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Abstract

Noncausal autoregressive models with heavy-tailed errors generate locally explosive processes and

therefore provide a natural framework for modelling bubbles in economic and financial time se-

ries. We investigate the probability properties of mixed causal-noncausal autoregressive processes,

assuming the errors follow a stable non-Gaussian distribution. We show that the tails of the con-

ditional distribution are lighter than those of the errors, and we emphasize the presence of ARCH

effects and unit roots in a causal representation of the process. Under the assumption that the

errors belong to the domain of attraction of a stable distribution, we show that a weak AR causal

representation of the process can be consistently estimated by classical least-squares. We derive a

Monte Carlo Portmanteau test to check the validity of the weak AR representation and propose a

method based on extreme residuals clustering to determine whether the AR generating process is

causal, noncausal or mixed. An empirical study on simulated and real data illustrates the potential

usefulness of the results.
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1 Introduction

In the analysis of prices of financial assets such as stocks, it is common to observe phases of locally

explosive behaviours, together with heavy-tailed marginal distributions and volatility clustering.

Such features seem incompatible with classical linear models (namely the class of autoregressive-

moving average (ARMA) models) which rely on the second-order properties of a time series. On the

other hand, nonlinear models such as ARCH or stochastic volatility models are designed to capture

volatility clustering, not to produce locally explosive sample paths mimicking bubbles in financial

markets. However, the dynamic limitations of ARMA models are reduced if noncausal components

(i.e. AR or MA polynomials with roots inside the unit disk) are introduced. For instance, all-pass

models
1

are linear time series with nonlinear behaviours, in particular ARCH effects [see Breidt,

Davis and Trindade (2001) and the references therein]. More recently, Gouriéroux and Zakoian

(2017, GZ hereafter) showed that a simple noncausal AR(1) process with heavy-tailed errors is able

to produce the typical nonlinear behaviours observed for the prices of financial assets.

Noncausal processes or random fields have been thoroughly studied in the statistical literature

[Rosenblatt (2000), Andrews, Calder and Davis (2009)], and have been applied in various areas,

including deconvolution of seismic signals [Wiggins (1978), Donoho (1981), Hsueh and Mendel

(1985)], and analysis of astronomical data [Scargle (1981)]. Recent years have witnessed the emer-

gence of a significant line of research on noncausal models in the econometric literature [see e.g.,

Lanne, Nyberg and Saarinen (2012), Lanne, Saikkonen (2011), Davis and Song (2012), Chen, Choi

and Escanciano (2012), Hencic and Gouriéroux (2015), Velasco and Lobato (2015), Hecq, Lieb and

Telg (2016a, 2016b, 2017), Cavaliere, Nielsen and Rahbek (2017)]. The distinction between causal

and noncausal processes is only meaningful in a non-Gaussian framework, and the increasing inter-

est in Mixed causal-noncausal AR processes (MAR) parallels the widespread use of non-Gaussian

heavy-tailed processes in economic or financial applications. Besides, the introduction of noncausal

components in univariate or multivariate time series models has received pertinent economic justi-

fications (see Gouriéroux, Jasiak and Monfort (2016)).

One important reason for introducing noncausal components in AR processes is to provide a

mechanism for generating financial bubbles. GZ showed that the sample paths of a stationary

noncausal AR(1) process with heavy-tailed errors may have locally explosive phases. Other recent

researches have focused on data generating processes that are able to produce explosive behaviours

1
All-pass are ARMA models in which all roots of the AR polynomial are reciprocal of the roots of the MA

polynomial.
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and model bubbles in financial markets. For example Phillips , Wu and Yu (2011), Phillips , Shi

and Yu (2015) and more recently, in a continuous time framework, Chen, Phillips and Yu (2017)

investigated mildly explosive processes. Apart from the generation of bubbles, noncausal AR(1)

processes with stable distributed errors exhibit surprising features such as a predictive distribution

with lighter tails than the marginal distribution, a martingale property in the causal representation

when the errors follow a Cauchy distribution, or the presence of GARCH effects. It is of interest to

know whether these structural properties extend to higher-order models. Indeed, first-order models

are clearly not sufficient to capture complex behaviours of economic series, such as the occurrence

of locally explosive behaviours with different rates of explosion, or different types of asymmetries

in the growth and downturn phases of the bubbles.

The aim of this paper is to analyze the class of mixed causal-noncausal AR processes with

heavy-tailed errors. The probability structure is studied under the assumption that the errors

follow stable non-Gaussian distributions. Properties of the Least-Squares (LS) estimator are derived

under the less stringent assumption that the noise distribution is in the domain of attraction of a

non-Gaussian stable law. The paper is organised as follows. Section 2 studies the sample paths and

the marginal distribution of MAR processes with stable errors. Sections 3 analyzes the conditional

distributions through conditional moments. Conditional heteroscedasticity effects are depicted and

causal representations are exhibited. Section 4 derives the asymptotic properties of LS estimator,

deduces a Portmanteau test, and studies identification of the strong representation based on the

analysis of extreme residuals clustering. Section 5 and 6 propose numerical illustrations based on

simulated and real data, respectively. Section 7 concludes. Proofs and complementary results are

collected in two Appendixes.

2 Stable MAR(p, q) processes

A MAR(p, q) process (Xt) is the strictly stationary solution of the difference equation

ψ(F )φ(B)Xt = εt, (2.1)

where B and F are the usual lag and forward operators (BkXt = Xt−k, F
kXt = Xt+k, k ∈ Z),

(εt) is an independent and identically distributed (i.i.d.) sequence, ψ(z) = 1 −
∑p
i=1 ψiz

i and

φ(z) = 1 −
∑q
i=1 φiz

i are real polynomials of degrees p and q respectively (i.e. ψp 6= 0 and φq 6= 0),

with all roots outside the unit circle. When q = 0 (resp. p = 0), the model is called purely

noncausal (resp. causal).
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We assume that the errors εt follow a stable non-Gaussian distribution but the assumption will

be relaxed for the statistical inference. The generality and convenience of this class of distributions

is now well established.
2

Stable laws are easily characterised through their characteristic function:

εt is said to follow a stable distribution with parameters α ∈]0, 2[, β ∈ [−1, 1], σ > 0, µ ∈ R, denoted

εt ∼ S(α, β, σ, µ), if

∀s ∈ R, E(eisεt) = exp
{

− σα|s|α (1 − i β sign(s)w(α, s)) + isµ
}

,

where w(α, s) = tg
(

πα
2

)

, if α 6= 1, and w(1, s) = − 2
π ln |s|, otherwise. Recall that a stable random

variable X has regularly varying tails in the sense that P(X < −x) ∼ cα(1 − β)x−α and P(X >

x) ∼ cα(1 + β)x−α as x → +∞, with cα > 0 and β ∈ (−1, 1).

Figure 1: Examples of trajectories of MAR(1,1) (left panel) and MAR(2,2) (right panel) processes with different

parameters (nc: inverse of noncausal roots; c: inverse of causal root).

2
See for instance Embrechts, Klüppelberg, and Mikosch (1997), Samorodnitsky and Taqqu (1994) for the main

properties of stable distributions.

4



2.1 Sample paths

Examples of trajectories of four noncausal MAR processes are displayed in Figure 1. It can be seen

that the trajectories feature locally explosive trends which are suited for the modelling of bubbles

and positive feedback loop phenomena. Bubbles can be trending either upward or downward

depending on the value of β. When β = 1, the density of the errors is maximally skewed towards

positive values, yielding trajectories like (a) and (c) which could be suited to model prices or

volatilities. In particular, trajectory (a) displays bubble patterns similar to those of real prices (see

for instance Figure 5 below). The influence of a smaller tail parameter α is visible when comparing

trajectories (c) and (d): the extreme events of the former (α = 1.3) are more recurrent and further

away from the central values than those of the latter (α = 1.6).

Under the assumptions made on the AR polynomial, (Xt) admits an MA(∞) representation
3

Xt =
+∞
∑

k=−∞

dkεt+k. (2.2)

A simple index change Xt =
∑

τ∈Z

ετdτ−t allows to interpret the sample path of Xt as a linear

combination of baseline paths, t 7−→ dτ−t, weighted by stochastic i.i.d. coefficients ετ . Figure

2 depicts such baseline paths for four different MAR processes. The first panel illustrates the

well-known impulse response function of a classical causal AR(1). The second panel displays an

explosive exponential trend followed by a downward, faster decay and corresponds to the baseline

path of a MAR(1,1) process. The remaining panels show more complex trajectories: the third one

depicts the baseline path of a MAR(2,2) with dented upward and downward trends whereas the

last one, corresponding to a noncausal AR(4) with two real and two conjugated complex roots,

shows an upward trend with oscillations of increasing amplitudes and fixed pseudo-periods.

2.2 Marginal distribution

Our first result characterises the marginal distribution of the stable MAR(p, q).

Proposition 2.1 The MAR(p, q) solution (Xt) of Model (2.1) with εt ∼ S(α, β, σ, µ), has a stable

3
It follows from Proposition 13.3.1 in Brockwell and Davis (1991) that the infinite sum in (2.2) is well defined

under the stable law assumption, ensuring the existence of E|εt|
s for s < α.
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Figure 2: Four examples of baseline paths t 7−→ dτ−t of MAR processes with characteristic polynomials, from left

to right: 1 − 0.7B ; (1 − 0.7F )(1 − 0.9B) ; (1 − 0.8F )(1 + 0.4F )(1 − 0.7B)(1 + 0.5B) ;

(1 − 0.99F )(1 − 965F )(1 − 0.98ei0.045πF )(1 − 0.98e−i0.045πF ).

stationary distribution, Xt ∼ S(α̃, β̃, σ̃, µ̃) where

α̃ = α, β̃ = β

∑+∞
k=−∞ |dk|

αsign(dk)
∑+∞
k=−∞ |dk|α

,

σ̃ = σ





+∞
∑

k=−∞

|dk|
α





1
α

, µ̃ =
µ

φ(1)ψ(1)
− 1{α=1}

2

π
βσ

+∞
∑

k=−∞

dk ln |dk|.

It is worth noting that the tail index α of Xt is that of the error term. In particular, E|Xt|
s < +∞

for s < α and E|Xt|
α = +∞.

Example 2.1 (MAR(1, 1) process) Let the model

(1 − ψF )(1 − φB)Xt = εt, with εt
i.i.d.
∼ S(α, β, σ, µ), (2.3)

with |φ| < 1 and |ψ| < 1. We have dk =
ψk

1 − φψ
, for any k ≥ 0, and dk =

φ−k

1 − φψ
, for any k ≤ 0.

Then Xt ∼ S
(

α, β̃, σ̃, µ̃
)

with

β̃ = β

(

1 − sign(φ)|φψ|α

1 − |φψ|α

)(

1 − sign(ψ)|ψ|α

1 − |ψ|α

)(

1 − sign(φ)|φ|α

1 − |φ|α

)

,

σ̃ =
σ

1 − φψ

(

1 − |φψ|α

(1 − |ψ|α)(1 − |φ|α)

)

1
α

,

µ̃ =
µ

(1 − ψ)(1 − φ)
− 1{α=1}

2βσ

π(1 − φψ)

[

ψ ln |ψ|

(1 − ψ)2
+

φ ln |φ|

(1 − φ)2
−

(1 − φψ) ln |1 − φψ|

(1 − ψ)(1 − φ)

]

.

In particular, when ψ > 0, φ > 0 and the errors are Cauchy distributed, that is when

εt
i.i.d.
∼ S(1, 0, σ, 0), then the above formulae simplify and Xt ∼ S

(

1, 0,
σ

(1 − ψ)(1 − φ)
, 0

)

.

3 Predictive distributions

In the presence of a noncausal component in the AR polynomial, the predictive density of a future

observation given a sample of consecutive observations is generally not available in closed form.
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We will derive in this section some features of such predictive distributions. We start by showing

that the Markov property holds whatever the errors distribution.

Proposition 3.1 The MAR(p, q) process (Xt) is an homogeneous Markov chain of order p+ q.

3.1 Existence of moments of the conditional distribution

It follows from Proposition 2.1 that E|Xt|
s = ∞ for s ≥ α. The next result shows a different

behaviour for the conditional moments.

Theorem 3.1 If (Xt) is the MAR(p, q) solution of Model (2.1) with εt ∼ S(α, β, σ, µ), we have

E [ |Xt|
γ |Xt−1, Xt−2, . . .] < ∞, a.s., whenever 0 < γ < 2α+ 1.

The conditional distribution with respect to past observations has lighter tails than the marginal
4

which only admits moments up to the order α. In particular, it follows that, whatever the heaviness

of the tails of εt, the conditional expectation of Xt always exists. Furthermore, it is sufficient to

have α ≥ 1/2 for Xt to have a conditional variance.

3.2 Prediction of future values for the MAR(1, q) processes.

Prediction at any horizon can be fully characterised for the symmetric MAR(1, q) process (1 −

ψF )φ(B)Xt = εt. Let Ft = σ(Xt, Xt−1, . . .) the canonical filtration of process (Xt).

Proposition 3.2 When β = 0, p = 1 and q ≥ 0, there exists for any h ≥ 0 a polynomial Ph of

degree q such that

E [Xt+h| Ft−1] = Ph(B)Xt−1.

For h = 0, the above formula holds with

P0(B)Xt−1 = ψ<α−1>Xt−1 + (1 − ψ<α−1>B)(φ1Xt−1 + . . .+ φqXt−q),

where for any x 6= 0 and r ∈ R, x<r> = sign(x)|x|r.

Details on Ph are provided in the proof. It is worth noting that the conditional expectation is

linear in the past and can be explicitly computed. Proposition 3.2 for h = 0 yields a semi-strong

causal representation of Xt.

