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Abstract

We construct a simple model to demonstrate how the firm-level degree of scale economies

(D-SE) is determined when firms make technology choice. In particular, we illustrate the

importance of external factors that affect the efficiency of firms’ technology choice, such

as public knowledge stock, when determining D-SE. A change in public knowledge stock

affects D-SE both directly and indirectly through a change in the firm’s output. When

output is endogenized in a monopolistic competition model with a variable mark-up rate,

an increase in public knowledge stock raises D-SE through technology choice if the mark-up

rate is increasing in output.

Keywords: Degree of scale economies; Technology choice; Public knowledge stock;

Variable mark-up rate.

JEL classification numbers : D21, D24, F10, F12, L11, L16.

1 Introduction

Economists have well recognized that firm-level scale economies are crucial in shaping

various economic phenomena, such as intra-industry trade (Krugman, 1979, 1980) and

firms’ spatial agglomeration (Krugman, 1991). In empirical studies, the firm-level degree

of scale economies (D-SE), defined as output’s elasticity with respect to the total input at

the firm level, is important for accurately estimating total factor productivity (TFP).1)

∗Corresponding author. Graduate School of Economics, Kyoto University, Yoshida Honmachi, Sakyo-
ku, Kyoto 606-8501, Japan. E-mail address: shintaku.shitanku@gmail.com.
1) Many empirical studies assume that the D-SE for the Cobb-Douglas production function equals one,

but if it is over (under) one, TFP is over (under) estimated.
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The literature, however, neglects the role of firms’ technology choice in determining

D-SE. In reality, firms can choose their technology level by controlling the quality and

type of patents, machinery, labor, and management systems. Recent studies (Yeaple,

2005; Bustos, 2011) have shown that changes in a firm’s competitive environment induces

technology choice, defined as selecting both of marginal and technology adoption costs.

Therefore, we need to consider the effect of technology choice on D-SE determination.

This paper examines how D-SE is determined when firms make technology choice. The

essential feature of our analysis is as follows. We endogenize technology choice. As driving

forces of choosing technology that exists but is new for the firm, we consider both firm size

and some factors external to individual firms. The latter include public knowledge stock,

firms’ agglomeration, infrastructure, etc. We interpret these factors as public knowledge

stock available to firms.

The main results are as follows. First, when a firm’s output is given, D-SE directly

depends on output, fixed costs, and public knowledge stock; i.e., an increase in output

reduces D-SE, whereas an increase in public knowledge stock or fixed costs raises it, ceteris

paribus. Second, when a firm’s output is endogenized in a monopolistic competition model

with a variable mark-up rate, whether an increase in public knowledge stock or fixed costs

raises D-SE through technology choice depends on whether the mark-up rate is increasing

in output or constant.

This paper contributes two novel findings to the literature. First, we show that external

factors such as public knowledge stock affect DSE through their effects on technology choice.

Second, we demonstrate that D-SE changes under variable mark-ups.

2 D-SE under exogenous firm’s output

In the following model, a firm’s technology choice and D-SE depend on its size in terms

of output. In this section, we focus on a firm’s technology choice and analyze its D-SE by

assuming that its output is given. In the next section, we endogenize the firm’s output

choice.

2.1 Firm’s technology

A firm produces outputs by inputting production factors. For analytical simplicity, we

assume only one input—labor—as a numeraire. The firm has the following technology. Its

production function is y = alP , where y is output level, lp is an input level of production

labor, and a is the marginal product. a can be interpreted as TFP. The marginal product (a)

depends on the levels of spending on technology (lT ). The relationship can be characterized
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by ”technology choice function,” F , as a = F (lT , ϕ), where ϕ is a parameter external

to individual firms. This parameter represents factors that affect the efficiency of firms’

technology choice. Those factors may include public knowledge stock, firms’ agglomeration,

infrastructure, etc. We interpret this as public knowledge stock available to firms. We

assume F (0, ϕ) > 0, FlT > 0, and Fφ > 0. FlT > 0 means that firms can reduce the

production cost by paying a higher technology choice cost. Fφ > 0 represents the whole

economy’s technological spillover.

2.2 Optimal technology choice

The firm faces the following cost-minimization problem. We define variable input (variable

cost), lV , as lV
def
= lT + lP . The firm minimizes lV by selecting a pair of (lT , lP ), given y.

