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Axioms for measuring utility without mixing
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Abstract

A mixture set is path-connected via a suitable collection of paths, 5

the most common example being a convex set. Yet in many economic

settings, there are pairs of prospects that are not connected by a path

of mixtures. Consider the thought experiment of von Neumann and

Morgenstern involving a glass of milk, a glass of tea and a cup of coffee:

we are often asked to choose between convex combinations of milk and 10

tea, yet the same cannot be said of tea and coffee. We introduce partial

mixture sets (which need not be path-connected) and provide a formal

extension of the well-known axiomatisation of cardinal, linear utility

by Herstein and Milnor. We show that partial mixture sets encompass

a variety of settings in the literature and present a novel application 15

to cardinal, nonlinear utility on a stochastic process.
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1 Introduction

In [12], Herstein and Milnor (henceforth HM) introduce mixture sets as a

generalisation of the familiar convex sets of prospects. The generalisation is

substantial in that, provided an appropriate system of paths connect every 20

pair of prospects in the set, any manifold of locations, prizes, lotteries or

actions forms an example of the mixture set. Similar to von Neumann and

Morgenstern [23], HM take paths to be continuous relative to the preference

ordering that the decision maker supplies.

In this paper we extend the main theorem of HM. The latter provides a set 25

of requirements or axioms that are necessary and sufficient for a real-valued

function on a mixture set that measures the decision maker’s preference rat-

ings. Like HM, the form of utility we derive is cardinal (unique up to a

single, real-valued affine transformation) and suitably linear. For brevity we

will refer to such a representation as a CLU. 30

Our main contribution is to omit the requirement that every pair of

prospects is connected via a path of mixtures and identify the minimal

strengthening of the HM axioms on preferences that is required to obtain a

CLU. Our second contribution is to show that the present framework allows

us to model preferences that would otherwise have a nonlinear representation. 35

Section 2 we introduce partial mixture sets. Partial mixture sets are

specified via a partial function (one that is not defined for every pair of

prospects. This constitutes a uniform weakening of the axioms for a mixture

set of HM. We summarise these axioms with an initial proposition and present

a preliminary, abstract analysis of the structure of a partial mixture set. 40

The remainder of the paper proceeds as follows. In section 3, we introduce

the HM axioms on preferences and motivate via examples a strengthened
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independence axiom and two supplementary axioms: one Archimedean and

global and the other relating to measurement and local. We also discuss

related axioms and conditions that appear in the literature. 45

In section 4, we state the main result and, via a sequence of lemmas

and propositions, we present the consequences for preferences of combining

the axioms. In particular, we show that, for every pair of prospects that

is not connected by a path of mixtures, the axioms allow us to construct

a concatenation of paths that is monotonic in the preference ordering and 50

that connects that pair. Then, provided these monotone concatenations are

suitably unique, we obtain an endogenously derived mixture set on which the

HM axioms hold. This yields a constructive proof of our main result.

In section 5, we discuss the main result and our proof in the context

of related results in the literature (Fishburn [6], Schmeidler [21], Karni and 55

Safra [14], Karni [13], and Grant et al. [11]) as well as the alternative frame-

work for measuring utility (which also avoids path-connectedness) of Krantz

et al. [15]. We demonstrate that various settings in the literature can be

written as a partial mixture set: for instance by restricting the set of paths

to pairs of prospects that are comonotonic facilitates a connection with the 60

well-known axiomatisation of Schmeidler [21]. To highlight the potential for

novel applications, we also describe an experimental setting involving the

first and second moments of a Brownian bridge. Through this example, we

demonstrate that our focus on a linear representation is not as restrictive as

it seems when prospects form a partial mixture set. 65

Finally, in section 6 we highlight possible extensions of the main theorem.
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2 Partial mixture sets

Let X denote a nonempty set of prospects and let I denote the closed unit

interval r0, 1s Ď R. Recall that f is a path in X if it is a function from I

to X. For instance, when X is a convex set, for every x, y P X, the map 70

λ ÞÑ p1 ´ λqx ` λy defines a (convex) path from x to y in X.

It is important to note that, like HM, we impose no external topology on

X. Instead, paths will be continuous relative to the topology generated by

preferences via the axioms we introduce in section 3. For HM, each ordered

pair px, yq P X2 defines a unique path of mixtures φxy in X. Thus, if Φ

denotes the resulting set of paths, then HM assume

tpx, yq : φxy P Φu “ X2.

As in Kreps [16] and Mongin [17], we may also define the set of paths using

a function Φ : X2 ˆ I Ñ X. By allowing Φ to be partially defined, we

uniformly weaken the HM axioms for a mixture set.

Definition 1. Let Φ : X2 ˆ I Ñ X be a partial function. pX,Φq is a partial 75

mixture set provided that for every x, y P X such that Φpx, y, ¨q is defined,

φxy
def

“ Φpx, y, ¨q is a path in X and moreover

C1 φxyp0q “ x ,

C2 φyx is defined and φyxpλq “ φxyp1 ´ λq for every λ P I, and

C3 if z “ φxypµq, then φxz is defined and φxzpλq “ φxypλµq for every λ P I. 80

Where possible, we suppress reference to Φ and adopt X as shorthand

for pX,Φq. We also make a small abuse of notation and refer to Φ as the set

of paths. Lastly, we will sometimes suppress reference to the endpoints of a

path in Φ. For instance, we will use φ or φ1, φ2, . . . to denote members of Φ.
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The following proposition summarises the implications of definition 1. 85

Proposition 1 (proof on page 24). For each φxy P Φ, the image φxypIq is a

mixture set and for every x1, y1 P φxypIq, there exists µ, ν P I such that

φx1y1pλq “ φxypp1 ´ λqµ ` λνq for every λ P I.

1

y ‚

p0, xq
‚

ν

y1
‚

µ

x1 ‚

X

Figure 1: The graph of φxy and φx1y1 in I ˆ X

Proposition 1 also ensures that the paths themselves are suitable as basic

building blocks for the model.

2.1 The structure of a partial mixture set

The fact that Φ is a partial function ensures that the path φxy is well-defined

in the sense that it is the unique path from x to y in X that belongs to 90

Φ. (We discuss the extension to nonunique paths in section 6.) Together,

conditions C1 and C2 ensure that x and y are the appropriate endpoints of
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φxy. C3 is the cornerstone of the definition. It ensures that example 1 below

cannot be written as a mixture set, even though it is path-connected.

When X is a mixture set, the fact that it has a full set of paths makes 95

it a self-contained block upon which to build the model. In particular, when

X is a mixture set, the binary relation tpx, yq : φxy P Φu is an equivalence

relation on X with a single equivalence class. In other words, the latter set

is reflexive, symmetric, transitive and also complete. (These properties are

unrelated to the corresponding conditions on preferences of section 3.) 100

By construction, definition 1 allows for incompleteness of tpx, yq : φxy P Φu:

there may exist x, y P X such that φxy R Φ. Of reflexivity, symmetry and

transitivity, only symmetry follows directly from definition 1. Indeed, if

φxy P Φ, then φyx P Φ by C2. By the next proposition, reflexivity (φxx P Φ

for every x P X) would follow if every point in X belongs to some path in 105

Φ. In section 3.4, we provide an example of a partial mixture set where we

would not expect reflexivity of tpx, yq : φxy P Φu to hold.

A further consequence of proposition 1 is that, if φxy P Φ, then for every

z P φxypIq, both φxz and φzy belong to Φ. Transitivity of tpx, yq : φxy P Φu is

the converse of this property: if φxz, φzy P Φ, then φxy belongs to Φ and, for 110

some unique 0 ă µ1 ă 1, can be written as a concatenation

φxypλq “

$

&

%

φxzpλ{µ1q 0 ď λ ď µ1

φzy ppλ ´ µ1q{p1 ´ µ1qq µ1 ď λ ď 1.
(1)

Equation (1) entails two applications of proposition 1, one for each of the

subintervals r0, µ1s and rµ1, 1s. In particular, note that on rµ1, 1s, the map

λ ÞÑ p1 ´ λqµ1 ` λ1 can be inverted to obtain λ ÞÑ pλ ´ µ1q{p1 ´ µ1q.

We extend this definition of concatenation in our proof of the main result. 115
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3 Axioms on preferences

Preferences are summarised via the binary relation À on X. For each x, y P

X, x À y denotes the statement “Val weakly prefers y to x”.

