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Chapter 8

TOPOLOGICAL COMPLEXITY OF MANIFOLDS
OF PREFERENCES*

GRACIELA CHICHILNISKY
Columbia University, New York, NY, USA

1. Introduction

The problem of endowing preferences with manifold structures emerged
from discussions with Gérard Debreu in 1975. Time has shown that such
structures can be useful in understanding the behavior of economic systems.

In Chichilnisky (1976) spaces of smooth preferences were endowed with a
Hilbert manifold structure, and this was used to study the existence and
structural stability of competitive equilibria in economies where preferences
might be non-monotonic and non-convex. This paper constructs manifolds of
preferences and applies this construction to the aggregation of preferences. We
examine the topological complexity of manifolds of smooth preferences and
use this to determine when appropriate aggregation rules exist and when they
do not.

In mathematical terms, a smooth preference is an oriented foliation of the
choice space. General spaces of foliations are still poorly understood. Our
approach is to consider subspaces of foliations which are of special interest in
economic theory and which can be endowed with manifold structures. These
spaces are large enough to be infinite-dimensional, and to include non-convex
and non-monotonic preferences. Spaces of convex and monotonic preferences
are shown to be submanifolds.

In those cases where our construction succeeds in endowing preference
spaces with a manifold structure, it also serves to show that these manifolds are
contractible, or topologically trivial. These manifolds therefore satisfy the
necessary and sufficient condition of Chichilnisky and Heal (1983) for the
existence of aggregation rules which are continuous, anonymous and respect
unanimity.

*This research was supported by NSF grants No. SES-84-09857 and SES-84-20244. Comments
from Andreu Mas-Colell and Dennis Sullivan are gratefully acknowledged.
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However, the larger space of all preferences given by regular foliations is
shown to be topologically complex: it contains a sphere as a retract. Therefore,
this space is not contractible and does not admit continuous and anonymous
aggregation rules which respect unanimity.

The next section contains definitions and notation. Section 3 proves that
regular preferences can be viewed as retractions of the choice space and that
spaces of preferences are two-fold covers of spaces of retractions. Certain
spaces of retractions are then endowed with (Hilbert) manifold structures.
Section 4 shows that the manifolds in Section 3 are contractible: they therefore
admit appropriate aggregation rules and continuous representation into func-
tion spaces. It is then shown that the space of all regular preferences is
topologically complex: it has a sphere as a retract. Therefore this space does
not admit appropriate aggregation, as shown in Chichilnisky (1980).

2. Notation and definition

X denotes a choice space, which is the closed unit cube /" or unit ball B” in
Euclidean space R", or any manifold with boundary which is C* diffeomorphic
to either I" or B",! (k = 1). ‘A function f: X — R defines a preference on X,
by the rule: x € X is at least as desirable as y € X (xpy) when f(x) = f(y).
If f is continuous, the preference it defines is said to be continuous. A C*
function f: X — R is regular (k = 1) when its derivative Df(x) never
vanishes in the interior of X, and the restriction of Df on the boundary of X,
d X, has only two zeroes and is otherwise transversal to dX.

A codimension-one globally integrable oriented foliation of X is a function v:
X — 8", where §"! is the (n — 1)th sphere, such that there exists a C!
map f: X — R with

v(x) = A(x) Df(x),
for all x in X, and for some continuous positive map A: X — R. A [eaf of this
foliation is a hypersurface of the map f; f is said to define the foliation.

Many functions f: X — R define the same oriented foliation on X: any two
C! functions g, f: X — R having the same set of hypersurfaces and increasing
in the same direction, define the same oriented foliation on X. Any two such
functions will also define the same preference on X.!