This problem characterizes the optimal technology choice, (lT , lP ), conditional on y. The

firm faces this problem after paying fixed cost (lF ) for entry. lF mainly represents the costs

of obtaining physical assets and constructing a distribution network.

To characterize the solution clearly, we introduce a ”technology upgrading rate” (ET ).

ET is defined as the elasticity of marginal product (a) with respect to spending on tech-

nology (lT ), i.e., ET
def
= (∂F/∂lT )(lT/F ).

We assume that FlT (0, ϕ)y/[F (0, ϕ)]2 ≥ 1 for arbitrary (y, ϕ) and FlT lT < 2(FlT )
2/F

for arbitrary (y, ϕ, lT ). The former certifies the optimal lT > 0; the latter certifies the

second-order condition of the optimization. These assumptions characterize the optimal

pair of (lT , lP ), conditional on y, as follows.

Lemma 1. 2) For arbitrary y > 0 and ϕ > 0, the optimal levels of lT and lP are positive;

these are completely characterized by y = F (lT , ϕ)lP and the following relationship:

ET =
F (lT , ϕ)lT

y
. (1)

This lemma shows the characterization of the optimal technological choice and addi-

tionally implies that an increase in ET raises lT , given y.

We impose two important assumptions for ET to clarify the following analysis. First,

for analytical simplicity, we assume that ET depends only on ϕ: ∂ET (lT , ϕ)/∂lT = 0.3)

Second, we assume that ET is increasing in ϕ: dET (lT , ϕ)/dϕ = ∂ET (lT , ϕ)/∂ϕ > 0.4) This

assumption seems to be natural because of public knowledge stock’s property. Now, we

2) Proofs of lemmas and propositions are provided in the appendix.
3) This condition is equivalent to FlT lT lT /FlT +1 = FlT lT /F , implying that lT = FlTF/[(FlT )

2−FFlT lT ].
We assume (FlT )

2 − FFlT lT > 0 to certify lT > 0.
4) This condition is equivalent to FFlTφ > FlTFφ.
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should distinguish between technology choice and technology creation. Existing knowledge

reinforces technology choice while restricting technology creation.

Lemma 1 derives the following proposition.

Proposition 1. For arbitrary y > 0 and ϕ > 0, the following properties hold. (a) An

increase in ϕ reduces lP and lV while ambiguously impacting lT . (b) An increase in y raises

lT , lP , and lV .

In (a), the impact on lT is ambiguous because an increase in public knowledge stock has

two opposite effects: raising the return on technology investment relatively to production

labor (positive effect) and saving technology investment through a free ride on the existing

public knowledge (negative effect).

In (b), the impact on lT is positive, corroborating previous studies’ findings.

The assumptions for ET , ∂ET (lT , ϕ)/∂lT = 0, and ∂ET (lT , ϕ)/∂ϕ > 0 certify the

result of (a), although it does not affect the result of (b). In particular, the assumption of

∂ET (lT , ϕ)/∂lT = 0 derives ∂lV /∂ϕ < 0. Both these assumptions derive ∂lP/∂ϕ < 0.

We should note that the impacts on lV are different in (a) and (b). This leads to

different impacts on D-SE.

2.3 Two types of degree of scale economies

For later analysis, we define two types of degree of scale economies. One is D-SE (with

fixed costs), which we denote as SED, defined as SED
def
= ∂ log y/∂ log l, where l represents

total labor input, i.e., l
def
= lF + lV . The other is the degree of scale economies without fixed

costs (D-SEV). We denote D-SEV as SEVD, defined as SEVD
def
= ∂ log y/∂ log lV . Equation

(1) derives the following relationship:

SEVD = 1 + ET. (2)

(2) implies that D-SEV has a one-to-one correspondence to the technology upgrading rate

for arbitrary output level.

2.4 Three channels affecting D-SE

The relationship of (2) reveals channels affecting D-SE as follows.

Lemma 2. For arbitrary y > 0 and ϕ > 0, SED = SEVD(1 + lF/lV ) holds.

This lemma means that D-SE depends on D-SEV and fixed and variable costs. Fur-

thermore, D-SEV and variable costs depend on public knowledge stock and output. Hence,

D-SE essentially depends on output, fixed costs, and public knowledge stock.
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In this section, y, lF , and ϕ are exogenous. We investigate how changes in these

exogenous variables affect D-SE using Proposition 1 and Lemmas 1 and 2.

