
Munich Personal RePEc Archive

Weather Shocks, Climate Change and

Business Cycles

Gallic, Ewen and Vermandel, Gauthier

Université de Rennes, Université Paris-Dauphine PSL, France

Stratégie

26 August 2017

Online at https://mpra.ub.uni-muenchen.de/81230/

MPRA Paper No. 81230, posted 11 Sep 2017 13:25 UTC



Weather Shocks, Climate Change and
Business Cycles

Ewen Gallica and Gauthier Vermandel∗,b,c

aCREM, UMR CNRS 6211, Université de Rennes I, France.
bParis-Dauphine and PSL Research Universities, France
cFrance Stratégie, Services du Premier Ministre, France

2017

Abstract

How much do weather shocks matter? This paper analyzes the role of weather

shocks in the generation and propagation of business cycles. We develop and es-

timate an original DSGE model with a weather-dependent agricultural sector. The

model is estimated using Bayesian methods and quarterly data for New Zealand

over the sample period 1994:Q2 to 2016:Q4. Our model suggests that weather

shocks play an important role in explaining macroeconomic fluctuations over the

sample period. A weather shock – as measured by a drought index – acts as a

negative supply shock characterized by declining output and rising relative prices

in the agricultural sector. Increasing the variance of weather shocks in accordance

with forthcoming climate change leads to a sizable increase in the volatility of key

macroeconomic variables and causes significant welfare costs up to 0.58% of per-

manent consumption.
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1 Introduction

The prospect of considerable climate change and its potentially large impacts on eco-
nomic well-being are central concerns for the scientific community and policymakers.
Along with a forecast increase in global mean temperature of 1 to 4 degrees Celsius
above 1990 levels, the Intergovernmental Panel on Climate Change (IPCC) forecasts
a rise in both variability and frequency of extreme events, such as droughts (IPCC,
2014). The intensification of extreme drought events is currently emerging as one of
the most important facets of global warming, which may have large macroeconomic
implications, particularly for the agricultural sector.

Many efforts have been made to assess the potential economic impact of climate
change (Nordhaus, 1994; Tol, 1995; Fankhauser and Tol, 2005), especially its conse-
quences on agricultural systems (Adams et al., 1998; Fischer et al., 2005; Deschenes
and Greenstone, 2007). As climatic factors enter into the production function as direct
inputs, any important variation in weather conditions has a large effect on agricul-
tural production. From a policymaker perspective, the evaluation of the economic costs
incurred from climate shocks has become a crucial element in the decision-making
process to implement measures that would offset potential harmful effects on the econ-
omy and in turn on social welfare. These very specific macroeconomic costs, gener-
ated by variable weather conditions, are particularly challenging for agriculture-based
economies, as well as for developing countries, and may undermine world food security
(IPCC, 2014).

Given the remaining uncertainties around the economic costs of variable weather
conditions, the main objective of this paper is to provide a quantitative evaluation of
the effects of weather shocks on the business cycles of an economy. We develop an
original real business cycle model that includes a weather-sensitive agricultural sector.
Then, we apply Bayesian techniques to determine the implications of weather shocks
on business cycles. Once estimated, the model is amenable to the analysis of climate
change. As climate is assumed to be a stationary process in our study, an analysis of
changes in the mean of the climate variable is irrelevant. However, changes in the
variance of the climate variable and the underlying impacts on the business cycles can
be examined.

In recent literature, many efforts have been made to propose models linking macroe-
conomic variables and the weather. The first strand of the literature is related to inte-
grated assessment models (IAMs) pioneered by Nordhaus (1991). These types of mod-
els are now used by governments to provide an evaluation of the social costs of carbon
emissions. In a nutshell, this literature links climate and economic activity through
a damage function that lies in the firms’ production technology. Thus, an increase in
temperatures due to greenhouse gas emissions causes higher damages to aggregate
production. However, this literature focuses on very long run effects of climate change.
In contrast, in our approach we measure the short run implications of the weather on
aggregate fluctuations. The second strand of the literature exemplified by Barro (2006,
2009) or Gourio (2008) investigates the implications of rare economic disasters on asset
prices and welfare. The term “risk disaster” encompasses a very large range of events
such as wars, economic depression and most importantly with respect to our paper:
natural disasters. It should, however, be noted that our analysis does not account for
the dimension of the risk. In addition the scope of the natural disaster is narrow here,
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as we do not consider tsunamis, tornadoes or earthquakes. Instead, we focus on the role
of weather conditions, more specifically droughts, on agricultural production and their
implications for macroeconomic fluctuations. Finally, the last strand of the literature
employs empirical models to examine the short-run effects of the weather on economic
activity. Buckle et al. (2007) and Kamber et al. (2013) underline the importance of
weather variations as a source of aggregate fluctuations, along with international trade
price shocks, using a structural VAR model for New Zealand. De Winne and Peersman
(2016) estimate the dynamic effects of global food commodity supply shocks on the
U.S. economy. They find that unfavorable commodity market shock rises agricultural
price and lead to a persistent decline in real GDP and consumer expenditures. Bloesch
and Gourio (2015) originally assess the effect of winter weather on US business ac-
tivity for the US economy; they find that the weather has a very short-lived effect on
economic activity. Auray et al. (2016) assess the short run role of temperatures and pre-
cipitations on the productivity cycles of England during the pre-industrial period. They
find that a temporary rise in temperature induces a reduction of 11% of TFP implying
a large contraction of output and a welfare cost.

We contribute to this literature by measuring the short-run effects of weather vari-
ables on economic activity using an original extension of the RBC model including an
agricultural sector. The analysis conducted here allows us not only to measure short
run effects of the weather as in the empirical literature, but also to contrast the long
run effect induced by climate change as in the integrated assessment literature. The fit
exercise is conducted using New Zealand data as this country is small enough to have a
relatively homogeneous weather at a macro level. Large countries such as the US have
too large cross-state divergences in terms of the weather to have a single weather indi-
cator. A regional approach of our setup could, however, be applied to large economies.

Regarding the methodology employed in the paper, it comprises three steps. First,
we estimate a VAR model for New Zealand to provide some preliminary empirical evi-
dence on the impact of weather shocks on macroeconomic variables. Second, we build
and estimate a DSGE model and we compare the results with the estimated VAR. Third,
we increase the variance of weather shocks, consistently with climate change projec-
tions, to assess the effects of climate change on the welfare and the macroeconomic
volatility of New Zealand.

The main result of the paper suggests that weather shocks do matter in explaining
the business cycles of New Zealand. Both the VAR and the DSGE model find that a
weather shock generates a recession through a contraction of agricultural production
and investment, accompanied by a very weak decline of hours worked. Our business
cycle decomposition exercises also show that weather shocks are an important driver
of agricultural production and, in a much smaller proportion, of the GDP. Finally, we
use our model for an analysis of climate change by increasing the variance of weather
shocks consistently with projections up to 2100. The rise in the variability of weather
events leads to an increase in the variability of key macroeconomic variables, such as
output, agricultural production or the real exchange rate. In addition, we find signifi-
cant welfare costs incurred by weather-driven business cycles, as today households are
willing to pay 0.40% of their unconditional consumption to live in a world with no
weather shocks; and this cost is increasing in the variability of weather events.

The remainder of this paper is organized as follows: Section 2 provides some empiri-
cal evidences regarding the impact of weather shocks on macroeconomic variables. Sec-
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tion 3 sketches the dynamic stochastic general equilibrium model. Section 4 presents
the estimation of the DSGE model. Section 5 discusses the propagation of a weather
shock, assesses the consequences of a drought and its implication in terms of business
cycles statistics, presents the historical variance decomposition of the main aggregates
(gross domestic product and agricultural production), provides a quantitative assess-
ment of the implications of weather shocks under different climate projection scenarios
for aggregate fluctuations, and estimates the welfare cost of weather shocks. Section 7
concludes.

2 Business cycles evidence

This section provides some preliminary empirical evidence on the impact of weather
shocks on macroeconomic variables. The weather acts as a direct input in agricultural
production, thus making agricultural output sensitive to poor weather conditions. A
country whose GDP significantly depends on its agricultural sector may therefore be
exposed to the variations of the weather. New Zealand is one of these countries, with
an agricultural sector that represented around 7% of total output during the past years,
according to the World Bank. Although New Zealand has a temperate climate that is
well suited for agriculture, it also frequently faces weather accidents. In particular, New
Zealand has been subject to more or less severe droughts during the last decade. Such
weather shocks may create production shortages that may in turn induce significant
macroeconomic fluctuations. In the literature, only a few studies have examined the
role of climate on business cycles. Buckle et al. (2007) showed in an empirical article
that the weather acts as an important source of business cycles, along with international
output and trade price variations. Bloor and Matheson (2010) also found evidence of
the importance of the weather, more particularly the occurrence of El Niño events, on
agricultural production and total output in New Zealand. Finally, Kamber et al. (2013)
showed that food prices and goods and services prices are affected by drought events.
They also found that relative to a period in which a drought occurs, the exchange rate
and the interest rate would be lower than they would have been without the drought.

Before setting-up the theoretical model, we investigate how the weather, especially
droughts, may induce economic fluctuations in New Zealand. To that end, we estimate
a VAR (vector autoregressive) model on New Zealand quarterly data that are seasonally
adjusted and cover the period 1994Q2 to 2016Q4.

The VAR model has to reflect the small open economy assumption. That is, New
Zealand’s macroeconomic variables may react to foreign shocks, but domestic shocks
should not significantly impact the rest of the world. We therefore follow Cushman and
Zha (1997) and create an exogenous block for the variables from the rest of the world.1

Exogeneity is also imposed for the weather variable, so that it can affect the domestic
macroeconomic variables, and so that neither domestic nor foreign macroeconomic
variables can affect the weather variable.2

1More details can be found in the online appendix.
2As the historical data only cover a restricted period of time, we assume that human activities do not

significantly affect the occurrence of droughts.
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The VAR model writes:

Xt =

p
∑

l=1

AlXt−l + ηt, (1)

where t = 1, . . . , T is the time subscript and p is the lag length, Xt is the matrix of
the variables from the three bloc, i.e., domestic, foreign, and weather blocs; At is the
matrix of the coefficients to estimate, as well as the coefficients set to zero to insure
the exogeneity restrictions between the three blocs; and ηt is the error term with zero
mean and variance ση.

The VAR model is estimated with one lag, as suggested by both Hannan-Quinn and
Schwarz criteria. It relies on 8 variables. Six of them represent the domestic block: GDP,
agricultural production, investments, hours worked,3 real effective exchange rate, and
the share return of the NZSX50. The foreign block contains a measure of GDP for the
rest of the world.4 All these variables are expressed in terms of percentage deviation
from their HP trend. Finally, the weather block contains a drought index constructed
from soil moisture deficit observations, as in Kamber et al. (2013). Positive values of
this index depict prolonged episodes of dryness.
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Notes: The green dashed line is the Impulse Response Function. The gray band represents 68% error band obtained from the 250
bootstrap runs. The response horizon is in quarters.

Figure 1: VAR impulse response to a 1% weather shock (drought) in New Zealand.

To investigate the effects of an adverse weather shock, we examine the impulse
responses to a one-standard-deviation of the drought variable. The Choleski decompo-
sition of the error variance-covariance matrix is used to derive the orthogonal impulse

3Unfortunately, there is no data regarding hours worked in the agricultural sector and the non-
agricultural sector, so we consider hours worked in the whole economy.

4We use a weighted average of GDP for New Zealand’s top trading partners, namely Australia, Ger-
many, Japan, the United Kingdom and the United States, where the weights are set according to the
relative share of each partner’s GDP in the total value.
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responses. The results are depicted in Figure 1, where each panel represents the re-
sponse of one of the variables to the weather shock. Time horizon is plotted on the
x-axis while the percent deviation from the steady state is plotted on the y-axis. Over-
all, the empirical evidence suggests that a drought episode acts as a negative supply
shock. As in Buckle et al. (2007), it creates a significant recession through a decline of
the GDP. This contraction is triggered by the large fall in agricultural production. The
drought is also accompanied by a decrease in investment and stock prices, fueled by
the weaker demand for capital goods from farmers. These findings regarding the reac-
tion of financial markets are quantitatively similar to those found by Hong et al. (2016)
for the US. The results from the restricted VAR model can then be used as a guide to
compare the propagation of the weather shock between the model and the VAR.

