGARCH model. The second aim of the paper is purely statistical, i.e., we

apply the standard quasi-maximum likelihood (QML) for estimating the parameters of model. So, in Sec. 4, we give

explicit formulae for QML estimator of the parameters in PTGARCH model in strong and/or in semi-strong cases,

then the proofs of main theorems are relegated in Sec. 5. Numerical illustrations are given in Section 6 and an empirical

application to the daily series of exchange rates from January 3, 2000 to September 29, 2011 of the Algerian Dinar against

the U.S. Dollar and the single European currency is provided in Section 7. Section 8 concludes the article.

Before we proceed, let us introduce some symbolism and definitions.

1.1 Algebraic notation

Throughout, the following notations are used

. I(n) is the n× n identity matrix and I∆ denotes the indicator function of the set ∆.

. O(n,m) denotes the matrix of order n×m whose entries are zeros, for simplicity we set O(n) := O(n,n) and O(n) := O(n,1).

. The spectral radius of squared matrix M is noted ρ (M). Moreover, for any sequence of squared matrices (Mi) we set

sometimes M l
i = MiMi+1...Ml if i ≤ l and MiMi−1...Ml otherwise.

. ∥.∥ refers to the standard norm in Rn or the uniform induced norm in the space M(n) of n× n matrices, for instance,

the norm of matrix M = (mij) is defined by ∥M∥ =
∑ |mij | .

2 The model and its Markovian representation

A process (εn)n∈Z
defined on some probability space (Ω,ℑ, P ) is called a periodic TGARCH (p, q) process with period

s > 0 abbreviated by PTGARCHs (p, q), if it is solution to the following stochastic difference equation εn = hnen and
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conditionally on the σ−field ℑn = σ (εn−i, i ≥ 0), hn satisfy

hn = α0(sn) +

q∑

i=1

(
αi(sn)ε

+
n−i + βi(sn)ε

−
n−i

)
+

p∑

j=1

γj (sn)hn−j (2.1)

where ε+n = εnI{εn≥0}, ε
−
n = −εnI{εn<0} so, εn = ε+n − ε−n and |εn| = ε+n + ε−n . In (2.1), (sn)n is a periodic sequence of

positive integers with finite state space S = {1, ..., s} defined by sn :=
s∑

k=1

kI∆(k)(n) with ∆(k) := {sn+ k, n ∈ Z} that

refers to the stage or ”season” of the periodic cycle at time n, the innovation sequence (en)n∈Z
is subject to the following

assumption:

Assumption 1 (en)n∈Z
is a sequence of independent identically distributed (i.i.d.) random variables defined on the same

probability space (Ω,A, P ) with zero mean and unit variance and ek is independent of εn for k > n.

The PTGARCHs (p, q) models with an i.i.d. innovations are often called periodic strong TGARCH (p, q) models. Now,

setting n = st+ v, εst+v = εt (v) , hst+v = ht (v) and est+v = et (v) , Model (2.1) may be equivalently written as

εt (v) = ht (v) et (v) and ht (v) = α0(v) +

q∑

i=1

(
αi(v)ε

+
t (v − i) + βi(v)ε

−
t (v − i)

)
+

p∑

j=1

γj (v)ht (v − j) , (2.2)

which we will make heavy use of (2.2), in wherein, α0(v), αi(v), βi(v) and γj(v) with i ∈ {1, ..., q} and j ∈ {1, ..., p} are

positive coefficients with α0(v) > 0 for any v ∈ S, and εt (v) refers to εt during the v − th “season” or regime v ∈ S of

cycle t, so the process (hn)n∈Z
may be interpreted as the conditional standard deviation of (εn)n∈Z

. For the convenience,

εt (v) = εt−1 (v + s) , ht (v) = ht−1 (v + s) and et (v) = et−1 (v + s) if v < 0. The non-periodic notations (εt) , (ht) ,

(et) etc.,... will be used interchangeably with the periodic one (εt (v)) , (ht (v)) , (et (v)) etc.,.... The process (εn)n∈Z

is globally non stationary, but is stationary within each period, it becoming an appealing tool for investigating both

asymmetric volatility and distinct “seasonal” patterns for modelling financial time series and monetary economics.

A large lot of models may be defined from (2.1) including among others are for instance

i. The standard asymmetric TGARCH (p, q) models and many extended TGARCH (p, q) to periodic one

ii. Periodic version of Glosten et al.[18] models (denoted by GJR− PGARCHs) obtained from (2.2) as

ht (v) = α0(v) +

q∑

i=1

(
αi(v) + βi(v)I{εt(v−i)>0}

)
εt (v − i) +

p∑

j=1

γj (v)ht (v − j) , t ∈ Z (2.3)

iii. Periodic absolute value GARCH models (PAGARCHs): This class of models are obtained by assuming that αi(v)−
βi(v) = 0, v ∈ S and the volatility may be rewritten as

ht (v) = α0(v) +

q∑

i=1

αi(v) |εt (v − i)|+
p∑

j=1

γj (v)ht (v − j) , t ∈ Z (2.4)

(see Bollerslev [7] for further discussion and recent inference on the area).
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2.1 Markovian representation

Now, define p−vector γ
1:p

(v) := (γ1 (v) , ..., γp (v))
′
, 2q−vector ζ

1:q
(v) := (α1 (v) , β1 (v) , ..., αq (v) , βq (v))

′, r =

(2q + p)−vectors H = (1,−1, 0, ..., 0)
′
, r−random vectors, et(v) := α0(v)

(
e+t (v) , e−t (v) , O′

(2(q−1)), 1, 0...0
)′

, εt(v) :=

(ε+t (v) , ε−t (v) , ..., ε+t (v − q + 1) , ε−t (v − q + 1) , ht (v) , ..., ht (v − p+ 1))′ and r × r− random matrix

Γv(et(v)) =




ζ
1:q−1

(v) e+t (v) αq (v) e
+
t (v) βq (v) e

+
t (v) γ

1:p−1
(v) e+t (v) γp (v) e

+
t (v)

ζ
1:q−1

(v) e−t (v) αq (v) e
−
t (v) βq (v) e

−
t (v) γ

1:p−1
(v) e−t (v) γp (v) e

−
t (v)

I(2(q−1)) O(2(q−1)) O(2(q−1)) O(2(q−1),p−1) O(2(q−1))

ζ
1:q−1

(v) αq (v) βq (v) γ
1:p−1

(v) γp (v)

O(p−1,2(q−1)) O(p−1) O(p−1) I(p−1) O(p−1)




r×r

. (2.5)

With this notation, Equation (2.2) may be rewritten in state-space form εt(v) = H ′εt(v) and

εt(v) = Γv(et(v))εt(v − 1) + et(v). (2.6)

Equation (2.6) is the same as the defining equation for independent periodic distribution (i.p.d) random coefficient

autoregressive models introduced recently by Aknouche and Guerbyenne [2]. In this paper, we are interested in causal

solution of equation (2.6), i.e., solution such that εt is independent of ek for t < k. Hence, it is useful to write (2.6)

in some equivalent Markovian representation in order to facilitate its study. For this purpose, iterating Equation (2.6)

s−time to get

εt(s) =

{
s−1∏

v=0

Γs−v(et(s− v))

}
εt−1(s) +

s∑

k=1

{
s−k−1∏

v=0

Γs−v(et (s− v))

}
et(k)

and by setting ε(t) = εt(s), then the above equation can be rewritten as

ε(t) = Λ(et)ε(t− 1) + η (et) . (2.7)

wherein et = (et(s), et(s− 1), ..., et(1))
′
, Λ(et) =

{
s−1∏

v=0

Γs−v(et(s− v))

}
and η (et) =

s∑

k=1

{
s−k−1∏

v=0

Γs−v(et (s− v))

}
et(k).

Notice here that our formulation in Equation (2.7), the random matrix Λ(et) is independent of ε(t′) for all t′ < t and

(Λ(et))t∈Z
(resp.

(
η (et)

)
t∈Z

) is a sequence of i.i.d. of random matrices (resp. i.i.d. vectors). So the process (ε(t))t∈Z
is

Markov chain with state-space Rr and one-step transition probability P (ε, C) = P
(
Λ(e0)ε+ η (e0) ∈ C

)
for any Borel

C ∈ BRr .

3 Strict periodic stationarity

The existence of causal solution of (2.1) is now equivalent to the existence of the one of (2.7). Indeed, it is obvious that

any causal solution of (2.1) leads via (2.6) to one of (2.7) and vice versa, that any components of a stationary solution

of the dual process
(
(ε′t(1), ..., ε

′
t(s))

′)
t∈Z

(see Gladyshev [17] for more details) are one of (2.1). So, in what follows,

we examine the necessary and sufficient conditions ensuring the strict stationarity of the models (2.7) and hence the

corresponding solution of equation (2.6) is called strictly periodic stationary (SPS). Note here that Equations similar

to (2.7) were studied successfully in literature (e.g., Bougerol and Picard [8] and the reference therein). The key tool
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in studying the strict stationarity of (2.7) is however the top-Lyapunov exponent associated with the sequence of i.i.d

random matrices (Λt)t and defined by

γ
(s)
L (Λ) := inf

t>0





1

t
E



log

∥∥∥∥∥∥

t−1∏

j=0

Λ(et−j)

∥∥∥∥∥∥









a.s.
= lim

t−→∞





1

t
log

∥∥∥∥∥∥

t−1∏

j=0

Λ(et−j)

∥∥∥∥∥∥



 (3.1)

in which the second equality can be justified using Kingman’s [23] subadditive ergodic theorem and the existence of

γ
(s)
L (A) is guaranteed however by the fact that E

{
log+ ∥Λ(et)∥

}
≤ E {∥Λ(et)∥} < +∞, where log+ (x) = max (log x, 0)

for any x > 0. Moreover, since (et)t∈Z
is a stationary and ergodic process, then

(
Λ(et), η(et)

)
t∈Z

is also a stationary and

ergodic process and since E
{
log+ ∥Λ(e0)∥

}
< ∞ and E

{
log+

∥∥η(e0)
∥∥} < ∞, then we have

Theorem 3.1 Equation (2.7) has a causal strictly stationary solution given by the series

ϵ(t) =
∑

k≥0





k−1∏

j=0

Λ(et−j)



 η(et−k) (3.2)

if and only if γ
(s)
L (Λ) < 0. Moreover, the series (3.2) converges absolutely almost surely and constitute the unique ergodic

solution process to (2.7) and hence Equation (2.6) is SPS process and admits a causal solution given by the series

ϵt(v) =
∞∑

k=0

{
k−1∏

i=0

Γv−i(et (v − i))

}
et(v − k) (3.3)

which converges absolutely almost surely and the process
(
H ′ϵt(v)

)
t∈Z

constitute the unique, causal, SPS and periodically

ergodic solution of equation (2.1).