4
Various studies provided estimates of the tail index of marginal distributions of financial data. For instance,

Mandelbrot (1963) found evidence by graphical methods that α = 1.7 for variations of cotton prices, whereas Francq

and Zakoian (2014), with a quasi marginal maximum likelihood estimator approach assuming stable distributions,

estimated tail parameters between 1.5 and 1.72 for nine financial indexes (i.a. SP500, Nikkei and CAC).
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Corollary 3.1 Under the assumptions of Proposition 3.2, there exists a sequence (ηt) of random

variables such that for any t ∈ Z,

(1 − ψ<α−1>B)φ(B)Xt = ηt, (3.1)

with E [ηt| Ft−1] = 0.

By comparison with finite variance AR processes, this result is surprising. Indeed, in the L2

framework, if (Xt) is mixed causal-noncausal satisfying ψ(F )φ(B)Xt = εt, then there exists a

causal version of (Xt) given by ψ(B)φ(B)Xt = Zt, where (Zt) is uncorrelated with zero mean and

finite variance. This representation is obtained by inverting the ill-located roots and leaving the

well-located ones unchanged. In our framework, the ill-located root ψ, with |ψ| < 1, is transformed

into ψ<α−1> which can either be inside, outside, as well as on the unit circle. In the Cauchy case,

(α = 1) we get, when ψ > 0,

E

[

Xt

∣

∣

∣Ft−1

]

= Xt−1 + (1 −B)(φ1Xt−1 + . . .+ φqXt−q), (3.2)

with by convention φ1 = . . . = φq = 0 when q = 0. Hence, the martingale property established by

GZ (Proposition 3.3), E
[

Xt

∣

∣Ft−1
]

= Xt−1, only holds for the noncausal AR(1) (i.e. when q = 0).

The asymptotic behaviour of the conditional expectation -when the horizon h tends to infinity- is

highly dependent on the tail index α. Proposition 3.2 allows us to distinguish different behaviours

summarised in the following Corollary.

Corollary 3.2 Under the assumptions of Proposition 3.2, we have almost surely

∣

∣

∣E [Xt+h| Ft−1]
∣

∣

∣ −→
h→+∞











0 if α ∈ (1, 2),

ℓt−1 if α = 1,

where ℓt−1 is an Ft−1-measurable random variable. Moreover, when α ∈ (0, 1) and q = 1,

∣

∣

∣E [Xt+h| Ft−1]
∣

∣

∣ −→
h→+∞

+∞.

If α ∈ (1, 2), that is for lighter tails within the stable family, the conditional expectation always

tends to 0 which is the unconditional expectation. This is consistent with the L2 framework

(Brockwell, Davis (1991), p.189). For α = 1, the absolute value of the conditional expectation

tends to a finite limit whereas the unconditional expectation does not exist. The general case when

α ∈ (0, 1) is more intricate and is detailed in Appendix B.
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Example 3.1 (Explicit prediction formula for the MAR(1,1) process) Let (Xt) the

strictly stationary solution of Model (2.3). Proposition 3.2 yields for any h ≥ 0,

E

[

Xt+h

∣

∣

∣Ft−1

]

= φh+1

[

Xt−1 + (Xt−1 − φXt−2)
h+1
∑

i=1

(

ψ<1−α>φ
)−i

]

,

=















φh+1

[

Xt−1 −
1 − (ψ<1−α>φ)−(h+1)

1 − ψ<1−α>φ
(Xt−1 − φXt−2)

]

, if ψ<1−α>φ 6= 1,

φh+1 [Xt−1 + (h+ 1)(Xt−1 − φXt−2)] , if ψ<1−α>φ = 1

Furthermore, Corollary 3.1 yields a semi-strong causal representation of (Xt):

(1 − ψ<α−1>B)(1 − φB)Xt = ηt,

with E [ηt| Ft−1] = 0. In particular if ψ > 0 and α = 1, this causal representation simplifies to

(1 −B)(1 − φB)Xt = ηt.

3.3 Unit root property

The equality E

[

Xt

∣

∣

∣Xt−1

]

= Xt−1 for the noncausal Cauchy AR(1) with positive AR coefficient

shows the existence of a unit root. Indeed, we have Xt = Xt−1 + ǫt where E

[

ǫt
∣

∣

∣Xt−1

]

= 0. The

next result actually shows that this property extends to more general MAR processes.

Proposition 3.3 Let (Xt) be an α-stable MAR(p, q) process admitting an MA(∞) representation

with a coefficients sequence (dk). Then, if
∑

ℓ∈Z

dℓ (dℓ+1)<α−1> =
∑

ℓ∈Z

|dℓ+1|α, we have,

E [Xt|Xt−1] = Xt−1.

In particular this property holds in the Cauchy case (α = 1) if and only if dk ≥ 0 for all k ∈ Z.

The proof is available in Appendix B. Note that E
[

Xt

∣

∣Xt−1
]

is in general different from E
[

Xt

∣

∣Ft−1
]

for p+ q > 1, which explains the seeming contradiction with (3.2).

3.4 Conditional heteroskedasticity of the Cauchy MAR(1, q)

All-pass models are well known examples of strong linear models displaying ARCH effects (namely

the correlation of the squares). However, such effects are difficult to characterise without an explicit

specification of the errors specification. The following result provides an explicit characterization

of ARCH effects through the conditional variance of MAR processes with Cauchy innovation.

9



Proposition 3.4 Let Xt be a MAR(1, q) process (1 − ψF )φ(B)Xt = εt with εt
i.i.d.
∼ S(1, 0, σ, 0).

Then, for any h ≥ 0, there exists a polynomial Qh(z) =
∑h
i=0 qi,hz

i such that

V

(

Xt+h

∣

∣

∣Ft−1

)

=

(

(φ(B)Xt−1)2 +
σ2

(1 − |ψ|)2

)(

ch −
(

Qh(sign ψ)
)2
)

,

with ch =
∑h
i=0

∑h
j=0 qi,hqj,h(sign ψ)i+j |ψ|− min(i,j)−1.

Polynomials Qh(z) are defined in Lemma D.1 of the Appendix A, and details regarding their

coefficients are given in Lemma E.1. The complete proof is available in Appendix B. The causal

representation (3.1) can then be completed and reveals quadratic ARCH effects in the Cauchy

MAR(1, q) process.

Corollary 3.3 Under the assumptions of Proposition 3.4, there exists a sequence (ηt) of random

variables such that,

(1 − sign (ψ)B)φ(B)Xt = σtηt,

σ2
t =

(

1

|ψ|
− 1

)

(Xt−1 − φ1Xt−2 − . . .− φqXt−q−1)2 +
σ2

|ψ|(1 − |ψ|)
.

where E [ηt| Ft−1] = 0, E
[

η2
t

∣

∣Ft−1
]

= 1.

The process et = σtηt is however not a ARCH in the strict sense: first because the errors ηt

are not i.i.d., and second because the volatility is a function of the Xt−i (not of the et−i). This

representation is actually closer to the Double Autoregressive model studied by Ling (2007) (see

also Nielsen and Rahbek (2014) for a multivariate extension).

Example 3.2 (Semi-strong representation of the MAR(1,1) process) When q = 1 and

ψ > 0, Corollary 3.3 yields

(1 −B)(1 − φB)Xt = ηt

√

(ψ−1 − 1)(Xt−1 − φXt−2)2 +
σ2

(1 − ψ)2
,

where E [ηt| Ft−1] = 0 and E
[

η2
t

∣

∣Ft−1
]

= 1, and the conditional variance at horizon h in Proposi-

tion 3.4 takes the more explicit form, for any h ≥ 0,

V

(

Xt+h

∣

∣

∣Ft−1

)

=

(

(Xt−1 − φXt−2)2 +
σ2

(1 − |ψ|)2

)

×

[

ψ−1φ2h −
1

ψ(1 − φψ)

(

2ψφh+1 1 − φh

1 − φ
− (1 + φψ)

ψ−h − φ2h

1 − φ2ψ

)

]

.
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4 Statistical Inference

In this section, we will relax the assumption that (εt) is an α-stable sequence but rather assume

that the law of εt belongs to the domain of attraction of a stable distribution. More specifically we

assume that we observe X1, . . . , Xn generated by the MAR(p, q) model

ψ0(F )φ0(B)Xt = εt, (4.1)

where ψ0(z) = 1 −
∑p
i=1 ψ0iz

i, φ0(z) = 1 −
∑p
i=1 φ0iz

i, with ψ0(z) 6= 0 and φ0(z) 6= 0 for |z| ≤ 1,

and (εt) is an i.i.d. sequence of symmetric (for simplicity) random variables such that:

P(|ε0| > x) = x−αL(x), (4.2)

where L is a slowly varying function at infinity and 0 < α < 2.
5

Another representation (see

Andrews and Davis (2013)) is given by

η0(B)Xt = ζt, where η0(B) = ψ0(B)φ0(B) = 1 −
p+q
∑

i=1

η0iB
i, (4.3)

and (ζt) is an all-pass process.
6

In the sequel, we call (4.3) the all-pass causal representation of (Xt).

Let ρ(h) =
(
∑∞
k=−∞ dkdk−h

)

/
(
∑∞
k=−∞ d2

k

)

for h ∈ Z, where the dk’s are the MA(∞) coefficients

in (2.2).

Proposition 4.1 Let (Xt) be the strictly stationary solution of model (4.1)-(4.2). Then, the ρ(h)’s

satisfy the recursion

ρ(h) =
p+q
∑

i=1

η0iρ(h− i), ∀h > 0, (4.4)

where the coefficients η0i are obtained from (4.3).

It is worth noting that, although the autocorrelations of Xt do not exist, the empirical autocorre-

lations can be computed and converge to the coefficients ρ(h), which satisfy the usual Yule-Walker

equations.

5
that is, limx→∞ L(tx)/L(x) = 1, ∀t > 0.

6
When the second-order moments are finite, all-pass processes are uncorrelated. Andrews and Davis (2013)

showed that this property continues to hold "empirically" in the infinite variance case, in the sense that the sample

autocorrelations converge to zero as the sample size goes to infinity.
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4.1 Least-squares estimation

We consider least-squares parameter estimation of the all-pass causal representation (4.3), which

does not require specifying the errors distribution in the MAR(p, q) model. A LS estimator of

η0 = (η01, . . . , η0,p+q) in Model (4.3) is

η̂ = arg min
η∈Rp+q

L∗
n(η), (4.5)

where

L∗
n(η) =

n
∑

t=p+q+1

(

Xt −
p+q
∑

i=1

ηiXt−i

)2

. (4.6)

Proposition 4.2 Let (Xt) be the strictly stationary solution of model (4.1)-(4.2). Then the LS

estimator η̂ is consistent: η̂ → η0 in probability, as n → ∞.

To derive the asymptotic distribution of the LS estimator of η0, we introduce the sequences

an = inf{x : P(|ε0| > x) ≤ n−1}, and ãn = inf{x : P(|ε0ε1| > x) ≤ n−1}. (4.7)

Let J the (p+ q) × (p+ q) shift matrix, with ones on the superdiagonal and zeros elsewhere. For

ℓ = 1, . . . , p+ q let K(ℓ) = J ℓ + tJ ℓ (with K(p+q) = 0). Let L = [K K(2) . . . K(p+q)]

Proposition 4.3 Let (Xt) be the strictly stationary solution of Model (4.1)-(4.2) with E|εt|
α = ∞.

Then, letting ρ = [ρ(i)]i=1,...,p+q,R = [ρ(i− j)]i,j=1,...,p+q,

a2
n

ãn
(η̂ − η0)

d
→ R−1{Ip+q − L(Ip+q ⊗ R−1ρ)}Z, where Z = (Z1, . . . , Zp+q)

′, (4.8)

Zk =
∑+∞
l=1 {ρ(k + l) + ρ(k − l) − 2ρ(l)ρ(k)}Sl/S0, for k = 1, . . . , p + q, and S0, S1, S2, . . . are

independent stable random variables; S0 is positive with index α/2 and Sj, for j ≥ 1, has index α.

If the law of |εt| is asymptotically equivalent to a Pareto, (4.8) holds with a2
n/ãn = (n/ lnn)1/α.

Example 4.1 (MAR(1,1) process (continued)) For the MAR(1,1) process, Proposition 4.3

allows to compute the asymptotic distribution of the LS estimator of (φ0 + ψ0, φ0ψ0), using

R−1{Ip+q − L(Ip+q ⊗ R−1ρ)} =
1 + φ0ψ0

(1 − ψ2
0)(1 − φ2

0)







(1 + ψ0φ0)2 + (ψ0 + φ0)2 −(ψ0 + φ0)

−2(ψ0 + φ0)(1 + ψ0φ0) 1 + ψ0φ0






.

This matrix can be straightforwardly estimated by plugging LS estimators of φ0 + ψ0 and φ0ψ0.

Deriving the asymptotic distribution of an LS estimator of (φ0, ψ0) by the delta method requires

an additional identifiability condition, for instance φ0 > ψ0. Assuming φ0 > ψ0, we find

a2
n

ãn







ψ̂ − ψ0

φ̂− φ0







d
→ ∇f(η01, η02)R−1{Ip+q − L(Ip+q ⊗ R−1ρ)}Z,
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where (ψ0, φ0) := f(η01, η02) =

(

η01 −
√

η2
01 + 4η02, η01 +

√

η2
01 + 4η02

)

/2.