Before introducing the axioms on preferences for a cardinal, linear utility

representation (CLU) to exist, we provide the formal definition of the latter.

Recall that U is a utility representation of preferences on X provided it

satisfies the following property: for every x, y P X, x À y if and only if

Upxq ď Upyq. On a partial mixture set X, the appropriate notion of linearity

is the following. The function U : X Ñ R is linear if, for every φxy P Φ, the

composition U ˝ φxy : I Ñ R satisfies

pU ˝ φxyqpλq “ p1 ´ λqUpxq ` λUpyq for every λ P I.

If a representation U has a certain property (such as linearity), then U is

cardinal if every other representation V with the same property is related via 120

a single real-valued affine transformation: for every x P X, V pxq “ θUpxq`κ

for some θ ą 0 and κ P R.

3.1 The HM axioms

Recall that preferences are complete whenever x, y P X implies x À y or

y À x; and transitive whenever x À y and y À z together imply x À z. 125

Axiom O. À is transitive and complete on X.

As usual, ă denotes the strict, asymmetric subrelation of À and „ denotes

symmetric subrelation that is known as indifference. An important point to

note for what follows is that, when a decision maker’s preferences satisfy O,

the basic open order intervals tx1 : x ă x1u and tx1 : x1 ă yu such that 130

x, y P X form a subbasis for an order topology on X.
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Following HM, we will use the following path continuity axiom. It is

identical to that of HM when X is a mixture set, yet much weaker in general.

Axiom P. For every φ P Φ and every z P X, the sets tλ : φpλq À zu and

tλ : z À φpλqu are closed in I. 135

A useful property of P is that both the minimum and the maximum of

φpIq in À are well-defined for each φ P Φ. This follows from theorem 1 of

HM, proposition 1 and the usual extreme value theorem (see Munkres [18]).

Since P does not guarantee the minimum is unique, we adopt the term minφ

to refer to a representative member of minφpIq; maxφ is defined similarly. 140

The following independence axiom coincides with that of HM when X is

a mixture set. We will show that it is deficient when Φ is partially defined.

Axiom I3. If φ, γ P Φ, φp0q “ γp0q and φp1q „ γp1q, then φp1{2q „ γp1{2q.

3.2 An Archimedean axiom

Axiom A. If x ă y, then there exists φ0, . . . , φm P Φ such that minφ0 À x, 145

y À maxφm and, for each n ă m, minφn`1 À maxφn.

A is an Archimedean condition in the usual mathematical sense and

Gilboa and Schmeidler [9, 10] introduce an axiom with similar features for a

different model. The following example reveals the difficulties that may arise

when X is a partial mixture set and A fails to hold. 150

Example 1 (The long line). Let A “ t0, 1, 2, . . . u denote the well-ordered

set of all countable ordinals. Let O hold on the discrete union X “
Ů

tXa :

a P Au, where each Xa is mixture set. Moreover, for every a P A,

(i) À on Xa is order-isomorphic to ď on R`;
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(ii) supXa “ minXa`1, where supXa is the À-supremum of Xa in X. 155

As a consequence of the fact that A in example 1 is uncountable we have

Remark 1 (proof on page 25). The preferences on X of example 1 satisfy

both P and I3, but no (real-valued) utility representation exists.

A is the weakest axiom that simultaneously rules out example 1 and

“connects” every pair of prospects with a finite sequence of paths that are 160

“linked” by indifference sets. The term “linked” is due to Karni [13] where a

closely related condition is assumed. (Grant et al. [11, Proposition 6] appeals

to a similar condition.) In these articles, the corresponding condition does not

play an Archimedean role because X is endowed with an external topology

relative to which À is assumed to be continuous. 165

Perhaps the main drawback of A is that it contains an existential quan-

tifier.1 Yet this is a feature of all Archimedean axioms and indeed many

standard continuity axioms (see section 3.4 for an example). In our view,

many sets that we encounter in our daily lives fail to be path-connected and

in such settings it is preferable to explicitly assume A than to assume the 170

decision maker is working with a mixture set. Moreover, as we show in the

setting of section 5.3, it will often be an easy condition to check. Indeed, we

propose that experiments be designed with this axiom in mind.

3.3 A stronger independence axiom

I3 requires that φp0q “ γp0q. This means that it is restricted to pairs of 175

paths that have an endpoint in common. (Pairs of paths that, altogether,

have at most three distinct endpoints.) For reasons that we shortly provide,

we replace I3 with the following axiom

1I thank an anonymous referee for highlighting this issue.
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Axiom I4. If φ, γ P Φ, φp0q „ γp0q and φp1q „ γp1q, then φp1{2q „ γp1{2q.

I4 implies I3 provided indifference is reflexive. The converse only holds 180

when X is a mixture set, provided indifference is also transitive. I4 is there-

fore the natural extension of I3 to settings where Φ is partially defined.

An early instance of an independence axiom such as I4 is Samuelson [19].

(Although Samuelson works with a mixture set.) Similar axioms also appear

in settings involving partial mixture sets in Fishburn [6] (see also Fishburn 185

[7, ch. 7]) and Karni and Safra [14], Karni [13], and Grant et al. [11].

The following example is based on Karni and Safra, p.324. It shows that

I3 does not yield a linear utility representation.

Example 2 (Preferences satisfying I3 with no linear representation). Let φxy

and φx1y1 be a (strictly) À-increasing and such that x „ x1 and y „ y1. Any

utility representation U satisfies Upxq “ Upx1q “ r and Upyq “ Upy1q “ s for

some r ă s P R. If U is linear then φxy and φx1y1 satisfy

pU ˝ φxyqp1{2q “ pU ˝ φx1y1qp1{2q “ pr ` sq{2.

But for I3 to apply, we need x “ x1 or y “ y1. In a mixture set, Φ would

contain the path φx1y, and by applying I3 twice, yields the desired indiffer- 190

ence. Since Φ may not contain any such connecting sequence of paths, I3 is

compatible with φxypλq „ φx1y1pλ2q for each λ P I.

We will say that φxy and φx1y1 are À-synchronised whenever x „ x1 and

y „ y1 together imply φxypλq „ φx1y1pλq for every λ P I. The next example

shows that further obstacles may arise when paths are not À-synchronised. 195

Example 3 (Overlapping short lines). Let X “
Ů

tXa : a P Au be the partial

mixture set of example 1 and let both O and property (i) of example 1 hold.

However, instead of (ii), for each a P A we have
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(ii 1) minXa „ minXa`1 and for every x P Xa, x „ x1 for some x1 P Xa`1;

(iii 1) there exists x1 P Xa`1 such that x ă x1 for every x P Xa. 200

In contrast with example 1, preferences are not lexicographic. Indeed, (ii 1)

ensures that the Xa overlap and have a common lower bound. (iii 1) ensures

that À has an uncountable collection of pairwise disjoint open order intervals.

Remark 2 (proof on page 25). If X and preferences satisfy the properties

of example 3, then O, P, A and I3 hold, yet no utility representation exists. 205

The proof of the following remark relies on lemma 3 of the next section,

yet we include it here for the sake of completeness.

Remark 3 (proof on page 26). I4 does not hold for the preferences on X of

example 3.

3.4 A measurement axiom 210

Axiom M. If x ă z ă y, then φpλq ă z ă φpµq for some pλ, µ, φq P I2 ˆ Φ.

It is worth noting the similarities between M and a standard continuity

axiom [21]: if x ă z ă y, then for some 0 ă λ, µ ă 1, φxypλq ă z ă φxypµq.

To motivate M, we provide an example of preferences that satisfy the pre-

ceding axioms, but have no CLU. The example is framed in an unawareness 215

setting and based on Schipper [20]. (Here unawareness means that, at certain

levels of awareness, the decision maker fails to include certain prospects in

her model).

Example 4. At awareness level 0, Val is unaware of a certain firm, and as

such she perceives the only (relevant) prospect to be x0 ““status quo”. At 220

awareness level 1, Val is aware of the firm and understands that a lawsuit
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against the firm is likely. She then perceives the set of prospects to be the

image tφ1pλq : λ P Iu of some function φ1, where I is the unit interval. At

level 1, Val prefers fewer shares to more (lower λ is better). At awareness

level 2, Val is also aware of an innovation. She then perceives the set of 225

prospects to be φ2pIq and her ranking is reversed, so that more is better.