3 The model

This section is devoted to a formal presentation of the DSGE model. Our model is a two-
sector, two-good economy in a small open economy setup in a flexible exchange rate
regime.5 The home economy, i.e., New Zealand, is populated by households and firms.
The latter operate in the agricultural and the non-agricultural sectors. Households con-
sume both home and foreign varieties of goods, thus creating a trading channel ad-
justed by the real exchange rate. However, the home country is a small open economy
facing the business cycle developments of the foreign country. The general structure of
the model is summarized in Figure 2. The remainder of this section presents the main
components of the model.

Households

Foreign

Households

Non-agricultural

Sector

Agricultural

sector

Weather
(droughts)

cons. ct
hours ht

cons. c∗t

land
costs xt

invest-
ment iAt

bonds
b∗t

Figure 2: The theoretical model.

5Our small open economy setup includes two countries. The home country (here, New Zealand)
participates in international trade but is too small compared to its trading partners to cause aggregate
fluctuations in world output, price and interest rates. The foreign country, representing most of the
trading partners of the home country, is thus not affected by macroeconomic shocks from the home
country, but its own macroeconomic developments affect the home country through the trade balance
and the exchange rate.

6



3.1 Households

There is a continuum j ∈ [0, 1] of identical households that consume, save and work in
the two production sectors. The representative household maximizes the welfare index
expressed as the expected sum of utilities discounted by β ∈ (0, 1):

Et

∞
∑

τ=0

βτ

[

1

1− σC

C1−σC

jt+τ −
χ

1 + σH

h1+σH

jt+τ

]

CbσC

t−1+τ , (2)

where the variable Cjt is the consumption index, b ∈ [0, 1) is a parameter that accounts
for external consumption habits, hjt is a labor effort index for the agricultural and
non-agricultural sectors, and σC and σH represent consumption aversion and labor
disutility coefficients, respectively. Labor supply is affected by a shift parameter χ > 0
pinning down the steady state of hours worked. In addition, the habit formation is
multiplicative in consumption as in Galí (1994), and affects the labor supply. This utility
function mutes the role of consumption habits and magnifies in turn the wealth effect
of consumption over the labor supply. Under this specification, labor supply becomes
weakly cyclical during an adverse weather event, consistently with empirical evidence.

Following Horvath (2000), we introduce imperfect substitutability of labor supply
between the agricultural and non-agricultural sectors to explain co-movements at the
sector level by defining a CES labor disutility index:

hjt =
[

(

hN
jt

)1+ι
+
(

hA
jt

)1+ι
]1/(1+ι)

. (3)

The labor disutility index consists of hours worked in the non-agricultural sector hN
jt

and agriculture sector hA
jt. Reallocating labor across sectors is costly and is governed

by the substitutability parameter ι ≥ 0. If ι equals zero, hours worked across the two
sectors are perfect substitutes, leading to a negative correlation between the sectors
that is not consistent with the data. Positive values of ι capture some degree of sector
specificity and imply that relative hours respond less to sectoral wage differentials.

Expressed in real terms and dividing by the consumption price index Pt, the budget
constraint for the representative household can be represented as:

∑

s=N,A

ws
th

s
jt + rt−1bjt−1 + rertr

∗
t−1b

∗
jt−1 − Tt ≥ Cjt + bjt + rertb

∗
jt + pNt rertΦ(b

∗
jt). (4)

The income of the representative household is made up of labor income with a real
wage ws

t in each sector s (s = N for the non-agricultural sector, and s = A for the agri-
cultural one), real risk-free domestic bonds bjt, and foreign bonds b∗jt. Domestic and
foreign bonds are remunerated at a domestic rate rt−1 and a foreign rate r∗t−1, respec-
tively. Household’s foreign bond purchases are affected by the real exchange rate rert
(an increase in rert can be interpreted as an appreciation of the foreign exchange rate).
The real exchange rate is computed from the nominal exchange rate et adjusted by the
ratio between foreign and home price, rert = etP

∗
t /Pt. In addition, the government

charges lump sum taxes, denoted Tt. The household’s expenditure side includes its
consumption basket Cjt, bonds and risk-premium cost Φ(b∗jt)=0.5χB(b

∗
jt)

2 paid in terms

of domestic non-agricultural goods at a relative market price pNt = PN
t /Pt.

6 The pa-

6This cost function aims at removing a unit root component that emerges in open economy models
without affecting the steady state of the model. We refer to Schmitt-Grohé and Uribe (2003) for a
discussion of closing open economy models.
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rameter χB > 0 denotes the magnitude of the cost paid by domestic households when
purchasing foreign bonds.

The first-order conditions solving the household’s optimization problem are ob-
tained by maximizing the welfare index in Equation 2 under the budget constraint in
Equation 4 given the labor sectoral reallocation cost in Equation 3. First, the marginal
utility of consumption is determined by:

λc
t =

(

CjtC
−b
t−1

)−σC , (5)

where λc
t denotes the Lagrange multiplier associated with the household budget

constraint.7 The stochastic discount factor Λt,t+1 is determined by:

Λt,t+1 = βEt

{

λc
t+1

λc
t

}

. (6)

The Euler condition on domestic real bonds reads as follows:

Et {Λt,t+1} rt = 1. (7)

The first-order condition determines the household labor supply in each sector:

χhσH

jt = C−σC

jt ws
t

(

hs
jt

hjt

)−ι

, for s = N,A (8)

Finally, the Euler condition on foreign bonds can be expressed as the real exchange
rate determination under incomplete markets:

Et

{

rert+1

rert

}

=
rt
r∗t
(1 + pNt Φ

′(b∗jt)), (9)

where Φ′(b∗jt) is the derivative of the bonds and risk-premium cost function.

We now discuss the allocation of consumption between non-agricultural/agricultural
goods and home/foreign goods. First, the representative household allocates total con-
sumption Cjt between two types of consumption goods produced by the non-agricultural
and agricultural sectors denoted CN

jt and CA
jt, respectively. The CES consumption bundle

is determined by:

Cjt =
[

(1− ϕ)
1
µ (CN

jt )
µ−1
µ +

(

ϕεAt
)

1
µ (CA

jt)
µ−1
µ

]

µ
µ−1

, (10)

where µ ≥ 0 denotes the substitution elasticity between the two types of consumption
goods, ϕ ∈ [0, 1] is the fraction of agricultural goods in the household’s total con-
sumption basket, and εAt is a preference shock that affects the units of consumption of
agricultural goods. The corresponding consumption price index Pt reads as follows:

Pt = [(1− ϕ) (PN
C,t)

1−µ + ϕ(PA
C,t)

1−µ]
1

1−µ , (11)

7In equilibrium, the marginal utility of consumption equals the Lagrange multiplier λc
t associated with

the household budget constraint.
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where PN
C,t and PA

C,t are consumption price indexes of non-agricultural and agricultural
goods, respectively. The preference shock εAt is represented by an autoregressive pro-
cess:

log(εAt ) = ρA log(εAt−1) + σAη
A
t , ηAt ∼ N (0, 1) , (12)

where ρA ∈ [0, 1) denotes the root of the shock process and σA ≥ 0 its standard devia-
tion. This shock captures variations in the consumption of agricultural goods which are
not directly driven by the sectoral substitution between the two types of goods available
in the economy.

Second, each indexes CN
jt and CA

jt are also a composite consumption subindexes
composed of domestically and foreign produced goods:

Cs
jt =

[

(1− αs)
1

µS (csjt)
(µs−1)

µs + (αs)
1

µN (cs∗jt )
(µs−1)

µs

]

µs
(µs−1)

for s = N,A (13)

where 1 − αs ≥ 0.5 denotes the home bias, i.e., the fraction of home-produced goods,
while µS > 0 is the elasticity of substitution between home and foreign goods. In this
context, the consumption price indexes P s

C,t in each sector s are given by:

P s
C,t =

[

(1− αs) (P
s
t )

1−µs + αs(etP
s∗
t )1−µs

]
1

(1−µs) , (14)

where P s
t is the production price index of domestically produced goods in sector s,

while P S∗
t is the price of foreign goods in sector s.

Finally, demand for each type of good is a fraction of the total consumption index
adjusted by its relative price:

CN
jt = (1− ϕ)

(

PN
C,t

Pt

)−µ

Cjt and CA
jt = ϕ

(

PA
C,t

Pt

)−µ

Cjt, (15)

csjt = (1− αs)

(

P s
t

P s
C,t

)−µs

Cs
jt and cs∗jt = αs

(

et
P s∗
t

P s
C,t

)−µs

Cs
jt for s = N,A (16)

3.2 Non-agricultural sector

There exists a continuum of perfectly competitive non-agricultural firms indexed by
i ∈ [0, n], with n denoting the relative size of the non-agricultural sector in the total
production of the economy. These firms are similar to agricultural firms except in their
technology as they do not require land inputs to produce goods and are not directly
affected by weather. Each representative non-agricultural firm has the following Cobb-
Douglas technology:

yNit = εZt
(

kN
it−1

)α (
hN
it

)1−α
, (17)

where yNit is the production of the ith intermediate goods firms that combines physical
capital kN

it−1, labor demand hN
it and technology εZt . The parameters α and α−1 represent

the output elasticity of capital and labor, respectively. Technology is characterized as
an AR(1) shock process:

log(εZt ) = ρZ log(εZt−1) + σZη
Z
t , with ηZt ∼ N (0, 1) (18)
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where ρZ ∈ [0, 1) denotes the AR(1) term in the technological shock process and σZ ≥ 0
the standard deviation of the shock. Technology is assumed to be economy-wide (i.e.,
the same across sectors) by affecting both agricultural and non-agricultural sectors.
This shock captures fluctuations associated with declining hours worked coupled with
increasing output.8

The law of motion of physical capital in the non-agricultural sector is given by:

iNit = kN
it − (1− δK) k

N
it−1, (19)

where δK ∈ [0, 1] is the depreciation rate of physical capital and iNit is investment from
non-agricultural firms.

The real profits are given by:

dNit = pNt y
N
it − pNt

(

iNit + S

(

εit
iNit
iNit−1

)

iNit−1

)

− wN
t h

N
it , (20)

where the function S (x) = 0.5κ (x− 1)2 is the convex cost function as in Christiano
et al. (2005) which features a hump-shaped response of investment consistently with
VAR models, and εit is an investment cost shock making investments costlier, it follows
an AR(1) shock process:

log(εIt ) = ρI log(ε
I
t−1) + σIη

I
t , with ηIt ∼ N (0, 1) (21)

where ρI ∈ [0, 1) denotes the root of the AR(1) and σI ≥ 0 the standard deviation of
the innovation.

Firms maximize the discounted sum of profits:

max
{hN

it ,i
N
it ,k

N
it}

Et

{

∞
∑

τ=0

Λt,t+sd
N
it+τ

}

. (22)

First order conditions, determining the real wage, the shadow value of capital
goods, and the return of physical, emerge from the solution of the profit maximiza-
tion problem:

wN
t = (1− α) pNt

yNit
hN
it

, (23)

qNt = pNt + κpNt ε
i
t

(

εit
iNit
iNit−1

− 1

)

− Et

{

Λt,t+1
κ

2
pNt+1

[

(

εit+1

iNit+1

iNit

)2

− 1

]}

, (24)

qNt = Et

{

Λt,t+1

[

αpNt+1

yNit+1

kN
it

+ (1− δK) q
N
t+1

]}

. (25)

3.3 Agricultural sector and the weather

To investigate the implications of variations of the weather as a source of aggregate fluc-
tuations, a weather variable denoted εWt is introduced in the model. More specifically,

8The lack of sectoral data for hours worked does not allow to directly measure sector-specific TFP
shocks.
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this variable captures variations in soil moisture that affect the production process of
farmers. The measure used in the estimation is based on soil moisture deficit observa-
tions calculated from the daily water balance.9 We assume that the aggregate drought
index follows an univariate stochastic exogenous process:

log(εWt ) = ρW log(εWt−1) + σWηWt , ηWt ∼ N (0, 1) (26)

where ρW ∈ [0, 1) is the estimated persistence of the weather shock and σW ≥ 0 its
standard deviation. Shock processes are all normalized to one in steady state so that a
positive realization of ηWt – thus setting εWt above one – depicts a possibly prolonged
episode of dryness that damages agricultural output, as shown by the restricted VAR in
Section 2.