Proposition 2. (a) An increase in y reduces SED. (b) An increase in lF raises SED. (c)

An increase in ϕ raises SED.

These results can be explained as follows: (a) An increase in output raises variable costs

but does not affect D-SEV, thereby reducing D-SE. (b) An increase in fixed costs directly

raises SED but does not affect D-SEV and variable costs, thereby raising D-SE. (c) An

increase in public knowledge stock raises D-SEV and reduces variable costs, thereby raising

D-SE. All these results depend on the assumption of ∂ET (lT , ϕ)/∂lT = 0. The result (c)

also depends on dET (ϕ)/dϕ > 0.

As is well known, fixed costs create firm-level scale economies. Proposition 2 implies

that this is true even when firms make technology choice. Furthermore, we show that some

external factors, such as public knowledge stock, can affect D-SE.

3 D-SE under an endogenous firm’s output

In this section, we construct a market equilibrium and endogenize y. Then, changes in lF or

ϕ affect y. We analyze how D-SE (SED) depends on fixed cost (lF ) and public knowledge

stock (ϕ) through this effect.

3.1 Specification of technology choice function

For analytical simplicity, we specify the technology choice function F (lT , ϕ). From the cost

minimization problem, the following technology is chosen.

Lemma 3. We specify F (lT , ϕ) as F (lT , ϕ) = ϕlφT . Then, when the firm makes technology

choice optimally, ET = ϕ holds, and the optimal level of lT and lP conditional on y is given

by lT = y1/(φ+1) and lP = y1/(φ+1)/ϕ. The variable cost function can be uniquely specified

as lV = [(ϕ+ 1)/ϕ]y1/(φ+1). Then, SEVD = ϕ+ 1, ∂MC/∂y < 0, and ∂MC/∂ϕ < 0 hold,

where MC denotes the marginal cost in the optimal technology choice.

In the above specification, all assumptions for technology choice function and the fol-

lowing new properties hold. lT is decreasing in ϕ and MC is decreasing in y and ϕ.

3.2 Market structure

To endogenize y, we have to specify the market structure.
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Consider an economy wherein a monopolistically competitive industry. Households

supply labor inelastically and wage is exogenous. All these economic agents are symmetric.

The preference of the representative household is represented by U =
∫ n

0
v(xi)di, where

v′ > 0, v′′ < 0, and xi(> 0) is consumption of variety i (Krugman, 1979). We define θ(xi)

as θ(xi)
def
= −v′(xi)/[v

′′(xi)xi]. θ coincides with the demand elasticity for each variety with

respect to price.

3.3 Market equilibrium

The firm’s decisions are as follows. The firm decides whether to pay lF to enter the market

first, selects a pair of (lP , lT ) second, and selects a pair of (y, p) last.

After entering the market, the firm minimizes variable cost by selecting (lP , lT ) and then

obtains a variable cost function as l = [(ϕ + 1)/ϕ]y1/(φ+1) + lF . Next, the firm maximizes

the profit, π, by selecting (y, p). Note that π is given by π = py − l. Since firms have the

market power, the profit-maximization (PM) condition is given by PM : p = µ(y)MC(y),

where µ(y) is the mark-up and is defined as µ(y)
def
= 1+ 1/[θ(y)− 1]. We assume µ(y) > 1

and dµ/dy ≥ 0.

The firm can enter the market freely till its profit is zero. The free-entry (FE) condition

is given by FE : p = l/y.

The PM and FE conditions and MC = lV /(ySEVD) give the following PM-FE condi-

tion:

PM-FE : µ(y) = SEVD(ϕ)

(
1 +

lF
lV (y, ϕ)

)
. (3)

(3) gives a unique inner equilibrium, y .5)

3.4 An increase in public knowledge stock and fixed costs

(3) derives the impacts of an increase in ϕ and lF on (y, lT , SED) as follows.

Proposition 3. In a unique inner equilibrium, an increase in ϕ or lF raises y and has

ambiguous impacts on SED. It raises (or does not change) SED if µ(y) is increasing in y

(constant).