Schipper [20] allows Val to step back and reason about her preferences at

lower levels of awareness, something that is especially useful in interactive

settings. Thus at level 2, X “ tx0u \φ1pIq \φ2pIq and we assume that Val’s

ranking of X preserves the underlying ranking at each awareness level. That 230

is, φ1 is strictly À-decreasing and φ2 is strictly À-increasing. In addition,

suppose that x0 „ φ1p0q „ φ2p0q and that φ1pλq ă φ2pλ
1q for every λ, λ1 ‰ 0.

The issue in example 4 in so far as measurement is concerned is not that

x0 does not belong to a path, it is that x0 does not belong to the interior of

an order interval that is spanned by a path (precisely the content of M). 235

Remark 4 (proof on page 27). The preferences on X in example 4 have a

linear representation, but it is not cardinal.

4 Derivation of a CLU

In the present section we provide the results that lead to the following

Theorem 1. Let X be a partial mixture set. O, P, A, I4 and M hold if 240

and only if preferences have a cardinal, linear utility representation.

In section 4.1, we show that the axioms on preferences give rise to com-

plete (as opposed to partial) system of À-monotone concatenations (defined

next) on X. We then show that the set of À-increasing concatenations be-

tween any pair x ă y are unique up to indifference. Finally, in section B 245
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of the appendix we show that the system of À-monotone concatenations en-

dows the quotient set X{„ with a mixture set structure and that on this

(endogenously generated) mixture set, preferences satisfy the axioms of HM.

4.1 Existence of À-monotone concatenations

For a CLU representation to exist on a partial mixture set, the first role of 250

the axioms is to ensure that the image of a path in Φ has similar topological

properties to those of I. For instance, in the topology induced by O, φxypIq

should be connected. The following extension of Theorem 1 of HM to partial

mixture sets shows that this is indeed a consequence of O and P .

Lemma 1 (proof on page 27). Let O and P hold. If φxy P Φ, z P X and 255

x ă z ă y, then there exists 0 ă µ ă 1 such that z „ φxypµq.

Proposition 1 tells us how to write a smaller path in terms of a larger

path. Via an generalised version of the concatenations of eq. (1), we construct

larger paths from those that belong to Φ. Replacing indifference with equality

allows us to link successive paths in the concatenation. In particular, 260

Definition 2. f : I Ñ X is a Φ-concatenation if there exists φ0, . . . , φm in

Φ such that fp1q “ φmp1q and for each n, φnp1q „ φn`1p0q and

fpνq “ φnppν ´ µnq{pµn`1 ´ µnqq

for every ν P rµn, µn`1q and some 0 “ µ0 ă ¨ ¨ ¨ ă µm`1 “ 1.

If f is a Φ-concatenation such that fp0q „ x and fp1q „ y, then we say

f is a concatenation from x to y. f inherits continuity from paths via the

assumption φnp1q „ φn`1p0q and the fact that the union of finitely many

closed sets is closed. A ensures that such concatenations complete Φ. 265
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Proposition 2 (proof on page 27). Let O, P and A hold. If x ă y, then

there exists a Φ-concatenation from x to y.

In the quest for a CLU, the existence of continuous concatenations that

connect each pair of prospects is not enough. Indeed, as the proof of propo-

sition 2 shows, Φ-concatenations may be nonmonotone which we now define. 270

Definition. If x ă y, then the concatenation f from x to y is increasing

provided that, for every λ ă µ in I, fpλq ă fpµq; if x „ y, then f is

increasing if fpλq „ fpµq for every λ, µ P I. Decreasing is defined likewise.

If U is to be is linear, every φxy P Φ must be monotone. We now show that

I3 (and hence I4) yield this result and simultaneously improve on lemma 1 275

to obtain the corresponding versions of theorems 4 and 6 of HM.

Lemma 2 (proof on page 28). Let O, P and I3 hold. If x ă z ă y and

φxy P Φ, then some unique 0 ă µ ă 1 satisfies z „ φxypµq. Moreover, every

φ P Φ is monotone.

Together, lemma 2 and proposition 2 ensure that, for every x ă y, there 280

is an increasing concatenation from x to y.

4.2 Uniqueness of increasing concatenations

By strengthening I3 to I4, we improve on lemma 2 by establishing uniqueness

(up to indifference) of paths in Φ from x to y.

Lemma 3 (proof on page 29). Let O, P and I4 hold. If x ă z ă y, then 285

there exists a unique 0 ă µ ă 1 such that φpµq „ z for every φ P Φ such that

φp0q „ x and φp1q „ y.
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Lemma 3 actually suffices for a CLU when X is the discrete union over

mixture sets that have an open order interval in common. (For a proof of

this fact we refer the reader to the proof of remark 3.) 290

We now improve on lemma 3 to obtain a similar result for increasing con-

catenations from x to y. First, we define what it means for a concatenation

to be synchronised with Φ and then use lemma 3 to show that each increasing

concatenation is indeed synchronised in this way.

Definition. A concatenation f from x to y is synchronised with Φ provided

that, for every φ P Φ such that x À minφ and maxφ À y,

φpλq „ fpp1 ´ λqµ ` λνq

for every λ P I and for some µ, ν P I that are unique whenever x ă y. 295

We view the following is an extension of proposition 1 of section 2.1.

Proposition 3 (proof on page 29). Let O, P, A and I4 hold. If x ă y, then

every increasing Φ-concatenation from x to y is synchronised with Φ.

In many ways, proposition 3 is the most important step in the proof of

the main theorem. However, it does not imply that increasing concatenations 300

are synchronised with one another. For that, axiom M is needed.

Together with the other axioms, M yields the conclusion we have been

seeking: that increasing concatenations are unique up to indifference.

Lemma 4 (proof on page 32). Let O, P, A, I4 and M hold. If x ă z ă y,

then there exists a unique 0 ă µ ă 1 such that fpµq „ z for every increasing 305

Φ-concatenation f from x to y.

Lemma 4 means that it does not matter how we “frame” the paths that

form the increasing concatenations, the strength of preference for z relative
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to x and y is the same. By virtue of its strength, lemma 4 should provide a

useful target for experimental testing in a variety of settings. 310

Building on these results, we prove theorem 1 in section B of the appendix.

5 Discussion and applications

We have shown that if pX,Φq is a partial mixture set and our axioms hold,

then preferences generate an endogenous mixture set pX{„, F q. The latter

mixture set is such that every paths that is absent in Φ is formed in F by 315

concatenating members of Φ: with the indifference relation linking successive

members of the concatenation. On X{„, the axioms of HM hold and we apply

the main result of HM to obtain a constructive proof.

It is worth noting that an alternative (nonconstructive) proof is possible

if we work with the CLU of φxypIq for each φxy P Φ, assume Φ is well- 320

ordered and, via (transfinite) induction, use positive affine transformations

to relocate the image of each pU ˝ φxyqpIq. The latter is the strategy of proof

in the multilinear utility representation of Fishburn [7] and Fishburn [6, ch.7]

as well as Karni and Safra [14, Theorem 2], Karni [13, Theorem 2] Grant et

al. [11, Proposition 6]. (In the latter, finite induction suffices because the 325

authors work with a finite collection of subsets that are mixture sets and the

union of which exhausts the domain of preferences.)

We argue that our method of proof is itself valuable. It highlights that, a

mixture set (albeit endogenous) is implied by cardinality. This is important

because, in the absence of preferences, the paths of a partial mixture set 330

impose no external algebraic or topological structure on X whatsoever.

An alternative approach to utility measurement of Krantz et al. [15] as-

sumes that preferences are defined on sets that need not be connected, but
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elements are assumed to “equally spaced” (as are the integers for instance).