Corollary 3.1 If PTGARCHs (p, q) model (2.2) has an SPS solution, then

ρ (Ωs
1) < 1 where Ωs

1 =
s∏

v=1

Ωv with Ωv =

(
γ
1:p−1

(v) γp (v)

I(p−1) O(p−1)

)

Proof. See Aknouche and Bibi [1].�

Example 3.1 In the following table, we summarize the condition γ
(s)
L (Λ) < 0 for some particular cases

Specifications Condition γ
(s)
L (Λ) < 0

TGARCH1(1, 1) E
{
log
{
α1e

+
0 + β1e

−
0 + γ1

}}
< 0

PTGARCHs(1, 1)
s∑

v=1
E
{
log
{
α1 (v) e

+
t (v − 1) + β1 (v) e

−
t (v − 1) + γ1 (v)

}}
< 0

PAGARCHs(1, 1)
s∑

v=1
E {log {α1 (v) |e0|+ γ1 (v)}} < 0.

GJR− PGARCHs(1, 1)
s∑

v=1
E
{
log
∣∣(α1 (v) + β1 (v) I{e0>0}

)
e0 + γ1 (v)

∣∣} < 0

Table(1): Condition γ
(s)
L (Λ) < 0 for some specifications

Noting that the existence of ”explosive regimes” does not preclude the existence of SPS solution. In particular, for

PTARCH2 (1) with α1 (2) = 0.5α1 (1), β1 (2) = 0.25β1 (1) and et  t (5), the stationarity zone is showed in Fig (1)
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Fig(1). The stationary areas of TARCH(1) (discontinuous

line) and PTARCH(1) (continuous line)

Corollary 3.2 IIf γ
(s)
L (Λ) < 0 then there is δ > 0 such that E

(
hδ
t

)
< ∞ and E

(
|εt|δ

)
< ∞ for all t.

Remark 3.1 If in distribution ε(0) =
∑

k≥0





k−1∏

j=0

Λ(ej)



 η(ek), then (ε(t))t∈Z

is strictly stationary and the above series

converges absolutely with probability one.

Remark 3.2 Though, the condition γ
(s)
L (Λ) < 0 could be used as a necessary and sufficient condition for the strict

stationarity of equation similar to (2.7), it is of little use for practical checking of stationarity since this condition involve

the limit of products of infinitely many random matrices. Hence, some simple sufficient conditions ensuring the negativity

of γ
(s)
L (Λ) can be given.

1. If E

{
log

∥∥∥∥∥

s−1∏

v=0

Γs−v(et (s− v))

∥∥∥∥∥

}
< 0 or E

∥∥∥∥∥

s−1∏

v=0

Γs−v(et (s− v))

∥∥∥∥∥ < 1 then γ
(s)
L (Λ) < 0.

2. If ρ

(
E

{
s−1∏

v=0

Γs−v(et (s− v))

})
< 1, then γ

(s)
L (Λ) < 0.

Remark 3.3 It is worth noting that the condition γ
(s)
L (Λ) < 0 provide a certain global stability of model (2.2). However

when γ
(s)
L (Λ) ≥ 0, the model (2.2) is said to be unstable and hence does not admit a SPS solution. As an example,

consider PTARCHs (1) define by εt (v) = ht (v) et (v) and

ht (v) = α0(v) + α1(v) |et (v − 1)|ht (v − 1) , (3.4)

then it is not difficult to verify that γ
(s)
L (Λ) = log

{
s−1∏
v=0

α1 (v)

}
+ sE {log |e0|} ≥ 0 if and only if exp (−sE {log |e0|}) ≤

s−1∏
v=0

α1 (v). Moreover, if et  N (0, 1), E {log |e0|} = 1
2 (log(2) +

Γ′ (0.5)

Γ (0.5)
) where Γ (.) and Γ′ (.) are the Gamma function

and its first derivative respectively, so, exp (−sE {log |e0|}) ≈ exp(0.1048s). Hence the existence of some (not all)

”stable regimes” (i.e., E {logα1 (v)} < 0) does not guarantees the existence of SPS solution. More generally we have

the following convergence of the volatility to infinity for PTARCHs (1) process encompassing (2.2).
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Proposition 3.1 For PTARCHs (1), the following assertions hold

1. When γ
(s)
L (Λ) > 0, almost surely ht → +∞ at an exponential rate, i.e., ρtht → +∞ and ρtε2t → +∞ as t → +∞

for any ρ > e−γ
(s)
L

(Λ)

2. When γ
(s)
L (Λ) = 0, in distribution ht → +∞, and ε2t → +∞ as t → +∞.

4 QML estimator

In this section we consider the quasi-maximum likelihood estimator (QMLE) for the PTGARCHs parameter gathered

in vector θ′ :=
(
α′, β′, γ′

)
:=
(
θ′ (1) , ..., θ′ (s)

)
∈ Θ ⊂ ]0,+∞]

s × [0,+∞[
s(2q+p)

where α′ :=
(
α′
0, α

′
1, ..., α

′
q

)
, β′ :=(

β′

1
, ..., β′

q

)
, γ′ :=

(
γ′
1
, ..., γ′

p

)
and θ′ (v) := (α0 (v) , α1 (v) , ..., αq (v) , β1 (v) , ..., βq (v) , γ1 (v) , ..., γp (v)) , v ∈ S with

α′
i := (αi (1) , ..., αi (s)), β

′

k
:= (βk (1) , ..., βk (s)) and γ′

j
:= (γj (1) , ..., γj (s)) for all 0 ≤ i, k ≤ q and 1 ≤ j ≤ p. The

true parameter value denoted by θ′0 :=
(
α′
0, β

′

0
, γ′

0

)
∈ Θ ⊂ ]0,+∞[

s × [0,+∞[
s(2q+p)

, is unknown and therefore it must

be estimated. For this purpose, consider a realization {ε1, ..., εn;n = sN} from the unique, causal and SPS solution of

(2.2), and let h2
t (θ) be the conditional variance of εt given Ft−1. The Gaussian likelihood function of θ ∈ Θ conditional

on initial values ε0, ..., ε1−q, h0, ..., h1−p, which may be chosen as

ε+0 = ε−0 = h0 = ε+−1 = ε−−1 = h−1 = ... = ε+1−max(p,q) = ε−1−max(p,q) = h1−max(p,q) = 0 (4.1)

is given by

L̃n (θ) =





n∏

t=1

1
(
2πh̃2

t (θ)
) 1

2





exp

{
−

n∑

t=1

ε2t

2h̃2
t (θ)

}
(4.2)

in which h̃2
t (θ) are constructed under the initial values (4.1) and defined recursively by

h̃t (θ) = α0(t) +

q∑

i=1

(
αi(t)ε

+
t−i + βi(t)ε

−
t−i

)
+

p∑

j=1

γj (t) h̃t−j (θ) .

A QMLE of θ is defined as any measurable solution θ̂n of

θ̂n = Argmax
θ∈Θ

L̃n (θ) = Argmin
θ∈Θ

(
Ĩn (θ)

)

where (ignoring the constants) Ĩn (θ) = (sN)
−1

N∑
t=1

s−1∑
v=0

l̃st+v (θ) with l̃t (θ) =
ε2t

h̃2
t (θ)

+ log h̃2
t (θ). In view of the strong

dependency of h̃t (θ) on initial values (4.1),
(
l̃t (θ)

)
t≥1

is not a SPS nor a periodically ergodic (PE) process, and

therefore, it will however convening to work with a SPS and PE approximate version In (θ) of the likelihood (4.2)

i.e., In (θ) = (sN)
−1

N∑
t=1

s−1∑
v=0

lst+v (θ) with lt (θ) =
ε2t

h2
t (θ)

+ log h2
t (θ) . In what follows, we will give conditions ensuring

the strong consistency of θ̂n and its asymptotic normality. Our approach is principally benefitted from the paper by

Aknouche and Bibi [1].
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4.1 Asymptotic properties for QMLE of strong PTGARCHs models

To study the strong consistency of θ̂n, we first define the polynomials a0,v (z) =
q∑

i=1

α0,i (v) z
i, b0,v (z) =

q∑
i=1

β0,i (v) z
i

and c0,v (z) = 1 −
p∑

i=1

γ0,i (v) z
i, by convention a0,v (z) = 0 and b0,v (z) = 0 if q = 0 and c0,v (z) = 1 if p = 0, for all

v ∈ {1, ..., s} . Now, consider the following regularities conditions

A.0 θ0 ∈ Θ and Θ is a compact subset of Rs(1+2q+p).

A.1 If p > 0, a0,v (z) and b0,v (z) have no common roots with c0,v (z) for all v. Moreover, a0,v (1) + b0,v (1) ̸= 0 and

α0,q (v) + β0,q (v) + γ0,p (v) ̸= 0 for all v ∈ S.

A.2 γ
(s)
L (Λ0) < 0 and ρ (Ωs

1) < 1 where γL (Λ0) is the Lyapunov exponent associated with the random matrix Λ (e (t))

evaluate under the true value θ0.

A.3 (et)t∈Z
is non-degenerate and P (et > 0) ∈ (0, 1).

We are now in a position to state the following result.

Theorem 4.1 Under Assumption 1 and the conditions A.0−A.3, almost surely θ̂sN → θ0 as N → ∞.

To show the asymptotic normality of θ̂sN , the following additional assumptions are made.

A.4 θ0 ∈ Θ̊, with Θ̊ denotes the interior of Θ.

A.5 κ = E
{
e4t
}
< ∞.