This proposition shows that an increase in fixed costs and public knowledge stock

affects D-SE in the same way. Both raise (do not raise) D-SE through technology choice,

depending on whether the mark-up rate is increasing in output (constant). Thus, it is

critical whether the mark-up rate is constant or variable. The role of the mark-up rate

is explained as follows. In (3), when the mark-up rate is increasing in output, changes in

5) Necessary and sufficient conditions are given in the Appendix.
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public knowledge stock or fixed costs adjust not only lV but also the mark-up rate. This

then raises y moderately and weakens the negative impact of an increase in y on D-SE.

Hence, the increasing mark-up rate derives a larger D-SE. The IT revolution and an increase

in foreign direct investment may be interpreted as an increase in ϕ. Thus, Proposition 3

implies that these factors can increase D-SE if the mark-up rate is increasing in output.

Acknowledgments

I am grateful to Naoto Jinji for his helpful comments.

References

Bustos, P. (2011). ”Trade Liberalization, Exports, and Technology Upgrading: Evidence

on the Impact of MERCOSUR on Argentinian Firms.” American Economic Review,

101(1): 304-340.

Krugman, P. R. (1979).”Increasing Returns, Monopolistic Competition, and International

Trade.” Journal of International Economics, 9(4): 469-479.

Krugman, P. R. (1980).”Scale Economies, Product Differentiation, and the Pattern of

Trade.” American Economic Review, 70(5): 950-959.

Krugman, P. R. (1991).”Increasing Returns and Economic Geography.” The Journal of

Political Economy, 99(3): 483-499.

Yeaple, S. R. (2005).“A Simple Model of Firm Heterogeneity, International Trade, and

Wages.” Journal of International Economics, 65(1): 1-20.

7



Appendix

In this appendix, a hat indicates the rate of change for any variable, e.g., x̂
def
= dx/x. We

introduce SlF , SlV , SlP and SlT , which are defined as SlF
def
= lF/l, SlV

def
= lV /l, SlP

def
= lP/lV

and SlT
def
= lT/lV , respectively. In subsections F and G, we introduce α and γ, which are

defined as α
def
= 1/(ϕ+1) and γ

def
= (ϕ+1)/ϕ. Hence, we can rewrite lV = [(ϕ+1)/ϕ]y1/(φ+1)

in Lemma 3 as lV = γyα. We should note that α < 1 holds from the definition of α and

ϕ > 0.

A. Proof of Lemma 1

First–order condition

The variable cost (lV ) minimization problem can be rewritten as maximization of −lV . We

construct Lagrangian, L as follows:

L = −(lP + lT ) + λy[y − F (lT , ϕ)lP ] + λP lP + λT lT

The first order Kuhn-Tucker conditions are given by

∂L

∂lP
= −1− λyF (lT , ϕ) + λP = 0, (A.1)

∂L

∂lT
= −1− λyFlT (lT , ϕ)lP + λT = 0, (A.2)

∂L/∂λP ≥ 0, λP ≥ 0, (∂L/∂λP )λP = 0, ∂L/∂λT ≥ 0, λT ≥ 0, (∂L/∂λT )λT = 0, and

∂L/∂λy = 0.

These conditions characterize (lP , lT , lV ) as follows. If lP = 0 holds, y = F (lT , ϕ)lP does

not hold for y > 0. Then, we obtain lP > 0. lP > 0 and (∂L/∂λP )λP = 0 derive λP = 0.

(A.1), (A.2) and λP = 0 derive

1− λT =
FlT (lT , ϕ)lP
F (lT , ϕ)

. (A.3)

If lT = 0 holds, λT > 0 and lP = y/F (0, ϕ) hold. These properties and (A.3) derive

FlT (0, ϕ)y

[F (0, ϕ)]2
< 1. (A.4)

(A.4) contradicts the assumption of FlT (0, ϕ)y/[F (0, ϕ)]2 ≥ 1. Hence, we obtain lT > 0.

lT > 0 and (∂L/∂λT )λT = 0 derive λT = 0. Then, λT = 0, (A.3) and y = F (lT , ϕ)lP derive

(1). Q.E.D.
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Second–order condition

We define the bordered hessian, H̃, as follows:

H̃ =

∣∣∣∣∣∣∣∣

0 −∂(FlP )
∂lP

−∂(FlP )
∂lT

−∂(F lP )
∂lP

∂2L

∂lP
2

∂L
∂lP

∂L
∂lT

−∂(F lP )
∂lT

∂L
∂lT

∂L
∂lP

∂2L

∂lT
2

∣∣∣∣∣∣∣∣
. (A.5)

The second–order condition for the maximization is H̃ > 0. From (A.5), H̃ > 0 is equivalent

to the assumption of FlT lT < 2(FlT )
2/F from

H̃ =

∣∣∣∣∣∣∣∣

0 −F −FlT lP

−F 0 −λyFlT

−FlT lP −λyFlT −λyFlT lT lP

∣∣∣∣∣∣∣∣
= λylPF [2(FlT )

2 − FFlT lT ] > 0 ↔ FlT lT < 2(FlT )
2/F.