The “equally spaced” criterion is reasonable in many real-world applications. 335

Consider for instance the fact that prices on a digital stock market can only

be specified certain number of decimal places. Similarly, flour and sugar are

typically purchased by the kilogram or pound. Nonetheless, the approach

of HM is appealing because people often think in terms of the continuum

rather than fractions. Indeed, recall the example of von Neumann and Mor- 340

genstern involving mixtures of milk and tea in a glass vs a cup of coffee. It

is with probability zero that one might ever accurately measure the amount

of milk in glass of tea to a given fraction. By avoiding the need to consider

mixtures between tea and coffee (probabilistic or otherwise), partial mixture

sets bridge the gap between these two approaches to measurement. 345

5.1 Three types of partial mixture set

Consider the setting of Fishburn [6], where X “
Ś

A
Xa for some finite set

A and each Xa is player a’s set of strategies in a game. (The canonical

interpretation is that X is the set that obtains when we exclude correlated

strategies from the domain of preferences.) It is easy to see that X is a partial 350

mixture set simply because φxy P Φ if and only if xa ‰ ya for at most one

a P A. It is straightforward to show that tpx, yq : φxy P Φu is reflexive and

symmetric. However, take x, y, z P X such that φxy, φyz P Φ. Then although

there exists a unique a P A such that xa ‰ ya, we may also have ya “ za

and yb ‰ zb for some b ‰ a. Thus tpx, yq : φxy P Φu is intransitive and does 355

not define an equivalence relation on X. In this setting, the CLU is called

a multilinear utility representation since it is linear in each dimension a.

Provided our axioms hold, a constructive proof of the existence of a CLU is

feasible even in large games, where A coincides with the unit interval.
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A setting where tpx, yq : φxy P Φu is an equivalence relation is Karni and 360

Safra [14, Theorem 2] and Karni [13, Theorem 2]. For instance, Karni and

Safra consider a product A “
Ś

N An of compact sets where N “ 1, . . . , n

and a mixture set ∆pNq. Preferences are then assumed to be continuous in

the sense that the upper and lower contour sets are closed in the (externally

specified) topology on the product X “ Aˆ∆pNq. In this case, tau ˆ∆pNq 365

is a mixture set for each a P A and φxy P Φ if and only if x, y P tau ˆ ∆pNq.

In effect, X “
Ů

A
tau ˆ ∆pNq. Note that [14] and [13] both derive a CLU.2

We have shown that one may form a partial mixture set by either taking

the discrete union of mixture sets (the case where tpx, yq : φxy P Φu is an

equivalence relation); or by deleting points in a mixture set (the correlated 370

strategies in Fishburn [6]). But a more subtle type of partial mixture set

is obtained by leaving the set of points in (partial) mixture set intact and

removing paths from Φ. We consider this latter type of partial mixture in

the following subsections.

5.2 Generalised utilitarianism 375

In the setting of social choice, Grant et al. [11] work with a partial mixture set

that resembles Fishburn [6] in the sense that tpx, yq : φxy P Φu is intransitive

on X. Indeed, the authors consider the product ∆pNq ˆ ∆pCq of set of

lotteries, where N is a finite set of agents and C is a suitable topological

space of prizes. As in Fishburn [6], φxy P Φ implies that x differs from y in 380

at most one coordinate. The converse however is not true.

In particular, the axioms of Grant et al. [11] do not apply to paths with

endpoints p ˆ l and p ˆ l1 such that l ‰ l1 and p is nondegenerate, even

2Although there is an error in the statement of Theorem 2 of [14], this fact is noted in

footnote 5 of [13].
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though the set of prospects remains ∆pNq ˆ ∆pCq. In Grant et al. [11],

the representation is linear on the restricted domain to which axioms apply, 385

yet nonlinear on ∆pNq ˆ ∆pCq. We provide an explicit example of this

phenomenon in section 5.4.

5.3 Comonotonic prospects

Another setting where prospects are left intact and paths are in effect deleted

is the seminal work on (possibly nonadditive) subjective beliefs of Schmeidler 390

[21]. There, each prospect x is a function from the set Ω of states to some

convex set of prizes M . The set X “ MΩ of such prospects is a mixture set

provided Φ consists of paths φxy that map λ ÞÑ φxypλ, ¨q “ p1´λqxp¨q`λyp¨q

for every x, y P X, where mixtures are interpreted pointwise on Ω.

The axiomatisation of Schmeidler holds for preferences À on X that sat- 395

isfy O, P on Φ, and a restriction of I3 to pairs of paths with comonotonic end-

points. Schmeidler defines comonotonicity by first inducing a preference rela-

tion ÀM on M such that p ÀM q if and only if the constant prospects pΩ and

qΩ (that are everywhere equal to p and q respectively) satisfy pΩ À qΩ. Then

x, y P X are comonotonic if there is no ω, ω1 P Ω such that xpωq ăM xpω1q and 400

ypω1q ăM ypωq. Since it is only possible to know which paths are comono-

tonic once preferences over constant prospects are known, the set Γ Ĺ Φ of

paths with comonotonic endpoints, defines a partial mixture set pX,Γq that

is endogenous to preferences. The following remark is a consequence of the

fact that every member of X is comonotonic with constant prospects. 405

Remark 5 (proof on page 33). Let O hold on X “ MΩ. On the partial

mixture set pX,Γq, if P and I3 hold, then so do A, I4 and M.

Remark 5 implies that if we supplement the axioms of theorem 1 with
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the monotonicity axiom (xpωq À ypωq for every ω P Ω implies x À y) and

the nondegeneracy axiom (x ă y for some x, y P X), then we obtain a 410

representation that coincides with that of Schmeidler [21] with the following

exception. On the partial mixture set pX,Γq we obtain a CLU, but on pX,Φq,

the same utility representation U : X Ñ R may have the property that

U ˝ φ : I Ñ R is nonlinear and discontinuous for some φ P Φ´Γ. In contrast,

in Schmeidler [21], U ˝ φ may be nonlinear, but it is always continuous. 415

5.4 Application to a Brownian bridge

The first goal of the present section is to demonstrate that, it is possible to

exploit the structure of a partial mixture set to represent preferences that

would otherwise satisfy the axioms for a properly quadratic utility of Chew,

Epstein, and Segal [5, 4]. The second is to develop a novel application. We 420

work with random prospects that consist of points on a Brownian bridge.

Recall that the Brownian bridge is a transformation of a Brownian motion

with the key property that its value is known at both the initial time 0 and

the final time 1. Such processes have been used to model insider information

[1] as well as certain bonds and options [2]. 425

Consider a hypothetical experiment where the decision maker, Val, is

asked to state her preferences (by ranking pairs of prospects). The set X of

prospects is the disjoint union of a set pX0,Φ0q of sure prospects such as the

real line and the set pX1,Φ1q of points and subpaths of a Brownian bridge

that we now describe. 430

For some probability space pΩ,F,Pq and index of time λ P r0, 1s, let
 

Bλ P R
Ω : λ P I

(

be the bridge that takes value $a at time 0 and $b at

time 1. The explicit equation relationship between a Brownian bridge and a
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Brownian motion tWλ : λ P Iu is the following

Bλ “ p1 ´ λq

ˆ

a `

ż λ

0

1

1 ´ r
dWr

˙

` λb (2)

Let φpλ, ωq “ Bλpωq for each pλ, ωq P I ˆ Ω. Since every x1, y1 P φxypI, ¨q

satisfies x1 “ φxypµ, ¨q and y1 “ φxypν, ¨q for some µ, ν P I, take

φx1y1pλ, ¨q
def

“ φxypp1 ´ λqµ ` λν, ¨q for each λ P I.

By construction, φx1y1 satisfies proposition 1, and this ensures that φxypI, ¨q

is a mixture set. In fact, since a time-reversed Brownian bridge is also a

Brownian bridge [3, p.9], C2 may be interpreted literally. Finally, let

E : X Ñ R be the map x ÞÑ

ż

Ω

xp¨q dP.

The first moment pE ˝ φq pλ, ¨q is equal to p1´λqa`λb for each λ P I. Let 435

these be Val’s certainty equivalents. Then her preferences are represented by

U “ E. We would therefore “accept” the hypothesis that she is risk neutral

because appropriately linear.

Now extend pX,Φq to be the discrete union of sure prospects pX0,Φ0q,

pX1,Φ1q and the set pX2,Φ2q of prospects and subpaths of the square φ2

xy of 440

a Brownian bridge such that B0 “ B1 “ 0. Moreover, suppose that Val’s

preferences satisfy

φ2

xypλ, ¨q „ λp1 ´ λq for each λ P I. (3)

Clearly, with these certainty equivalents, Val’s preferences do not satisfy I4

on pX,Φq. Indeed, x2 „ y2 „ 0 ă 1{4 „ φ2

xyp1{2q.