The second main result of this section is the following

Theorem 4.2 Under the Assumption 1 and the condition A.0−A.5,
√
sN
(
θ̂sN − θ0

)
 N

(
O, (κ− 1) J−1

)
as N → ∞

where the matrix J given by

J :=
s∑

v=1

Eθ0

{
∂2lst+v

∂θ∂θ′
(θ0)

}
= 4

s∑

v=1

Eθ0

{
1

h2
st+v (θ0)

∂hst+v

∂θ
(θ0)

∂hst+v

∂θ′
(θ0)

}
,

is block-diagonal. In particular, for PTARCHs (1) we have J = diag {Jv, v ∈ S} with

Jv = Eθ0




1

h2
st+v (θ0)

ε+t (v − 1)

h2
st+v (θ0)

ε−t (v − 1)

h2
st+v (θ0)

ε+t (v − 1)

h2
st+v (θ0)

ε+2
t (v − 1)

h2
st+v (θ0)

0

ε−t (v − 1)

h2
st+v (θ0)

0
ε−2
t (v − 1)

h2
st+v (θ0)




.

Now, a few comments can be made, the compactness of Θ is assumed in order that several results from real analysis may be

used. Condition A.1, is a standard identifiability assumption. Condition A.2, implies that for the true value θ0, the model

(2.2) admits a SPS, PE solution and ensures the existence of a finite moment (see, Corollary 3.2). The second part of

Condition A.2 ensure that ht (θ) has a causal solution of (et, et−1, ...), i.e., ht (v) = ϕ0,v+
∑

j≥0

ϕj,v

(
e+t (v − j

)
, e−t (v−j)) for
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v ∈ S, where max
1≤v≤s

E
{
ϕj,v

(
e+t (v − j

)
, e−t (v − j))

}
= O

(
λj
)
, with 0 < λ < 1. Condition A.3, is made for identifiability

purpose, it ensures also that the process (εt) takes positive and negative values with a positive probability. Condition

A.4 is standard and allow to validate the first-order condition on the maximizer of the log-likelihood function while

Condition A.5 is necessary for the existence of the limiting covariance matrix of the QMLE.

Remarks

1. Regarding to the asymptotic inference of stationary asymmetric GARCH models allowing a signed volatility, the

consistency and the asymptotic normality of the QMLE have been established under different conditions see for

instance Pen et al [25], Wang and Pen [28] and Hamadeh and Zaköıan [20]. However, Gonzalez-Rivera and Drosi

[19] have established the loss of asymptotic efficiency of QMLE relative gain in its robustness.

2. Non stationarity in the volatility process has been well documented for financial time series data. Indeed, Jensen

and Rehbek [21], [22] and recently Chan [9] established asymptotic properties of QMLE for non stationary time-

invariant ARCH/GARCH models, where non stationarity stems from the fact that the strict stationarity condition

is not met, i.e., γ
(1)
L (Λ) > 0. Hence, it is fruitful the study the asymptotic properties of QMLE for non-stationary

(i.e., γ
(s)
L (Λ) > 0) PGARCHs (resp. PTGARCHs) models generalizing thus the time-invariant cases.

3. Based on a general quasi-likelihood distribution, Francq and Zakoian [14] proposed a class of QMLE for time-

invariant non-stationary asymmetric ARCH models and established the efficiency test for symmetry and station-

arity assumptions.

4. It is worth noting that the asymptotic properties of QMLE are also valid for the particular periodic integrated

TGARCH model obtained from the PTGARCHs model when the parameters are subject to be on the boundary

of the second-order periodic stationarity domain. This is due to the strict inclusion of the latter domain into the

strict stationarity one.

5. Noting here that the asymptotic properties for TGARCH case can be acquired when the period is assumed to be

equal to one and hence supports a parametric estimate method for TGARCH model.

4.2 QMLE of semi-strong PTGARCHs models

Now, we extend the above results to the so-called semi-strong PTGARCHs models, i.e., when the i.i.d. assumption in

innovation sequence is violated. In this case the Assumption 1 is replaced by the following

Assumption 2 (en)n∈Z
is strictly stationary and ergodic sequence satisfying

E
{
e2t |ℑt−1

}
= 1, E

{
e+t |ℑt−1

}
= µ+ and E

{
e−t |ℑt−1

}
= µ− a.s.

for some constants µ+ and µ−.

Remark 4.1 It is worth noting that under the Assumption 2, the condition γ
(s)
L (Λ) < 0 is not however necessary in

theorem 3.1. Moreover, Corollary 3.2 is no longer under the Assumption 2, and hence we shall assume that

A.6 there exists some positive τ such that E {|εn|τ} < +∞.

The following theorem extends Theorem 4.1
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Theorem 4.3 Under Assumption 2 and the conditions A.0−A.3, A.6, almost surely θ̂sN → θ0 as N → ∞.

For the asymptotic normality of semi-strong PTGARCHs models, we need to assume that

A.7 E
{
e
4(1+τ)
t

}
< +∞ for some τ > 0

Theorem 4.4 Under the Assumption 2 and the conditions A.0−A.7,
√
sN
(
θ̂sN − θ0

)
 N (O,Σ(θ0)) as N → ∞

where Σ(θ) = J−1 (θ) I (θ) J−1 (θ) where the matrix I (θ) given by

I (θ0) :=
s∑

v=1

Eθ0

{(
E
{
e4t |ℑt−1

}
− 1
) 1

h2
st+v (θ0)

∂hst+v

∂θ
(θ0)

∂hst+v

∂θ′
(θ0)

}
,

is block-diagonal.

Remark 4.2 Escanciano [11] and Lee and Hansen [24] established asymptotic results for a standard semi-strong GARCH

models when (en)n∈Z
is martingale difference sequence. Hamadeh and Zakoian [20] studied in general context the asymp-

totic behavior of QMLE for a class of power-transformed threshold GARCH models. In this paper, we extend the above

results for a periodic version of TGARCH.

5 Proofs

Sketch of Proof of Theorem 3.1. Following Bougerol and Picard [8], it is obviously that if (3.1) holds, then the

solution must be given by (3.2). By subadditive ergodic theorem (see Kingman [23]), the Series (3.2) exists a.s., whenever

γ
(s)
L (Λ) < 0. The stationarity and ergodicity are immediate consequence of Theorem 3.5.8 in Stout [27].�

Proof of Corollary 3.2. In this proof, we have to show that if γ
(s)
L (Λ) < 0 then there is δ > 0 and m0 such that

E

{∥∥∥∥∥

sm0 −1∏

k=0

Γsm0 −k(esm0 −k)

∥∥∥∥∥

}
< 1. (5.1)

Since γ
(s)
L (Λ) < 0, there is a positive integer m0 such that E

{
log

∥∥∥∥∥

sm0 −1∏

k=0

Γsm0 −k(esm0 −k)

∥∥∥∥∥

}
< 0. On the other hand,

working with a multiplicative norm and by the i.p.d. property of the sequence (Γt (et) , t ∈ Z) we have

E

{∥∥∥∥∥

sm0 −1∏

k=0

Γsm0 −k(esm0 −k)

∥∥∥∥∥

}

=

∥∥∥∥∥E
{

sm0 −1∏

k=0

Γsm0 −k (esm0 −k)

}∥∥∥∥∥ =

∥∥∥∥∥E
{(

s−1∏

v=0

Γs−v (es−v)

)m0
}∥∥∥∥∥ ≤

∥∥∥∥∥E
{

s−1∏

v=0

Γs−v (es−v)

}∥∥∥∥∥

m0

< ∞.

Let g (t) = E





(
sm0 −1∏

k=0

Γsm0 −k (esm0 −k)

)t


 . Since g′ (0) = E

{
log

∥∥∥∥∥

sm0 −1∏

k=0

Γsm0 −k(esm0 −k)

∥∥∥∥∥

}
< 0, g (t) decrease in

a neighborhood of 0 and since g(0) = 1, it follows that there exists 0 < δ < 1 such that Eq (5.1) holds. Now for all v ∈ S

E
{
∥ϵt(v)∥δ

}
≤

∞∑

k=0



E





∥∥∥∥∥

k−1∏

i=0

Γv−i(et (v − i))

∥∥∥∥∥

δ






E

{
∥et(v − k)∥δ

}
≤ σ (δ)

∞∑

k=0



E





∥∥∥∥∥

k−1∏

i=0

Γv−i(et (v − i))

∥∥∥∥∥

δ






 ,
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where σ (δ) = max
v∈S

E
{
∥et(v − k)∥δ

}
. Using Eq (5.1) there exist av > 0 and 0 < bv < 1 such that

E





∥∥∥∥∥

k−1∏

i=0

Γv−i(et (v − i))

∥∥∥∥∥

δ


 ≤ avb

k
v ≤ abk := max

v∈S

avb
k
v .

showing that E
(
|εt|δ

)
< ∞.�

Proof of Propositio 3.1. First, iterate (3.4), s−time to get the following equality

ht (s) =
s−1∑

k=0

{
k−1∏

i=0

α1 (s− i) |et(s− i− 1)|
}
α0(s− k) +

{
s−1∏

i=0

α1 (s− i) |et(s− i− 1)|
}
ht(0). (5.2)

Now, set

ω (et (1)) =

s−1∑

k=0

{
k−1∏

i=0

α1 (s− i) |et(s− i− 1)|
}
α0(s− k), α (et(0)) =

{
s−1∏

i=0

α1 (s− i) |et(s− i− 1)|
}
, h (t+ 1) = ht (s)

and rewriting (5.2) as h (t+ 1) = α (et (0))h (t) + ω (et(1)) with et (l) = (est+l, ..., est+s−1). Note that α (et(0)) is a

sequence of i.i.d. non negative random variables and independent of h(k) for any k < t. With this notation, the proof

follows essentially the same arguments as in Francq and Zakoian [13].�

Proof of Theorem 4.1

Rewrite (2.1) in vector form as

ht = Ωtht−1 + ϵt (5.3)

where ht := (ht, ..., ht−p+1)
′
and ϵt := (α0(st) +

q∑
i=1

(
αi(st)ε

+
t−i + βi(st)ε

−
t−i

)
, O′

(p−1))
′. We will establish the following

assertions gathered in the following lemma

Lemma 5.1 Under Assumptions A.0−A.3, we have

i lim
N→∞

sup
θ∈Θ

∣∣∣L̃sN (θ)− LsN (θ)
∣∣∣ = 0 a.s.

ii There is t ∈ Z such that ht (θ) = ht (θ0) a.s. ⇒ θ = θ0.

iii
s∑

v=1
Eθ0

{lst+v (θ0)} < ∞ and if θ ̸= θ0, then
s∑

v=1
Eθ0

{lst+v (θ)} >
s∑

v=1
Eθ0

{lst+v (θ0)} .

iv Any θ ̸= θ0 there is a neighborhood V (θ) such that lim inf
N→∞

inf
θ∗∈Θ

(
L̃sN (θ∗)

)
>

s∑
v=1

Eθ0
{lst+v (θ0)} a.s.