Each farmer i ∈ [n, 1] has a land endowment ℓit, whose time-varying productivity
(or efficiency) follows a law of motion given by:

ℓit = (1− δℓ) Ω
(

εWt
)

ℓit−1 + xit, (27)

where δℓ ∈ (0, 1) is the rate of decay of land efficiency, Ω
(

εWt
)

is a damage function
incurred by weather variations, and xit is the amount of non-agricultural goods neces-
sary to maintain the level of land productivity. From a farmer perspective, xit can be
interpreted as spending on pesticides, herbicides, seeds, fertilizers and water applied to
maintain the productivity of the field. A drought shock is assumed to reduce the fields
crop production ℓit. In response to such an adverse shock, the farmer can optimally
offset the soil dryness by increasing field irrigation, which materializes in our setup by
a rise in xit. From a breeder perspective, land efficiency is also critical for livestock
systems, as the feed rationing of cattle is based on the use of local forage produced
by country pastures. An unexpected drought is therefore expected to increase the feed
budget through the deterioration of pasture supply combined with the need for more
water for the dairy cattle.

In addition to this modeling choice, a damage function Ω(·) is introduced in the
spirit of integrated assessment models (IAMs) pioneered by Nordhaus (1991). Agri-
cultural production is tied up with exogenous weather conditions through a damage
function Ω(·) that alters land productivity. We opt for a simple functional form for this
damage function:

Ω
(

εWt
)

=
(

εWt
)−θ

, (28)

where θ is the elasticity of land productivity with respect to the weather variations.
With a positive value for θ, a drought shock is costly for agricultural activities through
a decline in the productivity of land.

The literature on IAMs traditionally connects temperatures to output through a sim-
ple quadratic damage function in order to provide an estimation of future costs of car-
bon emissions on output. However, Pindyck (2017) raised important concerns about
IAM-based outcome as modelers have so much freedom in choosing a functional form
as well as the values of the parameters so that the model can be used to provide any
result one desires. To avoid the legitimate criticisms inherent to IAMs, we adopt here

9The soil moisture variable measures the net impact of rainfall entering the pasture root zone in the
soil, which is then lost in this zone as a result of evapotranspiration or use of water by plants.
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a conservative approach on both the values of the parameters of the damage function
and its functional form. First, regarding the functional form of the damage function,
our model is solved up to a first approximation to the policy function. This does not
allow us to exploit the non-linearities of the damage function which critically drives the
results of IAM literature. Second, concerning the values of the parameters, our results
depend on a single parameter, θ, which is very agonistically estimated through a very
diffuse prior.

Turning to the technology, the production component of agriculture is strongly in-
spired by Restuccia et al. (2008) to the extent that agricultural output is Cobb-Douglas
in land, physical capital inputs, and labor inputs.10 Each representative firm i ∈ [n, 1]
operating in the agricultural sector has the following production function:

yAit = εZt ℓ
ω
it−1

[

(

kA
it−1

)α (
κAh

A
it

)1−α
]1−ω

, (29)

where yAit is the production function of the intermediate agricultural good that com-
bines an amount of land ℓit−1, physical capital kA

it−1, and labor demand hA
it. Production

is subject to an economy-wide technology shock εZt , whose description of the process
is given in Equation 18. The parameter ω ∈ [0, 1] is the elasticity of output to land,
α ∈ [0, 1] denotes the share of physical capital in the production process of agricultural
goods, and κA > 0 is a technology parameter endogenously determined in the steady
state. We include physical capital in the production technology as in New Zealand,
the agricultural sector heavily relies on mechanization. Physical capital is lagged here
because of the “time to build” assumption that states that physical capital requires one
quarter to be settled.

The law of motion of physical capital in the agricultural sector is given by:

iAit = kA
it − (1− δK) k

A
it−1. (30)

where δK ∈ [0, 1] is the depreciation rate of physical capital and iAit is investment from
farmers.

The real profits dAit are given by:

dAit = pAt y
A
it − pNt

(

iAit + S

(

εit
iAit
iAit

)

iAit−1

)

− wA
t h

A
it − pNt v (xit) , (31)

where pAt = PA
t /Pt is the relative production price of agricultural goods, the function

S (x) = 0.5κ (x− 1)2 is the convex cost function as described in Equation 20. There is
yet no micro-evidence about the functional form of land costs v (xit). We adopt here
an unopinionated approach by imposing the following cost function: v (xit) =

τ
1+φ

x1+φ
it

where τ > 0 and φ ≥ 0. For φ → 0, land costs exhibit constant return, while for φ > 0
land costs exhibits increasing returns. The parameter τ allows here to pin down the
amount of per capita land in the deterministic steady state. Finally, variable εit is an
investment shock which has been detailed in the previous subsection in Equation 21.

10We refer to Mundlak (2001) for discussions of related conceptual issues and empirical applications
regarding the functional forms of agricultural production. In an alternative version of our model based on
a CES agricultural production function, the fit of the DSGE model is not improved, and the identification
of the CES parameter is weak.
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Since the sector is competitive, the size of an individual farmer is indeterminate. We
therefore assume that a representative farmer is price taker. The profit maximization
problem of the farmers can be cast as choosing the input levels under land efficiency
and capital law of motions as well as technology constraint:

max
{hA

it,i
A
it,k

A
it ,ℓit}

Et

∞
∑

τ=0

{

Λt,t+τd
A
it+τ

}

. (32)

The cost-minimization problem ensures that the real agricultural wage is directly
driven by the marginal product of labor:

wA
t = (1− ω) (1− α) pAt

yAit
hA
it

. (33)

The shadow value of capital goods, qAt , is determined by combing the first order condi-
tion on investment and capital:

qAt = pNt + κpNt ε
i
t

(

εit
iAit
iAit−1

− 1

)

− Et

{

Λt,t+1
κ

2
pNt+1

[

(

εit+1

iAit+1

iAit

)2

− 1

]}

. (34)

Agricultural firms invest in physical capital until the marginal cost of physical capital
reaches its expected marginal product:

qAt = Et

{

Λt,t+1

[

α (1− ω) pAt+1

yAit+1

kA
it

+ (1− δK) q
A
t+1

]}

. (35)

Finally, the optimal demand for intermediate expenditures maintaining the level of land
productivity is given by the following condition:

pNt v
′ (xit) = Et

{

Λt,t+1

[

ωpAt+1

yNit+1

ℓit
+ (1− δℓ) Ω

(

εWt+1

)

pNt+1v
′ (xit+1)

]}

. (36)

The left-hand side of the equation captures the marginal cost of land maintenance,
while the right-hand side corresponds to the sum of the marginal product of land pro-
ductivity with the value of land in the next period. A weather shock affects the expected
marginal benefit of lands through the damage function. The shape of the cost function
v (xit) critically determines the response of agricultural production following a drought
shock. A concave cost function, i.e., v′ (xit) < 0, generates a negative response of land
expenditures and a decline in the relative price of agricultural goods, which is incon-
sistent with the data. A linear or convex cost function with φ ≥ 0 is then preferred to
feature an increase in spending xit following a drought shock.

3.4 Foreign economy

For the foreign economy block, our modeling strategy is rather close to the estimated
small open economy models exemplified by Adolfson et al. (2007) and Adolfson et al.
(2008) who use an exogenous VAR to model the foreign economy. Here, the foreign
consumption is determined exogenously modeled by an AR(1) shock process. We com-
plete this equation with two other structural equations that aim at capturing standard
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business cycle patterns of the foreign economy. For simplicity, our foreign economy
boils down to an endowment economy à la Lucas (1978) in an open economy setup
where consumption is exogenous. Most of the parameters and the steady states are
symmetric between domestic and the foreign economy. Consistently with the restricted
VAR model featuring a small open economy, the foreign economy is only affected by its
own consumption shocks but not by shocks of the home economy.

First, foreign consumption follows an AR(1) process:

log
(

c∗jt
)

= (1− ρ∗) log
(

c̄∗j
)

+ ρ∗ log
(

c∗jt−1

)

+ σ∗η
∗
t , η∗t ∼ N (0, 1) , (37)

where the 0 ≤ ρ∗ < 1 is the root of the process, c̄∗j > 0 is the steady state foreign
consumption and σ∗ ≥ 0 is the standard deviation of the shock. The parameters σ∗ and
ρ∗ are estimated in the fit exercise to capture variations of the foreign output gap. A rise
in foreign output gap triggers an increase in the demand for home goods, followed by
an appreciation of the foreign exchange rate, boosting the exports of the home country.

The welfare index of foreign households is similar to that of households residing
in the home country but includes inelastic hours because of the endowment economy
assumption. The objective of the foreign household j is thus given by:

max
{c∗jt,b∗jt}

∞
∑

τ=0

βτEt

{

1

1− σ∗
C

(

c∗jt+τ

)1−σ∗

C
(

c∗t−1+τ

)σ∗

Cb∗
}

, (38)

where b∗ ∈ [0, 1) is a parameter that accounts for external foreign consumption habits,
and σ∗

C denotes foreign consumption risk aversion.

In addition, the foreign household is allowed to consume, or postpone consump-
tion through risk-free bonds b∗jt remunerated at a predetermined real rate r∗t−1. The
associated budget constrained is given by:

r∗t−1b
∗
jt−1 = c∗jt + b∗jt. (39)

The first order condition determines the real interest rate on bonds:

βEt

{

λ∗
t+1/λ

∗
t

}

r∗t = 1, (40)
(

c∗jt
(

c∗t−1

)−b∗
)−σ∗

C

= λ∗
t , (41)

where λ∗
t is the Lagrange multiplier associated with the budget constraint.

Finally, in the absence of specific sectoral shocks, all sectoral prices of the foreign
economy are perfectly synchronized, i.e., P ∗

t = PA∗
t = PN∗

t . In addition, the small size
of the domestic economy implies that the import/exports flows from the home to the
foreign country are negligible, thus implying that P ∗

t = PA∗
C,t = PN∗

C,t .

3.5 Authority

The public authority consumes some non-agricultural output Gt, issues debt bt at a real
interest rate rt and charges lump sum taxes Tt. The public spending are assume to be
exogenous, Gt = Y N

t gεGt , where g ∈ [0, 1) is a fixed fraction of non-agricultural goods g
affected by a standard AR(1) stochastic shock:

log(εGt ) = ρG log(εGt−1) + σGη
G
t , ηGt ∼ N (0, 1) , (42)
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where 1 > ρG ≥ 0 and σG ≥ 0. This shock captures variations in absorption which are
not taken into account in our setup such as political cycles and international demand
on intermediate markets.

The government budget constraint equates spending plus interest payment on ex-
isting debt to new debt inssuance and taxes:

Gt + rt−1bt−1 = bt + Tt. (43)

3.6 Aggregation and equilibrium conditions

After aggregating all agents and varieties in the economy and imposing market clear-
ing on all markets, the standard general equilibrium conditions of the model can be
deducted.

First, the market clearing condition for non-agricultural goods is determined when
the aggregate supply is equal to aggregate demand:

nY N
t = (1− ϕ)

[

(1− αN)

(

PN
t

PN
C,t

)−µN
(

PN
C,t

Pt

)−µ

Ct + αN

(

1

et

PN
t

PN∗
C,t

)−µN
(

PN∗
C,t

P ∗
t

)−µ

C∗
t

]

+ Gt + It + v (xt) + Φ(b∗t ) (44)

where the total supply of home non-agricultural goods is given by
∫ n

0
yNit di = nY N

t ,

and total demands from both the home and the foreign economy read as
∫ 1

0
cjt dj = Ct

and
∫ 1

0
c∗jt dj = C∗

t , respectively, with 1 − αN and αN the fraction of home and foreign
home-produced non-agricultural goods, respectively.