On the other hand, it is clear that the utility representation U “ E is 445

appropriate since it is well-known that the second moment of the present

Brownian bridge is indeed λp1´λq. The issue is that the partial mixture set
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pX,Φq is misspecified. In the final subsection, we show that by deleting all the

À-nonmonotone paths and appropriately respecifying the time parameter,

we obtain a partial mixture set where I4 holds. On the resulting partial 450

mixture set, preferences have a cardinal, linear utility representation, but on

the original space, preferences are quadratic. Indeed, they satisfy the strong

mixture symmetry axiom of Chew, Epstein, and Segal [4]:

Axiom. If φp0q „ φp1q, then φpλq „ φp1 ´ λq for every λ P I.

Although we do not consider the higher moments of a Brownian bridge 455

in the present paper, the methods we describe would certainly apply. Partial

mixture sets offer the potential to elicit beliefs using (subjective) moments.

5.5 “Minor surgery” on partial mixture sets

In the derivations that follow, to reduce notational clutter, we write φpλq

instead of φpλ, ¨q. The first step is to discard the nonmonotone paths in Φ2.

By (3) and the fact that λ “ 1{2 is the unique argmax of λp1´λq, these paths

satisfy

φpλq “ φ2

xypp1 ´ λqµ ` λνq for some µ ă 1{2 ă ν.

The second step is to respecify the remaining members of Φ2 that violate I4.

Let Φ1 be the set of paths in Φ2 with endpoints φ2

xypµq and φ2

xypνq for some 460

µ, ν ď 1{2. Similarly, let Φ2 consist of those such that 1{2 ď µ, ν.

Let g be the increasing map λ ÞÑ 4λp1 ´ λq on r0, 1{2s. Then, the inverse

g´1 has image r0, 1{2s and is the increasing map

λ ÞÑ 1{2 ´
a

p1 ´ λq{4 on I.

Let γ1 be the φ2

xy
˝ g´1. Then, for every x1, y1 P φ2

xypIq, there exists µ, ν P I
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such that x1 “ γ1pµq and y1 “ γ1pνq. For each λ P I, let

γx1y1pλq
def

“ γ1pp1 ´ λqµ ` λµq.

Finally, take Γ1 to be the resulting set of paths and note that g defines

a bijection between Γ1 and Φ1. For Φ2, same procedure yields a function

similar to g, and a corresponding path γ2. This yields a set Γ2 of suitably

defined with which to replace Φ2. Let Γ be the union of Γ1, Γ2, Φ0 and Φ1. 465

This brings us to our final result, which is suffices for U to be a CLU for the

preferences of the preceding subsection on pX,Γq.

Remark 6. 3 pX,Γq is a partial mixture set on which I4 holds for preferences

that are risk-neutral. Moreover, γ1pIq and γ2pIq are nonconvex.

6 Extensions 470

Linear, but not necessarily cardinal, utility When X is a partial mix-

ture set and a CLU exists, our axioms hold. Yet we may wish to weaken the

axioms and settle for a representation that is not a CLU. A simple extension

of theorem 1 omits M. This yields a (not necessarily cardinal) linear utility

representation U : X Ñ R such that the image of U is path-connected by 475

U ˝ f such that f is a concatenation in Φ.

Nonunique paths in Φ When paths are not uniquely identified by their

endpoints, Φ of definition 1 is no longer be a partial function and φxy is

ill-defined. However, provided equality is replaced by indifference in C2 and

C3, the present results may be extended to allow for nonuniqueness. Such 480

an extension is related to, but distinct from, generalised mixture sets. In the

3See page 34 for proof.
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latter, mixtures are everywhere defined by a binary operation and hence Φ

is a function on X2 ˆ I (see Fishburn and Roberts [8, p.162]).

On nonlinearity In section 5.4 we demonstrated that by removing paths

that are nonmonotone in preferences and respecifying those that remain, we

may derive a CLU for preferences that otherwise have a proper quadratic

representation. In more general settings, preferences on some φ P Φ might

yield the certainty equivalent

λ3 ´ 3{2λ2 ` 2{3λ

for each λ P I. Then the critical points 1{3 and 2{3 of this cubic function

determine the partition into intervals on which subpaths of φ are monotone. 485

A full exploration of the implications for modelling nonlinearity in this way

is beyond the scope of the present article.

A Proofs

Proof of proposition 1 from page 5. It suffices to show that for every

x1, y1 P φpIq the path φx1y1 belongs to Φ. For every such x1 and y1, there exists 490

µ, ν P I such that φxypµq “ x1 and φxypνq “ y1. By C3, φxx1 , φxy1 P Φ and

φxx1pλq “ φxypλµq and φxy1pλq “ φxypλνq for every λ P I. W.l.o.g., suppose

that µ ď ν.

If µ “ ν, then x1 “ y1. Moreover, by C2, φx1xpλq “ φxx1p1 ´ λq and by C1,

x1 “ φx1xp0q. Then one further application of C3 yields φx1y1pλq “ φx1xpλ0q “ 495

x1 for every λ P I. In this case, clearly, the proposition holds with µ “ ν for

every λ P I.

If µ ă ν, then, for some λ1 ă 1, µ “ λ1ν. Then φxy1pλ1q “ x1 and since

φy1xp1´λ1q “ φxy1pλ1q, we see that x1 “ φy1xp1´λ1q. A final application of C3
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yields φy1x1pλq “ φy1xpλp1 ´ λ1qq for each λ P I. Next note that λ1 “ µ{ν, so

that a substitution for λ1 and straightforward simplification yields φy1x1pλq “

φy1xpλpν ´ µq{νq for each λ P I. Similarly, we have

φy1xpλpν ´ µq{νq “ φxy1p1 ´ λpν ´ µq{νq by C2

“ φxypν ´ λpν ´ µqq by C3.

Let λ ÞÑ κ “ 1´λ. Substituting for λ we have φy1x1p1´κq “ φxypµ`κpν´µqq.

One final application of C2 to the left-hand-side of the latter equality yields

both φx1y1 and the equation of proposition 1. 500

Proof of remark 1 from page 9. In example 1, property (i) ensures

that for each a and φ, every indifference class of À restricted to Xa or to

φpIq is a singleton. That is, individually each of these sets is linearly or-

dered. (ii) ensures that the whole of X is linearly ordered. Finally, the fact

that A is uncountable, means that pX,Àq is order-isomorphic to the long 505

line [22]. Since the long line contains an uncountable collection of nonempty,

pairwise disjoint open intervals (one for each a P A), there is no utility rep-

resentation of preferences.(See the proof of remark 2 for a further discussion

of this argument.)

The proof that I3 holds is immediate because À is linearly ordered. 510

The proof that P holds is as follows. Let z P Xa for some a P A. If

maxφ À z, then by O, tλ : φpλq À zu “ I. If minφ “ φp0q ă z ă φp1q “

maxφ, then (i) ensures that there is a unique µ such that φpµq „ z and for

every λ ď µ, we have φpλq À z. Remaining cases are similar and omitted.

Proof of remark 2 of page 11. The proof that P holds is very similar 515

to example 1 and therefore omitted.

I3: If a ‰ b, then Xa XXb “ H and I3 holds vacuously for pairs of paths

φ and γ such that φpIq Ă Xa and γpIq Ă Xb. If a “ b, then I3 holds trivially
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because whenever the intersection of an indifference set with Xa is nonempty,

it is a singleton. 520

A: Let x ă y and suppose that x P Xa and y P Xb for a ă b. By (ii 1),

there exists x1 P Xb such that x1 „ x. Now, since Xb is a mixture set, there

exists a path φ from x1 to y in Xb. Then A holds with m “ 1.

For the last part of the proposition, by way of contradiction, suppose

that preferences have a utility representation U : X Ñ R. Then the set 525

UpXq satisfies the countable chain condition: every collection of nonempty,

pairwise-disjoint, open intervals is countable. Take x0 “ minX0 and, for

each a, take xa`1 P Xa`1 such that x ă xa`1 for each x P Xa (these points

are well-defined by properties (ii 1) and (iii 1)). Then collection of À-order

intervals pxa, xa`1q such that a P A is uncountable and each of its members 530

is nonempty and open. Since A is well-ordered, for any a ă b, pxa, xa`1q

and pxb, xb`1q are pairwise disjoint since xa`1 ă xb. Since this violates the

countable chain condition, U cannot be a utility representation.