Proof. To prove i, we note first that by corollary 3.1 and the compactness of Θ, we have sup
θ∈Θ

ρ (Ωs
1) < 1. Hence, iterating

(5.3), we get

ht =
∞∑

k=0

Ωt−k+1
t ϵt−k. (5.4)

where, as usual, empty products are set equal to I(.). Now, let h̃t, ϵ̃t be the vectors obtained from ht, ϵt, respectively,

by replacing ε+0 , ε
−
0 , ..., ε

+
1−q, ε

−
1−q by their initial values (4.1), so from (5.3), we obtain

h̃t = Ω0
t h̃0 +

t−q−1∑

k=0

Ωt−k+1
t ϵt−k +

t−1∑

k=t−q

Ωt−k+1
t ϵ̃t−k
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and hence, similarly to equation (A.7) in Aknouche and Bibi [1] (hereafter AB), almost surely for all t ≥ 0

sup
θ∈Θ

∥∥∥h̃t − ht

∥∥∥ = sup
θ∈Θ

∥∥∥∥∥∥
Ω0

t

(
h̃0 − h0

)
+

t−1∑

k=t−q

Ωt−k+1
t

(
ϵ̃t−k − ϵt−k

)
∥∥∥∥∥∥
≤ Kτ t.

Moreover, since min(h̃t (θ) , ht (θ)) ≥ max
v∈S

{α0(v)} = α0, then by, the mean value theorem we obtain for all t

sup
θ∈Θ

∣∣∣h̃2
t (θ)− h2

t (θ)
∣∣∣ ≤ 2sup

θ∈Θ
max

(
h̃t (θ) , ht (θ)

)
sup
θ∈Θ

∣∣∣h̃t (θ)− ht (θ)
∣∣∣ ≤ Ksup

θ∈Θ
max

(
h̃2
t (θ) , h

2
t (θ)

)
τ t.

Using the inequality log x ≤ x− 1 for x > 0, we deduce that

sup
θ∈Θ

∣∣∣L̃n (θ)− Ln (θ)
∣∣∣ ≤ n−1

n∑

t=1

sup
θ∈Θ





∣∣∣h̃2
t (θ)− h2

t (θ)
∣∣∣

h̃2
t (θ)h

2
t (θ)

ε2t +

∣∣∣∣∣log
(
h̃2
t (θ)

h2
t (θ)

)∣∣∣∣∣





≤ n−1K
n∑

t=1

τ tε2t + n−1K
n∑

t=1

sup
θ∈Θ

(
h̃t (θ) + ht (θ)

)
τ t.

By Assumption A.2, and corollary 3.2, we have

E

{
sup
θ∈Θ

hδ
t (θ)

}
≤ E

{
sup
θ∈Θ

∥ht∥δ
}

≤
∑

k≥0

E

{
sup
θ∈Θ

∥∥Ωt−k+1
t

∥∥δ ∥∥ϵ̃t−k

∥∥δ
}

≤
∑

k≥0

τ δk max
1≤v≤s

{
sup
θ∈Θ

{
αδ
0(v)

}
+

q∑

i=1

(
sup
θ∈Θ

{
αδ
i (v)E

{(
ε+st+v−i

)δ}}
+ sup

θ∈Θ

{
βδ
i (v)E

{(
ε−st+v−i

)δ}}
)}

< ∞

and hence

E

{
sup
θ∈Θ

∥∥∥h̃t

∥∥∥
δ
}

≤ E

{
sup
θ∈Θ

∥ht∥δ
}

+ τ δt
q∑

k=1

{
τ−δkE

{
sup
θ∈Θ

∥̃ϵk − ϵk∥δ
}

+ E

{
sup
θ∈Θ

∥∥∥h̃0 − h0

∥∥∥
δ
}}

< K

The Borel–Cantelli lemma shows that almost surely τ tε2t → 0, and to deduce i it suffices to use the Cesàro lemma.

Turning to ii, assume that ht (θ) = ht (θ0) , a.s., and by Condition A.2., the polynomial (c0,v (z))v∈S
is invertible. By

second Equation in (2.2) , we have a.s.

(
av (L)

cv (L)
− a0,v (L)

c0,v (L)

)
ε+st+v +

(
bv (L)

cv (L)
− b0,v (L)

c0,v (L)

)
ε−st+v =

(
α0,0 (v)

c0,v (1)
− α0 (v)

cv (1)

)
for all 1 ≤ v ≤ s

where L is the lag operator. If
av (L)

cv (L)
̸= a0,v (L)

c0,v (L)
or

bv (L)

cv (L)
̸= b0,v (L)

c0,v (L)
for some v ∈ S, then there exist k > 0 and

(a (v) , b (v))
′ ∈ R2\ {(0, 0)} such that (a (v) , b (v))

(
ε+st+v−k, ε

−
st+v−k

)′
is a measurable function of the est+v−l, l > k.

Then, we have a.s.

(a (v) , b (v))
((

ε+st+v−k, ε
−
st+v−k

)′ − Eθ0

{(
ε+st+v−k, ε

−
st+v−k

)′∣∣∣Fst+v−k−1

})

= hst+v−k (θ0) (a (v) , b (v))
(
e+st+v−k − E

{
e+st+v−k

}
, e−st+v−k − E

{
e−st+v−k

})′
= 0.

Since hst+v−k (θ0) > 0, we deduce that a (v) e+st+v−k + b (v) e−st+v−k = c (v), a.s., for some constant c (v) . If a (v) = 0

and b (v) ̸= 0 then e−st+v−k = 0, a.s, which is in contradiction with A.3. If a (v) .b (v) ̸= 0, est+v−k takes at most two
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different values, which is contradiction with A.3. Thus we deduce that a (v) = b (v) = 0 and hence av (z) = a0,v (z) ,

bv (z) = b0,v (z), cv (z) = c0,v (z), for any z ∈ C :|z| ≤ 1 and α0 (v) = α0,0 (v) for all v ∈ S, proving ii. To show iii, we

have by Corollary 3.2

s∑

v=1

Eθ0

{
log h2

st+v (θ0)
}
=

2

δ

s∑

v=1

Eθ0

{
log hδ

st+v (θ0)
}
≤ 2

δ

s∑

v=1

logEθ0

{
hδ
st+v (θ0)

}
< ∞,

from which it follows that

s∑

v=1

Eθ0
{lst+v (θ0)} =

s∑

v=1

Eθ0

{
h2
st+v (θ0) e

2
st+v

h2
st+v (θ0)

+ log h2
st+v (θ0)

}
= s+

s∑

v=1

Eθ0

{
log h2

st+v (θ0)
}
< ∞,

and since log x ≤ x− 1 for all x > 0 with equality if and only if x = 1, we obtain

s∑

v=1

(
Eθ0

{lst+v (θ)} − Eθ0
{lst+v (θ0)}

)

=
s∑

v=1

(
log

h2
st+v (θ)

h2
st+v (θ0)

+
h2
st+v (θ0)

h2
st+v (θ)

− 1

)
≥

s∑

v=1

(
log

h2
st+v (θ)

h2
st+v (θ0)

+ log
h2
st+v (θ0)

h2
st+v (θ)

)
= 0,

which shows that the limit criterion is minimized at θ0. It remains to show iv. For all θ ∈ Θ and all integer k, let Vk (θ)

be an open sphere of centre θ and radius
1

k
. Using (i) we have

lim inf
N→∞

inf
θ∗∈Θ∩Vk(θ)

(
L̃sN (θ∗)

)
≥ lim inf

N→∞
inf

θ∗∈Θ∩Vk(θ)
(LsN (θ∗))− lim sup

N→∞
sup
θ∈Θ

(
LsN (θ)− L̃sN (θ)

)

≥ lim inf
N→∞

1

N

N−1∑

t=0

s∑

v=1

inf
θ∗∈Θ∩Vk(θ)

lst+v (θ
∗) .

Applying the ergodic theorem for the sequence

(
s∑

v=1
lst+v (θ)

)

t

with E

{
s∑

v=1
lst+v (θ)

}
∈ R ∪ {∞} (cf. Billingsley [5], p.

284, 495) it follows that

lim inf
N→∞

1

N

N−1∑

t=0

s∑

v=1

inf
θ∗∈Θ∩Vk(θ)

lst+v (θ
∗) =

s∑

v=1

Eθ0

{
inf

θ∗∈Θ∩Vk(θ)
lst+v (θ

∗)

}

and by the Beppo-Levi theorem (e.g. Billingsley [5], p. 219), we have

s∑

v=1

Eθ0

{
inf

θ∗∈Θ∩Vk(θ)
lst+v (θ

∗)

}
−→

s∑

v=1

Eθ0
{lst+v (θ)} as k → ∞,

which complete the proof of the lemma.�

The proof of the theorem 4.1 is completed upon the observation that for any neighborhood V (θ0) of θ0 we have

lim sup
N→∞

inf
θ∗∈V(θ0)

(
L̃sN (θ∗)

)
≤ lim

N→∞

(
L̃sN (θ0)

)
= lim

N→∞
(LsN (θ0)) =

s∑

v=1

Eθ0
{lst+v (θ0)} .

The compact Θ is recovered by a union of a neighborhood V (θ0) and the set of neighborhoods V (θ), θ ∈ Θ�V (θ0).

Therefore, there exists a finite sub-covering of Θ by V (θ0) ,V (θ1) , ...,V (θk) such that

inf
θ∗∈V(θ0)

(
L̃sN (θ∗)

)
= min

j∈{1,...,k}
inf

θ∗∈Θ∩V(θj)

(
L̃sN (θ∗)

)
.
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The latter relation shows that θ̂sN ∈ V (θ0) for N sufficiently large, which complete the proof of the theorem.�

Proof of Theorem 4.2

This proof rests classically on a Taylor series expansion of
∂LsN

∂θ
(θ) around θ0 i.e.,

0 = (sN)
− 1

2

sN∑

t=1

∂lt
∂θ

(
θ̂sN

)
= (sN)

− 1
2

sN∑

t=1

∂lt
∂θ

(θ0) +

(
(sN)

−1
sN∑

t=1

∂2lt

∂θ∂θ′
(θ∗)

)
(sN)

1
2

(
θ̂sN − θ0

)

where the coordinates of θ∗ are between the corresponding entries of θ̂sN and those of θ0. We will thus show that

(sN)
− 1

2

sN∑

t=1

∂lt
∂θ

(θ0)  N (0, (κ− 1) J) as N → ∞ and lim
n→∞

(
(sN)

−1
sN∑

t=1

∂2lt

∂θ∂θ′
(θ∗)

)
a.s.
= J .