Q.E.D.

B. Proof of Proposition 1

Proof of property (a)

We totally differentiate y = alP by keeping y fixed and obtain

â+ l̂P = 0. (B.1)

We totally differentiate a = F (lT , ϕ) and obtain

â = ET l̂T + ηφϕ̂, (B.2)

where ηφ is defined as ηφ
def
= Fφϕ/F . From Fφ > 0, ηφ > 0 holds. (B.1) and (B.2) derive

l̂P + ET l̂T + ηφϕ̂ = 0. (B.3)

(1) and assumption of ∂ET/∂lT = 0 derive ET (ϕ) = lT/lP . We totally differentiate this

equation and obtain

τφϕ̂ = l̂T − l̂P , (B.4)

where τφ is defined as τφ
def
= ETφϕ/ET . From assumption of dET/dϕ > 0, τφ > 0 holds.
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(B.3) and (B.4) derive (l̂P , l̂T ) as follows,

l̂P = −
ηφ + ETτφ
1 + ET

ϕ̂, (B.5)

l̂T =
τφ − ηφ
1 + ET

ϕ̂. (B.6)

(B.5) implies ∂lP/∂ϕ < 0. (B.6) implies that the sign of ∂lT/∂ϕ is ambiguous because sign

of τφ − ηφ is ambiguous.

We totally differentiate lV = lT + lP and obtain

l̂V = SlP l̂P + SlT l̂T . (B.7)

Equations (B.5)-(B.7) yield

l̂V = −
ηφ

1 + ηlT
ϕ̂. (B.8)

(B.8) implies ∂lV /∂ϕ < 0. Q.E.D.

Proof of property (b)

We can rewrite (1) as

y =
F 2

FlT

. (B.9)

We totally differentiate (B.9) and when dϕ = 0 holds, we obtain

dlT =
(FlT )

2

F [2(FlT )
2 − FFlT lT ]

dy. (B.10)

(B.10) and the assumption of FlT lT < 2(FlT )
2/F yield ∂lT/∂y > 0.

We totally differentiate y = F (lT , ϕ)lP and when dϕ = 0 holds, we obtain dy =

FlT lPdlT + FdlP . This equation and (1) yeild

dy = F (dlT + dlP ). (B.11)

(B,10) and (B.11) derive

dlP =
(FlT )

2 − FFlT lT

F [2(FlT )
2 − FFlT lT ]

dy. (B.12)

(B.12) shows ∂lP/∂y > 0 from the assumption of (FlT )
2 − FFlT lT > 0 in footnote 3.

(B.10), (B.12) and dlV = dlT + dlP yield

dlV =
1

F
dy. (B.13)
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(B.13) implies ∂lV /∂y > 0. Q.E.D.

C. Derivation of Equation (2)

We take the log of both sides of y = alP and totally differentiate it to obtain

ŷ = â+ l̂P . (C.1)

(B.7), (C.1), and the definition of SEVD derive

SEVD =
â+ l̂P

SlT l̂T + SlP l̂P
. (C.2)

(1) and y = F (lT , ϕ)lP derive SlT /SlP = ET . From SlT /SlP = ET and â/l̂T = ET , (C.2)

can be rewritten as

SEVD =
ET l̂T + l̂P

SlP (ET l̂T + l̂P )
,

=
1

SlP

,

=1 + ET. by SlT /SlP = ET and SlT = 1− SlP (C.3)

Hence, SEVD = 1 + ET follows. Q.E.D.

D. Proof of Lemma 2

By definition, SED can be rewritten as

SED =
d log y

d log l
.