IC¥ indicates k times continuously differentiable. For a definition of a C* manifold, see
Abraham and Robbins (1967), and for manifolds with boundary, see Hirsch and Mazur (1974). A
C* manifold X ¢ R” with boundary is C* diffeomorphic to another ¥ ¢ R™ if there exists a
one-to-one onto C* map f: U(X) — U(Y), with C* inverse [~ (U(Y)) = U(X), where U(X)
and U(Y) are neighborhoods of X and ¥ in R" and R™, respectively. f: X — R is called C* if it
admits a C* extension to a neighborhood of X in R”.
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Figure 1. A regular preference on X.

Figure 2. An oriented foliation of X which does not define a regular preference.

The relation between utility functions and preferences is many-to-one, and
so is the relation between functions and foliations. However, the correspon-
dence between oriented foliations and preferences is one-to-one. The leaves of
the foliation are the indifference surfaces of the preference.’

This motivated one of Gerard Debreu’s definitions of smooth preferences
[Debreu (1972)] as globally integrable foliations: it also motivates the defini-
tion we give here.

A C* (k = 1) regular preference p is an oriented foliation of X defined by a
C* regular function f: X — R, and such that the leaves of the foliation define
a C* coordinate system for X.> An integral curve of this foliation is a map
C: [0,1] — X satisfying for all ¢ in [0,1] C(¢) = v(x), where C(t) = x.

A space Y C R" is called contractible if there is a continuous map
d: Y X [0,1] = Y such that d(y,0) =y for all y in ¥, and d(y,1) = y, for
some y, in Y, all y in Y. A retraction from a space Z into another Y C Z is a
continuous function r: Z — Y such that r/Y = id,.

Let C*( X, R) denote the space of all infinitely differentiable functions from
X to R, and C*(X, R) the space of k times continuously differentiable such

2An indifference surface J of a preference p consists of points which are all preferred to each
other, i.e., indifferent to each other: x, y € J iff xpy and ypx.

*That is, there exists a C* diffeomorphism g: X — R" such that each leaf is of the form

T (T x,) € R": x,=x;} forsome X; €R.
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functions, k = 1. Both C*®(X, R) and C*(X, R) are linear spaces, with the
addition rule (f + y)(x) = f(x) + g(x). The Sobolev norm || - ||, is defined on
C*(X, R) by

1/2

||f||5=(f L DY(x)Pdx|

X0<lk|<s

where D* is the kth derivative of f. The Sobolev space H*( X, R) is defined as
the completion of C*( X, R) under the |- |, norm. H’(X, R) is a Hilbert
space.

The C* norm on C*( X, R) is defined by

Il = ngf(x),Df(x),---,D"f(x)H-

Sobolev’s theorem establishes that H*(X, R) € CX(X, R) for s = n/2 + k,
and this inclusion is continuous and compact [Sobolev (1963) and Skorohod
(1974)]. In the following we assume s > n/2 + k, and k > 1.

3. A Hilbert manifold of preferences

Our first step is to show that regular preferences can be viewed as retractions
of the choice space. We then show how spaces of retractions can be endowed
with manifold structures.

Lemma 1. Let p be a C* regular preference on X. Then we can identify p with a
unique retraction from X into a regular C* submanifold I of X.*

Proof. Let f: X — R represent the preference p. By regularity of p, f attains
one minimum and one maximum on dX. Call these x, and x,. Consider now
an integral curve I: [0,1] = X of the vector field defined by Df, with
I(0) = x,. The graph of I is a C* regular submanifold of X by definition of p.
I(1) = x, by proposition 4 of Chichilnisky (1976, p. 47).

Define now a retraction r: X — I as follows: r(x) =d € I such that
f(x) = f(d). The map r is well defined because for any x € X there exists

YA submanifold ¥ c X is called near when its boundary Y is the intersection of ¥ with the
boundary X and Y is transversal to X at dY; for a definition of transversality see Abraham and
Robbins (1967). A submanifold ¥ € X is called regular if it is contractible, C* (k = 1), neat and
compact. See also Hirsch (1976).
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Figure 3. The retraction r is indicated by the arrows. The inverse image under the retraction r of
the point x in [, is an indifference surface of the preference p defined by r.

d € I with f(x) = f(d): this follows from connectedness of I and the fact
that f(x,) < f(x) £ f(x,). Furthermore, such a 4 is unique: by construction
of I and the regularity of p, f is strictly increasing along I. Continuity of r
follows from the smoothness of p. O

A retraction r from X into a regular C* manifold I of X is called regular if
it is a regular map from X to I which is transversal to dX — I = {x € dX:
x & T},

Lemma 2. Let I be a regular C* curve® in X, x € dI. Any retraction from X to
I defines a unique preference p which attains a minimum at x. If the retraction is
C* and regular, p is C* and regular.