The partial derivatives of lt (θ) are given by

∂lt
∂θ

(θ) =
2

ht

(
1− ε2t

h2
t

)
∂ht

∂θ
,

∂2lt

∂θ∂θ′
(θ) =

2

ht

(
1− ε2t

h2
t

)
∂2ht

∂θ∂θ′
+

2

h2
t

(
3
ε2t
h2
t

− 1

)
∂ht

∂θ

∂ht

∂θ′
.

in which, in periodic notations

∂hst+v

∂α0(n)
=
∑
k≥0

Ωv−k+1
v 1I{v−k≡n[s]}

∂hst+v

∂αi(n)
=
∑
k≥0

Ωv−k+1
v ε+st+v−k−i1I{v−k≡n[s]}

∂hst+v

∂βi(n)
=
∑
k≥0

Ωv−k+1
v ε−st+v−k−i1I{v−k≡n[s]}

∂hst+v

∂γj(n)
=
∑
k≥0

(
k−1∑
m=0

Ωv−m+1
v Ω(j)I{v−m≡n[s]}Ω

v−k+1
v−m−1

)
εst+v−k





(5.5)

where 1 denotes an s× 1 unit vector whose entries are all zero except for a one in the vth−row and Ω(j) is a p× p matrix

with (1, j)
th −element equal 1, and all other elements are equal to zero. Moreover,

∂2hst+v

∂α0∂α
′
0

,
∂2hst+v

∂α0∂α
′
i

,
∂2hst+v

∂α0∂β
′

i

,
∂2hst+v

∂αi∂α
′
j

,
∂2hst+v

∂αi∂β
′

j

,
∂2hst+v

∂β
i
∂β′

j

are null matrices and

∂2hst+v

∂α0(n)∂γj(n1)
=
∑
k≥0

k−1∑
m=0

Ωv−m+1
v Ω(j)Ωv−k+1

v−m−11I{v−k≡n[s]}I{v−m≡n1[s]}

∂2hst+v

∂αi(n)∂γj(n1)
=
∑
k≥0

k−1∑
m=0

Ωv−m+1
v Ω(j)Ωv−k+1

v−m−1ε
+
st+v−k−i1I{v−k≡n[s]}I{v−m≡n1[s]}

∂2hst+v

∂βi(n)∂γj(n1)
=
∑
k≥0

k−1∑
m=0

Ωv−m+1
v Ω(j)Ωv−k+1

v−m−1ε
−
st+v−k−i1I{v−k≡n[s]}I{v−m≡n1[s]},

∂2hst+v

∂γj(n)∂γj1 (n1)
=
∑
k≥0

k−1∑
m=0

m−1∑
τ=0

Ωv−τ+1
v Ω(j1)Ωv−m+1

v−τ−1 Ω
(j)Ωv−k+1

v−m−1εst+v−kI{v−m≡n[s]}I{v−τ≡n1[s]}

+
∑
k≥0

k−1∑
m=0

k−1∑
τ=m+1

Ωv−m+1
v Ω(j)Ωv−τ+1

v−m−1Ω
(j1)Ωv−m+1

v−τ−1 εst+v−kI{v−m≡n[s]}I{v−τ≡n1[s]}





(5.6)

Again, we will split the proof of theorem 4.2 into several intermediate results.
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Lemma 5.2 Under Conditions A0−A5, we have

(a)
s∑

v=1
Eθ0

{
sup
θ∈Θ

∥∥∥∥
∂lst+v

∂θ
(θ0)

∂lst+v

∂θ′
(θ0)

∥∥∥∥

}
< ∞ and

s∑
v=1

Eθ0

{
sup
θ∈Θ

∥∥∥∥
∂2lst+v

∂θ∂θ′
(θ0)

∥∥∥∥

}
< ∞.

(b) J is invertible and
s∑

v=1
V arθ0

{
∂lst+v

∂θ
(θ0)

}
= (κ− 1) J

(c) There is a neighborhood V (θ0) of θ0 such that
s∑

v=1
Eθ0



 sup

θ∈V(θ0)

∥∥∥∥
∂3lst+v

∂θi∂θj∂θk
(θ0)

∥∥∥∥



 < ∞, for all i, j, k ∈ {1, ...,

s (1 + 2q + p)}

(d) The following limit hold true

p lim

∥∥∥∥∥N
− 1

2

N∑

t=1

s∑

v=1

(
∂l̃st+v

∂θ
(θ0)−

∂lst+v

∂θ
(θ0)

)∥∥∥∥∥ = 0,

p lim sup
θ∈V(θ0)

∥∥∥∥∥N
−1

N∑

t=1

s∑

v=1

(
∂2 l̃st+v

∂θ∂θ′
(θ0)−

∂2lst+v

∂θ∂θ′
(θ0)

)∥∥∥∥∥ = 0,

(e) (sN)
− 1

2

sN∑
t=1

∂lt
∂θ (θ0)  N (O, (κ− 1) J) as N → ∞ and almost surely lim

n→∞

(
(sN)

−1
sN∑
t=1

∂2lt
∂θ∂θ′

(
θ̃
))

= J.

Proof. To prove (a), it is sufficient to show that

s∑

v=1

Eθ0

{∥∥∥∥
1

hst+v

∂hst+v

∂θ
(θ0)

∥∥∥∥
}

< ∞,

s∑

v=1

Eθ0

{∥∥∥∥
1

hst+v

∂2hst+v

∂θ∂θ′
(θ0)

∥∥∥∥
}

< ∞,

s∑

v=1

Eθ0

{∥∥∥∥
1

h2
st+v

∂hst+v

∂θ
(θ0)

∂hst+v

∂θ′
(θ0)

∥∥∥∥
}

< ∞.

Now, by the positivity of the coefficients in (5.5) and in (5.6), the derivatives of ht are non-negatives. It’s clear that
∂hst+v

∂α0 (n)
is bounded. Since ht ≥ a0 = inf

v∈S

a0(v), then
s∑

v=1
Eθ0

{∥∥∥ 1
hst+v

∂hst+v

∂α0(n)
(θ0)

∥∥∥
}
< ∞ and

max

(
αi (n)

∂hst+v

∂αi (n)
, βi (n)

∂hst+v

∂βi (n)

)
≤ hst+v and γj (n)

∂hst+v

∂γj (n)
≤
∑

k≥1

kΩv−k+1
v εst+v−k for all i, j, v,

from which we deduce
s∑

v=1
Eθ0

{∥∥∥ 1
hst+v

∂hst+v

∂αi(n)
(θ0)

∥∥∥
}
< ∞ and

s∑
v=1

Eθ0

{∥∥∥ 1
hst+v

∂hst+v

∂βi(n)
(θ0)

∥∥∥
}
< ∞. Using (A.2) , we have

∥∥∥(Ωs
1)

k
∥∥∥ ≤ Kµk for all k with K > 0 and µ ∈ ]0; 1[ . Using the inequality (a+ b)

δ ≤ aδ + bδ for all a, b ≥ 0, we deduce

15



that 1′εst+v has a moment of order δ, for some δ ∈ ]0, 1[ . By the inequality x ≤ (1 + x)xδ for all x ≥ 0, we obtain

Eθ0

{∥∥∥∥
1

hst+v

∂hst+v

∂γj (n)
(θ0)

∥∥∥∥
}

≤ 1

γj (n)
Eθ0




∑

k≥1

k

∥∥∥∥∥

(
Ωv−k+1

v εst+v−k

)
(1)

α0 (v) +
(
Ωv−k+1

v εst+v−k

)
(1)

∥∥∥∥∥



 (5.7)

≤ 1

γj (n)αδ
0 (v)

∑

k≥1

kEθ0

{∥∥∥
(
Ωv−k+1

v εst+v−k

)δ
(1)
∥∥∥
}

≤ Kδ

γj (n)αδ
0 (v)

∑

k≥1

kµδkEθ0

{∥∥∥
(
1′εst+v−k

)δ∥∥∥
}
≤ K.

Let us now turn to the second derivatives of ht. It follows that

γj (n1)
∂2hst+v

∂α0(n)∂γj(n1)
≤ ∑

k≥1

kΩv−k+1
v 1 for all j, v

max
(
αi (n) γj (n1)

∂2hst+v

∂αi(n)∂γj(n1)
, βi (n) γj (n1)

∂2hst+v

∂βi(n)∂γj(n1)

)
≤ ∑

k≥1

kΩv−k+1
v εst+v−k for all i, j, v

γj (n) γj1 (n1)
∂2hst+v

∂γj(n)∂γj1 (n1)
≤ ∑

k≥2

k (k − 1)Ωv−k+1
v εst+v−k for all j, j1, v





Using the same arguments as for (5.7), we can conclude that
1

hst+v

∂2hst+v

∂θ∂θ′
(θ0) is integrable. The proof of assertion (b)

follows essentially the same arguments as in Francq and Zakoian [12]. To proof (c), we have 1
2

∂3lt (θ)

∂θi∂θj∂θk
= I1 + I2 + I3

where

I1 :=

(
1− ε2t

h2
t

)(
1

ht

∂3ht

∂θi∂θj∂θk

)
,

I2 :=

(
3
ε2t
h2
t

− 1

)(
1

ht

∂ht

∂θi

)(
1

ht

∂2ht

∂θj∂θk

)
+

(
3
ε2t
h2
t

− 1

)(
1

ht

∂ht

∂θj

)(
1

ht

∂2ht

∂θi∂θk

)
+

(
3
ε2t
h2
t

− 1

)(
1

ht

∂ht

∂θk

)(
1

ht

∂2ht

∂θi∂θj

)
,

I3 := 2

(
1− 6

ε2t
h2
t

)(
1

ht

∂ht

∂θi

)(
1

ht

∂ht

∂θj

)(
1

ht

∂ht

∂θk

)
.