=

(
dy

dl

)(
l

y

)

=

(
dy

dlV

dlV
dl

)(
l

lV

lV
y

)

=

(
d log y

d log lV

)(
l

lV

)

= SEVD

(
1 +

lF
lV

)
. (D.1)

Hence, SED = SEVD(1 + lF/lV ) directly follows. Q.E.D.
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E. Proof of Lemma 3

We take the log of both sides of F (lT , ϕ) = ϕlφT to obtain logF = log ϕ + ϕ log lT . This

equation derives ∂ logF/∂ log lT = ϕ. Hence, ET = ϕ holds. This equation and (2) derive

SEVD = 1 + ϕ.

F (lT , ϕ) = ϕlφT and (1) yield

lT = y1/(φ+1). (E.1)

y = alP , a = ϕlφT and (1) yield

lP = y1/(φ+1)/ϕ. (E.2)

(E.1), (E.2) and lV = lP + lT yield

lV =
ϕ+ 1

ϕ
y1/(φ+1). (E.3)

We differentiate (E.3) with respect to y to obtain

MC =
∂lV
∂y

=
y−φ/(φ+1)

ϕ
. (E.4)

We differentiate (E.4) with respect to y and ϕ to obtain

∂MC

∂y
= −

y−(2φ+1)/(φ+1)

ϕ+ 1
< 0. (E.5)

∂MC

∂ϕ
=< 0, (E.6)

respectively. Q.E.D.

F. Necessary and sufficient condition for a unique inner equilib-

rium

For the following analysis, we define AC and AV C as AC
def
= l/y and AV C

def
= lV /y,

respectively.

F.1. Additional proposition

Proposition 4. lV is specified as lV = γyα, where γ and α are positive. Then, the following

properties hold.

(a) If an inner equilibrium, y > 0, exists, α < 1 or lF > 0 holds. If the inner equilibrium

is unique, max{lF , dµ/dy} > 0 holds.
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(b) A unique inner equilibrium, y > 0, holds when lF > 0 and one of the following two

cases hold. Case.1: dµ/dy > 0. Case.2: dµ/dy = 0 and µ > 1/α. 6)

F.2. (y, p) Plane

The equilibrium conditions, PM : p = µMC and FE : p = AC, depict a curve in (y, p)

respectively. The existence of the intersection certifies the existence of the equilibrium. We

represent the right-hand sides of PM : p = µMC and FE : p = l/y as PM(y) and FE(y),

respectively.

F.2. Proof of Property (a)

Existence of the inner equilibrium

We prove the existence of the inner equilibrium by contractive induction. We assume

that under α ≥ 1 and lF = 0, there is y such that y satisfies FE(y) = PM(y).

From µ > 1, PM(y) > MC(y) holds.

On the other hand, FE(y) ≤ MC can shown in the following way. From lF = 0,

AC = AV C holds. This equation and MC = αAV C derive AC = (1/α)MC. Hence,

FE(y) = (1/α)MC holds. From α ≥ 1, FE(y) ≤ MC holds. Hence FE(y) ≤ MC holds.

These properties imply PM(y) > FE(y). This contradicts that there is y such that

satisfies FE(y) = PM(y). Hence, if the inner equilibrium exists, α < 1 or lF > 0 holds.

Q.E.D.

Uniqueness of the inner equilibrium

We prove the uniqueness of the inner equilibrium by contractive induction. We assume

that under lF = dµ/dy = 0, the inner equilibrium is determined uniquely.

From lF = 0, AC = AV C holds. From dµ/dy = 0, µ(y) = µ̄ holds for arbitrary y where

µ̄ is constant. Hence, PM-FE condition is rewritten as

µ =
1

α
. (F.1)

Since lF = 0 is assumed, α < 1 must be hold if the inner equilibrium exists. From µ > 1,

(F.1) holds under certain pairs of (µ, α).

Since both sides of (F.1) do not depend on y, a number of inner equilibrium can exist.

This contradicts that under lF = dµ/dy = 0, the inner equilibrium is determined uniquely.

Hence, if the inner equilibrium is determined uniquely, max{lF , dµ/dy} > 0 holds. Q.E.D.