Proof. By the classification theorem for one-dimensional manifolds [Milnor
(1965)] I is C* diffeomorphic to [0,1]. Let d: I — [0,1] be a C* regular
diffeomorphism with d(x) =0, and r a retraction from X to I. Define
f: X — R as the composition map d o r. Then f defines a continuous prefer-
ence p on X.

If the retraction r is C*, so are f and p. To see that p is regular when r is
regular, it suffices to recall that for all x, the manifold »~*(x) is transversal to
dX — I. It follows that df/d X is non-zero everywhere except at two points of
0X.

Note that the above procedure defines the same preference p on X, for any
regular diffeomorphism 4: I — [0,1] with d(x) = 0. O

Lemma 3. Let I be a regular C* curve in X. Any retraction from X to I defines
two continuous preferences on X. If the retraction is C* and regular, then the
preferences are C* and regular.

SA CK regular curve is a one-dimensional regular submanifold of X.
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Proof. Let x € dI. Then dor: X — R defines the same preference on X for
all C* regular diffeomorphisms d: I — [0, 1] satisfying d(x) = 0. The com-
position map d o r defines another preference for all such d: I — [0, 1] with
d(x) = 1. Therefore, any retraction from X to I defines exactly two prefer-
enceson X. O

Our next step is to prove that the following diagram exists:

N\

S «—— F

where P is a space of regular preferences, S is a space of regular retractions
from X into some curve in X, and F is a space of regular foliations on X. The
maps # and p are two-fold coverings, and the map g: S — F is one-to-one
and onto.

Theorem 1. The space P of all C* regular preferences over X can be identified
with a two-fold covering® of the space S of all C* regular retractions from X into
some C* regular curve of X.

Proof. By Lemma 1, any p € P defines a unique retraction r in S: call this
map 7: P — S. By Lemma 3, any r € § is the image of exactly two
preferences in P. Therefore, the map 7: P — § is two-to-one.

Let r € §. At each x € X, consider the line generated by the direction
orthogonal to the indifference surface of r at x. This defines for each r a
unique C* map from X to P”", the nth projective space consisting of lines
through the origin in R”. Thus we can identify § with a subset of C¥(X, P")
and provide it with the inherited C* topology, .

For any r € S there exists a neighborhood U, in 7 such that = (U)
consists of two disjoint sets, V. and W,, and by Lemma 2 the restriction maps
«/V. and 7w/W, are one-to-one. Define on P the topology it inherits from S
under this locally invertible map. By construction, # is a local homeomor-
phism. Since 7 !(r) has exactly two elements for all r € S, = defines a
two-fold covering of S. O

A codimension-one globally integrable foliation of X is a function v: X — P",
where P" is the nth projective space, such that there exists a C' function

®A two-fold covering or two-fold covering projection m: X — Y is a continuous map that is a
uniform local homeomorphism, and such that for all y € ¥, #~}( y) consists exactly of two points
[see Spanier (1963, p. 62)].
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f: X = R with

v(x) = A(x)Df(x),

for all x in X, and for some continuous map A: X — R. The foliation is called
C* and regular if its leaves define a C* coordinate system for X, f is regular,
and f attains only one maximum and one minimum in dX. Let F be the space
of all C* regular codimension-one globally integrable foliations of X.

Theorem 2. There is a one-to-one correspondence between the space of foliations
F, and the space S of C* regular retractions from X into some C* regular curve
of X.