4.2 Portmanteau test

Validity of the estimated model can be assessed by studying the sample autocorrelations of the

residuals. Once the parameters of Model (4.3) have been estimated by LS, with η̂ = (η̂i)i=1,...,p+q,

the corresponding residuals are defined by

ζ̂t = Xt −
p+q
∑

i=1

η̂iXt−i, t = p+ q + 1, . . . , n. (4.9)

Let, for h ≥ 0, ρ̂ζ̂(h) = ρ̂ζ̂(−h) =
γ̂ζ̂(h)

γ̂ζ̂(0) where γ̂ζ̂(h) =
∑n
t=h+p+q+1 ζ̂tζ̂t−h and γ̂ζ̂(−h) = γ̂ζ̂(h). For

a fixed integer H ≥ 1, let ρ̂ζ̂ = [ρ̂ζ̂(1), . . . , ρ̂ζ̂(H)]′.

Proposition 4.4 Under the assumptions of Proposition 4.3, the vector of residuals empirical au-

tocorrelations satisfies

a2
n

ãn
ρ̂ζ̂

d
−→ γ(0)AHZ, where Z = (Z1, . . . , ZH+p+q)

′,

where γ(0) =
(
∑∞
k=−∞ d2

k

)

, (an) and (ãn) are defined in (4.7), the Zi’s are as in Proposition 4.3,

and AH is a non random H × (p+ q +H) matrix function of the sole AR coefficients (not on the

errors distribution).

Details regarding matrix AH are available in the proof. It is now possible to propose a Port-

manteau test to check for residuals autocorrelations based for instance on the statistic

TH = a2
nã

−1
n

H
∑

i=1

|ρ̂ζ̂(i)|
d

−→
n→+∞

‖γ(0)AHZ‖1, (4.10)

with ‖x‖1 =
∑

|xi| for any vector x = (xi).

The knowledge of index α is not required for the computation of the sum of absolute empirical

correlations in the left-hand side, but the asymptotic distribution, as well as the normalizing con-

stants an and ãn, depend on α. Having estimated the AR coefficients, a standard estimator can be

used for the tail index α (for instance, the Hill estimator; see Embrechts et al. (1997), Theorem

6.4.6, for its main properties under various assumptions). Practical implementation of the test

finally requires simulating the estimated asymptotic distribution in (4.10).
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4.3 Model selection based on extremes clustering

A difficulty in the inference of mixed causal-noncausal AR processes, is that many representations

with seemingly uncorrelated errors hold. Breidt, Davis and Trindade (Section 4.3, 2001) showed

that if (Xt) is the strictly stationary solution of Model (4.1)-(4.2), then for any polynomial η∗
0(z)

obtained from η0(z) by inverting one or several roots, we have

η∗
0(B)Xt = ζ∗

t , (4.11)

where (ζ∗
t ) is an all-pass process. Such representations (4.11) will be called all-pass in the following.

The strong representation of a MAR process (i.e. with i.i.d. errors) cannot be distinguished from

other competing all-pass representations by Portmanteau approaches based on residuals autocor-

relations. However, the errors ζ∗
t of all-pass representations are serially dependent.

4.3.1 Point process of exceedances

This dependence materialises in an important feature known as extreme clustering (see e.g. Hsing,

Hüsler, Leadbetter (1988), Markovich (2014) and Chavez-Demoulin and Davison (2012) for a litera-

ture review) which yields a way to identify the strong representation among the all-pass alternatives.

Let us introduce a linear process (Yt) with two-sided MA(∞) representation Yt =
∑

k∈Z ckεt+k,

where (εt) is an i.i.d. sequence satisfying (4.2),
∑

k∈Z |ck|
s < +∞ for some 0 < s < α, s ≤ 1,

and assume max |ck| = 1 for convenience. Adapting Section 3.D by Davis and Resnick (1985),

we can study the time indices for which a−1
n Yk falls outside the interval (−x, x), for x > 0. The

corresponding point process converges as the number of observations n grows to infinity:

n
∑

k=1

δ(k/n,a−1
n Yk)

(

· ∩ Bx
)

d
−→

+∞
∑

k=1

ξkδΓk
, (4.12)

where δ is the Dirac measure, Bx = (0,+∞)×
(

(−∞,−x)∪ (x,+∞)
)

, {Γk, k ≥ 1} are the points of

a homogeneous Poisson Random Measure (PRM) on (0,+∞) with rate x−α,
7

and ξk = Card{i ∈

7
See Daley and Vere-Jones (2007): {Γk, k ≥ 1} are the points of a homogeneous PRM on (0,+∞) with rate x−α

if and only if, for any ℓ ≥ 1, nonnegative integers a1, . . . , aℓ and b1, . . . , bℓ such that ai < bi ≤ ai+1, i = 1, . . . , ℓ, and

any nonnegative integers n1, . . . , nℓ:

P

(

N(ai, bi] = ni, i = 1, . . . , ℓ
)

=

ℓ
∏

i=1

[x−α(bi − ai)]
ni

ni!
exp
{

−x−α(bi − ai)
}

,

where N(ai, bi] denotes the number of terms of {Γk, k ≥ 1} falling in the half-open interval (ai, bi], i = 1, . . . , ℓ.
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Z : Jk|ci| > 1} where {Jk, k ≥ 1} are i.i.d. on (1,+∞), independent of {Γk}, with common density:

f(z) = αz−α−1
1(1,+∞)(z). (4.13)

The sequences {Γk} and {ξk} are interpreted (see for instance Leadbetter and Nandagopalan (1989))

as describing respectively the occurrence dates of clusters of extreme events and the size of these

clusters (i.e. the number of co-occurring extreme events).

4.3.2 Analysing the error processes of competing models

For the sake of simplicity, we will focus on the MAR(1,1) case. Let (Xt) be the MAR(1,1) process

solution of (1 − ψ0F )(1 − φ0B)Xt = εt. There are four competing models yielding the same type

of all-pass causal AR(2) representation (4.3):

Pure causal AR(2): (1 − ψ0B)(1 − φ0B)Xt = ζt, (4.14)

MAR(1,1): (1 − ψ0F )(1 − φ0B)Xt = εt, (4.15)

MAR(1,1): (1 − ψ0B)(1 − φ0F )Xt = νt, (4.16)

Pure noncausal AR(2): (1 − ψ0F )(1 − φ0F )Xt = ωt, (4.17)

where (ζt), (νt) and (ωt) denote the sequences of errors of each all-pass model. According to Equa-

tion (4.12), the point processes of exceedances of each sequence of errors converge in distribution

and will feature dramatically contrasting sequences {ξk}. For instance, we will focus on the first

two ones.

Error process of the strong (i.i.d.) representation Let us first consider Model (4.15) which

is the correct one, i.e. (εt) is i.i.d. Thus, c0 = 1, ck = 0 for k 6= 0 and ξk = Card{i ∈ Z : Jk|ci| >

1} = 1{Jk>1} = 1: the extreme errors tend to appear isolated from each other.

Error process of the pure causal (all-pass) alternative We consider for instance Model

(4.14) with non i.i.d. errors. The (rescaled) errors read ζt =
∑

k≥−1

ck
maxj |cj |εt+k with ck = ψk0 (1 −

ψ2
0) for k ≥ 0 and c−1 = −ψ0. Denote (c(k))k≥1 the sequence obtained by sorting (|ck|)k≥−1 in

descending order. Then, ξk = Card
{

i ≥ 1 : Jk
c(i)

c(1)
> 1

}

= arg maxi≥1{Jk > c−1
(i) c(1)}. From this

characterization of the law of {ξk} and the marginal law of the i.i.d. sequence {Jk} given by (4.13),

we deduce that for any ℓ ≥ 1:

P

(

ξk ≥ ℓ
)

= P

(

Jk > c−1
(ℓ)c(1)

)

= cα(ℓ)c
−α
(1) . (4.18)
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Thus, the ξk’s are charging non-zero probabilities on arbitrarily high cluster sizes, yielding as

expected that the extreme errors of Model (4.14) tend to cluster. The effects of both α and the

AR parameter ψ0 on this probability are depicted on Figure 3.

Figure 3: Theoretical tail probability of the cluster size of extreme realisations from errors of Model (4.14) using

formula (4.18) for three different values of α. For all panels: ψ0 = 0.3 (squares), ψ0 = 0.6 (points), ψ0 = 0.9

(triangles).

4.3.3 Errors at higher horizons

As can be seen on Figure 3, certain values of α and ψ0 make large clusters of extremes improbable.

For such values, distinguishing strong and all-pass representations from the errors behaviours is

difficult. This difficulty can be alleviated by considering the errors of the competing models at

further horizons. For simplicity, consider the noncausal AR(1) model. There are two competing

models, yielding the same all-pass causal representation (4.3):

Xt = ψ0Xt+1 + εt, and Xt = ψ0Xt−1 + ζt. (4.19)

For any h ≥ 1, expansions of these equations at horizons h read:

εt+h|t := Xt − ψh0Xt+h = εt + ψ0εt+1 + . . .+ ψh−1
0 εt+h−1, (4.20)

ζt+h|t := Xt+h − ψh0Xt = ψh0

h−1
∑

k=0

ψk0εt+k−h +
∑

k≥h

ψk0 (1 − ψ2h
0 )εt+k. (4.21)

We can deduce that the point processes of excedances of the errors εt+h|t and ζt+h|t at horizon h will

exhibit clusters of random sizes ξk = Card
{

i ∈ Z : Jk
|ci|

maxj |cj | > 1
}

where ci = ψi0 if 0 ≤ i ≤ h−1 for

the strong model, whereas for the all-pass model, the sequence (|ci|) reads: |ψ0|h, . . . , |ψ0|2h−1, 1 −

ψ2h
0 , |ψ0|(1−ψ2h

0 ), |ψ0|2(1−ψ2h
0 ), . . .. Thus, the extreme realisations of the errors (4.20) will appear

by clusters of at most h consecutive observations, whereas the errors (4.21) will likely appear by

larger clusters (see Appendix B for illustration). This analysis can be extended to general MAR
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processes by disentangling the pure causal and noncausal components of each competitor model

(as in the proof of Proposition 3.1).

5 A Monte Carlo study

We conducted three types of experiments in order to gauge the sample properties of the LS proce-

dure applied to the weak all-pass representation. On synthetic data generated from a MAR(1,1)

process, we assessed ι) the consistency of the estimators of the roots and the convergence in dis-

tribution of the LS estimators of the backward AR(2) specification, ιι) the empirical size of the

Portmanteau-type statistic ιιι) the extreme clustering in the residuals of the four competing models

that the LS estimation implies.

5.1 LS estimation

We simulated 100,000 paths with lengths 500, 2000 and 5,000 observations of α-stable MAR(1,1)

processes solution of (1 −ψ0F )(1 −φ0B)Xt = εt with ψ0 = 0.7, φ0 = 0.9 and tail indices α = 1.5, 1

and 0.5. We computed the LS estimator (η̂1, η̂2) and deduced estimators (ψ̂, φ̂) by taking the

inverses of the zeros of 1 − η̂1X − η̂2X
2 (we impose |ψ̂| ≤ |φ̂| for the sake of identifiability). For

each model, Table 1 reports the empirical frequencies of estimators that are sufficiently close to

the actual values of the roots. As expected, the accuracy increases with n but, more strikingly, it

increases sharply as α approaches zero.

α = 1.5 α = 1 α = 0.5

n a = 0.1 a = 0.05 a = 0.01 a = 0.1 a = 0.05 a = 0.01 a = 0.1 a = 0.05 a = 0.01

500 p̂a(φ) 99.8% 94.6% 33.3% 99.7% 96.4% 48.5% 99.1% 97.5% 71.4%

p̂a(ψ) 78.2% 55.2% 18.7% 83.8% 69.7% 33.0% 86.2% 79.9% 58.6%

2000 p̂a(φ) 99.9% 98.9% 54.3% 99.9% 99.2% 74.3% 99.8% 99.4% 90.3%

p̂a(ψ) 96.3% 87.2% 34.6% 96.0% 91.5% 60.4% 96.4% 94.5% 84.6%

5000 p̂a(φ) 99.9% 99.8% 74.4% 99.9% 99.7% 88.4% 99.9% 99.7% 95.8%

p̂a(ψ) 98.7% 96.3% 53.6% 98.5% 96.9% 78.9% 98.6% 97.8% 93.2%

Table 1: Accuracy of the roots-estimation through backward LS: p̂a(θ) denotes the frequency of estimations θ̂

belonging to the set
{∣

∣θ̂ − θ0

∣

∣ < a
}

∩
{

θ̂ ∈ R
}

, for θ = φ or ψ, for a = 0.01, 0.05, 0.1 and over 100,000 simulated

paths of the α-stable MAR(1,1) process (Xt) solution of (1 − ψ0F )(1 − φ0B)Xt = εt, with ψ0 = 0.7 and φ0 = 0.9.

Turning to the asymptotic distribution of (η̂1, η̂2), results reported in Appendix B show that

the finite sample distribution approaches its asymptotic behaviour much slower for lower values of
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α. In the same line, a direct implementation of the Portmanteau test using the statistics (4.10)

also showed heavy distortions in finite sample. These distortions were expected as they were

already reported by Lin and McLeod (2008) in the pure causal AR framework who suggested

a Monte Carlo test or parametric bootstrap to alleviate this problem. This approach relies on

Monte Carlo simulations of the estimated causal AR model to approximate the distribution of

the Portmanteau statistics and could still be used in the present MAR framework. Indeed, it

is noticeable that the asymptotic behaviour of our test statistics (4.10) only depends on the all-

pass causal AR representation of the process. Therefore, we proceed with the same Monte Carlo

test methodology (see Appendix B, Lin and McLeod (2008)). An important difference in our

framework is that we estimate by LS an all-pass causal representation in a first step and then

use these estimates to simulate paths of the corresponding pure causal AR models, as if it were

the strong representation. By Proposition 4.4, we know that the residuals autocorrelations of the

latter have the same asymptotic distribution as the residuals autocorrelations of the weak causal

representation of the true MAR model.
8

We conducted the experiment on the same MAR(1,1)

model as before with α = 1.5, 1, 0.5 and n = 500. We report in Table 2 the empirical sizes of

the 1, 5 and 10% nominal tests for lags H = 1, . . . , 10. It can be seen that using the parametric

bootstrap procedure, the Portmanteau test is much better behaved in finite sample, especially for

α = 1.5, which is the most realistic value for financial series (see Footnote 4).