Proof of remark 3 from page 11. For each a P A, since Xa is a mix-

ture set, the fact that the axioms listed in remark 2 HM ensures it has a 535

CLU Ua : Xa Ñ R. Choose x0, y0 P X0 such that x0 ă y0. Then (ii 1) ensures

that, for each a, there exists xa, ya P Xa such that xa „ x0 and ya „ y0.

Let U0px0q “ r0 and U0py0q “ s0. For each a, choose a positive affine

transformation Ta : R Ñ R of Ua such that pTa ˝ Uaqpxaq “ r and pTa ˝ Uaqpyaq “

s. (If Uapxaq “ ra and Uapyaq “ sa, then let la “ ps0 ´ r0q{psa ´ raq and 540

ka “ r0 ´ lra; then r ÞÑ Taprq “ ka ` lar is the required transformation. For

each a let Va
def

“ Ta ˝ Ua. Let grV
def

“
Ť

grVa.

By way of contradiction, suppose that I4 holds. Then, for every a, if φa is

the path from xa to ya in Xa, then φapλq „ φ0pλq by lemma 3. By construc-

tion, pV ˝ φaqpλq “ pV ˝ φ0qpλq for every a P A. But then, by theorem 7 of 545
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HM (and the discussion on p.296), preferences have a CLU: a contradiction

of remark 2.

Proof of remark 4 from page 12. By proposition 1, φ0pIq and φ1pIq

are both mixture sets. The fact that preferences have a linear representation

U follows immediately from two applications of the main theorem of HM. 550

The reason that U is not cardinal is that for any 0 ă µ ă 1, we may

freely define a distinct concatenation f of φ and φ1 such that fpµq “ x0.

This will not do for a cardinal representation, for each distinct pair f and g

of such concatenations yields a pair of linear utility representations that are

not related via a single positive affine transformation. 555

Choose f and g such that fp1{2q “ x0 “ gp1{4q and fp1q “ gp1q “ φ1p1q.

This implies that x0 ă gp1{2q. Let V :“ U ˝ g ˝ f´1. Then V is a well-

defined linear utility by virtue of the fact that f is a bijection. Moreover, by

construction, the image V pXq of V is equal to that of U . But since f´1px0q “

1{2, we have pg ˝ f´1qpx0q “ gp1{2q, so that V px0q “ pU ˝ gqp1{2q. Then Upx0q “ 560

pU ˝ gqp1{4q ă V px0q.Clearly, there is no positive affine transformation that

relates U and V . Thus, U is not cardinal.

Proof of lemma 1 from page 13. Consider the the set L “ tλ : φxypλq À

zu. By condition P , L is a closed subset of I. It is nonempty since φxyp0q “

x ă z. Similarly, the set U “ tλ : z À φxypλqu is closed and nonempty since 565

z ă φxyp1q “ y. By O, I is the union of L and U . If L X U “ H, then I

is the union of two disjoint, nonempty and closed subsets. Since this would

imply that I is disconnected, L X U is nonempty. Thus, there exists µ P I

such that φxypµq „ z. The fact that µ ‰ 0, 1 follows from O.

Proof of proposition 2 from page 14. Fix x ă y and let φ0, . . . , φm 570

be a sequence of paths satisfying A. Ifm “ 0, then minφ0 À x ă y À maxφ0.
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By lemma 1, there exist µ and ν such that φ0pµq „ x and φ0pνq „ y. By

proposition 1 there exists a path γ such that γp0q “ φ0pµq and γp1q “ φ0pνq.

Then, for this case, γ is the concatenation we seek.

If m ě 1, a similar argument applies and we proceed by induction on the 575

sequence φ0, . . . , φm. By the fact that Z` is well-ordered, let m be minimal.

This ensures that x ă minφ1, maxφn ă minφn`2 and maxφm´1 ă y. (In

other words, each of the paths is necessary.) By the preceding paragraph,

there exists γ0 such that γ0p0q „ x and γ0p1q „ minφ1. By the preceding

argument, there exists minimal µ and maximal ν such that µ ă ν, φ1pµq „ 580

γ0p1q and φ1pνq „ minφ2. By the preceding paragraph, there exists γ1 such

that γ1p0q „ γ0p1q and γ1p1q „ minφ2. Sincem is finite, we obtain a sequence

γ0, . . . , γm such that γnp1q „ γn`1p0q for each n, x „ γ0p0q and γmp1q „ y.

Now choose and arbitrary sequence 0 “ µ0 ă ¨ ¨ ¨ ă µm`1 “ 1 and using the

present sequence of paths take f to satisfy definition 2. 585

Proof of lemma 2 from page 14. Suppose that x ă z ă y for some

z P X. Then by lemma 1, there exists at least one µ satisfying the required

condition. Suppose there exists µ1 ă µ such that φxypµ1q „ z. Then by O, we

have φxypµ1q „ φxypµq. But since proposition 1 ensures φxypIq is a mixture

set and x ă y, theorem 4 of HM implies that φxypµ1q ă φxypµq if and only if 590

µ1 ă µ. (This latter theorem applies since all the axioms of HM now hold.)

For the second part, suppose (by way of contradiction) that z À x ă y

and z „ φxypµq for some unique 0 ă µ ă 1. Let z1 “ φxypµq. Then C3 ensures

that φxz1pλq “ φxypλµq for every λ P I. Indeed, proposition 1 ensures that

φz1ypλq “ φxypp1 ´ λqµ` λ1q. O implies z1 À x ă y and the first part of this 595

proof ensures that φz1ypνq „ x for some unique 0 ď ν ă 1. Let x1 “ φz1ypνq.

Then x1 “ φz1ypνq “ φxypp1 ´ νqµ ` ν1q. Let ν˚ “ p1 ´ νqµ ` ν. Then

φxypλq „ x for both λ “ 0 and λ “ ν˚. Clearly 0 ă µ implies 0 ă ν˚:
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another contradiction of theorem 4 of HM.

Proof of lemma 3 from page 14. Let φ “ φxy. Lemma 2 guarantees 600

the existence of a candidate 0 ă λ ă 1 such that φpλq „ z. Take γ to

be any other path in Φ satisfying γp0q „ x and γp1q „ y. I4 ensures that

φp1{2q „ γp1{2q. Condition C3 then ensures the existence of a subpath φ
0
1

2

from x to φp1{2q such that φ
0
1

2

pλq “ φpλ{2q for every λ P I. A similar path

γ
0
1

2

exists from x1 to γp1{2q. An application of I4 yields φ
0
1

2

p1{2q „ γ
0
1

2

p1{2q. 605

This implies that φp1{4q „ γp1{4q. An application of condition C2 of partial

mixture sets and a similar argument applied to the paths φ 1

2
1

and γ 1

2
1

yields

φp3{4q „ γp3{4q. (Using proposition 1 to translate indifferences on subpaths

to indifferences between φ and γ.) In this way, the above argument yields

φpρq „ γpρq for every dyadic rational ρ P I. Then, since the dyadic rationals 610

are dense in I, there exists a sequence limn ρn “ λ, where recall λ is our

candidate for the proof. W.l.o.g., we may take the sequence to be increasing.

Then by the proof of lemma 2, φpρnq À φpλq for each n. P then ensures that

λ belongs to tλ1 : γpλ1q À φpλqu. Repeating the argument with the roles of

φ and γ reversed yields the reverse weak preference, so that φpλq „ γpλq, as 615

required.

Proof of proposition 3 from page 15. Let Φă “ tφ : φp0q ă φp1qu. For

every φ P Φă, lemma 2 implies that φpλq À φpµq if and only if λ ď µ.

Step 1 (There exists a minimal, strictly increasing concatenation f from

x to y). By proposition 2, there exists a Φ-concatenation f from x to y. 620

Moreover, since Z` is well-ordered, choose f to be composed with the smallest

possible number m of paths in Φ. Then f is a concatenatation of paths in Φă,

for otherwise, we could exclude a path and obtain a suitable concatenation

with even fewer paths. This completes the proof of step 1.
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Let φ1, . . . , φm P Φă and 0 “ µ0 ă ¨ ¨ ¨ ă µm`1 “ 1 characterise f . For 625

any γ P Φ, we write f Ø γ whenever f is synchronised with γ.

Step 2 (f Ø φn for n “ 0, . . . ,m). Take any n “ 0, . . . ,m. Since µn ă

µn`1, T pνq
def

“ pν ´ µnq{pµn`1 ´ µnq is well-defined for each ν P rµn, µn`1q.