Proof. This follows from Lemmas 1 and 2. O

Corollary 1. The space of preferences P is a two-fold cover of the space of
foliations F.

Proof. This follows from Theorems 1 and 2. O

Theorem 3. Let I be a C* regular curve in X. Then the space of all C* regular
retractions from X into I is a Banach manifold. The space of all H® retractions
from X into I is a Hilbert manifold consisting of C* maps.

Proof. Let C*(X, I) denote the space of all C* maps from X into I: this is a
Banach manifold [see Abraham and Robbins (1967)]. Similarly, let C*(7, I)
denote the space of all C*¥ maps from I to I, which is also a Banach manifold.

Consider now the map R: CK(X,I)— C*(I,I) defined by R(f)=
f/I: I — I. This map is C*, and if id,: I — I is the identity map on I, then
id; 1s a regular value of R [see proposition 1 of Chichilnisky (1976)]. Therefore,
R !(id,) is a Banach submanifold of C*(X, I): this is the implicit function
theorem on Banach manifolds [see Abraham and Robbins (1967)]. But R ~(id,)
is, by definition, the space of C* retractions from X to I. Therefore the space
of C* retractions from X to I is a Banach manifold. Since regularity is an
open property in C¥( X, I), all C¥ regular retractions are an open subset of a
Banach manifold, and thus form a Banach manifold.

Similarly, all H® retractions from X into / are the inverse image in
H*( X, I') of the identity map in H*(/I, I), under the map R. Since the identity
map is a regular value of R, all H’ retractions form a submanifold of the
Hilbert manifold H*( X, I'). All regular H® retractions from X into I are an
open subset of the Hilbert manifold of retractions from X into [I: this is
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because regularity is an open property in C¥, and the inclusion H* € C¥ is a
continuous map by Sobolev’s theorem [see Chichilnisky (1977b)]. O

Let I be a regular curve in X, given by I: [0,1] — X.

Corollary 2. The space P, of C* regular preferences on X which attain a
maximum at 1(1), a minimum of 1(0) and are strictly increasing along I, can be
identified with the Banach manifold of C* regular retraction from X into 1. The
H* regular retractions from X into I define a Hilbert manifold H, of C* regular
preferences which are strictly increasing along I, and which attain a minimum at
1(0).

Proof. The proof of Lemma 1 shows that any C* regular preference which is
strictly increasing along I and attains a maximum and a minimum at /(1) and
1(0) respectively, can be represented by a unique C* regular retraction from X
into I. Lemma 2 shows that any such retraction defines a unique C* regular
preference on X. The rest of the corollary follows from Theorem 3. O

Let X = 1", the unit cube in R", and A the diagonal in ", A =
{(Xy5...,X,): x,=x,, Vi, j}. A is a C* regular curve. A preference p on I”
is called monotonic if it is represented by a function f: X — R satisfying
f(x) > f(y) when x > y in the vector order of R". A preference p on I" is
called strictly concave when it is represented by a function with a second-order
derivative defining a negative definite form.

Corollary 3. The space of H* monotonic preferences on I" is a submanifold of
the Hilbert manifold H,. The space of H*® strictly concave monotonic preferences
on 1" is a submanifold of H, when k = 2.

Proof. The first statement follows from the facts that montonicity is an open
property in the C* topology with k > 1, and that the inclusion map H* c C*
is continuous by Sobolev’s theorem. The second statement follows from the
fact that strict concavity is an open property in the C* topology when k > 2.

O

4. Topology, aggregation and continuous representation

Our next step is to show that the manifolds of preferences defined in Section
3 are contractible; they therefore admit appropriate aggregation rules and
continuous representation into function spaces [see, e.g., Debreu (1964) and
Chichilnisky (1977a, 1981). We then show that the larger space of all regular
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preferences is not contractible: it has a sphere as a retract. Therefore this larger
space does not admit appropriate aggregation.

Proposition 1. The Hilbert manifold of all H* retractions from X into a C*
regular curve I is contractible.