5.2 Diagnostic checking of extremal residuals clustering

We now gauge the usefulness of the results of Section 4.3 by simulating paths of the α-stable

MAR(1,1) process (1 − ψ0F )(1 − φ0B)Xt = εt with different parameterisations and analysing the

empirical residuals of the four competing models (4.14)-(4.17). More specifically for each estimated

model, we compute the errors at several horizons h (as in (4.20)-(4.21) for the AR(1)). For a given

threshold x > 0, we identify the clusters of consecutive "extreme" values (that is, values larger than

x in modulus) for such errors series. Let ξ̂k,h(x) denote the number of consecutive exceedances

of the threshold x for the k-th cluster. As explained in Section 4.3, for any horizon h, we expect

all-pass representations to display larger clusters of extreme errors than for the the strong model,

for which clusters larger than h have small probability. We therefore propose an Excess Clustering

8
Another approach could consist in testing directly whether the coefficients of the all-pass representation are

different from zero. This methodology based on bootstrap innovations was developed in the pure noncausal heavy-

tailed framework by Cavaliere, Nielsen and Rahbek (2017).
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α = 1.5 α = 1 α = 0.5

H 1% 5% 10% 1% 5% 10% 1% 5% 10%

1 1.30 5.80 10.5 1.25 5.40 10.4 1.45 4.10 7.35

2 1.55 5.65 10.9 1.60 5.25 9.65 1.35 3.90 7.05

3 1.40 5.35 10.9 1.30 5.05 9.40 1.20 4.45 6.95

4 1.50 5.45 10.5 1.35 5.00 9.90 1.20 4.35 7.00

5 1.25 5.50 9.85 1.20 4.90 9.20 1.10 4.20 7.30

6 1.30 5.00 10.1 1.05 4.70 9.40 1.10 4.25 7.40

7 1.20 5.25 9.75 1.05 4.40 9.15 1.20 4.00 7.50

8 1.10 5.25 9.75 1.15 4.55 8.70 1.05 3.70 7.25

9 1.25 5.10 9.80 1.30 4.30 8.60 1.05 3.75 7.50

10 1.35 5.10 10.1 1.20 4.55 8.70 0.90 3.65 7.15

Table 2: Empirical sizes (%) of the Portmanteau statistics (4.10) implemented by the parametric bootstrap proce-

dure. The empirical size was calculated based on 2000 simulations of the α-stable MAR(1,1) process (Xt) solution of

(1−ψ0F )(1−φ0B)Xt = εt, with ψ0 = 0.7 and φ0 = 0.9. Each Monte Carlo test was performed with 1000 simulations.

(EC)
9

indicator defined as:

ECh =

∑

k/ξ̂k,h(x)>h

(

ξ̂k,h(x) − h
)

Card{k : ξ̂k,h(x) > h}
, if Card{k : ξ̂k,h(x) > h} > 0, else ECh = 0. (5.1)

We start by generating 10,000 sample paths of MAR(1,1) processes. For each of these paths, we fit a

backward AR(2), estimate the set {φ0, ψ0}, and for each of the four competing models we estimate a

term structure of extreme residuals clustering with respect to the horizon, using the estimator (5.1).

Averaging model-wise across these 10,000 simulations yields a summary of how prominent EC is

among the residuals of the competing models. To assess the effects of the multiple parameters, we

perform this experiment for two MAR(1,1) processes. The results are displayed in Figure 4. It can

be noticed that the all-pass models feature excessively clustering residuals at any horizon whereas

the residuals of the strong model are barely deviating from no excess clustering. As expected from

(4.18), the heavier the tails the easier it is to identify dependent residuals. This is in line with the

9
For a given h, ECh defined at (5.1) corresponds to the average size of clusters larger than h, from which we

subtract h, and is 0 if all the clusters are smaller than h. It is related to the Extremal Index, more common in the

literature, which is the plain average size of clusters. Also, the choice of clustering scheme, i.e. how the sequence
(

ξ̂k,h(x)
)

k
is constructed, can have an impact on the estimated excess clustering : more elaborate clustering schemes

could be considered (see Ferro and Segers (2003)).
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findings of Hecq, Lieb and Telg (2015) who are concerned with identification of causal/noncausal

models using the LAD estimator. Noticeably, even with very heavy tails (α = 0.5), the residuals

at any horizons of the strong representation still barely deviate from no excess clustering.

These experiments highlight the usefulness of considering residuals at various horizons, instead

of focusing only on basic residuals. Indeed, all the term structures of excess clustering show that

the contrast between the competing models does not arise for h = 1 but rather tends to peak for

intermediate values of h.

Last, we assess how well we can discriminate between the all-pass models and the strong rep-

resentation by exploiting the excess clustering feature. For each of the 10,000 simulations, we rank

the four competing models according to the area under the term structure curve of excess cluster-

ing (AUC) and select the candidate with least AUC. Table 3 reports the true positive rates of this

procedure. For α = 1.5 and n = 500, the strong representation was correctly identified in above

88% of the 10,000 simulated paths and this proportion increases with n.

n = 500 n = 2000 n = 5000

88.4% 95.8% 97.5%

Table 3: Correct model selection rates based on least excess clustering across 10,000 simulated paths of the MAR(1,1)

process (Xt) solution of (1 − 0.7F )(1 − 0.9B)Xt = εt with i.i.d. 1.5-stable noise.

Figure 4: Across 10,000 simulations of the α-stable MAR(1,1) process (Xt) solution of (1 −ψ0F )(1 −φ0B)Xt = εt,

average of the term structure of excess clustering of the linear residuals of the four competing models (4.14) (squares),

the strong representation (4.15) (points), (4.16) (triangles) and (4.17) (diamond). The parameterisations and path

lengths are indicated on each panel.
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6 An application to financial series

In this section, we illustrate the adequacy of MAR models for real economic series. We fitted MAR

models on six financial series of monthly prices: stock prices of Coca-Cola (January 1978 to June

2017), Boeing (February 1962 to December 2012), Hong Kong’ stock market index (HSI) (December

1986 to April 2017), Walmart (September 1979 to June 2017), Exxon (February 1970 to June 2017),

and on the quarterly Shiller Price/Earning ratio (1881 to 2017)
10

. All the series, pictured on Figure

5, have been centered and a linear deterministic trend has been fitted and subtracted. We can see

that all the series feature multiple bubble events followed by a sharp drop.

6.1 AR estimation and validation using parametric bootstrap Portmanteau

We start by investigating the appropriate total AR order for each series using the Monte Carlo

Portmanteau test of Section 5.1. For each series, starting from total AR order 1, we estimate

weak causal representations of increasing order by LS and perform the Portmanteau test for lags

H = 1, . . . , 10 using the parametric bootstrap Portmanteau procedure of Lin and McLeod (10 000

paths were simulated for each test). At a given total AR order r, if the Monte Carlo test has a

P-value below 10% for any lag H, we reject the null hypothesis that a MAR(p, q) model, r = p+ q,

would suitably describe the series and repeat the procedure for total AR order r + 1. In the case

the P-values of the tests are above 10% for all lags H = 1, . . . , 10, we accept the total AR order r.

The results
11

are reported in Table 4. The total AR orders retained for each series are: Boeing: 4;

Exxon: 1; Coca-Cola: 1; Walmart: 1; HSI: 3; Shiller P/E: 8.

6.2 MAR selection based on extreme clustering

For each of the mentioned series, we apply the methodology of Section 5.2: we fit all possible MAR

models of total order r = 1, . . . , 8, compute the term structure of excess clustering of the residuals

of each competing model and the associated term structure of EC and we then rank the competing

models according to the area under the term structure curve. In Table 5, we report for each total

AR order r = p+ q the MAR(p, q) specification which displays the lowest AUC of excess clustering

10
A measure of exuberance on financial markets proposed by Economics Nobel Prize Robert Shiller capturing how

expensive stocks are compared to the earnings they bring. Data available on https://www.quandl.com.
11

This procedure yields as a by-product the McCulloch quantile estimates of the tail index α (see McCulloch

(1986)) for the six financial series. Values of α̂: Boeing: 1.73; Exxon: 1.69; Coca: 1.64; Walmart: 1.67; HSI: 1.38;

Shiller P/E: 1.50. In all the cases, the infinite variance hypothesis is plausible.
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Figure 5: Financial series paths: Boeing (2/1962 to 12/2012), Exxon (2/1970 to 06/2017), Coca-Cola (1/1978

to 06/2017), Walmart (9/1979 to 6/2016), Hang Seng Index (HSI, 12/1986 to 05/2017) and the Shiller P/E ratio

(Q1/1881 to Q2/2017). All series are monthly except the latter which is quarterly. Each are centered and a linear

trend has been fitted and subtracted.

and the median AUC of its competitors. The favoured specification of some series feature very low

AUC excess clustering even for total AR order r = 1 (e.g. Walmart, Coca-Cola), whereas others

display high excess clustering for low total AR order (e.g. Boeing, Shiller P/E). We can notice

that for the latter, excess clustering rapidly decreases as r increases. Besides, we can also see a

general decreasing trend for median excess clustering of competing models as r increases. Based on

the total AR orders determined at the previous section, we could select a final MAR specification
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Total AR order r Boeing Exxon Coca-Cola Walmart HSI Shiller P/E

1 0.01 63.8 14.3 27.4 3.24 0.01

2 0.20 5.41 0.03

3 0.07 36.3 0.86

4 10.4 0.85

5 0.96

6 2.28

7 3.26

8 13.2

Table 4: P-values (%) of the portmanteau tests based on bootstrap for increasing AR order r.

for each of the series. This selection is reported in Table 6 which shows the causal and noncausal

orders as well as the (inverted) roots of the corresponding polynomials. Three series have been

identified as pure noncausal AR(1) (Exxon, Coca-Cola, Walmart) whereas 3 others display more

complex dynamics (Boeing, HSI, Shiller P/E ratio).

7 Concluding remarks

Noncausal models may provide better understanding of the dynamic features of a time series that

are not perceived via causal models. We showed that even the adjunction of a very simple noncausal

component to an arbitrarily complex classical causal AR is sufficient to profoundly alter its motion

and this in turn impacts the way we infer about its future. Moreover, we established that fitting a

backward AR of proper order on data generated by a MAR process will yield a model that will pass

the Portmanteau tests, although misspecifying at the same time all the noncausal roots as causal.

Because of this common fitting procedure, noncausal components in economic and financial time

series may have remained concealed and implicitly been considered as causal, rendering predictions

potentially critically suboptimal. We therefore laid the bases for a full identification scheme relying

1) on parametric bootstrap Portmanteau tests to determine the most suitable total AR order 2) on

extreme residuals clustering to select the causal and noncausal orders and roots. Our estimation

results on six monthly/quaterly financial series revealed the plausibility of infinite variance and

noncausal AR components. For three of the series purely noncausal processes were obtained, while

the remaining three ones featured non-trivial MAR structures.
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Total AR order Boeing Exxon Coca-Cola Walmart HSI Shiller P/E

Favoured specification (1,0) (1,0) (1,0) (1,0) (0,1) (1,0)

1 AUC Excess Clustering 8.67 3.25 2.67 1 7.75 15.6

Median of competitors 31.1 25.7 51.7 29.3 17 51.2

Favoured specification (1,1) (1,1) (2,0) (2,0) (1,1) (1,1)

2 AUC Excess Clustering 5.33 2.75 1.67 1 5.75 9.58

Median of competitors 14.2 13.58 27.8 15.0 9.33 25.5

Favoured specification (2,1) (1,2) (1,2) (3,0) (1,2) (1,2)

3 AUC Excess Clustering 5.15 2.25 1.33 1 0.5 1.64

Median of competitors 11.5 13.1 27.7 10.5 6.17 8

Favoured specification (2,2) (3,1) (4,0) (4,0) (1,3) (1,3)

4 AUC Excess Clustering 7.05 3 1 1 0.5 2.13

Median of competitors 15.2 6.63 11.7 9.57 5.66 5.95

Favoured specification (4,1) (5,0) (5,0) (5,0) (3,2) (3,2)

5 AUC Excess Clustering 3.5 0 1 1 2 2

Median of competitors 12 8.64 12.9 6.74 5.67 4.88

Favoured specification (6,0) (5,1) (6,0) (6,0) (1,5) (2,4)

6 AUC Excess Clustering 3 0 0 0 0.5 1.33

Median of competitors 10.3 5.5 11.4 5.73 4.2 5

Favoured specification (6,1) (7,0) (7,0) (7,0) (2,5) (3,4)

7 AUC Excess Clustering 2 0 1 0 1 1.83

Median of competitors 10.3 7.25 10.1 6.04 3.25 4

Favoured specification (6,2) (8,0) (8,0) (8,0) (2,6) (4,4)

8 AUC Excess Clustering 3.75 0 0 0 1.5 1.75

Median of competitors 9.11 6.5 10.3 5.12 6.2 4.63

Table 5: Selection based on extreme clustering.