Aggregate investment, with
∫ n

0
iNit di = nINt and

∫ 1

n
iAit di = (1− n) IAt , is given by:

It = (1− n) INt + nIAt . (45)

Turning to the labor market, the market clearing condition between household labor
supply and demand from firms in each sector is

∫ 1

0
hN
jtdj =

∫ n

0
hN
it di and

∫ 1

0
hA
jtdj =

∫ 1

n
hA
itdi. This allows us to write the total amount of hours worked:

Ht = nHN
t + (1− n)HA

t . (46)

Aggregate real production is given by:

Yt = npNt Y
N
t + (1− n) pAt Y

A
t .

In addition, the equilibrium of the agricultural goods market is given by:

(1−n)Y A
t = ϕ

[

(1− αA)

(

PA
t

PA
C,t

)−µA
(

PA
C,t

Pt

)−µ

Ct + αA

(

1

et

PA
t

PA∗
C,t

)−µA
(

PA∗
C,t

P ∗
t

)−µ

C∗
t

]

,

(47)

where
∫ 1

n
yAit di = (1− n)Y A

t . In this equation, the left side denotes the aggregate
production, while the right side denotes respectively demands from home and foreign
(i.e., imports) households.
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The law of motion for the total amount of real foreign debt is:

b∗t = r∗t−1

rert
rert−1

b∗t−1 + tbt, (48)

where tbt is the real trade balance that can be expressed as follows:

tbt = pNt
[

nY N
t −Gt − It − v (xt)− Φ(b∗t )

]

+ pAt (1− n)Y A
t − Ct. (49)

The general equilibrium condition is defined as a sequence of quantities {Qt}
∞

t=0

and prices {Pt}
∞

t=0 such that for a given sequence of quantities {Qt}
∞

t=0 and the realiza-
tion of shocks {St}

∞

t=0, the sequence {Pt}
∞

t=0 guarantees simultaneous equilibrium in all
markets previously defined.

4 Estimation

The model is estimated using Bayesian methods and quarterly data for New Zealand.11

We estimate the structural parameters and the sequence of shocks following the seminal
contributions of Smets and Wouters (2007) and An and Schorfheide (2007). In a nut-
shell, a Bayesian approach can be followed by combining the likelihood function with
prior distributions for the parameters of the model to form the posterior density func-
tion. The posterior distributions are drawn through the Metropolis-Hastings sampling
method. In the following fit exercise, we solve the model using a linear approximation
to the policy function, and employ the Kalman filter to form the likelihood function.
For a detailed description, we refer the reader to the original papers.

4.1 Data

The Bayesian estimation relies on New Zealand quarterly data over the sample period
1994Q2 to 2016Q4. Therefore, each observable variable is composed of 91 observa-
tions. The dataset includes 6 times series: output, investment, hours worked, agricul-
tural production, foreign production, and the drought index.

Concerning the transformation of the series, the point is to map non-stationary data
to a stationary model. The variables that are known to have a trend (namely here,
output, investment and foreign output) are made stationary in three steps. First, they
are divided by the working age population. Second, they are taken in logs. And third,
their trend is removed using the HP filter. The detrending method is not critical here,
as similar results are obtained using a linear trend. For hours worked, the correction
method of Smets and Wouters (2007) is applied. It consists of multiplying the amount
of paid hours by the employment rate. However the resulting hour index exhibits an
upward trend. We therefore take it in log and then remove its trend using the HP filter.
Finally, turning to the weather index, daily data from weather stations are collected
and then spatially and temporally aggregated to compute an index of soil moisture
for each local state composing New Zealand.12 The local values of the index are then

11See Appendix A for more details on the series used in the estimation.
12The index is computed following Kamber et al. (2013). More details are provided in the online

appendix.
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aggregated at the national level by means of a weighted mean, where the weights
are chosen according to the relative size of the agricultural output in each state. The
resulting index is, by construction, zero mean. In our fit exercise, we neglect trends
by using the HP filter. The introduction of trends could affect our estimation results.
However for tractability reasons, we have chosen to focus on short run macroeconomic
fluctuations and to neglect long run effects involved by trends.

With respect to the VAR model presented in Section 2, the real asset return and the
real exchange rate have been discarded from the estimation exercise. Assets returns
variable was necessary for the VAR to identify the response of investment. Similarly,
the real exchange rate captures the business cycle patterns of an open economy.

The vector of observable is given by:

Yobs
t = 100

[

ŷt, ı̂t, ĥt, ŷAt , ŷ∗t , ŵt

]′
,

where ŷt is the output gap, ı̂t is the investment gap, ĥt is a hours worked index, ŷAt is
the agricultural production gap, ŷ∗t is the foreign production gap and finally ŵt is the
drought index.

The corresponding measurement equations are given by:

Yt =
[

log(Yt/Ȳ ), log(pNt It/Ī), log(Ht/H̄), log(pAt Y
A
t /Ȳ A), log(C∗

t /C̄
∗), log(εWt )

]′
,

(50)

where the bar above the variables’ names denote the steady state value of the corre-
sponding variable.

4.2 Calibration and prior distributions

Table 3 summarizes our calibration and Table 4 displays the steady state moments of the
model. We fix a small number of parameters that are commonly used in the literature
of real business cycle models , including β=0.9883, the discount factor; h̄N=h̄A=1/3,
the steady state share of hours worked per day; δK=0.025, the depreciation rate of
physical capital; α=0.33, the capital share in the technology of firms; and g=0.22, the
share of spending in GDP.

Regarding open economy parameters, the home and foreign risk aversion param-
eters σC and σ∗

C are both weakly identified, we set this coefficient to 1.5 consistently
with the empirical findings of Smets and Wouters (2007) for the US economy. On the
same basis, we fix the foreign habit parameter b∗ to 0.7 as it strongly interacts with the
AR coefficient of the foreign shock ρ∗. The portfolio adjustment cost on foreign debt is
set close to that in Schmitt-Grohé and Uribe (2003), with χB = 0.007.13 The current
account is balanced in steady state assuming b̄∗ = ca = 0. Regarding the openness of
the goods market, our calibration is strongly inspired by Liu (2006), with a share αN

of exported non-agricultural goods set to 25% and to 45% for agricultural goods αA in
order to match the observed trade-to-GDP ratio of New Zealand.

Turning to agricultural sector parameterization, the share of agricultural goods in
the consumption basket of households is set to ϕ = 15%, as observed over the sample

13The value of this parameter marginally affects the dynamic of the model, but it allows us to remove
a unit root component induced by the open economy setup.
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period. In addition, the land-to-employment ratio ℓ̄=0.4 is based on the hectares of
arable land per person in New Zealand (FAO data). The last two remaining parame-
ters σ and δℓ are trickier to calibrate. The share of land σ in the production function
is estimated at 15% for the Canadian economy by Echevarría (1998), while Restuc-
cia et al. (2008) calibrates this parameter 18% for the US economy. We assume that
New Zealand agriculture technology is similar enough to other developed economies
by setting σ=0.15. Finally, regarding the decay rate of land δℓ, we apply the method of
Christiano et al. (2005) by minimizing a measure of the distance between the model
weather shock and VAR weather shock response. We find a value close to 10% implying
an annual decay rate on land productivity equal to 40 percents. We fix the parameter
δℓ=0.10 accordingly prior to the Bayesian estimation of the model.

The rest of the parameters are estimated using Bayesian methods. Table 5 and Fig-
ure 3 report the prior (and posterior) distributions of the parameters for New Zealand.14

Overall, our prior distributions are either relatively uninformative or consistent with
earlier contributions to Bayesian estimations such as Smets and Wouters (2007). In
particular, priors for the persistence of the AR(1) processes, the labor disutility curva-
ture σH , the consumption habits b and the investment adjustment cost κ are directly
taken from Smets and Wouters (2007). The standard errors of the innovations are as-
sumed to follow a Weibull distribution with a mean of 0.10 and a standard deviation of
0.5, which is a rather loose prior. Substitution parameters µ, µN , and µA are assumed
to follow a gamma distribution with a mean of 1.5 and a standard deviation of 0.8.
The labor sectoral cost also has a positive support by following a Gamma distribution
with a mean of 2 and a standard deviation of 1. The land cost parameter φ is given a
Gamma distribution, instead of a Normal one, to impose a convex cost function. The
prior mean and standard deviation are set to 1 and 0.6, respectively, so that the re-
sponse of output is consistent with that of the VAR model. For the estimation of the
key parameter θ bridging agricultural fluctuations to weather conditions, we adopt an
agnostic approach using very uninformative prior with a uniform distribution with zero
mean and standard deviation 10.

4.3 Posterior distribution

In addition to the prior distributions, Table 5 reports the estimation results that summa-
rize the means and the 5th and 95th percentiles of the posterior distributions, while the
latter are illustrated in Figure 3. According to Figure 3, the data were fairly informative,
as their posterior distributions did not stay very close to their priors, except for φ which
seems weakly identified. We investigate the possible sources of non-identification for
this parameter using methods developed by Iskrev (2010). Using the brute force search
method, we find that the shape of the land cost function φ strongly interacts with the
labor utility curvature parameter σH . The reason for the existence of this correlation
link is rather straightforward, both φ and σH shape the response of hours (and in turn

14The posterior distribution combines the likelihood function with prior information. To calculate the
posterior distribution to evaluate the marginal likelihood of the model, the Metropolis-Hastings algo-
rithm is employed. We compute the posterior moments of the parameters using a total generated sample
of 800, 000, discarding the first 80, 000, and based on height parallel chains. The scale factor was set in
order to deliver acceptance rates close to 24%. Convergence was assessed by means of the multivariate
convergence statistics taken from Brooks and Gelman (1998). We estimate the model using the dynare
package Adjemian et al. (2011).
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output) following a drought shock. However, parameter σH affects the response of the
model to all shocks, thus making the scope of this parameter more critical than φ. It
is therefore not surprising to find σH better identified than φ. Overall, these identifica-
tion methods show that sufficient and necessary conditions for local identification are
fulfilled by our model.
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Figure 3: Prior and posterior distributions of structural parameters for New Zealand
(excluding shocks).

While our estimates of the standard parameters are in line with the business cy-
cle literature (see, for instance, Smets and Wouters (2007) for the US economy or Liu
(2006) for New Zealand), several observations are worth making regarding the means
of the posterior distributions of structural parameters. The land-weather elasticity pa-
rameter θ has a high posterior value that is clearly different from 0. This suggests that
even with uninformative priors, the model suggests that variable weather conditions
matter for generating macroeconomic fluctuations consistently with empirical evidence
of Kamber et al. (2013). The land expenditure cost φ suggests that the model favor
slightly increasing returns to scale for weather-induced damages. However, the high
uncertainty around this parameter does not allow us to clearly conclude on the shape
of the cost function. Substitution seems to be an important pattern of consumption de-
cisions of households, especially at a sectoral level. However, the substitution between
home and foreign non-agricultural goods appears to be remarkably low. Finally, the la-
bor reallocation between agriculture and non-agriculture is rather costly, and is in line
with the findings of Iacoviello and Neri (2010).

Since we used the VAR as a guideline for building our DSGE model, we report in
Figure 4 the estimated response of the DSGE model (taken at posterior mean) follow-
ing a 1% weather shock and the corresponding response of the VAR model.15 The gray
areas represent 68 and 95 percent probability intervals. Figure 4 shows that the model
does very well at reproducing the estimated effects of weather shocks, including the
hump-shape response of real GDP, real agricultural production and the muted response

15The IRFs of the DSGE model are obtained from the measurements equations in Equation 50 which
makes them comparable with the VAR’s IRFs.
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of hours. Another challenging aspect of the fit exercise is to capture the higher persis-
tence of the response of macro-variables compared to the weather shock process. In
particular, the weather requires five quarters to vanish while output, investment and
hours take roughly fifteen periods to go back to steady state. The introduction of an
endogenous land input successfully captures this hysteresis effects. However, the model
does overstate the contraction of output and its persistence while it does understate the
decline in investment.
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Figure 4: Comparison of the DSGE and the VAR impulse responses to a 1% weather
shock (drought) in New Zealand.