First, we will show that
ε2t
h2
t

is uniformly integrable in a neighborhood of θ0. Let Θ∗ be a compact included in Θ̇ such

that θ0 ∈ Θ∗. Denote by Ωt the matrix Ωt evaluated at θ = θ0. For all r > 0, there exists a neighborhood V (θ0) of θ0,

with V (θ0) ⊆ Θ∗, such that Ωt ≤ (1 + r)Ωt for all θ ∈ V (θ0). From (5.4), we have

hst+v =
∑

k≥0

Ωv−k+1
v (1, 1)α0 (v − k)+

q∑

i=1

∑

k≥0

Ωv−k+1
v (1, 1)αi (v − k) ε+st+v−k−i+

q∑

i=1

∑

k≥0

Ωv−k+1
v (1, 1)βi (v − k) ε−st+v−k−i.

Following the same argument as in (a) we have

sup
θ∈V(θ0)

ht (θ0)

ht
≤ K +K

q∑

i=1

∑

k≥0

(1 + r)
k
µkδ |εt−k−i|δ

the Minkowski inequality entails

Eθ0



 sup

θ∈V(θ0)

h2
t (θ0)

h2
t



 ≤


K +Kq

∑

k≥0

(1 + r)
k
µkδE

{
|εt|δ

}



2

< ∞,
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we obtain Eθ0

{
supθ∈V(θ0)

ε2t

h2
t

}
< ∞. On the other hand, we find

∂2hst+v

∂γj(n)∂γj1 (n1)

γj (n) γj1 (n1) γj2 (n2)
∂3hst+v

∂γj(n)∂γj1 (n1)∂γj2 (n2)
≤ ∑

k≥3

k (k − 1) (k − 2)Ωv−k+1
v εst+v−k,

γj (n) γj1 (n1) max
(

∂3hst+v

∂α0(n)∂γj(n)∂γj1 (n1)
,

∂3hst+v

∂αi(n)∂γj(n)∂γj1 (n1)
,

∂3hst+v

∂βi(n)∂γj(n)∂γj1 (n1)

)
≤ ∑

k≥2

k (k − 1)Ωv−k+1
v εst+v−k,





for all i, j, j1, j2, v and others are null. Therefore, using a similar argument as in (5.7), we can show that

sup
θ∈Θ∗

1

hst+v

∂3hst+v

∂βi (n) ∂γj (n) ∂γj1 (n1)
≤ K

∑

k≥2

k (k − 1)µkδ sup
θ∈Θ∗

(
1′εst+v−k

)δ
,

sup
θ∈Θ∗

1

hst+v

∂3hst+v

∂γj (n) ∂γj1 (n1) ∂γj2 (n2)
≤ K

∑

k≥3

k (k − 1) (k − 2)µkδ sup
θ∈Θ∗

(
1′εst+v−k

)δ
,

since Eθ0

{
supθ∈Θ∗

(
1′εst+v−k

)2δ}
< ∞ for some δ > 0, we then have Eθ0

{
supθ∈Θ∗

∣∣∣∣ 1
ht

∂3ht

∂θi∂θj∂θk

∣∣∣∣
2
}

< ∞. By the

Cauchy–Schwarz inequality, we get

Eθ0



 sup

θ∈V(θ0)

{∣∣∣∣
(
1− ε2t

h2
t

)
1

ht

∂3ht

∂θi∂θj∂θk

∣∣∣∣
}
 < ∞.

To deal with the other terms of the sum in
∂3lt (θ)

∂θi∂θj∂θk
we show that, Eθ0

{
supθ∈Θ∗

{∣∣∣∣ 1
ht

∂2ht

∂θi∂θj

∣∣∣∣
τ}}

< ∞ and

Eθ0

{
supθ∈Θ∗

{∣∣∣∣ 1
ht

∂ht

∂θi

∣∣∣∣
τ}}

< ∞ for any integer τ using Hölder inequality. To show (d), we use (5.3) to obtain

the following results,

∂hst+v

∂θi (n)
− ∂h̃st+v

∂θi (n)
=

[ qs ]−1∑

k=0

s∑

d=1

(
Ωd+1

v

)t−k
(
∂εsk+d

∂θi (n)
− ∂ε̃sk+d

∂θi (n)

)
+
(
Ω1

v

)t
(

∂h0

∂θi (n)
− ∂h̃0

∂θi (n)

)
,

∂hst+v

∂γi (n)
− ∂h̃st+v

∂γi (n)
=

t∑

m=0

(
Ω1

v

)m
Ωn+1

v Ω(i)Ω1
n−1

(
Ω1

v

)t−m−1
(
h0 − h̃0

)

+

[ qs ]−1∑

k=0

s∑

d=1

tk∑

m=0

(
Ωd+1

v

)m
Ωn+1

v Ω(i)Ωd+1
n−1

(
Ωd+1

v

)t−m−1 (
εsk+d − ε̃sk+d

)
.

Therefore, a.s.

sup
θ∈Θ

∣∣∣∣∣
∂hst+v

∂θi (n)
− ∂h̃st+v

∂θi (n)

∣∣∣∣∣ ≤ sup
θ∈Θ

∣∣∣∣∣
∂hst+v

∂θi (n)
− ∂h̃st+v

∂θi (n)

∣∣∣∣∣ ≤ Kust+v

and by Borel–Cantelli’s lemma and Markov’s inequality we have, a.s.

sup
θ∈Θ

∣∣∣∣∣
∂hst+v

∂γi (n)
− ∂h̃st+v

∂γi (n)

∣∣∣∣∣ ≤ sup
θ∈Θ

∣∣∣∣∣
∂hst+v

∂θi (n)
− ∂h̃st+v

∂θi (n)

∣∣∣∣∣ ≤ Kust+v

The second-order derivatives can be treated similarly. Therefore, a.s. supθ∈Θ

∣∣∣∣∣
∂2hst+v

∂θ∂θ′
− ∂2h̃st+v

∂θ∂θ′

∣∣∣∣∣ < Kust+v and

∣∣∣∣∣
1

h̃st+v

− 1

hst+v

∣∣∣∣∣ ≤
Kust+v

hst+v

,
h2
st+v

h̃2
st+v

≤ Kand

∣∣∣∣∣∣

h2
st+v

h̃2
st+v

− 1

∣∣∣∣∣∣
≤ Kust+v
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So, we obtain

∣∣∣∣∣
∂l̃st+v

∂θi
(θ0)−

∂lst+v

∂θi
(θ0)

∣∣∣∣∣ = 2

∣∣∣∣∣∣


 ε2st+v

h̃2
st+v

−
ε2st+v

h2
st+v


 1

hst+v

∂hst+v

∂θi
+

(
1−

ε2st+v

h2
st+v

)(
1

hst+v
− 1

h̃st+v

)
∂hst+v

∂θi

+


1−

ε2st+v

h̃2
st+v


 1

h̃st+v

(
∂hst+v

∂θi
− ∂h̃st+v

∂θi

)∣∣∣∣∣∣
(θ0)

≤ Kust+v
(
1 +Ke2st+v

){
1 +

1

hst+v (θ0)

∂hst+v

∂θi
(θ0)

}
.

The Markov inequality, assertion (a), and the independence between et and ht (θ0) entail that, for all σ > 0

P

(
N− 1

2

N∑

t=1

s∑

v=1

ust+v
(
1 +Ke2st+v

){
1 +

1

hst+v (θ0)

∂hst+v

∂θi
(θ0)

}
> σ

)
−→ 0.

The second part of assertion (d) follows in a similar fashion. To prove (e) we apply a central limit theorem for martingale

differences, since Eθ0

{
∂lt
∂θ

(θ0)

∣∣∣∣Ft−1

}
= 0 and V arθ0

{
∂lt
∂θ

(θ0)

∣∣∣∣Ft−1

}
exists. Hence for any λ ∈ Rr, the sequence

{
λ′ ∂lt

∂θ
(θ0) ,Ft

}
is a square-integrable stationary martingale difference. The central limit theorem of Billingsley [4] and

the Wold–Cramér device allow us to derive the asymptotic normality result. Moreover, by Taylor series expansion for

the second-order derivatives about θ0, we have for all i and j,

N−1
sN∑

t=1

∂2lt
∂θi∂θj

(
θ∗ij
)
= N−1

sN∑

t=1

∂2lt
∂θi∂θj

(θ0) +N−1
sN∑

t=1

∂

∂θ′

(
∂2lt

∂θi∂θj

(
θ̃ij

))(
θ∗ij − θ0

)

for some for some random vector θ̃ij such that almost surely
∥∥∥θ0 − θ̃ij

∥∥∥ ≤
∥∥θ0 − θ∗ij

∥∥ ≤
∥∥∥θ0 − θ̂sN

∥∥∥ . From the strong

consistency of θ̂sN , the periodic ergodicity and assertion (c) we have, almost surely,

lim sup
N→∞

∥∥∥∥∥(sN)
−1

sN∑

t=1

∂

∂θ′

(
∂2lt

∂θi∂θj

(
θ̃ij

))∥∥∥∥∥ ≤ lim sup
N→∞

(sN)
−1

sN∑

t=1

sup
θ∈V(θ0)

∥∥∥∥
∂

∂θ′

(
∂2lt

∂θi∂θj
(θ)

)∥∥∥∥

= Eθ0



 sup

θ∈V(θ0)

∥∥∥∥
∂

∂θ′

(
∂2lt

∂θi∂θj
(θ)

)∥∥∥∥



 < ∞.

Therefor, since
∥∥∥θ̂sN − θ0

∥∥∥ −→ 0 a.s. as N → ∞, the second term N−1
sN∑
t=1

∂
∂θ′

(
∂2lt

∂θi∂θj

(
θ̃ij

)) (
θ∗ij − θ0

)
converges a.s.

to 0 and the first one converges to J . To complete the proof of Theorem 4.2 it suffices to apply the Slutsky lemma.�

Proof of Theorem 4.3

This theorem is a consequence of proving the same intermediate results (i)–(iv) in Lemma 5.1 linked with Theorem

4.1. The i.i.d.assumption on (et) was only used in the proof of (ii) and (iii). The proof of (ii) is the same but is replaced

a (v) e+st+v−k + b (v) e−st+v−k = c (est+v−k−1, est+v−k−2, ...), a.s., where c (et−k−1, et−k−2, ...) is a measurable function of

the et−u, u > k. Thus

|a (v)| e+st+v−k + |b (v)| e−st+v−k = |c (est+v−k−1, est+v−k−2, ...)| , a.s. (5.8)

and then |a (v)|E
{
e+st+v−k

∣∣Fst+v−1

}
+ |b (v)|E

{
e−st+v−k Fst+v−1|

}
= |c (est+v−k−1, est+v−k−2, ...)|, a.s. Under Assump-

tion 2, the process |c (et−k−1, et−k−2, ...)| is constant. Therefore, (5.8) is in contradiction with A3, unless a (v) = b (v) = 0

18



and hence (ii) follows. The proof of (iii) followed essentially from the fact that

Eθ0
{lt (θ0)} = Eθ0

{
h2
t (θ0) e

2
t

h2
t (θ)

+ log h2
t (θ0)

}
= 1 + Eθ0

{
log h2

t (θ0)
}
< ∞.