Series Final specification Noncausal (inverted) roots Causal (inverted) roots

Boeing MAR(2,2) 0.66, 0.91 −0.23 ± 0.46i

Exxon MAR(1,0) 0.95 −

Coca-Cola MAR(1,0) 0.90 −

Walmart MAR(1,0) 0.91 −

HSI MAR(1,2) 0.37 −0.27, 0.89

Shiller P/E MAR(4,4) −0.40 ± 0.63i, 0.66 ± 0.27i 0.18 ± 0.58i, −0.83, 0.96

Table 6: Selection of the MAR specification for each financial series among the favoured ones of Table 5 based on

the total AR order determined in Table 4. The MAR(p, q) specifications indicate the noncausal p and causal q orders

as well as the (inverted) roots of the corresponding polynomials.
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Appendix A: Proofs

A Proof of Proposition 2.1

Using the MA(∞) representation (2.2) of Xt and the assumption that εt
i.i.d.
∼ S(α, β, σ, µ), it follows

that

∀s ∈ R, ψXt(s) := E

[

eisXt

]

= E






e
is

+∞
∑

k=−∞

dkεt+k






=

+∞
∏

k=−∞

E

[

eisdkεt+k

]

=
+∞
∏

k=−∞

exp {−σα|dks|
α (1 − iβsign(dks)w(α, dks)) + idksµ} .

If α 6= 1, then,

∀s ∈ R, lnψXt(s) =
+∞
∑

k=−∞

−σα|dks|
α
(

1 − iβsign(dks)tg

(

πα

2

))

+ idksµ

= −σ̃α|s|α











1 − iβ

+∞
∑

k=−∞
|dk|

αsign(dk)

+∞
∑

k=−∞
|dk|α

sign(s)tg

(

πα

2

)











+ isµ
+∞
∑

k=−∞

dk.

Whereas if α = 1, then,

∀s ∈ R, lnψXt(s) =
+∞
∑

k=−∞

−σ|dks|

(

1 + i
2

π
βsign(dks) ln |dks|

)

+ idksµ

= −|s|σ





+∞
∑

k=−∞

|dk|















1 + i
2

π
β

+∞
∑

k=−∞
dk ln |dk|

+∞
∑

k=−∞
|dk|

sign(s) ln |s|











+ is





+∞
∑

k=−∞

dkµ−
2

π
σβ

+∞
∑

k=−∞

dk ln |dk|



 .

The conclusion follows.

B Proof of Proposition 3.1

We decompose (Xt) into its pure causal AR(q) and noncausal AR(p) components (see Lanne,

Saikkonen (2011) and Gouriéroux, Jasiak (2016)) respectively (vt) and (ut), defined by

ut = φ(B)Xt ⇐⇒ ψ(F )ut = εt, (B.1)

vt = ψ(F )Xt ⇐⇒ φ(B)vt = εt. (B.2)
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We first show that (ut) is a Markov process of order p. When there is no risk of ambiguity

we denote by f a generic density, whose definition can change along the proof. Since by (B.1),

ut = ψ1ut+1 + . . .+ ψput+p + εt, for k > p, the conditional density of ut given its k past values is

f
(

ut
∣

∣

∣ut−1, . . . , ut−k
)

=
f (ut, . . . , ut−k)

f (ut−1, . . . , ut−k)

=
f
(

ut−k
∣

∣

∣ut−k+1, . . . , ut−k+p

)

f (ut, . . . , ut+1−k)

f
(

ut−k
∣

∣

∣ut−k+1, . . . , ut−k+p

)

f (ut−1, . . . , ut+1−k)

=
f (ut, . . . , ut−p)

f (ut−1, . . . , ut−p)
= f

(

ut
∣

∣

∣ut−1, . . . , ut−p
)

,

where the second equality follows from the Bayes formula and (B.1), that is ut = φ(B)Xt, and

the third equality is obtained by decreasing induction on k. We now turn to the MAR process

(Xt). From ut = φ(B)Xt, we have Xt =
∑q
i=1 φiXt−i + ut. Thus, with obvious notation, for any

x, x1, . . . , xp+q ∈ R,

fXt

(

x
∣

∣

∣Xt−1 = x1, Xt−2 = x2, . . .
)

= fut+
∑q

i=1
φixi

(

x
∣

∣

∣Xt−1 = x1, . . .
)

= fut

(

x−
q
∑

i=1

φixi
∣

∣

∣ut−1 = x1 −
q
∑

i=1

φix1+i, ut−2 = x2 −
q
∑

i=1

φix2+i, . . .

)

= fut

(

x−
q
∑

i=1

φixi
∣

∣

∣ut−1 = x1 −
q
∑

i=1

φix1+i, . . . , ut−p = xp −
q
∑

i=1

φixp+i

)

using the Markov property of (ut). The latter quantity is a function of (x, x1, . . . , xp+q), showing

that process (Xt) is Markov of order p+ q.

C Proof of Theorem 3.1

We first show that the theorem holds for q = 0 and we then extend it to general MAR(p, q)

processes.

Lemma C.1 Let (Xt) be an α-stable pure noncausal AR(p) process solution of Xt = ψ1Xt+1 +

. . .+ ψpXt+p + εt, where the roots of ψ(z) are outside the unit circle. Then,

E

[

|Xt|
γ
∣

∣

∣Xt−1, . . . , Xt−p

]

< +∞, for any γ ∈ (0, 2α+ 1).

Proof. Suppose p > 1 (the result is already known from GZ for p = 1). For any (x0, . . . , xp) ∈ R
p+1,

fXt|(Xt+1,...,Xt+p)=(x1,...,xp)(x0) = fε(x0 − ψ1x1 − . . .− ψpxp),
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because εt is independent from Xt+1, . . . , Xt+p. By the Bayes formula,

fXt|(Xt+1,...,Xt+p)=(x1,...,xp)(x0) =
fXt+p|(Xt,...,Xt+p−1)=(x0,...,xp−1)(xp)

fXt+1,...,Xt+p(x1, . . . , xp)
fXt,...,Xt+p−1(x0, . . . , xp−1).

Thus,

fXt+p|(Xt,...,Xt+p−1)=(x0,...,xp−1)(xp) =

fε(x0 − ψ1x1 − . . .− ψpxp)fX(xp)fXt+1,...,Xt+p−1|Xt+p=xp
(x1, . . . , xp−1)

fXt,...,Xt+p−1(x0, . . . , xp−1)
. (C.1)

On the one hand, when xp → ±∞,

fX(xp) ∼ C(xp)|xp|
−α−1, (C.2)

fε(x0 − ψ1x1 − . . .− ψpxp) ∼ C∗(xp)|xp|
−α−1, (C.3)

where C(xp) and C∗(xp) are constants depending on xp, which may change according to whether

xp → +∞ or x → −∞. On the other hand, we show that

fXt+1,...,Xt+p−1|Xt+p=xp
(x1, . . . , xp−1) −→

|xp|→+∞
0. (C.4)

Let Zt = Xt − ψ1Xt+1 − · · · − ψp−1Xt+p−1. Conditionally on Xt+p = xp, we have Zt = ψpxp + εt.

Since Xt+p and εt are independent and ψp 6= 0, we have |Zt| → +∞ a.s. as |xp| → +∞. Therefore,

for any z0 ∈ R and any neighbourhood Vz0 of z0, when |xp| → +∞,

P

(

Zt ∈ Vz0

∣

∣

∣Xt+p = xp
)

−→0, which implies, P

(

(Xt, . . . , Xt+p−1) ∈ Vx

∣

∣

∣Xt+p = xp
)

−→0,

for any point x ∈ R
p and neighbourhood Vx around this point. Hence the convergence in Equation

(C.4). Combining Equations (C.1), (C.2), (C.3) and (C.4), we obtain, for |xp| large enough,

fXt+p|(Xt,...,Xt+p−1)=(x0,...,xp−1)(xp) = o
(

|xp|
−2(α+1)

)

.

The conclusion follows.

Let us now prove Theorem 3.1. Let γ ∈ (0, 2α+ 1). Decomposing (Xt) into its pure causal and

noncausal components (vt) and (ut), defined in (B.2) and (B.1), we have the equivalence between

the information sets

(Xt−1, . . . , Xt−p−q) and (ut−1, . . . , ut−p, vt−p−1, . . . , vt−p−q),

and the independence between (ut−1, . . . , ut−p) and (vt−p−1, . . . , vt−p−q) (see Lanne and Saikkonen

(2011), Gouriéroux and Jasiak (2016)). From Equation (B.1), we have for γ ≥ 1 by the triangle

27



inequality,

(

E

[

|Xt|
γ
∣

∣

∣Xt−1, . . . , Xt−p−q

])1/γ
(C.5)

=
(

E

[

|ut − φ1Xt−1 − . . .− φqXt−q|
γ
∣

∣

∣Xt−1, . . . , Xt−p−q

])1/γ

≤ |φ1Xt−1 + . . .+ φqXt−q| +
(

E

[

|ut|
γ
∣

∣

∣Xt−1, . . . , Xt−p−q

])1/γ

= |φ1Xt−1 + . . .+ φqXt−q| +
(

E

[

|ut|
γ
∣

∣

∣ut−1, . . . , ut−p, vt−p−1, . . . , vt−p−q

])1/γ

= |φ1Xt−1 + . . .+ φqXt−q| +
(

E

[

|ut|
γ
∣

∣

∣ut−1, . . . , ut−p
])1/γ

, (C.6)

which is finite almost surely by Lemma C.1 since (ut) is an α-stable pure noncausal AR(p) process.

If γ ∈ (0, 1), by the inequality (a + b)γ ≤ aγ + bγ for any a, b ≥ 0, we have that |a + b|γ ≤
(

|a| + |b|
)γ

≤ |a|γ + |b|γ , for any (a, b) ∈ R. Thus, similarly to (C.6), we show that

E

[

|Xt|
γ
∣

∣

∣Xt−1, . . . , Xt−p−q

]

≤ |φ1Xt−1 + . . .+ φqXt−q|
γ + E

[

|ut|
γ
∣

∣

∣ut−1, . . . , ut−p
]

,

which completes the proof.

D Proof of Proposition 3.2

The following Lemma will be useful for the proofs of Proposition 3.2 and Corollary 3.2.

Lemma D.1 Let (Xt) be a MAR(p, q) process. For any h ≥ 0, there exist polynomials Ph and Qh

with d◦(Ph) = q − 1 and d◦(Qh) = h, such that for any t ∈ Z,

Xt+h = Ph(B)Xt−1 +Qh(F )ut, (D.1)

where (ut) is defined in (B.1).

Proof. We prove (D.1) by induction on h. The model can obviously be written under the form

Xt =
∑q
i=1 φiXt−i + ut from (B.1). Thus (D.1) holds for h = 0, with P0(B) =

∑q−1
i=0 φi+1B

i

and Q0(F ) = I. Assume that the property holds up to the order h − 1, for h ≥ 1. For r =

min(h, q), Xt+h =
∑r
i=1 φi+1Xt+h−i +

∑q
i=r+1 φi+1Xt+h−i + ut+h where, by convention, the second

sum vanishes if r = q. Thus

Xt+h =
r
∑

i=1

φi+1Ph−i(B)Xt−1 +
q
∑

i=r+1

φi+1Xt+h−i + ut+h +
r
∑

i=1

Qh−i(F )ut,

which is of the form (D.1) with

Ph(B) =
r
∑

i=1

φi+1Ph−i(B) +
q
∑

i=r+1

φi+1B
i−h−1, Qh(B) = F h +

r
∑

i=1

Qh−i(F ). (D.2)
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Therefore, (D.1) is established.

We now extend Proposition 4.3 by showing that for any h ≥ 0, E
[

|Xt+h|γ
∣

∣

∣Xt−1, . . . , Xt−q−1

]

<

+∞ whenever 0 < γ < 2α + 1. By Lemma D.1 we have, proceeding as for Equation (C.6) and

letting Qh(z) =
∑h
i=0 qi,hz

i,

(

E

[

|Xt+h|γ
∣

∣

∣Xt−1, . . . , Xt−q−1

])1/γ
≤ |Ph(B)Xt−1| +

h
∑

i=0

|qi,h|
(

E

[

|ut+h|γ
∣

∣

∣ut−1

])1/γ
,

which is finite almost surely for any h ≥ 0 whenever 1 ≤ γ < 2α+ 1 by GZ (Proposition 3.2) since

(ut) is a noncausal AR(1). For γ ∈ (0, 1), we proceed similarly using the inequality |a + b|γ ≤

|a|γ + |b|γ , for any (a, b) ∈ R. We now turn to the conditional expectation of Xt+h. We have by

the independence between ut−1 and (vt−2, . . . , vt−q−1)

E

[

Xt+h

∣

∣

∣Xt−1, . . . , Xt−q−1

]

= Ph(B)Xt−1 +
h
∑

i=0

qi,hE
[

ut+i
∣

∣

∣Xt−1, . . . , Xt−q−1

]

= Ph(B)Xt−1 +
h
∑

i=0

qi,hE
[

ut+i
∣

∣

∣ut−1, vt−2, . . . , vt−q−1

]

= Ph(B)Xt−1 +
h
∑

i=0

qi,hE
[

ut+i
∣

∣

∣ut−1

]

. (D.3)

By GZ (Proposition 3.3), we have for any i ≥ 0,

E

[

ut+i
∣

∣

∣ut−1

]

=
(

ψ<α−1>
)i+1

ut−1,

and therefore,

E

[

Xt+h

∣

∣

∣Xt−1, . . . , Xt−q−1

]

= Ph(B)Xt−1 + ψ<α−1>ut−1

h
∑

i=0

qi,h
(

ψ<α−1>
)i

=
(

Ph(B) + ψ<α−1>Qh(ψ<α−1>)φ(B)
)

Xt−1

:= Ph(B)Xt−1.