6) All of these cases require that PM curve intersects the FE curve only once from below in (y, p) plane,
where PM and FE curves are characterized by PM and FE conditions respectively. This implies that this
equilibrium is stable for an adjustment of the number of firms since ∂π/∂n < 0 holds in the equilibrium.
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F.3. Proof of Property (b)

From FE(y)− PM(y) = AC(y)− µ(y)MC(y) and lV = γyα, we obtain

FE(y)− PM(y) =
lF − (αµ− 1)γyα

y
. (F.2)

We consider a case of dµ/dy = 0. FE(y)− PM(y) = 0 and (F.2) derives

y =

[
lF

γ(αµ− 1)

]1/α
. (F.3)

Hence, under µ > 1/α, y > 0 uniquely exists.

We next consider a case of dµ/dy > 0. Since µ(0) is finite, (F.2) derives limy→0[FE(y)−

PM(y)] = ∞ > 0. For (F.2), from l’Hospital’s rule, we obtain

lim
y→∞

[FE(y)− PM(y)] = −α(dµ/dy)γyα − (αµ− 1)γαyα−1 = −∞.

Hence, y > 0 exists from the intermediate value theorem. The numerator on the right-hand

side of (F.2) is decreasing in y. Then, we obtain d[FE(y)− PM(y)]/dy < 0. Hence, y > 0

exits uniquely. Q.E.D.

G. Proof of Proposition 3

For the following analysis, we define the elasticity of µ with respect to y, ϵ(y), as ϵ(y)
def
=

∂ log µ/∂ log y, where ϵ(y) ≥ 0 holds from dµ/dθ < 0 and dθ/dy ≤ 0.

G.1. Derivation of the rate of change of variables

From the definition of α
def
= 1/(ϕ+ 1) and γ

def
= (ϕ+ 1)/ϕ, we obtain

α̂ = −
ϕ

ϕ+ 1
ϕ̂, (G.1)

γ̂ = −
1

ϕ+ 1
ϕ̂. (G.2)

We take the log of both sides in (3) and the total differentials are given by

ŷ =
1

αSlF + ϵ(y)

[
SlF l̂F +−SlF γ̂ − (αSlF log y + 1)α̂

]
. (G.3)

(G.1), (G.2) and (G.3) yield ∂y/∂lF > 0 and ∂y/∂ϕ > 0.
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From Lemma 2, SEVD = 1 + ϕ of Lemma 3 and the definition of α, SED = 1/(αSlV )

holds. Hence, we obtain SED = −(α̂ + ŜlV ). This can be rewritten as

ŜED =
1

αSlF + ϵ

[
(ϵSlF )l̂F − (ϵSlF )γ̂ − ϵ(1 + SlF log lV )α̂

]
. (G.4)

(G.1), (G.2) and (G.4) derive ∂SED/∂lF > 0 and ∂SED/∂ϕ > 0 if ϵ > 0. If ϵ = 0,

∂SED/∂lF = ∂SED/∂ϕ = 0 hold. Q.E.D.

G.2. Derivation of Equation (G.3)

(3) can be rewritten as

µ =
l

lV α
. (G.5)

We take the log of both sides of (G.5) and totally differentiate it to obtain

µ̂ = l̂ − l̂V − α̂. (G.6)

For the right-hand side of (G.6), the following lemma holds.

Lemma 4. l̂ − l̂V = SlF [l̂F − (αŷ + γ̂)− (α log y)α̂]

On the other hand, for the left-hand side of (G.6), µ̂ = ϵ(y)ŷ holds. Hence, we can

obtain (G.3). Q.E.D.

Proof of Lemma 4

We take the log of both sides of l = lV + lF and lV = γyα. Totally differentiate them

to yield

l̂ = SlV l̂V + SlF l̂F , (G.7)

l̂V = αŷ + γ̂ + (α log y)α̂. (G.8)

(G.7) and (G.8) derive the equation of Lemma 4. Q.E.D.

G.3. Derivation of Equation (G.4)

We take the log of both sides of SlV = lV /l and totally differentiate it to obtain

ŜlV =l̂V − l̂,

=SlF [−l̂F + αŷ + γ̂ + (α log y)α̂] by Lemma 4 (G.9)
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SED = −(α̂ + ŜlV ) and (G.9) derive (G.4) as follows:

ŜED =− (α̂ + ŜlV ),

=− α̂ + SlF

[
l̂F − αŷ − γ̂ − (α log y)α̂

]
, by (G.9)

=
1

αSlF + ϵ

[
(ϵSlF )l̂F − (ϵSlF )γ̂ − ϵ(1 + SlF log lV )α̂

]
. by (G.3)

Q.E.D.
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