Proof. Asin Lemma 2, let d be a C* diffeomorphism from [ into [0, 1]. Let f
be a retraction in H*( X, I).
Define m: H*(X, 1) X [0,1] = H*(X, I) by

7(f, M) (x) = d ' [A(d(/(x))) + (1 = A)(d(f(x)))].

7 is a continuous map from H°(X, I) X [0,1] into H°(X, I). For A =0,
7(f, A)(x) = f(x), and for A = 1, #(f,1)(x) = f(x). Furthermore, for all A,
w( f, A) is a retraction in H°( X, I') when f is a retraction. Therefore, the space
of H* retractions from X into / is contractible. O

Corollary 4. The Hilbert manifold of preferences H, is contractible. In particu-
lar, for any m = 2, there exists a continuous aggregation map

¢: (H;)" — H,,
which respects unanimity and anonymity.”

Proof. A necessary and sufficient condition for the existence of a continuous
anonymous map ¢: (M)* — M respecting unanimity is contractibility of M,
when M is a CW complex [see Chichilnisky and Heal (1983)]. By Proposition 1
and Corollary 2, H, is contractible. However, we have not shown here that H,
is a CW complex. We shall therefore offer an alternative proof, which consists
of constructing one map ¢: (H,;)™ — H, with all the desired properties.

Let d be a C* diffeomorphism d: I — [0,1] as in Lemma 2. Define ¢:
(H;)" — H; by

1
¢(p17'--: pm)(x) oo d_l(z ;d(pr(x)))»
see Figure 4. ¢ is continuous, ¢(p,..., p) = p for all p, and ¢ is invariant
under permutations of the p,’s. O

T: Y™ — Y respects anonymity if it is invariant under permutations of its arguments; ¢ respects
unanimity if it is the identity on the “diagonal” of Y, ie, ¢(y,...,y) =p. ¥y € V.
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- Figure 4. A continuous map ¢: (H,)? — H, which respects anonymity and unanimity. The
broken line represents the retraction given by the composition map ¢~ (;(a' op, +dop,).

Corollary 5. There exists a continuous representation of the space H, into the
space of H* utility functions over the choice space X, H*( X, R).

Proof. For any p € H,, the composition mapping d o p: X — R defines a
continuous representation from H, into H*( X, R), where d is a C* diffeomor-
phism between I and [0, 1] asin Lemma 2. O

Theorem 4. The space P of all C* regular preferences on X has as a retract a
space diffeomorphic to the nth sphere S", where n is the dimension of the choice
space X.

Proof. Consider first the case X = B". The space P of C* regular preferences
on X is a subspace of the space C*( X, S"); endow this latter space with the
C* topology. For any p € P, let x( p) be the minimum of p over X. The map
p — x(p) is continuous, and it maps P into S". Denote this by y: P —» S".

Now, for any point y € §”, let p(y) be the preference having as indif-
ference surfaces hyperplanes which are orthogonal to the segment [ y, —y], and
with y as a minimum. This defines a continuous one-to-one map X: S" — P;
let its image in P be denoted also S”. Since ¢/S™ S§" — S" =id/S", it
follows that S” is a retract of P. In particular, P is not contractible.

When X is diffeomorphic but different from B”, the result is that P has as a
retract a diffeomorphic image of S”, and is therefore not contractible. O

Corollary 6. There exists no continuous aggregation rule ¢: (P)™ — P respec-
ting anonymity and unanimity, for any m = 2.

Proof. By Theorem 4, P contains a continuous deformation of S” as a
retract. Call this retract also S”. Any continuous aggregation rule ¢: P™ — P
which respects anonymity and unanimity would define another y: (§")™ — S§”
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with the same properties. However, the CW complex S” is not contractible.

Therefore, by Theorem 1 of Chichilnisky and Heal (1983), ¢ cannot exist.
An alternative proof of this proposition is provided in Chichilnisky (1980).
O
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