To conclude, we invoke the fact that (Xt) is a Markov chain of order q+ 1, which gives the equality

E

[

Xt+h

∣

∣

∣Xt−1, . . . , Xt−q−1

]

= E

[

Xt+h

∣

∣

∣Ft−1

]

. The formula for h = 0 is obtained by noting that

P0(B) =
∑q−1
i=0 φi+1B

i and Q0(F ) = I.

E Proof of Corollary 3.2

We will derive the asymptotic behaviour of Ph(B)Xt−1 =
(

Ph(B)+ψ<α−1>Qh(ψ<α−1>)φ(B)
)

Xt−1

when 1 ≤ α < 2. We start by a result giving details about the behaviours of the coefficients of
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the polynomials Ph and Qh defined in Lemma D.1. Denote Ph(z) :=
∑q−1
i=0 ai,hz

i and Qh(z) :=
∑h
i=0 bi,hz

i.

Lemma E.1 For h ≥ q, the coefficients of polynomial Ph and Qh verify:

a0,h = C1(h)λh1 + . . .+ Cs(h)λhs , ai,h =
q−i−1
∑

j=0

a0,h−j−1φi+1+j , for 0 ≤ i ≤ q − 1,

bi,h = a0,h−i−1, for 0 ≤ i ≤ h, a0,−1 := 1,

where the λ1, . . . , λs are the distinct (inverse of the) roots with multiplicities m1, . . . ,ms of φ and

C1, . . . , Cs are polynomials with degrees m1 − 1, . . . ,ms − 1.

The proof is relegated to Appendix B.

The proof of Corollary 3.2 involves several steps.

i) Equivalent of a0,h

Without loss of generality we can assume that the (inverses of the) roots of φ(z) are ordered:

0 < |λs| < · · · < |λ1| < 1. For ease of notation, we drop the indexes of the largest root (in modulus)

λ1 and m1 and we will denote also by C the coefficient associated to the monomial of highest degree

of C1. We thus have

a0,h ∼
h→+∞

Chm−1λh, and |a0,h| −→
h→+∞

0. (E.1)

ii) Limit of Ph(B)Xt−1

From Lemma E.1, it appears that Ph(B)Xt−1 =
∑q−1
i=0 ai,hXt−i−1

a.s.
−→
h→+∞

0.

iii) Limit of Qh(ψ<α−1>)

Qh(ψ<α−1>) =
h
∑

i=0

a0,h−i−1(ψ<α−1>)i =
(

ψ<α−1>
)h−1[

ψ<α−1> +
h−1
∑

i=0

a0,i(ψ
<1−α>)i

]

.

Let us study the general term of the above series. We have

a0,i(ψ
<1−α>)i ∼

i→+∞
Cim−1λi(ψ<1−α>)i = Csign(λψ)iim−1(|λ||ψ|1−α)i. (E.2)

Different cases arise.

ι) Assume α = 1. According to Equation (E.2) for α = 1, |a0,i(ψ
<1−α>)i| ∼ |C|im−1|λ|i which

is the general term of an absolutely convergent series. Thus, |Qh(ψ<α−1>)| = |Qh(sign(ψ))| =
∣

∣

∣sign(ψ) +
∑h−1
i=0 a0,isign(ψ)i

∣

∣

∣ −→
i→+∞

D, for some D ≥ 0.
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ιι) Assume 1 < α < 1 +
ln |λ|

ln |ψ|
.

Then |Qh(ψ<α−1>)| = |ψ|(α−1)(h−1)
∣

∣

∣|ψ|<α−1> +
∑h−1
i=0 a0,i(ψ

<1−α>)i
∣

∣

∣ −→
i→+∞

0 ·D = 0.

ιιι) Assume α = 1 +
ln |λ|

ln |ψ|
.

For i ≥ q, there exists a positive constant A such that

|a0,i| =

∣

∣

∣

∣

∣

∣

q
∑

j=1

Cj(i)λ
i
j

∣

∣

∣

∣

∣

∣

≤ Aim|λ|i. (E.3)

Thus, since |λ||ψ|1−α = 1,

|ψ|(α−1)(h−1)

∣

∣

∣

∣

∣

h−1
∑

i=0

a0,i(ψ
<1−α>)i

∣

∣

∣

∣

∣

≤ A|ψ|(α−1)(h−1)
h−1
∑

i=0

im|λ|i|ψ|(1−α)i

≤ A|ψ|(α−1)(h−1)hm+1 −→
h→+∞

0.

ν) Assume α > 1 +
ln |λ|

ln |ψ|
.

From Equation (E.3),

|ψ|(α−1)(h−1)

∣

∣

∣

∣

∣

h−1
∑

i=0

a0,i(ψ
<1−α>)i

∣

∣

∣

∣

∣

≤ A|ψ|(α−1)(h−1)
h−1
∑

i=0

im|λ|i|ψ|(1−α)i

≤ A|ψ|(α−1)(h−1)hm
1 − |λ|h|ψ|(1−α)h

1 − |λ||ψ|1−α

≤
Ahm|ψ|1−α

1 − |λ||ψ|1−α

(

|ψ|(α−1)h − |λ|h
)

−→
h→+∞

0.

The proof of the diverging conditional expectation in the MAR(1, q) case with α ∈ (0, 1) is

provided in Appendix B.

F Proof of Proposition 4.1

The ρ(h)’s are only function of the AR coefficients and coincide with the theoretical autocorre-

lations of the process
∑∞
k=−∞ dkZt−k, where (Zt) is an i.i.d. noise (with finite variance). Thus,

the ρ(h)’s are the theoretical autocorrelations of the stationary solution (Yt) of the AR model

ψ0(F )φ0(B)Yt = Zt. We know from Brockwell and Davis (1991, Proposition 3.5.1) that (Yt)

satisfies the causal AR model ψ0(B)φ0(B)Yt = Z∗
t , for some white noise sequence (Z∗

t ), from which

the recursion on the coefficients ρ(h) is deduced. The conclusion follows.
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G Proof of Proposition 4.2

For h ≥ 0, let γ̂(h) =
∑n−h
t=0 XtXt+h denote the (mean-unadjusted) sample autocovariance of order

h and let ρ̂(h) = γ̂(h)/γ̂(0) denote the corresponding sample autocorrelation. The LS estimator of

η0 coincides, up to negligible terms, with the Yule-Walker estimator and is given by

η̂ = Γ̂
−1
n γ̂n, Γ̂n = [γ̂(i− j)]i,j=1,...,p+q, γ̂n = [γ̂(i)]i=1,...,p+q. (G.1)

The consistency of η̂ follows from Davis and Resnick (1986, Section 5.4).

H Proof of Proposition 4.3

Let ρ̂ = [ρ̂(i)]i=1,...,p+q, R̂ = [ρ̂(i− j)]i,j=1,...,p+q. In view of (G.1) and (4.4), we have η̂ = R̂
−1

ρ̂ and

η0 = R−1ρ. We have

η̂ − η0 = R̂
−1

(ρ̂ − ρ) + (R̂
−1

− R−1)ρ

= R̂
−1
{

(ρ̂ − ρ) + (R − R̂)R−1ρ
}

. (H.1)

We have R − R̂ =
∑p+q
i=1 {ρ(i) − ρ̂(i)}K(i). It follows that

(R − R̂)R−1ρ = −L(Ip+q ⊗ R−1ρ)(ρ̂ − ρ). (H.2)

Thus, since R̂
−1

→ R−1 in probability as n → ∞, a
2
n
ãn

(η̂ −η0) has the same asymptotic distribution

as R−1{Ip+q − L(Ip+q ⊗ R−1ρ)}a
2
n
ãn

(ρ̂ − ρ). The convergence in distribution in (4.8) is a direct

consequence of Davis and Resnick (1986) who showed that a2
n
ãn

(ρ̂ − ρ)
d

→ Z.

I Proof of Proposition 4.4

Write, for t = p+ q + 1, . . . , n,

ζ̂t = −
p+q
∑

i=0

η0iXt−i −
p+q
∑

i=1

(η̂i − η0i)Xt−i = −
p+q
∑

i=0

η0iXt−i − (η̂n − η0)′Xt−1,

with η00 = −1 and Xt−1 = (Xt−1, . . . , Xt−p−q)
′. Hence

ã−1
n a2

nρ̂ζ̂(h) =
ã−1
n a2

n

γ̂ζ̂(0)

n
∑

t=p+q+1







p+q
∑

i,j=0

η0iη0jXt−iXt−h−j

+(η̂n − η0)′
p+q
∑

i=0

η0i(Xt−iXt−h−1 +Xt−h−iXt−1)

}

+ oP (1),
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with by convention Xs = 0 for s ≤ 0. Let the (p + q + 1) × (p + q + 1) matrices R̂h = [ρ̂(h + i −

j)]i,j=0,...,p+q, Rh = [ρ(h+ i− j)]i,j=0,...,p+q, and for any strictly positive integers, m, m′ such that

m ≤ m′, let ρ̂m:m′ = [ρ̂(i)]i=m,...,m′ and ρm:m′ = [ρ(i)]i=m,...,m′ . Then,

n
∑

t=p+q+1

p+q
∑

i,j=0

η0iη0jXt−iXt−h−j = γ̂(0)
p+q
∑

i,j=0

η0iη0j ρ̂(h+ j − i) + oP (1)

= γ̂(0)
p+q
∑

i,j=0

η0iη0j{ρ̂(h+ j − i) − ρ(h+ j − i)} + oP (1)

= γ̂(0)η′
0

(

R̂h − Rh

)

η0 + oP (1)

= γ̂(0)
(

η′
0 ⊗ η′

0

)

vec
(

R̂h − Rh

)

,

where the second equality follows from Proposition 4.4. Moreover,

n
∑

t=p+q+1

(η̂n − η0)′
p+q
∑

i=0

η0i(Xt−iXt−h−1 +Xt−h−iXt−1)

= γ̂(0)
p+q
∑

i=0

p+q
∑

j=1

(η̂nj − η0j)η0i

(

ρ̂(h+ j − i) + ρ̂(h+ i− j)
)

+ oP (1)

= γ̂(0)η′
0

(

R̂h + R̂′

h

)

(η̂n − η0) + oP (1).

Let the (p+ q + 1) × (p+ q + 1) matrices Di = J i and D−i = t
J i for i ≥ 0. We have:

R̂h − Rh =
p+q−h
∑

i=1

(

ρ̂(i) − ρ(i)
)(

Dh−i + Dh+i

)

+
h+p+q
∑

i=p+q−h+1

(

ρ̂(i) − ρ(i)
)

Dh−i, if 1 ≤ h ≤ p+ q − 1,

R̂h − Rh =
h+p+q
∑

i=h−p−q

(

ρ̂(i) − ρ(i)
)

Dh−i, if h ≥ p+ q.

Thus, with

Lh =
[

vec(Dh−1 + Dh+1) . . . vec(D2h−p−q + Dp+q) vec(D2h−p−q−1) . . . vec(D−p−q)
]

, if 1 ≤ h ≤ p+ q,

Lh =
[

vec(Dp+q) . . . vec(D−p−q)
]

, if h ≥ p+ q,

we can write

vec
(

R̂h − Rh

)

= Lh

(

ρ̂1:h+p+q − ρ1:h+p+q

)

, if 1 ≤ h ≤ p+ q,

vec
(

R̂h − Rh

)

= Lh

(

ρ̂h−p−q:h+p+q − ρh−p−q:h+p+q

)

, if h ≥ p+ q + 1.
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The two last expressions point to the fact that
(

ρ̂ζ̂(h)
)

h=1,...,H
will depend on

(

ρ̂(i) −

ρ(i)
)

i=1,...,H+p+q
. We therefore rewrite vec

(

R̂h − Rh

)

as

vec
(

R̂h − Rh

)

= LhMh

(

ρ̂1:H+p+q − ρ1:H+p+q

)

,

with Mh being the matrix of size (h+p+q)×(H+p+q) if 0 ≤ h ≤ p+q and (2(p+q))×(H+p+q)

if h ≥ p+ q + 1 picking the appropriate components of
(

ρ̂1:H+p+q − ρ1:H+p+q

)

. More explicitly,

Mh =
(

Ih+p+q 0h+p+q×H−h

)

, if 0 ≤ h ≤ p+ q,

Mh =
(

02(p+q)+1×h−p−q−1 I2(p+q)+1 02(p+q)+1×H−h

)

, if h ≥ p+ q + 1.

Thus, using equations (H.1) and (H.2),

ã−1
n a2

nρ̂ζ̂(h) = ã−1
n a2

n

γ̂(0)

γ̂ζ̂(0)

[

(

η′
0 ⊗ η′

0

)

LhMh + η′
0

(

R̂h + R̂′

h

)

P̂

]

(

ρ̂1:H+p+q − ρ1:H+p+q

)

+ oP (1),

with P̂ :=







01×p+q

Ip+q






R̂

−1
{Ip+q − L(Ip+q ⊗ R−1ρ)}M0.

Finally, letting ÂH =

[

(

η′
0 ⊗ η′

0

)

LhMh + η′
0

(

R̂h + R̂′
h

)

P̂

]

h=1,...,H

denote the matrix resulting

from the vertical piling of vectors, we have

a2
n

ãn
ρ̂ζ̂ = ÂH

a−2
n γ̂(0)

a−2
n γ̂ζ̂(0)

ã−1
n a2

n

(

ρ̂1:H+p+q − ρ1:H+p+q

)

+ oP (1).