The second equality remains valid when the independence of (et) is replaced by Assumption 2. The proof of Theorem

4.3 is now complete.�

Proof of Theorem 4.4

We follow the scheme of proof of Theorem 4.2, using similar arguments as in Escanciano (2009). We start by proving

(a). In view of first derivative of
∂lt
∂θ

, then by Hölder inequality and the fact that the norm is multiplicative imply that

(
Eθ0

{∥∥∥∥
∂lst+v

∂θ
(θ0)

∂lst+v

∂θ′
(θ0)

∥∥∥∥
})2(1+τ)/τ

≤ 4
(
Eθ0

{∣∣1− e2st+v

∣∣2(1+τ)
})2/τ

Eθ0

{∥∥∥∥
1

hst+v

∂hst+v

∂θ

∥∥∥∥
2(1+τ)/τ

}
Eθ0

{∥∥∥∥
1

hst+v

∂hst+v

∂θ′

∥∥∥∥
2(1+τ)/τ

}
.

Note that under Assumption 2, A.6 and A.7, we conclude that the first expectation in (a) exists. Using the same argument

we prove the second assertion in (a). The proof of the non-singularity of I is similar to the one given in Theorem 4.2,

with the argument used in Theorem 4.3. By the first derivative of
∂lt
∂θ

and the law of iterated expectations we prove

the second part of (b). The proof of (c). it is sufficient to prove the existence of Eθ0



 sup

θ∈V(θ0)

ε4st+v

h4
st+v



 where V (θ0) is a

neighborhood of θ0, defined in the proof of Theorem 4.2. Then by Hölder inequality, we have

Eθ0



 sup

θ∈V(θ0)

ε4st+v

h4
st+v



 ≤

(
Eθ0

{
|est+v|4(1+τ)

})1/(1+τ)


Eθ0



 sup

θ∈V(θ0)

∣∣∣∣
hst+v (θ0)

hst+v

∣∣∣∣
(1+τ)/τ








τ/(1+τ)

, (5.9)

where τ > 0. Under the Assumption 2, A.6 and by using the same argument as in Theorem 4.2, we prove the existence

of the second expectation in the right-hand side of the inequality (5.9). Finally, using the assumption A.7 the conclusion

follows. To show (d), we have by Markov inequality, the Assumption 2, A.6 and A.7

P

(
N− 1

2

N∑

t=1

s∑

v=1

ust+v
(
1 +Ke2st+v

){
1 +

1

hst+v (θ0)

∂hst+v

∂θ
(θ0)

}
> σ

)

≤ σ−1N− 1
2

N∑

t=1

s∑

v=1

ust+vE

{
E
{(

1 +Ke2st+v

)∣∣Fst+v−1

}{
1 +

1

hst+v (θ0)

∂hst+v

∂θ
(θ0)

}}

≤ σ−1 (1 +K)N− 1
2

N∑

t=1

s∑

v=1

ust+v

(
1 + Eθ0

{
1

hst+v (θ0)

∂hst+v

∂θ
(θ0)

})
−→ 0.

for all σ > 0. The rest of proof is essentially the same as in Francq and Zakoian [12].

6 Empirical evidence

Now, we illustrate the QMLE described in previous sections (at least for a moderate periodicity coefficients s = 5 say),

we provide some numerical results from Monte Carlo experiment. We simulate 500 independent trajectories via some
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specifications of PTGARCHs (1, 1) models with length n ∈{1000, 3000} with standard N (0, 1) and MA(1) as innovations

distributions, with vector θ of parameters described in the bottom of each table below which is chosen to satisfy the SPS

condition (3.1). For each trajectory, the vector θ has been estimated with QML noted as θ̂n. The QMLE algorithm

has been executed for these series under the MATLAB8 using fminsearch.m as a minimizer function. In Tables below,

the columns are correspond to the average of the parameters estimates over the 500 simulations. In order to show the

performance of QMLE, the roots mean square error (RMSE) of the each θ̂n (v), v = 1, ...s, (results between bracket),

are reported in each table. The asymptotic distributions of θ̂n (v), v = 1, ..., s over 500 simulations followed by their box

plot summary are plotted after each appropriate tables.

6.1 Standard TGARCH models

The first example illustrating our theoretical analysis is the standard TGARCH (1, 1) model, its vector of parameter is

θ = (α0, α1, β1, γ1)
′
, chosen to subject the condition γL = E

{
log
{
α1e

+
0 + β1e

−
0 + γ1

}}
< 0 The results of simulation

according to two designs for θ are given in table(1)

N (0, 1) MA(1)

Parameters 1000 3000 1000 3000

α̂0 1.0108 (0.0813) 0.9983 (0.0852) 1.0196 (0.0821) 1.0075 (0.0859)

α̂1 0.4965 (0.0555) 0.4984 (0.0318) 0.5080 (0.0552) 0.5098 (0.0314)

β̂1 0.2460 (0.0464) 0.2487 (0.0263) 0.2577 (0.0453) 0.2543 (0.0257)

γ̂1 0.1467 (0.0513) 0.1515 (0.0519) 0.1409 (0.0502) 0.1455 (0.0501)

Design (1): θ = (1.0, 0.5, 0.25, 0.15)
′

α̂0 0.9670 (0.0835) 0.9760 (0.0815) 0.9702 (0.0806) 0.9900 (0.0804)

α̂1 0.4886 (0.0867) 0.4964 (0.0332) 0.5002 (0.0599) 0.5001 (0.0327)

β̂1 0.2470 (0.0983) 0.2426 (0.0275) 0.2536 (0.0487) 0.2509 (0.0267)

γ̂1 0.0080 (0.0245) 0.0064 (0.0084) 0.0011 (0.0091) 0.0006 (0.0071)

Design (2): θ = (1.0, 0.5, 0.25, 0.0)
′

Table(1); Average and RMSE of 500 simulations of QMLE for TGARCH (1, 1)

The asymptotic distribution of the sequence
(√

n(θ̂n(i)− θ(i))
)
n≥1

, i = 1, ..., 4 followed by their box plot summary are

shown in figure Fig2.
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Fig2. Top panels: the asymptotic distribution of
√
n(θ̂n(i)− θ(i)). Bottom panels: Box plot summary of θ̂n(i),

i = 1, ..., 4, according to design(1) of table(2)

6.2 PTGARCHs (1, 1)

The second example of our Monte Carlo experiment is devoted to estimates the periodic TGARCHs (1, 1) with s = 5

and two regimes. i.e., εt = htet and

hn = α0 (n) + α1 (n) ε
+
n−1 + β1 (n) ε

−
n−1 + γ1 (n)hn−1

in which α0 (n) = α0 (1) I{n−5[n/5]≤3} + α0 (2) I{n−5[n/5]>3} and similar definition for the others coefficients ([x] de-

noting the integer part of x). This situation is raised in modelling some daily returns when we suspect the so-called

”Monday effect” (opening price) of day-of-the week seasonality (see for instance Franses and Raap [16]). Its vector of

parameter to be estimated is thus θ′ =
(
θ′ (1) , θ′(2)

)
where θ(i) = (α0 (i) , α1 (i) , β1 (i) , γ1 (i))

′
, i = 1, 2, are chosen to

ensure the SPS condition of our model. To this end, we assume that γL = 4E
{
log
{
α1 (1) e

+
0 + β1 (4) e

−
0 + γ1 (1)

}}

+E
{
log
{
α1 (2) e

+
0 + β1 (2) e

−
0 + γ1 (2)

}}
< 0. So, the results of simulation are gathered in table (2)
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N (0, 1) MA(1)

Parameters 1000 3000 1000 3000

α̂0

1.0102, 0.4960

(0.0102, 0.0040)

1.0019, 0.4800

(0.0019, 0.0200)

1.0166, 0.5126

(0.0166, 0.0126)

.0087, 0.4985

(0.0087, 0.0015)

α̂
1

0.5010, 0.2396

(0.0010, 0.0104)

0.4997, 0.2460

(0.0003, 0.0040)

0.5106, 0.2511

(0.0106, 0.0011)

0.5003, 0.2501

(0.0093, 0.0071)

β̂
1

0.2511, 0.4854

(0.0011, 0.0146)

0.2508, 0.4901

(0.0008, 0.0099)

0.2581, 0.4991

(0.0081, 0.0009)

0.2505, 0.5009

(0.0075, 0.0039)

γ̂
1

0.1441, 1.0091

(0.0059, 0.0091)

0.1486, 1.0136

(0.0014, 0.0136)

0.1409, 0.9960

(0.0091, 0.0040)

0.1451, 0.9993

(0.0049, 0.0007)

Design(1):α0 = (1, 0.5) , α1 = (0.5, 0.25) , β
1
= (0.25, 0.5) and γ

1
= (0.15, 1).

α̂0

0.9712, 0.4822

(0.0288, 0.0578)

0.9801, 0.4963

(0.0199, 0.0437)

0.9851, 0.4870

(0.0249, 0.0630)

0.9940, 0.4915

(0.0160, 0.0485)

α
1

0.4887, 0.2434

(0.0113, 0.0166)

0.4956, 0.2489

(0.0044, 0.0071)

0.5001, 0.2476

(0.0001, 0.0024)

0.5006, 0.2489

(0.0076, 0.0031)

β̂
1

0.2480, 0.4880

(0.0120, 0.0220)

0.2486, 0.4900

(0.0024, 0.0010)

0.2488, 0.4977

(0.0022, 0.0023)

0.2504, 0.5007

(0.0074, 0.0007)

γ̂
1

0.0039, 0.0022

(0.0339, 0.0622)

0.0019, 0.0010

(0.0099, 0.0030)

0.0015, 0.0069

(0.0315, 0.0669)

0.0009, 0.0015

(0.0079, 0.0475)

Design (2): α0 = (1, 0.5) , α1 = (0.5, 0.25) , β
1
= (0.25, 0.5) and γ

1
= (0.0, 0.0).