4.4 Do weather shocks matter?

A natural question to ask at this stage is whether weather shocks significantly explain
part of the business cycle. To provide an answer to this question, two versions of the
model are estimated – using the same data and priors. The model previously presented,
denoted M (θ 6= 0), is compared to a constrained version M (θ = 0). In this constrained
version, the weather-induced damages are removed by imposing θ = 0 in Equation 28.
Table 1 reports for the two nested models the corresponding data density (Laplace ap-
proximation), posterior odds ratio and posteriors model probabilities, which allow us to
determine the model that best fits the data from a statistical standpoint. Using an unin-
formative prior distribution over models (i.e. 50% prior probability for each model), we
compute both posterior odds ratios and model probabilities taking the model M (θ = 0),
i.e., the one with no weather damages as the benchmark.16 We conduct a formal com-

16As underlined by Rabanal (2007), it is important to stress that the marginal likelihood already
takes into account that the size of the parameter space for different models can be different. Hence,
more complicated models will not necessarily rank better than simpler models, and M (θ 6= 0) will not
inevitably be favored to the other model.
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No Weather-Driven Weather-Driven
Business Cycles Business Cycles

M (θ = 0) M (θ 6= 0)

Prior probability 1/2 1/2
Laplace approximation -1016.853 -1012.835
Posterior odds ratio 1.000000 55.626
Posterior model probability 0.018 0.982

Table 1

Prior and posterior model probabilities

parison between models and refer to Geweke (1999) for a presentation of the method
to perform the standard Bayesian model comparison employed in Table 1 for our two
models. Briefly, one should favor a model whose data density, posterior odds ratios and
model probability are the highest compared to other models.

We examine the hypothesis H0: θ = 0 against the hypothesis H1: θ 6= 0. To do
this, we evaluate the posterior odds ratio of M (θ 6= 0) on M (θ = 0) using Laplace-
approximated marginal data densities. The posterior odds of the null hypothesis of
no significance of weather-driven fluctuations is 55.6:1 which leads us to strongly re-
ject the null, i.e., weather shocks do matter in explaining the business cycles of New
Zealand. This result is confirmed in terms of log marginal likelihood and posterior odds
ratio.

5 Weather shocks as drivers of aggregate fluctuations

This section discusses the propagation of a weather shock and its implications in terms
of business cycle statistics.

5.1 Propagation of a weather shock

In the model, the measure of drought is assumed to be a stochastic exogenous process
driven by a Gaussian shock ηWt . To evaluate how an average drought event in New
Zealand propagates in the economy, we first report the simulated Bayesian system re-
sponses of the main macroeconomic variables following a standard weather shock in
Figure 5. The impulse response functions (IRFs) and their 90% highest posterior density
intervals are obtained in a standard way when parameters are drawn from the mean
posterior distribution, as reported in Figure 3. Contrary to the VAR model, the DSGE
model allows one to explain the underlying theoretical mechanisms which explain how
a weather shock propagates in the economy.

From a business cycle perspective, this shock acts as a standard (sectoral) nega-
tive supply shock through a combination of rising relative prices and falling output. A
drought event strongly affects business cycles through a large decline in agricultural
output (1.2%), as weather affects the land input in the production process of agricul-
tural goods. The land productivity is strongly negatively affected by the drought. This
result is in line with Kamber et al. (2013), as New Zealand’s farmers rely extensively on
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5 10 15 20

−0.15

−0.1

−0.05

0

consumption ĉt
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drawn from the posterior distribution, as reported in Figure 3. Gray areas are the 90 percent highest posterior density interval.
IRFs are reported in percentage deviations from the deterministic steady state.

Figure 5: System response to an estimated weather shock ηWt measured in percentage
deviations from the steady state.

rainfall and pastures to support the agricultural sector. A drought shock decreases land
productivity by 6% in the model. To compensate for this loss, farmers can use more
non-agricultural goods as inputs to reestablish land productivity. For instance, dairy or
crop producers may require more water to irrigate their grasslands or cultures to off-
set the dryness. Farmers may also use more pesticides, as droughts are often followed
by pest outbreaks (Gerard et al., 2013). The demand effect for these non-agriculture
goods is captured in the model by a rise in inputs xit in Equation 27, which results in
an increase in land costs. The surge in non-agriculture goods has a positive side effect
on non-agriculture output. Both the drop in the agricultural production and the rise in
non-agriculture output alter the price structure between sectors. As the drought causes
a reduction in the agricultural production and a rise in land costs, the relative price in
the agricultural sector rises through a demand and a supply effect. Since relative prices
are negatively correlated, the price of non-agricultural goods decline in response.

From an international standpoint, the decline in domestic agricultural production
generates current account deficits. Two factors might explain this. First, almost fifty
percents of New Zealand’s exports are accounted for by agricultural commodities. As
both output and price competitiveness of the agricultural sector are deteriorated, New
Zealand exports decline. However, the decline price in relative price of non-agricultural
fuels the external demand for non-agricultural, thus explaining why this sector experi-
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ences a boom. Taken together, the effect of the agricultural sector outweighs the other
sector, through a fall in the trade balance and the current account. In the meantime,
the domestic real exchange rate depreciates driven by the depressed competitiveness of
farmers, which helps in restoring their competitiveness. This reaction of the exchange
rate is consistent with the prediction of the VAR model in Figure 1.

5.2 The contributions of weather shocks on aggregate fluctuations

Figure 6 reports the forecast error variance decomposition for two variables of interest,
i.e., aggregate real production (Yt) and agricultural production (Y A

t ). Five different
time horizons are considered, ranging from one quarter (Q1) to ten years (Q40) along
with the unconditional forecast error variance decomposition (Q∞). In each case, the
variance is decomposed into four main components related to supply shocks (technol-
ogy and shock), demand shocks (government spending, household preferences and
investment shocks), foreign shocks, and weather shocks.
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Figure 6: Forecast error variance decomposition at the posterior mean for different time
horizons (one, two, four, ten, forty and unconditional).

As observed for aggregate production (Yt), demand and supply shocks are the main
drivers of the variance in both the short and the longer term. However, by increasing
the time horizon, the contribution of weather shocks grows, starting from 0.14% at one-
quarter horizon to 5.5% on a forty-quarter horizon. Foreign shocks play a modest role.
They account for 2.8% of New Zealand’s production in the short run, and less than 1%
in the long run.

Turning to agricultural production, supply shocks account for most fluctuations in
the short run. They are responsible for 70% of the variance of agricultural production
at one-quarter horizon. Their importance declines in the long run, although remain-
ing non-negligible, explaining 21% of agricultural production at a 10-quarter horizon.
Weather shocks remarkably drive the variance of agricultural production after a time
lag of one quarter. In addition, increasing the time horizon magnifies this result. Not
less than 59% of the unconditional variance of agricultural production is driven by
weather shocks.
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Overall, we find that weather variations cause important macroeconomic fluctua-
tions. The prospect of the increasing variance of drought events caused by climate
change is a challenging issue for New Zealand policymakers, as it can have large impli-
cations for stabilization policies.

5.3 Historical decomposition of business cycles

An important question one can ask of the estimated model is how important the weather
shocks were in shaping the recent New Zealand macroeconomic experience. Figure 7
provides an answer by reporting the time paths of aggregate output, and agricultural
production on a quarter-to-quarter basis. The solid line depicts the time path of the ra-
tio of the deviation from the steady state, while the bars depict the contribution of the
shocks in the corresponding point deviation (at the mean of the estimated parameters).
The shocks are gathered in the same way as in the forecast error variance decomposi-
tion exercise of subsection 5.2.
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Figure 7: Historical decomposition of aggregate output and agricultural production.

In Figure 7, we can distinguish between two time periods for output (Yt) and agri-
cultural production (Y A

t ). First, up to 2006-2007, variations in aggregate production
were positively driven by weather shocks. Over this period, New Zealand did not expe-
rience any significant drought events, with important soil moisture surpluses favoring
agricultural production. In fact, during this period, around 46% of the increase in agri-
cultural output was driven by positive weather shocks, on average. However, major
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drought events in 2008, 2010, 2013 and 2015 contributed negatively to output fluctu-
ations accompanied by an important supply shock. After 2008, 40% of the decline in
agricultural output is driven by adverse weather drought shocks.

6 Climate change implications for macroeconomic volatil-

ity and welfare

We now turn to the implications of climate change for aggregate fluctuations and wel-
fare. The IPCC defines climate change as “a change in the state of the climate that can

be identified (e.g., by using statistical tests) by changes in the mean and/or the variabil-

ity of its properties, and that persists for an extended period, typically decades or longer”
(IPCC, 2014). In our framework, climate is supposed to be stationary, which makes our
set-up irrelevant for analyzing changes in mean weather values. However, it allows for
changes in the variance of climate. As a first step, we assess the change in the variance
of the weather shock by estimating it under different climate scenarios. Then, in a
second step, we use the estimates of these variances for each scenario and investigate
the effects on aggregate fluctuations. The results presented in this section are rather
illustrative as our setup does not allow crop adaptation or any possible mechanism that
would offset the structural change of weather.

6.1 Building projections up to 2100 for weather shocks

To investigate the potential impact of climate change on aggregate fluctuations, we
assume that the volatility the weather (ηWt ) (Equation 26) will be affected by climate
change. Instead of arbitrarily setting a value for this shift, we provide an approximation
using a proxy for the drought index. To do so, we rely on monthly climatic data simu-
lated from a circulation climate model, the Community Climate System Model (CCSM).
The resolution of the dataset is a 0.9◦ × 1.25◦ grid. Simulated data are divided into two
sets: one of “historical” data up to 2005 and one of “projected” data from 2006 to
2100. The projected data are given for four scenarios of greenhouse gas concentra-
tion trajectories, the so-called Representative Concentration Pathways (RCPs). The first
three, i.e., the RCPs of 2.6, 4.5 and 6.0, are characterized by increasing greenhouse gas
concentrations, which peak and then decline. The date of this peak varies among sce-
narios: around 2020 for the RCP 2.6 scenario, around 2040 for the RCP 4.5 and around
2080 for the RCP 6.0. The last scenario, the doom and gloom 8.5 pathway, is based on
a quickly increasing concentration over the whole century. The first panel of Figure 8
shows emissions and projections of the emissions of one of the major greenhouse gases,
i.e., CO2, up to 2100.17

For these four scenarios, soil moisture deficit data are not available. We therefore
use a strongly correlated variable as a proxy: total rainfall. Simulated data for each
scenario are provided on a grid on a monthly basis. We aggregate them at the national
level on a quarterly basis. More details on the aggregation can be found in the online
appendix.

17The data used to graph the CO2 emission projections are freely available at ❤tt♣✿✴✴✇✇✇✳

♣✐❦✲♣♦ts❞❛♠✳❞❡✴⑦♠♠❛❧t❡✴r❝♣s✴.
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These data are then used to estimate the evolution of the volatility of the weather
shock. We do so using a rolling window approach. In the DSGE model, we assume that
the weather shock is autoregressive of order one. We therefore fit an AR(1) model on
each window. The size of the latter is set to 25.5 years, i.e., the length of the sample data
used in the DSGE model, so each regression is estimated using 102 observations. The
standard error of the residuals are then extracted to give a measure of the evolution
of the volatility of the weather shock. The middle panel in Figure 8 illustrates the
evolution of the standard error for each scenario. It is then possible to compute the
average growth rate of the standard error over the century depending on the climate
scenario.18 The results are displayed in the right panel of Figure 8. In the best-case
scenario, RCP 2.5, the variance of the climate measure is reduced by 4.1%; under the
RCP 4.5 and RCP 6.0 scenarios, it increases by 6.82% and 9.29%, respectively; under
the pessimistic RCP 8.5 scenario, it drastically increases by 23.25%.
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Figure 8: Estimations of the increase of the standard error of the weather shock under
four different climate scenarios.