Thus, for each λ ă 1, T´1pλq “ λpµn`1´µnq`µn “ p1´λqµn`λµn`1, so that

φnpλq “ pf ˝ T´1qpλq as required. (For λ “ 1, φnpλq „ φn`1p0q “ fpµn`1q.) 630

Step 3 (f Ø γ for every γ P Φă such that fpµnq À γp0q and γp1q À fpµn`1q).

If γp0q „ fpµnq and γp1q „ fpµn`1q, then the fact that γ Ø φn follows di-

rectly by lemma 3. Now suppose that fpµnq À γp0q and γp1q À fpµn`1q,

with at least one relation holding strictly. Lemma 2 implies φnpµq „ γp0q

and γp1q „ φnpµ1q some unique µ, µ1 P I such that either 0 ă µ or µ1 ă 1. 635

Since γ P Φă, µ ă µ1 follows by theorem 4 of HM and the fact that φn P

Φă. Write φn as a concatenation of (at most) three subpaths φ1, φ2, φ3 P Φă

such that in particular φnpνq “ φ2ppν ´ µq{pµ1 ´ µqq for each µ ď ν ď µ1.

Then an inverse transformation T´1 similar to the one of step 2 yields φ2pλq “

φnpp1´λqµ`λµ1q for every λ P I. Then φ2p0q „ γp0q and φ2p1q „ γp1q, and 640

lemma 3 ensures φ2pλq „ φpλq for every λ P I and φn Ø γ.

Recall that φnpξq „ fpp1 ´ ξqµn ` ξµn`1q for every ξ P I. For each

λ P I, let ξ “ p1 ´ λqµ ` λµ1. Then a substitution and straightforward

rearrangement yields γpλq „ fpp1´λqµ˚ `λµ˚q where µ˚ “ p1´µqµn`µµn`1

and µ˚ “ p1 ´ µ1qµn ` µ1µn`1. Since µn ă µn`1 and µ ă µ1, it is clear that 645

µ˚ ă µ˚ as required for f Ø γ.

Step 4 (f Ø γ whenever γp0q ă fpµnq ă γp1q for some γ and some n).

W.l.o.g., take γ and n satisfy fpµn´1q À γp0q and γp1q À fpµn`1q with at

least one relation holding strictly. (For otherwise, we may take a subpath

and combine the present step with step 2.) The difficulty here is that the 650
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µn may be incorrectly specified, so that f travels at a different rate on dis-

tinct intervals rµn´1, µnq and rµn, µn`1q. The proof of remark 4 on page 27

demonstrates the degree of freedom we have in choosing µn. We now show

that we can always respecify the µn and obtain a new concatenation g that

is synchronised with γ. Since g and f are composed of the same paths, g 655

satisfies step 2 and step 3 of this proof.

Let 1 ď n ď m be the smallest number such that γp0q ă fpµnq ă γp1q

for some γ. For every λ P rµn`1, 1s, take g to satisfy gpλq “ fpλq. Let

fn denote the initial segment f , so that fnpλq
def

“ fpλµnq for each λ ă 1

and fnp1q “ φn´1p1q. That is, fn is a concatenation of φ0, . . . , φn´1. On 660

the interval r0, µn`1q, g will be the concatenation of fn, φn, but unless f is

synchronised with γ to begin with, g ‰ f .

By lemma 2, there is a unique 0 ă λn ă 1 such that γpλnq „ fpµnq “

φn`1p0q. Lemma 2 also ensures that fnpκ˚q „ γp0q and φnpκ˚q „ γp1q for

some unique 0 ď κ˚ ă 1 and 0 ă κ˚ ď 1. (Note that κ˚ “ 0 if and only if 665

γp0q „ x and κ˚ “ 1 if and only if γp1q „ fpµn`1q and, since m is minimal,

both do not hold simultaneously.)

We seek g such that gpνnq „ γpλnq where

νn “ p1 ´ λnqµ˚ ` λnµ
˚ (4)

for some unique µ˚ ă µ˚ such that gpµ˚q „ γp0q and gpµ˚q „ γp1q. Since g is

to be concatenation of fn on r0, µnq, we also require fnpλq “ gpλνnq for every 670

λ ă 1. The latter equality together with the indifferences gpµ˚q „ γp0q „

fnpκ˚q yield the equation µ˚ “ κ˚νn. Similarly, from the concatenation

relation between f and φn`1 we obtain the equation µ˚ “ p1´κ˚qνn`κ˚µn`1.

Substituting for µ˚ and µ˚ in (4) and solving for νn we find

νn “
λnκ

˚µn`1

p1 ´ λnqp1 ´ κ˚q ` λnκ˚
.
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Now since κ˚ ă 1, 0 ă λn ă 1 and 0 ă κ˚, µn`1, a suitable νn exists and 675

uniquely so. By construction, g Ø γ.

By induction, a similar argument applies to every n ă n1 ď m. This

completes the proof of this step.

Step 5 (g is synchronised with every remaining γ P Φ). For every other

γ P Φă, γp1q À x or y À γp0q and by convention g Ø γ. If γp0q „ γp1q, 680

then, since γpIq is a mixture set, theorem 5 of HM ensures that γpλq „ γpµq

for every λ, µ P I. In this case g Ø γ with µ “ µ1. Finally, condition C2

accounts for every γ such that γp1q ă γp0q. Since these three cases exhaust

Φ, our proof is complete.

Proof of lemma 4 from page 15. Fix x ă z ă y. By proposition 3, 685

there exists an increasing Φ-concatenation f from x to y. Let φ0, . . . , φm

and 0 “ µ0 ă ¨ ¨ ¨ ă µm`1 “ 1 be the sequences that define f . Let g be

another increasing Φ-concatenation from x to y and let it be characterised

by γ0, . . . , γk and 0 “ ν0 ă ¨ ¨ ¨ ă νk`1 “ 1.

Case 1 (for every n “ 1, . . . ,m and every j “ 1, . . . , k, fpµnq  gpνjq). 690

Note that in this case, we do not need to appeal to M: we can use the paths

that make f and g. W.l.o.g., suppose that fpµ1q ă gpν1q. By proposition 3,

fpµ1q „ gpν 1q for some unique 0 ă ν 1 ă 1 The fact that µ1 “ ν 1 follows from

the argument of the second case with ν 1 replacing ν1.

Case 2 (for some 1 ď n ď m and 1 ď j ď k, fpµnq „ gpνjq). W.l.o.g., 695

suppose that fpµ1q „ gpν1q, where µ1, ν1 ă 1. Together, M and condition C2

ensure that, for some ψ P Φ, ψp0q ă fpµ1q ă ψp1q. Lemma 2 then ensures

that ψpλ1q „ fpµ1q for some unique λ1 P I. Suppose that x À ψp0q and

ψp1q ă gpν2q À fpµ2q (otherwise take a subpath of ψ). Since gpν2q À fpµ2q,

proposition 3 ensures the existence of a unique µ2 such that fpµ2q „ gpν2q. 700
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Let φ1 P Φ be the subpath of φ1 such that φ1pξq “ fpp1´ξqµ1 `ξµ2q for every

ξ P I. Then there exist unique κ˚ ă 1 and 0 ă κ˚ such that φ0pκ˚q „ ψp0q

and φ1pκ˚q „ ψp1q. Then, by step 4 of proposition 3 (see page 30),

µ1 “
λ1κ˚µ2

p1 ´ λ1qp1 ´ κ˚q ` λ1κ˚
(5)

Moreover, lemma 3 ensures that κ˚ and κ˚ also satisfy γ0pκ˚q „ ψp0q and

γ1pκ˚q „ ψp1q.4 We can therefore write an equation for ν1 that is similar to 705

(5): the only difference being that ν2 replaces µ2. Then the only way that

µ1 ‰ ν1 is if µ2 ‰ ν2.

If ν2 “ 1, then step 1 on page 29 and the fact that fpµ2q „ gpν2q ensure

that µ2 “ 1, as required. Otherwise, we may repeat the present argument

to obtain equations for ν2 in terms of ν3 and similarly for µ2. Indeed, by 710

repeating finitely many times we reach µm`1 “ νk`1 “ 1, at which point

fpξq „ gpξq for every ξ P I and the proof is complete.

Proof of remark 5. We first show that I4 holds. Take φ, γ P Φ are such

that φp0q „ γp0q and φp1q „ γp1q. Let x
def

“ φp0q. If x „ φp1q, then, via 715

lemma 2, O, P and I3 imply that φ and γ are monotone and φpλq „ x „ γpλq

for every λ P I.