By Theorem 4.2 by Davis and Resnick (1985), Theorem 4.4 by Davis and Resnick (1986) and

Lemma I.2 below, P̂
p

→ P :=







01×p+q

Ip+q






R−1{Ip+q − L(Ip+q ⊗ R−1ρ)}M0,

ÂH
p

−→

[

(

η′
0 ⊗ η′

0

)

LhMh + η′
0R′

hP

]

h=1,...,H

:= AH and ρ̂ζ̂
d

−→ γ(0)AHZ where Z =

(Z1, . . . , ZH+p+q), and where the (Zi) are defined at Proposition 4.3.

Lemma I.1 Under the assumptions of Proposition 4.4, a−2
n

(

γ̂(h) − γ(h)γ̂ζ(0)
)

p
−→ 0.

Lemma I.2 Under the assumptions of Proposition 4.4, a−2
n γ̂ζ̂(0) = a−2

n

γ̂(0)

γ(0)
+ oP (1).

I.1 Proof of Lemma I.1

We have

γ̂(h) =
n
∑

t=1

XtXt−h =
n
∑

t=1

∑

i∈Z

∑

j∈Z

didjεt+iεt+j−h =
n
∑

t=1

∑

i∈Z

∑

j 6=i

didj+hεt+iεt+j +
n
∑

t=1

∑

i∈Z

didi+hε
2
t+i.
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From Proposition 4.2 by Davis and Resnick (1986), we have

a−2
n

n
∑

t=1

∑

i∈Z

∑

j 6=i

didj+hεt+iεt+j
p

−→ 0. (I.1)

A direct extension of Proposition 4.3.ii by Davis and Resnick (1986) (see also the proof of Propo-

sition 4.3 by GZ in the AR(1) case) yields

a−2
n





n
∑

t=1

∑

i∈Z

didi+hε
2
t+i − γ(h)

n
∑

t=1

ε2
t





p
−→ 0. (I.2)

Combining equations (I.1) and (I.2), we get a−2
n

(

γ̂(h) − γ(h)γ̂ζ(0)
)

p
−→ 0.

I.2 Proof of Lemma I.2

a−2
n

n
∑

t=1

ζ̂2
t = a−2

n

n
∑

t=1

(

Xt −
p+q
∑

i=1

η0iXt−i +
p+q
∑

i=1

(

η̂i − η0i

)

Xt−i

)2

= a−2
n

n
∑

t=1

[(

Xt −
p+q
∑

i=1

η0iXt−i

)2

+ 2
p+q
∑

i=1

(

η̂i − η0i

)



XtXt−i −
p+q
∑

j=1

η0jXt−iXt−j





+
p+q
∑

i=1

p+q
∑

i=1

(

η̂i − η0i

)(

η̂j − η0j

)

Xt−iXt−j

]

= a−2
n

[

γ̂(0) −
p+q
∑

i=1

η0iγ̂(−j) −
p+q
∑

i=1

η0i



γ̂(i) −
p+q
∑

j=1

η0j γ̂(i− j)





+
p+q
∑

i=1

p+q
∑

i=1

(

η̂i − η0i

)(

η̂j − η0j

)

γ̂(i− j)

]

.

Using Lemma I.1, the fact that η̂ − η0 −→ 0 in probability and the convergence in distribution of

the vector a−2
n

(

γ̂(i), 0 ≤ i ≤ L
)

for any integer L, we get:

a−2
n γ̂ζ̂(0) = a−2

n γ̂ζ(0)

[

γ(0) −
p+q
∑

i=1

η0iγ(−j) −
p+q
∑

i=1

η0i



γ(i) −
p+q
∑

j=1

η0jγ(i− j)





]

+ oP (1).

From Proposition 4.1, we have that η0(B)γ(i) = 0 for any i ≥ 1 and η0(B)γ(0) = 1. Thus

a−2
n γ̂ζ̂(0) = a−2

n γ̂ζ(0) + oP (1) = a−2
n

γ̂(0)

γ(0)
+ oP (1).
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Appendix B: Complementary results

This Appendix consists of six sections of additional results: J) asymptotic prediction of the

MAR(1, q) when α ∈ (0, 1) and an explicit example in the MAR(1, 1) case; K) expectation of

MAR(p, q) processes conditionally on a linear combination of past values and proof of the unit

root property; L) conditional correlation structure of noncausal AR(1) processes and proofs of

Proposition 3.4 and Example 3.2; M) proof of Lemma E.1; N) recursion over polynomials Ph and

Qh; O) tail probability of cluster sizes of extreme errors (4.20) and (4.21) at various horizons; P)

complementary results on the empirical study and details about the estimation of excess clustering

term structures.

J A complement to Corollary 3.2 in the case α ∈ (0, 1) and q > 1

Under the conditions of Proposition 3.2, when α ∈ (0, 1), we have almost surely

∣

∣

∣E [Xt+h| Ft−1]
∣

∣

∣ −→
h→+∞











0 if ψ<α−1> +
∑+∞
i=0 a0,i(ψ

<1−α>)i = 0,

+∞ else,

where the a0,i’s are defined in Lemma E.1.

Proof.

To complete the proof of Corollary 3.2 in this case, we will derive the limit of Qh(ψ<α−1>) =
(

ψ<α−1>
)h−1[

ψ<α−1> +
∑h−1
i=0 a0,i(ψ

<1−α>)i
]

when α < 1. Recall that we have shown a0,h ∼
h→+∞

Chm−1λh.

In this case, we have |λ||ψ|1−α < 1, thus
∣

∣

∣ψ<α−1> +
∑h−1
i=0 a0,i(ψ

<1−α>)i
∣

∣

∣ −→
i→+∞

D, where D is a

nonnegative constant.

• Assume D > 0. Then |Qh(ψ<α−1>)| → +∞ as h tends to infinity, since |ψ|(α−1)(h−1) → +∞.

• Assume D = 0. We will show that |Qh(ψ<α−1>)| −→ 0.

Indeed, we have

ψ<α−1> +
+∞
∑

i=0

a0,i(ψ
<1−α>)i = 0

ψ<α−1> +
h−1
∑

i=0

a0,i(ψ
<1−α>)i = −

+∞
∑

i=h

a0,i(ψ
<1−α>)i.
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Thus,

|Qh(ψ<α−1>)| = |ψ|(α−1)(h−1)
∣

∣

∣ψ<α−1> +
h−1
∑

i=0

a0,i(ψ
<1−α>)i

∣

∣

∣

= |ψ|(α−1)(h−1)
∣

∣

∣

+∞
∑

i=h

a0,i(ψ
<1−α>)i

∣

∣

∣

≤ |ψ|(α−1)(h−1)
+∞
∑

i=h

|a0,i||ψ|i(1−α),

and
+∞
∑

i=h

|a0,i||ψ|i(1−α) ∼
h→+∞

|C|
+∞
∑

i=h

im−1(|λ||ψ|1−α)i.

We will show that for any x ∈ (0, 1), and any integer r ≥ 0,

+∞
∑

i=h

irxi ∼
h→+∞

hrxh(1 − x)−1, (J.1)

which will imply

|ψ|(α−1)(h−1)
+∞
∑

i=h

|a0,i||ψ|i(1−α) =
h→+∞

O(hm−1|λ|h),

and thus |Qh(ψ<α−1>)| −→ 0, yielding the conclusion.

Let us now prove Equation (J.1). Notice that for x ∈ (0, 1), the sequences
(

irxi
)

i
and

(

i(i− 1) . . . (i− r + 1)xi
)

i
are equivalent as i tends to infinity and are both general terms of

absolutely convergent series. Thus,

+∞
∑

i=h

irxi ∼
h→+∞

+∞
∑

i=h

i(i− 1) . . . (i− r + 1)xi = xrg(r)(x),

where g(x) :=
∑+∞
i=h x

i = xh(1 − x)−1.

By Leibniz formula, we obtain

g(r)(x) =
r
∑

j=0

h!(r − j)!

(h− j)!

xh−j

(1 − x)r−j+1
∼

h→+∞

hrxh−r

1 − x
,

and thus,
+∞
∑

i=h

irxi ∼
h→+∞

xr
hrxh−r

1 − x
=
hrxh

1 − x
.

Substituting x by |λ||ψ|1−α concludes the proof.

In the case α ∈ (0, 1), i.e. for the heavier tails within the stable family, the absolute conditional

expectation tends to +∞ in modulus whenever the quantity ψ<α−1> +
∑+∞
i=0 a0,i(ψ

<1−α>)i does

not vanish. This divergence is coherent with the fact that the unconditional expectation of (Xt)
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does not exist when α < 1. It would be striking to have a case for which the above quantity is

exactly zero, which would imply that the conditional expectation vanishes even for this class of

particularly extreme processes. However, as the following example shows, all MAR(1,1) feature

diverging conditional expectation when α < 1.

Example J.1 (Asymptotic predictions of the MAR(1,1) process) Let (Xt) be defined by

Equation (2.3). From the explicit predictions formulated in Example 3.1, we deduce the asymptotic

equivalents as the horizon h tends to infinity:

E

[

Xt+h

∣

∣

∣Ft−1

]

a.s.
∼

h→+∞



















































(ψ<α−1>)h+1

1 − ψ<1−α>φ
(Xt−1 − φXt−2) , if |φ| < |ψ|α−1,

φh+2

φ− ψ<α−1>

(

Xt−1 − ψ<α−1>Xt−2

)

, if |φ| > |ψ|α−1,

φh+1

(

Xt−1 −
1 + (−1)h

2
(Xt−1 − φXt−2)

)

, if φ = −ψ<α−1>,

(h+ 1)φh+1(Xt−1 − φXt−2), if φ = ψ<α−1>.

Noticing that the condition |φ| < |ψ|α−1 is equivalent to α < 1 + ln |φ|
ln |ψ| , with ln |φ|

ln |ψ| > 0, it can be

seen that the three asymptotic limits of Corollary 3.2 are consistent with these equivalents. In

particular, when α = 1, we always have |φ| < 1 = |ψ|α−1 and we get that, almost surely,

∣

∣

∣E [Xt+h|Xt−1, Xt−2]
∣

∣

∣ −→
h→+∞

ℓt−1 =

∣

∣

∣

∣

Xt−1 − φXt−2

1 − sign(ψ)φ

∣

∣

∣

∣

.

K Extension of the unit root property

In the following result, we derive the expectation of Xt conditionally on any linear combination of

the past. The following Proposition will also yield the unit root property of Proposition 3.3.

Proposition K.1 Let α > 1 and let Xt be a MAR(p, q) process with MA(∞) representation given

by (2.2). Then for any h ≥ 0, k ≥ 1, and a1, . . . , ak such that there exists ℓ ∈ Z, a1dℓ+1 + . . . +

akdℓ+k 6= 0, we have

E

[

Xt+h

∣

∣

∣

k
∑

j=1

ajXt−j

]

=

∑

ℓ∈Z dℓ−h
(

∑k
j=1 ajdℓ+j

)<α−1>

∑

ℓ∈Z

∣

∣

∣

∑k
j=1 ajdℓ+j

∣

∣

∣

α (a1Xt−1 + . . .+ akXt−k). (K.1)

Proposition 3.3 is obtained for k = 1, a1 = 1.

Proof.

Let us introduce Yt−1,k = a1Xt−1 + . . . + akXt−k. Let ϕ(u, v) = E

[

eiuYt−1,k+ivXt+h

]

. If α > 1, for

38



any (u, v) ∈ R
2 we have,

ϕ(u, v) = E



exp
{

iu
k
∑

j=1

aj
∑

ℓ∈Z

dℓεt+ℓ−j + v
∑

ℓ∈Z

dℓεt+ℓ+h
}





= E



exp







iu
∑

ℓ∈Z



u
k
∑

j=1

ajdℓ+j + vdℓ−h



 εt+ℓ











= exp







−σα
∑

ℓ∈Z

∣

∣

∣

∣

∣

∣

u
k
∑

j=1

ajdℓ+j + vdℓ−h

∣

∣

∣

∣

∣

∣

α




.

Thus,

∂ϕ

∂u
(u, v) = −ασαϕ(u, v)

∑

ℓ∈Z





k
∑

j=1

ajdℓ+j





∣

∣

∣

∣

∣

∣

u
k
∑

j=1

ajdℓ+j + vdℓ−h

∣

∣

∣

∣

∣

∣

<α−1>

,

and

∂ϕ

∂u

∣

∣

∣

∣

v=0
= −ασα|u|<α−1>ϕ(u, 0)

∑

ℓ∈Z

∣

∣

∣

∣

∣

∣

k
∑

j=1

ajdℓ+j

∣

∣

∣

∣

∣

∣

α

.

We also have

∂ϕ

∂v
(u, v) = −ασαϕ(u, v)

∑

ℓ∈Z

dℓ−h

∣

∣

∣

∣

∣

∣

u
k
∑

j=1

ajdℓ+j + vdℓ−h

∣

∣

∣

∣

∣

∣

<α−1>

,

∂ϕ

∂v

∣

∣

∣

∣

v=0
= −ασα|u|<α−1>ϕ(u, 0)

∑

ℓ∈Z

dℓ−h

∣

∣

∣

∣

∣

∣

k
∑

j=1

ajdℓ+j

∣

∣

∣

∣

∣

∣

<α−1>

.

Therefore,

∂ϕ

∂v

∣

∣

∣

∣

v=0
=

∑

ℓ∈Z dℓ−h
∣

∣

∣

∑k
j=1 ajdℓ+j

∣

∣

∣

<α−1>

∑

ℓ∈Z

∣

∣

∣

∑k
j=1 ajdℓ+j

∣

∣

∣

α
∂ϕ

∂u

∣

∣

∣

∣

v=0
(K.2)

On the other hand, for u 6= 0:

∂ϕ

∂u

∣

∣

∣

∣

v=0
= iE

[

Yt−1,ke
iuYt−1,k

]

,
∂ϕ

∂v

∣

∣

∣

∣

v=0
= iE

[

Xt+he
iuYt−1,k

]

.