6.2 Climate change and macroeconomic volatility

We use the estimated DSGE model to assess the effects of a shift in the variability of
the weather shock process. We do so in a two-step procedure. First, the simulations are
estimated with the value of the standard error of the weather shock that is estimated
during the fit exercise, which corresponds to historical variability. Second, new simu-
lations are made after altering the variability of the weather shock so it corresponds to
the one associated with climate change, using the values obtained from the previous
section. Hence, we proceed to four different alterations of the variance of the weather
process.

To measure the implications of climate change on aggregate fluctuations of a rep-
resentative open economy, we compare the volatility of some macroeconomic variables

18More details on the procedure can be found in the appendix.
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1994-2016 2100 (projections)
Benchmark RCP 2.5 RCP 4.5 RCP 6.0 RCP 8.5

sd(ηWt ) Weather shock 100 95.90 106.82 109.30 123.25
sd(yt) GDP 100 99.82 100.15 100.23 100.72
sd(yAt ) Agriculture 100 96.89 102.54 103.86 111.53
sd(ct) Consumption 100 99.94 100.05 100.07 100.22
sd(it) Investment 100 99.98 100.01 100.02 100.07
sd(ht) Hours 100 99.99 100.00 100.01 100.03
sd(rt) Real interest rate 100 100.00 100.00 100.00 100.00
sd(rert) Exchange rate 100 99.86 100.12 100.18 100.57
E(Wt) Welfare -158.02 -158.00 -158.04 -158.06 -158.13
λ (%) Welfare cost 0.4023 0.3562 0.4417 0.4623 0.5873

Notes: The model is first simulated as described in Section 4. Theoretical standard errors of each variable are then estimated and
normalized to 100. Then, standard errors of weather (ηWt ) shocks are modified to reflect different climate scenarios (compared
to the reference 1994–2016 period, changes in the standard error are as follows: RCP 2.5, −4.10%; RCP 4.5, +6.82%; RCP
6.0, +9.30%; RCP 8.5, +23.25%). New simulations are estimated using the modified standard errors of these shocks, and the
theoretical standard errors of the variables of interest are then compared to those of the reference period.

Table 2

Changes in Standard-Errors of Simulated Observables Under Climate Change Scenarios.

under historical weather conditions (for the 1989–2014 period) to their volatility un-
der future climate scenarios (for the 2015–2100 period), normalizing the values of the
historical period of each variable to 100.

Table 2 report these variations for some key variables. The first scenario is clearly
optimistic, as the standard deviation of drought events is declining by 4.1%. As a result,
macroeconomic fluctuations in the country naturally decrease. Agriculture output is
particularly affected by this structural change, with a 3.11% decrease of its standard
deviation. In contrast, the other scenario for which the rise in the standard deviation of
the weather shock ranges between 6.82% for the less pessimistic scenario to 23.25% for
the most pessimistic one, exhibit a strong increase in the volatility of macroeconomic
variables. As a matter of facts, the standard error of total output rises by 0.15% under
the RCP 4.5 scenario, and by 0.72% under the RCP 8.5 scenario. Agricultural production
volatility experiences an important shift of 11.5% under the worst-case scenario. We
also observe an increase in the real exchange rate of 0.57% and consumption of 0.22%,
while for other macroeconomic variables the changes are very modest.

One would think that the volatility changes incurred by climate change are rather
negligible, however, for developing economies this facet of climate change could be very
critical. Wheeler and Von Braun (2013) find similar effects of climate change on crop
productivity which could have strong consequences for food availability for low-income
countries. Adapting our setup to a developing economy by increasing the relative share
of the agricultural sector, and reducing the intensity of the capital, would critically
exacerbate the results reported in Table 2.

27



6.3 The welfare cost of weather variability under climate change

Another important challenge for economists is to provide a metric that would price
the cost of climate change. The final goal of this metric would be to evaluate the ef-
fectiveness of a policy designed to offset the potential costs of climate change. In the
IAM literature, these costs are usually expressed in terms of output loss or utility-based
consumption, but many uncertainties remain as the result of these models critically de-
pends on the model’s assumptions. For instance, Nordhaus (1993) evaluates the cost of
climate change to roughly one percent of the GDP. Meanwhile, Dietz and Stern (2015)
relaxes some key assumptions about the functional form of the damage function of
Nordhaus and find much higher costs.

The literature mentioned before focuses on the very long run effects of climate
change. In our setup, we take into account how the short term variability induced by
weather may generate a social cost for households. To do so, we employ the method of
Lucas (2003) to measure the welfare cost of weather-driven business cycles as detailed
in Appendix B. In a nutshell, we compute the welfare of the household using an alter-
native version of the model with no weather shocks and compare this welfare with our
estimated model. We then convert the welfare costs between these two regimes into
unconditional consumption percentage, denoted λ. The parameter λ can be interpreted
as the percentage of permanent consumption that the household is willing to abandon
to stay in an economy free of weather shocks. The last two rows of Table 2 report the
corresponding welfare mean and welfare cost.

In all our scenarios except for the optimistic RCP 2.5, households would be worse-off
under the new weather conditions in which the volatility of droughts has increased. The
simulations show that today, New Zealanders would be willing to give up to 0.40% of
their unconditional consumption in order to live in an economy free of drought events.
The magnitude of this cost is not negligible.19 Under the optimistic scenario, they would
only abandon only 0.35% of their permanent consumption. In the worst-case scenario,
this fraction would reach 0.58%. With respect to the benchmark situation over the
1994-2016 period, the welfare cost under the worst-case scenario has increased of 44%
for a 23% rise of the variability of the weather shock. This suggests that there is a strong
non-linear relationship between the variance of the shock and the welfare cost.

Our results show that short-run fluctuations incurred by weather matter as well, and
could be embedded into integrated assessment models to evaluate the costs of climate
change.

7 Conclusion

In this paper, we have investigated the business cycle evidence on weather shocks. We
have developed and estimated a DSGE model for a small open economy, New Zealand.

19For instance, our model evaluates the welfare costs of business cycles induced by productivity shocks
to 0.05%, -0.002 for spending shocks, -0.05% for investment shocks, 0.50% for preference shocks and
0.002% for foreign shocks. On average, these costs lie in the ballpark of estimates obtained in the RBC
literature, see for example Otrok (2001) except for the preference shock. The latter generates important
welfare costs as it directly affects the relative price structure of consumption goods which strongly affects
the household’s utility.
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Our model includes an agricultural sector that faces exogenous weather variations af-
fecting the land productivity, and in turn the production of agricultural goods. We find
from a statistical standpoint that weather shocks do matter in explaining the business
cycles of New Zealand. Both the VAR and the DSGE model find that a weather shock
generates a recession through a contraction of agricultural production and investment,
accompanied by a very weak decline of hours worked. Our business cycle decompo-
sition exercises also show that weather shocks are an important driver of agricultural
production and, in a much smaller proportion, of the GDP. Finally, we use our model
to the analysis of climate change by increasing the variance of weather shocks consis-
tently with projections in 2100. The rise in the variability of weather events leads to an
increase in the variability of key macroeconomic variables, such as output, agricultural
production or the real exchange rate. In addition, we find important welfare costs in-
curred by weather-driven business cycles, as today households are willing to pay 0.40%
of their unconditional consumption to live in a world with no weather shocks, and this
cost is increasing in the variability of weather events.

The analysis of weather-driven business cycles is a burgeoning research area given
the important context of climate change. In this paper, we have analyzed the impor-
tance of weather shocks on the macroeconomic fluctuations of a developed economy.
However, the application of our framework to developing countries could highlight
the high vulnerability of their primary sectors to weather shocks. In addition, from
a policymaker’s perspective, our framework could be fruitfully employed to evaluate
the optimal conduct of monetary policy to mitigate the destabilizing effects of weather
shocks for different scenarios of climate change. Fiscal policy could also play a role
in a low-income country, for instance by providing disaster payments, which may be
seen as insurance schemes paid by the tax payers. These disaster payments may make
sense in the absence of well-functioning insurance markets. Another possibility could
be the introduction of trends in the model, which could be affected by weather events
both in the short and in the long run. This would provide a scope for crop adaptation
and environmental policies aiming at offsetting the welfare costs of weather. Finally,
weather shocks could also have implications on financial markets, through a possible
rise in the equity premium as predicted by the risk disaster theory in asset pricing.
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A Data

The sample period begins in 1994:Q3 and extends to 2016:Q4. All data are log de-
viations from their trend, except share prices and the weather. Share prices are in
deviation from their trend. Trends are obtained by applying an HP filter. The time ref-
erence for all indexes is 2010:Q1. More details on the data can be found in the online
appendix.

Weather data are obtained from weather stations at a monthly rate. The measure
we use is based on soil moisture deficit observations. We refer to the online appendix
for an extensive presentation of the index.

• Gross domestic product: real per capita output, expenditure approach, season-
ally adjusted. Source: Statistics New Zealand.

• Rest of the world gross domestic product: weighted average of GDP of top
partners (Australia, Germany, Japan, the United Kingdom and the United States).
US dollars, volume estimates, fixed PPPs, seasonally adjusted. Source: OECD.

• Agricultural output: real agriculture, fishing and forestry gross domestic prod-
uct, seasonally adjusted. Source: Statistics New Zealand.

• Investment: gross fixed capital formation, seasonally adjusted. Source: Statistics
New Zealand.

• Paid hours: average weekly paid hours (FTEs) total all ind. & both sexes, sea-
sonally adjusted. Source: Statistics New Zealand.

• Employment: labor force status for people aged 15 to 64 years, seasonally ad-
justed. Source: Statistics New Zealand.

• Share Prices: New Zealand All Ordinaries Index (NZSE:IND). Source: Bloomberg.

• Population: actual population of working age, in thousands, seasonally adjusted.
Source: Statistics New Zealand.

• Real effective exchange rate: Real Broad Effective Exchange Rate for New
Zealand. Source: Bank for International Settlements.

• Weather: soil moisture deficit at the station level. Source: National Climate
Database, National Institute of Water and Atmospheric Research.

B The welfare cost of weather-driven business cycles

To get a welfare perspective on climate change, we compute how much consumption
households are willing to abandon to stay in an equilibrium free of weather shocks.20

20In standard macroeconomic models, the comparison of different scenarios is achieved through the
computation of the fraction of consumption streams from alternative regime to be added (or subtracted)
to achieve a benchmark reference (see for instance, Lucas (2003)). In our situation, this approach allows
us to get an evaluation of the welfare cost of climate change in terms of unconditional consumption.
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We define the welfare index for regime a, i.e., the regime associated with an economy
without weather shocks (σW = 0 in Equation 26) as Wa

t . Similarly, we define a second
regime, denoted b, that includes weather shocks. The corresponding welfare index of
this regime is given by Wb

t . Recall that the welfare index is given by:

Wt = Et

∞
∑

τ=0

βτ

[

1

1− σC

C1−σC

jt+τ −
χ

1 + σH

h1+σH

jt+τ

]

CbσC

t−1+τ ., (51)

The no-arbitrage condition between scenarii a and b reads as follows:

Et

∞
∑

τ=0

βτU
(

(1− λ)Ca
t+τ , C

a
t−1+τ , h

a
t+τ

)

= Et

∞
∑

τ=0

βτU
(

Cb
t+τ , C

b
t−1+τ , h

b
t+τ

)

, (52)

where λ is the welfare cost, i.e., the fraction of consumption the household is willing to
give up to live in an economy free of weather fluctuations.

Rewriting Equation 52, the welfare cost is given by:

λ = 1−

[

E
[

Wb
t

]

+ E [Va
t ]

E [Wa
t ] + E [Va

t ]

]
1

1−σC

(53)

where E[·] denotes the asymptotic mean generated by a large sample of artificial series
and Vt is an auxiliary variable. It is given by: Vt =

χ
1+σH

Et

∑∞

τ=0β
τh1+σH

jt+τ CbσC

t−1+τ .