Henceforth, w.l.o.g. suppose that x ă φp1q. Let x be a constant prospect

Since x is comonotonic with γp1q, there exists γ1 P Φ such that γ1p0q “ x and

γ1p1q “ γp1q. Then I3 implies that γ1p1{2q „ γp1{2q, O implies that γ1p1q „ 720

φp1q and I3 then ensures γ1p1{2q „ φp1{q. A final application of O yields the

conclusion of I4. The case where all the endpoints of φ and γ are nonconstant

is similar. In particular, take z to be constant and w.l.o.g. suppose that

φp1q ă z. Then φxz P Γ is increasing and by lemma 2, there exists a unique

4Recall that lemma 3 ensures that, for every ξ P I, γ0pξq „ φ0pξq and γ1pξq „ φ1pξq.
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µ such that φp1q „ φxzpµq. Indeed, since φp0q “ x, we have φpλq „ φxzpλµq 725

for every λ P I. Similarly, if y
def

“ γp0q, then since z is a constant prospect,

φyz P Γ and since x „ y, we have φyzpλµq „ φxzpλµq for every λ P I. Then

O implies that φp1q „ φyzpµq and γp1q „ φyzpµq. Since y “ γp0q, we have

γpλq „ γyzpλµq for every λ P I. This is of course sufficient for φp1{2q „ γp1{2q.

For the argument that A holds, take x, y, z P X such that x ă y and let z 730

be a constant prospect. Clearly if x ă z ă y, then since φxz and φzy belong

to Γ, A holds for x and y. W.l.o.g., suppose that z ă x ă y. Then clearly

φzy P Γ ensures that A holds for x and y.

For the argument that M holds take x ă z ă y. If x and y are comono-

tonic, then φxy P Γ and M holds for x, y, z. Consider the case where x and y 735

are not comonotonic. That is there exists ω, ω1 P Ω such that xpωq ăM xpω1q

and ypω1q ăM ypωq. Let xpωq “ p and xpω1q “ q. Then, by the definition of

ăM , pΩ ă qΩ. We recall that O implies z ă qΩ or pΩ ă z (see for instance

Fishburn [7]). In either case, there exists a constant prospect x1 such that

x1  z and since both φx1y and φx1x belong to Γ, M holds for x, y, z. 740

Proof of remark 6 from page 23. The fact that pX,Γq is partial mix-

ture set follows from by our construction. The argument that I4 holds is

the following. Suppose that φ2

xypλq „ λp1 ´ λq holds for each λ ď 1{2. Fix

an arbitrary λ ď 1{2. Then note that if ν
def

“ 4λp1 ´ λq, then φxypλq „ ν{4.

By construction, g´1pνq “ λ, so that a substitution for λ yields γ1pνq “ 745

pφxy ˝ gqpνq „ ν{4. Finally, I4 holds because γ1p0q „ 0, γ1p1q „ 1{4 and

γ1p1{2q „ p0 ` 1{4q1{2. (A similar argument applies to all other γ P Γ2.)

We now prove that γ1pIq is nonconvex. Since γ1p0q “ 0, we see that that

p1´νqγ1p0q`νγ1p1q “ νγ1p1q. It suffices, therefore, to show that νγ1p1q is not

equal in distribution to γ1pνq for some ν P I. In turn, a sufficient condition 750

for the latter is that they differ in expectation.
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Recall that for each ν P I, g´1pνq “ ν{2. Since γ1pνq is the square of a

Brownian bridge, eq. (2) (with a “ b “ 0) implies

pE ˝ γ1qpνq “ E

$

&

%

p1 ´ ν{2q2 ¨

˜

ż ν{2

0

1

1 ´ r
dWr

¸2
,

.

-

“ ν{2 ¨ p1 ´ ν{2q.

For instance, if ν “ 1{2, then ν{2p1 ´ ν{2q “ 3{16. In contrast,

ν ¨ pE ˝ γ1qp1q “ ν ¨ E

$

&

%

p1 ´ 1{2q2 ¨

˜

ż 1{2

0

1

1 ´ r
dWr

¸2
,

.

-

“ ν ¨ 1{2 ¨ p1 ´ 1{2q.

So that when ν “ 1{2, the latter expectation is equal to 1{8.

B Proof of theorem 1

If ă“ H, then by O, x „ y for every x, y P X. In this case, every utility

representation is both linear and cardinal. Conversely, both A and M hold 755

vacuously when ă “ H. This ensures that the axioms are necessary and

sufficient in this case. Henceforth, suppose that ă‰ H.

Step 1 ( Sufficiency of the axioms). Consider the quotient set X{„. Each

element ofX{„ consists of an indifference class generated by preferences onX.

X{„ is well-defined because O ensures that the indifference classes partition 760

X. Let p : X Ñ X{„ be the natural projection x ÞÑ ty : y „ xu. Let

F{„ be the set of paths f 1 in X{„ such that f 1 “ p ˝ f for some increasing

concatenation f that is generated by Φ in X. The arguments of the next two

paragraphs demonstrate that pX{„, F{„q is a mixture set when ă‰ H.

If x ă y, then proposition 2 and lemma 4 guarantee the existence and 765

uniqueness (upto indifference) of an increasing concatenation f from x to y.

Repeated application of condition C2 shows that the concatenation g from y
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back to x exists and satisfies gpλq „ fp1 ´ λq for every λ P I. For condition

C3, suppose that z „ fpµq for some z P X and µ P I. Let gpνq “ fpνµq

for each ν P I. If µ ą 0, then gpνq “ φnppνµ ´ µnq{pµn`1 ´ µnqq for each n 770

such that µn ă µ and each ν P I and we may divide both the numerator and

denominator in each φn to get gpνq “ φnppν ´ µ1
nq{pµ1

n`1
´ µ1

nqq, where µ1
n “

µn{µ. This shows that g satisfies definition 2. If µ “ 0, then gpνq “ φ0p0q

for every ν P I and by condition C3, there exists φ P Φ such that g “ φ.

If x „ y, then first suppose x À x1 for every x1 P X. Since ă‰ H, there 775

exists y1 such that x ă y1. In this case, proposition 2 ensures the existence of

a concatenation f from x to y1. Then fpµq „ x for µ “ 0 and the preceding

paragraph completes the proof. Since the case where x1 À x for every x1 P X

is similar, we proceed to the case where x1 ă x ă y1 for some x1, y1 P X. In

this case, M and lemma 2 ensure that x „ z1 “ φpµq for some φ P Φ and 780

0 ă µ ă 1. By proposition 1, φpIq is a mixture set and φz1z1 P Φ. Finally,

since φz1z1pλq „ x for every λ P I, φz1z1 is an increasing concatenation from

x to y. Finally, since condition C1 holds in every case, we have shown that,

upto indifference, X a mixture set.

For the axioms, recall from our discussion following definition 2, that, by 785

virtue of P , concatenations inherit continuity from the continuity of members

of Φ. Moreover, lemma 4 is clearly sufficient for the property fp1{2q „ gp1{2q

for any pair of increasing concatenations such that fp0q „ gp0q ă fp1q „

gp1q. That is to say, increasing concatenations satisfy an independence axiom

akin to I4. We may therefore apply the main theorem of HM to obtain a 790

cardinal and linear utility representation of preferences.

Step 2 (Necessity of the axioms). Suppose that U is a CLU of À. O, P

and I4 are well-known to be necessary for a linear utility representation.

Suppose that A fails to hold. Then for some x ă y, there is some r1 P R

36



such that Upxq ă r1 ă Upyq and r1 R UpXq. Take V : X Ñ R such that 795

V pzq “ Upzq for every z such that Upzq ă r1. For every z such that r1 ă Upzq,

let V pzq “ κ ` θUpzq, where θ ą 1 and κ ` θr1 “ r1. This is feasible since

r1 ´ θr1 ă 0 and we are free to choose κ ă 0. V is a linear utility for À, but

since it not a positive affine transformation of U , the latter is not cardinal.

Now suppose that A holds, but M does not. But this is simply the setting 800

of example 4. With minor modifications, the proof of remark 4 contradicts

the assumption that a CLU exists. The remaining possibility is that A and

M both hold whenever a CLU exists, i.e. that our axioms are necessary.
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