Table(2); Average and RMSE of 500 simulations of QMLE for PTGARCH7 (1, 1)

The asymptotic distribution of
√
n(θ̂n(i) − θ(i)) followed by its box plot summary of θ̂n(i), i = 1, ..., 4 according to

design(1) of table(2) are showed in figure Fig3 below.
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Fig3. Top panels: the asymptotic distribution of
√
n(θ̂n(i)− θ(i)).Bottom panels: Box plot summary of θ̂n(i),

i = 1, ..., 4, according to design(1) of table(3)
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Now, a few comments are in order. Table(1) compares the asymptotic parameters estimates and their RMSE through

two designs of parameters over 500 independent simulations of the standard TGARCH(1, 1) for sample sizes n = 1000

and n = 3000. The asymptotic values of QMLE corresponding to MA(1) innovation are generally overestimate, contrary

to those of QMLE corresponding to N (0, 1). Also, it can be noted that there is no significant difference between the

RMSE corresponding to different innovations. Regarding now Table(2) where the model was simulate according to

PTGARCH5(1, 1) via two designs in which the parameters of the first and second regime in design (1) are such that

E
{
log
{
α1 (v) e

+
0 + β1 (v) e

−
0 + γ1 (v)

}}
< 0, v = 1, 2 in contrast with design (2), the second regime is explosive in the

sense that E
{
log
{
α1 (2) e

+
0 + β1 (2) e

−
0 + γ1 (2)

}}
> 0, but the SPS of the model is satisfied. Also, as it can been seen

that the results are in general quite satisfactory in accordance with the asymptotic theory.

7 Applications for exchange rates

The proposed model is now investigated to real financial time series. So we apply our model to two foreign exchange

rates of Algerian Dinar against U.S.-Dollar (USD/DZD) and Euro (EUR/DZD), noted respectively
(
y
(d)
t

)
and

(
y
(e)
t

)

already analyzed by Hamdi and Souam [15] via a mixture periodic GARCH models. This data transformed to a daily

log returns
(
r
(d)
t = log

(
y
(d)
t /y

(d)
t−1

)
and r

(e)
t = log

(
y
(e)
t /y

(e)
t−1

))
t≥1

of prices from January 3, 2000 to September 29, 2011,

after removing the days when the market was closed (weekends, holidays,...), we provides 3055 observations supposed to

be uniformly distributed on 611 weeks. The graphics of prices and their associated returns series are plotted in Fig4.
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Fig 4. Top panels the prices of EUR,USD/DZ. Bottom panels their returns
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Some elementary statistics of
(
y
(e)
t

)
t≥1

,
(
y
(d)
t

)
t≥1

and their correspond returns series are summarized in table (3)

Series means Std.Dev Median Skewness Kurtosis Arch(300) LBtest

y
(e)
t 88.61 11.57 91.09 −0.51 2.13 100% 99.96%

r
(e)
t 0000 0000 0000 0.400 9.00 100% 24.2%

r
(e)2
t 0000 0000 0000 0000 0000 00% 00%∣∣∣r(e)t

∣∣∣ 0000 0000 0000 3.00 18.00 100% 100%

y
(d)
t 73.45 4.24 73.12 −0.60 3.76 100% 100%

r
(d)
t 0000 0000 0000 1.000 13.00 100% 43%

r
(d)2
t 0000 0000 0000 0000 1000 00% 00%∣∣∣r(d)t

∣∣∣ 0000 0000 0000 3.000 2.100 100% 100%

Table(3): Descriptive statistics of the series
(
y
(e)
t

)
t≥1

,
(
y
(d)
t

)
t≥1

and their returns

In Table (3), the column LBtest (Ljung–Box (portmanteau) test), shows that, on the one hand, at the 24.2% (resp.

43%) significance level, there is not enough evidence to reject the null hypothesis H0: ”The residuals of
(
r
(e)
t

)
t≥1

(resp
(
r
(d)
t

)
t≥1

) are not autocorrelated”, contrary to the series
(
r
(e)2
t

)
t≥1

(resp.
(
r
(d)2
t

)
t≥1

) which presents a significant ARCH

effects in its residuals. On the other hand, by the Arch(300) column, for testing K0 : ”No residuals heteroscedasticity

of
(
r
(e)
t

)
t≥1

(rep.
(
r
(d)
t

)
t≥1

)”, shows that trough the first three hundred lags, K0 should be rejected. Moreover, by

examination of the sample correlations functions (ACF ) of the series of returns, (see Fig 5 bellow)
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Fig5. The ACF of the returns and of their squred and absolute series
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it can be observed that
(
r
(d)
t

)
t≥1

(resp.
(
r
(e)
t

)
t≥1

) present a Taylor-Effect phenomena characterized by the fact that

sample autocorrelations function of the absolute returns are usually larger than the squared one. Hence, the modelling of

the series
(
r
(d)
t

)
t≥1

(resp.
(
r
(e)
t

)
t≥1

) by a standard GARCH models should be rejected in favor of certain asymmetric

models. However, it is obvious to address the question of day-of-the-week seasonality in returns (see for instance Franses

and Raap [16]). So, in order to analyze the seasonality, we fitted the following simple PTGARCH5 (1, 1) model for each

series or equivalently we estimate their volatility processes (ht)t≥1 according to a period version

hn = α0 (n) + α1 (n) r
+
n−1 + β1 (n) r

−
n−1 + γ1 (n)hn−1 (6.1)

The estimated five-regimes (intraday) parameters of
(
h
(e)
t

)
t≥1

(resp.
(
h
(d)
t

)
t≥1

) and their RMSE according to (6.1) are

reported in table(5)

Series ĥ
(d)
t ĥ

(e)
t

Days α̂
(e)
0 α̂

(e)
1 β̂

(e)

1
γ̂(e)

1
α̂
(d)
0 α̂

(d)
1 β̂

(d)

1
γ̂(d)

1

Sunday
0.7787

(0.0922)

0.3744

(0.0817)

0.5128

(0.0915)

0.5408

(0.0632)

1.1619

(0.0390)

0.4394

(0.0033)

0.3399

(0.0010)

0.7730

(0.0211)

Monday
0.4231

(0.0753)

0.5505

(0.0594)

0.4646

(0.0474)

0.5181

(0.0195)

0.9158

(0.0129)

0.3867

(0.0571)

0.4665

(0.0764)

0.5174

(0.0698)

Tuesday
0.0000

(0.0439)

0.9077

(0.1409)

0.3803

(0.0646)

0.5669

(0.0011)

1.0811

(0.0521)

0.3144

(0.0701)

0.3929

(0.0720)

0.6128

(0.0934)

Wednesday
0.0212

(0.0408)

0.6114

(0.0842)

0.5092

(0.0660)

0.5852

(0.0626)

0.7307

(0.0246)

0.2324

(0.0451)

0.2522

(0.0518)

0.4420

(0.0592)

Thursday
0.1485

(0.0685)

0.7269

(0.0146)

0.4297

(0.0721)

0.6623

(0.0626)

1.0706

(0.0447)

0.3091

(0.0605)

0.3520

(0.0742)

0.6093

(0.0947)

Table(5): QMLE estimates and their RMSE of
(
h
(e)
t

)
t≥1

and
(
h
(d)
t

)
t≥1

Some elementary statistics associated with the estimated
(
r
(e)
t

)
t≥1

(resp.
(
r
(d)
t

)
t≥1

) according to (6.1) noted
(
r̂
(e)
t

)
t≥1

(resp.
(
r̂
(d)
t

)
t≥1

) are reported in table (6) below

Series means Std.Dev Median Skewness Kurtosis Arch(300) LBtest

r̃
(e)
t 0000 0.005 0000 0.391 8.517 100% 23.2%

r̃
(e)2
t 0000 0.001 0000 0.002 0.001 0.01% 0.05%∣∣∣r̃(e)t

∣∣∣ 0000 0.002 0000 2.80 17.10 100% 99.8%

r̃
(d)
t 0000 0000 0000 0.880 13.50 100% 45%

r̃
(d)2
t 0000 0000 0000 0000 8590 0.01% 0.01%∣∣∣r̃(d)t

∣∣∣ 0000 0000 0000 3.100 1.800 100% 100%

Table(6): Descriptive statistics of the series
(
y
(e)
t

)
t≥1

,
(
y
(d)
t

)
t≥1

and their returns

Regarding the parameters in Table (5), it is can be shown that these parameters forces the models to be SPS. The

elementary statistics presented in Table (6) shows the Arch effect (resp. heteroscedasticity) in residuals of
(
r̂
(e)
t

)
t≥1

and
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of
(
r̂
(d)
t

)
t≥1

are still present at almost the same significance level as of
(
r
(e)
t

)
t≥1

and of
(
r
(e)
t

)
t≥1

presented in Table(3).

In general, the results in Table 6 of estimate returns according to PTGARCHs (1, 1) reveal a noticeable resemblance

with the results of the real returns displayed in Table 3 and hence the capability of PTGARCHs (1, 1) to model this

data is justified.

8 Summary and conclusion

This paper investigates some probabilistic, statistical properties and empirical evidence of PTGARCHs processes. The

main purpose of introducing this new class of models is twofold, the first is to extended the TGARCH models with

constant coefficients to time-varying one, in the sense that the coefficients are periodic with period s ≥ 1. This specifi-

cation becomes an efficient tool to analyze nonlinear and non Gaussian financial time series that is capable to capture

the stylized and leverage effects and hence the asymmetric properties in the volatility process. On the other hand, from

a practical point of view, the approach can be used even for datasets of moderate length.

The second aim that we wish to consider in this paper is the estimation of PTGARCHs models. Indeed, after the

derivation of sufficient conditions ensuring the existence of SPS solutions, we have investigated the QMLE approach

for estimating the parameters of PTGARCHs model. More precisely we have shown that under very mild moment

condition for the volatility process, the QMLE is strongly consistent and asymptotically normal. This methodology has

been illustrated by a Monte Carlo study and an application to the exchange rate of Algerian Dinar against U.S. Dollar

and the single European currency (Euro)., showing hence its performance and its efficiency. Note in end, that the results

of such nature has never appeared in the literature of asymmetric models, although the area has been considered for a

long time.
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[29] Zaköıan, J. M. (1994) Threshold heteroskedastic models. Journal of Economic Dynamics and Control 18 (5) , pp.

931− 955.

28