We employ a second order approximation to the model’s policy function using per-
turbation methods as in Collard and Juillard (2001). This solution method is standard
in the macroeconomic literature as it provides an accurate evaluation of the welfare by
avoiding spurious welfare reversals.
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Variable Interpretation Value
β Discount factor 0.9883
δK Capital depreciation rate 0.025
α Share of capital in output 0.33
g Share of spending in GDP 0.22
ϕ Share of good in consumption basket 0.15
H̄N = H̄A Hours worked 1/3
σC Risk aversion 1.5
ℓ̄ Land per capita 0.40
ω Share of land in agricultural output 0.15
δℓ Rate of decay of land efficiency 0.10
αN Openness of non-agricultural market 0.25
αA Openness of agricultural market 0.45
χB International portfolio cost 0.007
σ∗

C
Foreign risk aversion 1.5

b∗ Foreign consumption habits 0.7

Table 3

Calibrated parameters.

Variable Interpretation Model Data

C̄/Ȳ Ratio of consumption to GDP 0.56 0.57
Ī/Ȳ Ratio of investment to GDP 0.22 0.22
400× (r̄ − 1) Real interest rate 4.74 4.75
(1− ϕ)αN + ϕαA Goods market openness 0.28 0.29
nȲ A/Ȳ Ratio of agricultural production to GDP 0.08 0.07

Table 4

Steady state ratios (empirical ratios are computed using data between 1990 to 2017).
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Prior distributions Posterior distribution
Shape Mean Std. Mean [5%:95%]

SHOCK PROCESS AR(1)
Economy-wide TFP sd σZ W 0.1 0.5 1.74 [1.48:1.99]
Spending sd σG W 0.1 0.5 4.04 [3.45:4.57]
Investment sd σI W 0.1 0.5 5.15 [4.07:6.21]
Preferences sd σA W 0.1 0.5 11.03 [7.75:14.26]
Weather sd σW W 0.1 0.5 0.81 [0.71:0.91]
Foreign demand sd σ∗ W 0.1 0.5 0.59 [0.52:0.66]
Economy-wide (AR term) ρZ B 0.5 0.2 0.72 [0.61:0.83]
Spending (AR term) ρG B 0.5 0.2 0.89 [0.84:0.94]
Investment (AR term) ρI B 0.5 0.2 0.18 [0.04:0.32]
Preferences (AR term) ρA B 0.5 0.2 0.81 [0.73:0.9]
Weather (AR term) ρW B 0.5 0.2 0.38 [0.23:0.52]
Foreign demand (AR term) ρ∗ B 0.5 0.2 0.81 [0.73:0.9]

STRUCTURAL PARAMETERS
Labor disutility σH B 2 0.75 1.87 [1.32:2.4]
Consumption habits b B 0.7 0.10 0.82 [0.74:0.9]
Labor sectoral cost ι G 2 1 2.32 [1.36:3.31]
Investment cost κ N 4 1.50 1.83 [0.77:2.91]
Substitutability by type of goods µ G 1.5 0.8 4.93 [3.53:6.26]
Substitutability home/foreign µN G 1.5 0.8 1.91 [0.86:2.94]
Substitutability home/foreign µA G 1.5 0.8 0.41 [0.26:0.56]
Land expenditures cost φ G 1 0.60 0.76 [0.02:1.51]
Land-weather elasticity θ U 0 10 8.62 [2.3:15.78]

Marginal log-likelihood -1012.83

Notes: The column entitled “Shape” indicates the prior distributions using the following acronyms: N describes a normal distribu-
tion, G a Gamma one, B a Beta one, and W a Weibull one.

Table 5

Prior and posterior distributions of structural parameters and shock processes.
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1 Measuring Weather

The measure of weather we use is an index of drought constructed following the methodology of
Kamber et al. (2013). It is based on soil moisture deficit observations1 and is collected from the
National Climate Database from National Institute of Water and Atmospheric Research. Raw
data is obtained from weather stations at a monthly rate. The spatial covering of these stations
is depicted in 1(a), while its temporal covering is represented in 1(b). To get quarterly national
representative data, both spatial and time scales need to be changed. In a first step, we average
monthly values of mean soil moisture deficit at the region level. We then remove a seasonal
trend by simply subtracting long term monthly statistics. Long term statistics are evaluated as
the average value over the 1980 to 2015 period. Then, we follow Narasimhan and Srinivasan

1Named “MTHLY: MEAN DEFICIT (WBAL)” in the database.
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(2005) to create the soil moisture deficit index. In a nutshell, for each m = {1, . . . , 12} month
in each t = {1980, . . . , 2015} year, we compute monthly soil water deficit (expressed in percent)
as:

SDt,m =
SWt,m − Med(SWm)

Med(SWm)
. (1)

The index for any given month is then computed as:

SMDIt,m = 0.5 × SMDIt,m−1 +
SDt,m

50
, (2)

using SMDI1980,m =
SD1980,m

50 , m = {1, . . . , 12} as initial values for the series.
Then, we aggregate the monthly values of the index at the national level by means of a

weighted mean, where the weights reflect the share of yearly agricultural GDP of each region.2

In a final step, monthly observations are quarterly aggregated.
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Figure 1: Covering of weather stations used to construct the soil moisture deficit index.

2 The Restricted-VAR Model

To observe how the economy responds to a weather shock, we develop an empirical framework,
and analyze the impulse response functions following a drought shock.

2.1 Modeling framework

We estimate a VAR (vector autoregressive) model on New Zealand data presented in section 4.
The VAR model needs to reflect the small open economy assumption. That is, New Zealand’s
macroeconomic variables may react to foreign shocks, but domestic shocks should not signifi-
cantly impact the rest of the world. We therefore follow Cushman and Zha (1997) and create
an exogenous block for the variables from the rest of the world. Exogeneity is also imposed

2The regional agricultural GDP data we use ranges from 1987 to 2014. The weight after 2014 is set to the
average contribution of the region to the total agricultural GDP over the whole covered period.
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for the weather variable, so that it can affect the domestic macroeconomic variables, and so
that neither domestic nor foreign macroeconomic variables can affect the weather variable. We
therefore have three blocks: one for the domestic economy, another for the weather, and another
for the rest of the world.

The model writes:



XD
t

XW
t

X∗

t


 =

p∑

l=1




A11
l A12

l A13
l

0 A22
l 0

0 0 A33
l







XD
t−l

XW
t−l

X∗

t−l


+




ηD
t

ηW
t

η∗

t


 , (3)

where t = 1, . . . , T is the time subscript, p is the lag length,3 XD
t , XW

t and X∗

t are column
vectors of variables for the small open economy, the weather block and the rest of the world,
respectively. The error terms ηD

t , ηW
t and η∗

t are exogenous and independent with zero mean

and variance σηD
, σηW

, and ση∗

, respectively. The coefficients in B11
l to B33

l , and C are the
parameters of interest that need to be estimated. The coefficients set to zero in the matrix of
coefficients insure the exogeneity between blocks.

For our New Zealand economy model, the domestic block is:

XD
t =

[
ŷt ŷA

t ı̂t ĥt q̂t r̂ert

]
′

,

where ŷt is real GDP growth, ŷA
t is agricultural real output growth, it denotes investment, ĥt

is hours worked, q̂t is real asset return, and r̂ert is real effective exchange rate. The weather
block writes:

XW
t =

[
ω̂t

]
′

,

where ω̂t is the weather measure, i.e., the drought index. Finally, the international economy
block writes:

X∗

t =
[
ŷ∗

t

]
′

,

where ŷ∗

t stands for foreign real output growth.
For clarity purposes, Equation 3 can be rewritten in the following way:

Xt =
p∑

l=1

AlXt−l + ηt, (4)

where Xt =
[
XD

t XW
t X∗

t

]
′

is the n × 1 vector of endogenous variables at time t, Al =


A11
l A12

l A13
l

0 A22
l 0

0 0 A33
l


, for l = 1, . . . , p are the n × n matrices of lagged parameters to be estimated,

and ηt =
[
ηD

t ηW
t η∗

t

]
′

, the n × 1 vector contains white noise structural errors, normally

distributed with zero mean and both serially and mutually uncorrelated.

2.1.1 The foreign economy block

The foreign economy block comprises only one variable: real output y∗

t , computed as a weighted
average of the respective value observed for New Zealand’s most important historical trading
partners: Australia, United States, United Kingdom and Japan. Weights are fixed according to
the share of imports and exports with New Zealand at each quarter.

3We use a lag of one in the model basing our choice on the value of both Hannan-Quinn and Schwarz criteria
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2.1.2 The domestic weather block

The estimated VAR model contains a domestic weather block to study the impact of weather
conditions on business cycle fluctuations. We rely on the same weather variable as in the DSGE
model whose construction is explained in section 1. When it takes positive values, the weather
variable depicts a prolonged episode of dryness. It is the only variable in the exogenous domestic
weather block.

2.1.3 The domestic economy block

The domestic economy block comprises real output growth yt, real agricultural output growth
yA

t , investment it, hours worked ht, real asset return qt, and real effective exchange rate rert.

2.2 Macroeconomic response to weather shocks

We now present the empirical results of the impulse responses to a one standard deviation
shock to the weather variable, i.e., the drought indicator to assess the macroeconomic response
following this shock.4 These IRFs are reported in Figure 2. The solid green lines are the
responses while the gray areas are the 68% error bands obtained from 250 bootstrap runs. The
responses are computed for 20 periods.
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Notes: The green dashed line is the Impulse Response Function. The gray band represents 68% error band obtained from
the 250 bootstrap runs. The response horizon is in quarters.

Figure 2: VAR impulse response to a 1% weather shock (drought) in New Zealand.

Figure 2 shows multiple channels affecting the business cycles after a climate shock. Overall,
the empirical evidence suggests that a drought episode acts as a negative supply shock. As
in Buckle et al. (2007), it creates a significant recession through a decline of the GDP. This
contractionary is triggered by the large fall in agricultural production. The drought is also
accompanied by a decrease in investment and stock prices, fueled by the weaker demand for
capital goods from farmers. These findings regarding the reaction of financial markets are
quantitatively similar to those found by Hong et al. (2016) for the US. The results from the
restricted VAR model can then be used as a guide to compare the propagation of the weather
shock between the model and the VAR.

4We focus on the shock to the weather variable. The complete set of IRFs is available upon request.
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3 The non-linear model

3.1 Households

The marginal utility of consumption is given by:

λc
t =

(
CtC

−b
t−1

)
−σC

, (5)

The stochastic discount reads as:

Λt,t+1 = βEt

{
λc

t+1

λc
t

}
. (6)

The Euler equation is given by:

Et {Λt,t+1} rt = 1. (7)

The real exchange rate is obtained by:

Et

{
rer∗

t+1

rer∗

t

}
=

rt

r∗

t

(1 + pN
t Φ′(b∗

jt)). (8)

The labor supply equation in each sector is:

χhσH
t = C−σC

t wN
t

(
hN

t

ht

)
−ι

, (9)

χhσH
t = C−σC

t wA
t

(
hA

t

ht

)
−ι

. (10)

The labor effort disutility index generating costly cross-sectoral labor reallocation:

ht =

[(
hN

t

)1+ι
+
(
hA

t

)1+ι
]1/(1+ι)

. (11)

The CES consumption bundle is determined by:

Ct =

[
(1 − ϕ)

1

µ (CN
t )

µ−1

µ +
(
ϕεA

t

) 1

µ (CA
t )

µ−1

µ

] µ
µ−1

, (12)

The consumption price index in real terms determines the relation between relative prices in
the consumption basket of households:

1 = [(1 − ϕ) (pN
C,t)

1−µ + ϕ(pA
C,t)

1−µ]
1

1−µ , (13)

where pN
C,t = P N

C,t/Pt and pA
C,t = P A

C,t/Pt. In addition, consumption price indexes by type of
good follow:

pN
C,t =

[
(1 − αN ) (pN

t )1−µN + αN rert
1−µN

] 1

(1−µN ) , (14)

pA
C,t =

[
(1 − αA) (pA

t )1−µA + αArert
1−µA

] 1

(1−µA) . (15)
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3.2 Non-agricultural Firms

Technology is given by:

Y N
t = εZ

t

(
KN

t−1

)α (
HN

t

)1−α
, (16)

Law of motion of physical capital is:

IN
t = KN

t − (1 − δK) KN
t−1, (17)

First order conditions, determining the real wage, the shadow value of capital goods, and
the return of physical, emerge from the solution of the profit maximization problem:

wN
t = (1 − α) pN

t

Y N
t

HN
t

, (18)
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t = Et

{
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[
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t+1

Y N
t+1

KN
t

+ (1 − δK) qN
t+1

]}
. (20)

3.3 Farmers

Each farmer i ∈ [n, 1] has a land endowment ℓit, whose time-varying productivity (or efficiency)
follows a law of motion given by:

ℓt = (1 − δℓ) Ω
(
εW

t

)
ℓt−1 + Xt, (21)

With a damage function:

Ω
(
εW

t

)
=
(
εW

t

)
−θ

, (22)

Each representative firm i ∈ [n, 1] operating in the agricultural sector has the following produc-
tion function:

Y A
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t ℓω
t−1

[(
KA
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t

)1−α
]1−ω

, (23)

The law of motion of physical capital in the agricultural sector is given by:

IA
t = KA

t − (1 − δK) KA
t−1. (24)

First order conditions are given by:
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t τXφ

t = Et
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(28)
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3.4 The foreign economy

The foreign economy is determined by a set of three equations:

log
(
c∗

jt

)
= (1 − ρ∗) log

(
c̄∗

j

)
+ ρ∗ log

(
c∗

jt−1

)
+ σ∗η∗

t (29)

βEt
{
λ∗

t+1/λ∗

t

}
r∗

t = 1, (30)
(
c∗

jt

(
c∗

t−1

)
−b∗
)

−σ∗

C
= λ∗

t , (31)

3.5 Closing the economy

First, the market clearing condition for non-agricultural goods is determined when the aggregate
supply is equal to aggregate demand:

nY N
t = (1 − ϕ)


(1 − αN )

(
pN

t

pN
C,t

)
−µN (

pN
C,t

)
−µ

Ct + αN

(
pN

t

rert

)
−µN

C∗

t




+ Gt + It + v (Xt) + Φ(b∗

t ) (32)

In addition, the equilibrium of the agricultural goods market is given by:

(1 − n)Y A
t = ϕ


(1 − αA)

(
pA

t

pA
C,t

)
−µA (

pA
C,t

)
−µ

Ct + αA

(
pA

t

rert

)
−µA

C∗

t


 , (33)

The aggregation of hours, investment and output are given by:

Ht = nHN
t + (1 − n) HA

t (34)

It = (1 − n) IN
t + nIA

t (35)

Yt = npN
t Y N

t + (1 − n) pA
t Y A

t (36)

The net foreign asset position for the home country is given by:

b∗

t = r∗

t−1

rert

rert−1
b∗

t−1 + tbt,

where tbt is the real trade balance that can be expressed as follows:

tbt = pN
t

[
nY N

t − Gt − It − v (xt) − Φ(b∗

t )
]

+ pA
t (1 − n)Y A

t − Ct. (37)

And domestic shocks:

log(εZ
t ) = ρZ log(εZ

t−1) + σZηZ
t , with ηZ

t ∼ N (0, 1) , (38)

log(εG
t ) = ρG log(εG

t−1) + σGηG
t , with ηG

t ∼ N (0, 1) , (39)

log(εI
t ) = ρI log(εI

t−1) + σIηI
t , with ηI

t ∼ N (0, 1) , (40)

log(εA
t ) = ρA log(εA

t−1) + σAηA
t , with ηA

t ∼ N (0, 1) , (41)

log(εW
t ) = ρW log(εW

t−1) + σW ηW
t , with ηW

t ∼ N (0, 1) (42)

4 Estimation of the DSGE Model

We apply standard Bayesian estimation techniques as in Smets and Wouters (2003, 2007). In
this section, we describe the data sources and transformations. The model is estimated using
6 time series with Bayesian methods and quarterly data for New Zealand over the sample time
period 1994:Q2 to 2016:Q4. Data with trends are detrended using the HP filter. The time
reference for all indexes is 2010:Q1. Transformed data is shown in Figure 3.
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4.1 Macroeconomic time series transformation

Concerning the transformation of the series, the point is to map non-stationary data to a
stationary model. The data that are known to have a trend or unit root are made stationary
in two steps. First, we divide the sample by the civilian population, denoted Nt. Second, data
are taken in log and we use a first difference filtering to obtain growth rates. Real variables are
deflated by GDP deflator price index denoted Pt.

As an illustration, the calculation method used to detrend real GDP per capita gap is as
follows:

ŷt = log

(
Yt

PtNt

)
− HP

(
Yt

PtNt

)
,

where HP (.) is the HP filter on a quarterly basis (i.e, setting the smoothing coefficient to 1600).
Turning to the weather index, we simply apply the logarithm function:

ω̂t = log(SMDIt)

Finally, the data are demeaned because trends are not incorporated in our model. We
are aware that the introduction of trends could affect our estimation results. However for
tractability reasons, we have chosen to focus on short run macroeconomic fluctuations and to
neglect long run effects involved with trends. Such an approach has also been chosen by Smets
and Wouters (2003).

Real Asset Return Real Eff. Ex. Rate

Ag. Output Investment Hours Worked

Weather Foreign Output Output

2000 2010 2000 2010

2000 2010 2000 2010 2000 2010

2000 2010 2000 2010 2000 2010

-2

0

2

-4

0

4

8

-3

-2

-1

0

1

2

-15

-10

-5

0

5

10

-10

-5

0

5

-2

-1

0

1

2

-10

0

10

20

-10

0

10

20

Note: The following variables are only used in the VAR, not in the DSGE model: real effective exchange rate and real asset
return.

Figure 3: Observable variables used in the VAR and the DSGE estimations.
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4.2 Measurement equations of the DSGE model

The final dataset includes six times series: real GDP, real investment, hours worked, real agri-
cultural output, foreign output and the weather index. Measurement equations read as follows:




100*ŷt,
100*ı̂t,

100*ĥt,
100*ŷA

t ,
100*ŷ∗

t ,
100*η̂t




=




log(Yt/Ȳ ),

log(pN
t It/Ī),

log(Ht/H̄),

log(pA
t Y A

t /Ȳ A),

log(C∗

t /C̄∗),
log(ηW

t )




.

5 Building long run scenarios of weather shocks

To estimate the variability of the weather process ηW
t , we rely on simulated weather data from

a circulation climate model, the Community Climate System Model (CCSM). We consider the
data simulated under the four well-employed Representative Concentration Pathways (RCP 2.6,
RCP 4.5, RCP 6.0, and RCP 8.5). They are given on a 0.9◦ × 1.25◦ grid, at a monthly rate,
for two distinct periods. The first one corresponds to “historical” values, and ranges from 1850
to 2005. The second one gives observations for “future” values up to 2100. Since our DSGE
models is fed-up with quarterly data at the national level, we need to aggregate the raw data
provided by the CCSM. To do so, we compute the average value of total rainfall at the region
level by means of a weighted mean. The weight put on each cell of the grid in a given region
is the proportion of the region covered by the cell. Values are then averaged for each month,
at the national level. The aggregation is done using a weighted mean, where weights are set
according to the share of agricultural GDP of the region.5 Resulting data is then converted to
quarterly data, by summing the monthly values of total rainfall. The final dataset of simulated
data contains quarterly data of rainfall at the national level for the historical period (ranging
from 1983 to 2005) and for the future period (covering 2006 to 2100) for each RCP scenario.

We then need to estimate how the variance of the weather shock changes through time in
each of the i = {RCP 2.6, RCP 4.5, RCP 6.0, RCP 8.5} scenario. We proceed by rolling window
regression, the size of each window being set to 102 quarters, matching the size of the number of
observations used to estimate the DSGE model. In each step of the rolling window regression,
we fit an AR(1) model to the data and compute the standard deviation of the residuals. We
estimate the growth rate of the standard deviation ∆σi,ηW by least squares, regressing the
natural logarithm of the standard deviation previously obtained on time. Then, we estimate
the average growth rate ∆σηW of the standard deviation over the 1989–2100 period for the ith

scenario as:

∆σi,ηW
= (1 + σi,ηW )q − 1, (43)

where σi,ηW is the estimated compound quarterly rate of growth for the standard error of the

weather shock process under the ith climate change scenario, and q is the number of quarter in
the whole sample, i.e., 347. ?? summarizes the estimates.

5The regional agricultural GDP data we use ranges from 1987 to 2014. The weight after 2014 is set to the
average contribution of the region to the total agricultural GDP over the whole covered period.
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Scenario
Compound quarterly rate

(σi,ηW )
Average growth rate

(∆σi,ηW )

RCP 2.6 −0.1218964 × 103 −4.095090
RCP 4.5 0.1923896 × 103 6.820885
RCP 6.0 0.2591393 × 103 9.294213
RCP 8.5 0.6096352 × 103 23.249574

Notes: For each Representative Concentration Pathways, we estimate the quarterly rate of growth of the standard deviation

of the weather measure (σi,ηW ), and the corresponding average growth rate over the whole 1989–2100 period (∆σi,ηW ).

Table 1: Estimations of growth rates of standard errors of the weather process under different
scenarios.

References

Buckle, R. A., Kim, K., Kirkham, H., McLellan, N., Sharma, J., 2007. A structural VAR business cycle model
for a volatile small open economy. Economic Modelling 24 (6), 990–1017, doi:10.1016/j.econmod.2007.04.003.
4

Cushman, D. O., Zha, T., 1997. Identifying monetary policy in a small open economy under flexible exchange
rates. Journal of Monetary economics 39 (3), 433–448, doi:10.1016/S0304-3932(97)00029-9. 2

Hong, H., Li, F. W., Xu, J., 2016. Climate risks and market efficiency. Tech. rep., National Bureau of Economic
Research, doi:10.3386/w22890. 4

Kamber, G., McDonald, C., Price, G., et al., 2013. Drying out: Investigating the economic effects of drought in
New Zealand. Reserve Bank of New Zealand Analytical Note Series No. AN2013/02, Reserve Bank of New
Zealand, Wellington, New Zealand . 1

Narasimhan, B., Srinivasan, R., 2005. Development and evaluation of soil moisture deficit index (SMDI) and evap-
otranspiration deficit index (ETDI) for agricultural drought monitoring. Agricultural and Forest Meteorology
133 (1), 69–88, doi:10.1016/j.agrformet.2005.07.012. 1

Smets, F., Wouters, R., 2003. An estimated dynamic stochastic general equilibrium model of the euro area.
Journal of the European Economic Association 1 (5), 1123–1175, doi:10.1162/154247603770383415. 7, 8

Smets, F., Wouters, R., 2007. Shocks and frictions in US business cycles: A Bayesian DSGE approach. American
Economic Review 97 (3), 586–606, doi:10.1257/aer.97.3.586. 7

10


	manuscript_diff
	1 Introduction
	2 Business cycles evidence
	3 The model
	3.1 Households
	3.2 Non-agricultural sector
	3.3 Agricultural sector and the weather
	3.4 Foreign economy
	3.5 Authority
	3.6 Aggregation and equilibrium conditions

	4 Estimation
	4.1 Data
	4.2 Calibration and prior distributions
	4.3 Posterior distribution
	4.4 Do weather shocks matter?

	5 Weather shocks as drivers of aggregate fluctuations
	5.1 Propagation of a weather shock
	5.2 The contributions of weather shocks on aggregate fluctuations
	5.3 Historical decomposition of business cycles

	6 Climate change implications for macroeconomic volatility and welfare
	6.1 Building projections up to 2100 for weather shocks
	6.2 Climate change and macroeconomic volatility
	6.3 The welfare cost of weather variability under climate change

	7 Conclusion
	A Data
	B The welfare cost of weather-driven business cycles

	TechnicalAppendix
	1 Measuring Weather
	2 The Restricted-VAR Model
	2.1 Modeling framework
	2.1.1 The foreign economy block
	2.1.2 The domestic weather block
	2.1.3 The domestic economy block

	2.2 Macroeconomic response to weather shocks

	3 The non-linear model
	3.1 Households
	3.2 Non-agricultural Firms
	3.3 Farmers
	3.4 The foreign economy
	3.5 Closing the economy

	4 Estimation of the DSGE Model
	4.1 Macroeconomic time series transformation
	4.2 Measurement equations of the DSGE model

	5 Building long run scenarios of weather shocks