Therefore, for u ∈ R
∗:

E












Xt+h −

∑

ℓ∈Z dℓ−h
∣

∣

∣

∑k
j=1 ajdℓ+j

∣

∣

∣

<α−1>

∑

ℓ∈Z

∣

∣

∣

∑k
j=1 ajdℓ+j

∣

∣

∣

α Yt−1,k






eiuYt−1,k






= 0. (K.3)

Hence, from Bierens (Theorem 1, 1982): Thus

E [Xt+h|Yt−1,k] =

∑

ℓ∈Z dℓ−h
∣

∣

∣

∑k
j=1 ajdℓ+j

∣

∣

∣

<α−1>

∑

ℓ∈Z

∣

∣

∣

∑k
j=1 ajdℓ+j

∣

∣

∣

α Yt−1,k.
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The case α ≤ 1 is more intricate because the expectation on the left-hand side of (K.1) might

not exist. However, the conditions for existence can be established using Theorem 2.13 of Samorod-

nistky, Taqqu (1994). This is left for further research.

Example K.1 (Cauchy AR(2) process (continued)) Consider the noncausal AR(2) solution

of (1 − λ1F )(1 − λ2F )Xt = εt with 0 < |λ2| < λ1 < 1 and εt
i.i.d.
∼ S(1, 0, σ, 0). Then Xt =

∑+∞
k≥0 dkεt where dk =

λk+1
1 −λk+1

2
λ1−λ2

> 0 for all k ≥ 0. Applying Proposition K.1 to Xt+h, h ≥ 0, with

(a1, . . . , ak) ∈ (R+)k, k ≥ 1, such that a1 + . . .+ ak 6= 0, it can be shown that

E [Xt+h| a1Xt−1 + . . .+ akXt−k] =
a1Xt−1 + . . .+ akXt−k

a1 + . . .+ ak
.

L Conditional heteroscedasticity of the MAR(1, q) process

In order to prove Proposition 3.4, we need to show some preliminary results about the condi-

tional covariance of noncausal AR(1) processes. We will then turn to the conditional covariance of

MAR(1, q) process from which the conditional variance will be a obtainable.

L.1 Conditional correlation structure of the MAR(1, q)

Lemma L.1 Let Xt be a noncausal AR(1) process satisfying Xt = ψXt+1 + εt, with εt
i.i.d.
∼

S(1, 0, σ, 0). Then, for any nonnegative integers h and τ :

E

[

Xt+hXt+h+τ

∣

∣

∣Xt−1

]

= (sign ψ)τ
[

|ψ|−h−1
(

X2
t−1 +

σ2

(1 − |ψ|)2

)

−
σ2

(1 − |ψ|)2

]

.

Remark L.1 From the previous result, it is possible to derive the whole conditional correlation

structure of (Xt). It can be shown that for any t ∈ Z, and any positive integers h and τ :

Cov
(

Xt+h, Xt+h+τ

∣

∣

∣Xt−1

)

√

V

(

Xt+h

∣

∣

∣Xt−1

)

√

V

(

Xt+h+τ

∣

∣

∣Xt−1

)

= (sign ψ)τ

√

|ψ|−h−1 − 1

|ψ|−h−τ−1 − 1
,

which, when τ → +∞, is asymptotically equivalent to (sign ψ)τ |ψ|τ/2
√

1 − |ψ|h+1 for any h ≥ 0,

and to (sign ψ)τ |ψ|τ/2 when h becomes large. Although in our infinite variance framework, the

unconditional correlation is not defined, empirical correlations can always be computed. We know

from Davis and Resnick (1985,1986) that they converge in probability towards the theoretical

autocorrelations that would prevail in the L2 framework. Given n observations of process (Xt), we

have for any τ ≥ 0,
∑n−τ+1
t=1 XtXt+τ
∑n
t=1X

2
t

p
−→

n→+∞
ψτ .
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Surprisingly, the "unconditional" autocorrelations of (Xt) do not converge to the conditional ones

when n → +∞, and are vanishing at a much slower rate (|ψ|τ/2 instead of |ψ|τ ).

We now turn to the MAR(1, q) process.

Proposition L.1 Let Xt be a MAR(1, q) process, q ≥ 0, solution of Equation (2.1) with εt
i.i.d.
∼

S(1, 0, σ, 0). Then, for any positive integers h and τ , there exist polynomials Ph, Ph+τ , both of

degrees q − 1, and Qh, Qh+τ of respective degrees h and h+ τ such that

E [Xt+hXt+h+τ | Ft−1] = (Ph(B)Xt−1)(Ph+τ (B)Xt−1)

+ sign(ψ)(φ(B)Xt−1)
[

(Ph(B)Xt−1)Qh+τ (sign ψ) + (Ph+τ (B)Xt−1)Qh(sign ψ)
]

+ ch,τ

(

(φ(B)Xt−1)2 +
σ2

(1 − |ψ|)2

)

−
σ2

(1 − |ψ|)2
Qh(sign ψ)Qh+τ (sign ψ),

with ch,τ =
∑h+τ
i=0

∑h
j=0 qi,h+τqj,h(sign ψ)i+j |ψ|− min(i,j)−1 and Qk(z) =

∑k
i=0 qi,kz

i, for any k ≥ 0.

This result yields Proposition 3.3 by taking h = τ = 0, with P0(B) = φ1 + φ2B + . . . + φqB
q and

Q0(B) = 1.

L.2 Proof of Lemma L.1

Consider ϕ(x, y, z) := E

(

eixXt+k+iyXt+ℓ+izXt−1

)

, with 0 ≤ ℓ ≤ k, Xt = ψXt+1 + εt and εt
i.i.d.
∼

S(α, 0, σ, 0). We have

ϕ(x, y, z) = E

(

ei
∑

n∈Z
(xdn−k+ydn−ℓ+zdn+1)εt+n

)

= exp







−σα
∑

n∈Z

|xdn−k + ydn−ℓ + zdn+1|α







.

Thus, on the one hand,

∂ϕ

∂z
= −ασα

∑

n∈Z

dn+1|xdn−k + ydn−ℓ + zdn+1|<α−1>ϕ(x, y, z),

∂2ϕ

∂z2
= (ασα)2





∑

n∈Z

dn+1|xdn−k + ydn−ℓ + zdn+1|<α−1>





2

ϕ(x, y, z)

− α(α− 1)
∑

n∈Z

d2
n+1|xdn−k + ydn−ℓ + zdn+1|α−2ϕ(x, y, z),

∂2ϕ

∂z2

∣

∣

∣

∣

∣

x=0
y=0

= (ασα)2|z|2(α−1)





∑

n∈Z

|dn+1|α





2

ϕ(0, 0, z) − α(α− 1)|z|α−2
∑

n∈Z

|dn+1|αϕ(0, 0, z).
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And on the other hand,

∂ϕ

∂y
= −ασα

∑

n∈Z

dn−ℓ|xdn−k + ydn−ℓ + zdn+1|<α−1>ϕ(x, y, z),

∂2ϕ

∂x∂y
= (ασα)2





∑

n∈Z

dn−ℓ|xdn−k + ydn−ℓ + zdn+1|<α−1>





×





∑

n∈Z

dn−k|xdn−k + ydn−ℓ + zdn+1|<α−1>



ϕ(x, y, z)

− α(α− 1)
∑

n∈Z

dn−ℓdn−k|xdn−k + ydn−ℓ + zdn+1|α−2ϕ(x, y, z),

∂2ϕ

∂x∂y

∣

∣

∣

∣

∣

x=0
y=0

= (ασα)2|z|2(α−1)





∑

n∈Z

dn−ℓ|dn+1|<α−1>









∑

n∈Z

dn−k|dn+1|<α−1>



ϕ(0, 0, z)

− α(α− 1)|z|α−2
∑

n∈Z

dn−ℓdn−k|dn+1|α−2ϕ(0, 0, z).

Hence,

1

A2







∂2ϕ

∂x∂y

∣

∣

∣

∣

∣

x=0
y=0

− (ασα)2A1|z|2(α−1)ϕ(0, 0, z)






= −α(α− 1)|z|α−2ϕ(0, 0, z),

1

B

[

∂2ϕ

∂z2
− (ασα)2B2|z|2(α−1)ϕ(0, 0, z)

]

= −α(α− 1)|z|α−2ϕ(0, 0, z),

with

A1 =





∑

n∈Z

dn−ℓ|dn+1|<α−1>









∑

n∈Z

dn−k|dn+1|<α−1>



 ,

A2 =
∑

n∈Z

dn−ℓdn−k|dn+1|α−2,

A3 =
∑

n∈Z

|dn+1|α.

Therefore,

1

A2







∂2ϕ

∂x∂y

∣

∣

∣

∣

∣

x=0
y=0

− (ασα)2A1|z|2(α−1)ϕ(0, 0, z)






=

1

A3

[

∂2ϕ

∂z2
− (ασα)2A2

3|z|2(α−1)ϕ(0, 0, z)

]

,

This yields for α = 1,

1

A2







∂2ϕ

∂x∂y

∣

∣

∣

∣

∣

x=0
y=0

− σ2A1ϕ(0, 0, z)






=

1

A3

[

∂2ϕ

∂z2
− σ2A2

3ϕ(0, 0, z)

]

.
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Taking into account that dn = ψn1{n≥0} for the noncausal AR(1) and noticing that

∂2ϕ

∂x∂y
= −E

[

Xt+kXt+ℓe
izXt−1

]

,

∂2ϕ

∂z2
= −E

[

X2
t−1e

izXt−1

]

,

we get for any z ∈ R
∗:

E

[{

Xt+kXt+ℓ
− (sign ψ)k+ℓ

(

|ψ|−ℓ−1(X2
t−1 + σ̃2) − σ̃2

)}

eizXt−1

]

= 0,

with σ̃ =
σ

1 − |ψ|
. From Bierens (Theorem 1, 1982):

E

[

Xt+kXt+ℓ

∣

∣

∣Xt−1

]

= (sign ψ)k+ℓ
(

|ψ|−ℓ−1(X2
t−1 + σ̃2) − σ̃2

)

,

which concludes the proof.

L.3 Proof of Proposition L.1

Let k and ℓ be two positive integers such that ℓ ≤ k. From Lemma D.1, we know that for any

h ≥ 0, there exist two polynomials Ph and Qh of respective degrees q − 1 and h such that:

Xt+h = Ph(B)Xt−1 +Qh(F )ut.

Thus, using the same device as in the Proof of Proposition 3.2,

E

[

Xt+kXt+ℓ

∣

∣

∣Xt−1, . . . , Xt−q−1

]

= E

[

(

Pk(B)Xt−1 +Qk(F )ut
)(

Pℓ(B)Xt−1 +Qℓ(F )ut
)

∣

∣

∣

∣

∣

Xt−1, . . . , Xt−q−1

]

,

=
(

Pk(B)Xt−1

)(

Pℓ(B)Xt−1

)

+
(

Pk(B)Xt−1

)

E

[

Qℓ(F )ut
∣

∣

∣ut−1

]

+
(

Pℓ(B)Xt−1

)

E

[

Qk(F )ut
∣

∣

∣ut−1

]

+
k
∑

i=0

ℓ
∑

j=0

qiqjE
[

ut+iut+j
∣

∣

∣ut−1

]

.

The second and third terms can be expressed as:

(

Pk(B)Xt−1

)

E

[

Qℓ(F )ut
∣

∣

∣ut−1

]

+
(

Pℓ(B)Xt−1

)

E

[

Qk(F )ut
∣

∣

∣ut−1

]

=

sign(ψ)
(

φ(B)Xt−1

)[

Qℓ(sign ψ)
(

Pk(B)Xt−1

)

+Qk(sign ψ)
(

Pℓ(B)Xt−1

)]

,
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whereas the fourth term can be rewritten using Lemma L.1:

k
∑

i=0

ℓ
∑

j=0

qiqjE
[

ut+iut+j
∣

∣

∣ut−1

]

=
k
∑

i=0

ℓ
∑

j=0

qiqj(sign ψ)i+j
[

|ψ|− min(i,j)−1
(

(φ(B)Xt−1)2 + σ̃2
)

− σ̃2
]

,

= −σ̃2Qk(sign ψ)Qℓ(sign ψ)

+
(

(φ(B)Xt−1)2 + σ̃2
)

k
∑

i=0

ℓ
∑

j=0

qiqj(sign ψ)i+j |ψ|− min(i,j)−1.

L.4 Proof of Proposition 3.4

The result of Proposition 3.4 is obtained by substituting E

[

Xt+h

∣

∣

∣Ft−1

]

and E

[

X2
t+h

∣

∣

∣Ft−1

]

in

V

(

Xt+h

∣

∣

∣Ft−1

)

= E

[

X2
t+h

∣

∣

∣Ft−1

]

−
(

E

[

Xt+h

∣

∣

∣Ft−1

])2
,

using the formulas of Propositions 3.2 and L.1.

L.5 Details on Example 3.2

By Lemma E.1, the polynomial Qh intervening in Proposition 3.4 reads in the case of the MAR(1,1)

Qh(z) =
h
∑

i=0

φh−izi.

Applying Proposition 3.4, we know that

V

(

Xt+h

∣

∣

∣Ft−1

)

=

(

(Xt−1 − φXt−2)2 +
σ2

(1 − |ψ|)2

)(

ch −
(

Qh(sign ψ)
)2
)

,

with ch =
∑h
i=0

∑h
j=0 qi,hqj,h(sign ψ)i+j |ψ|− min(i,j)−1. Using the explicit form of the qi,k’s, the

coefficients of polynomial Qh, we can deduce that for ψ > 0

ch −
(

Qh(sign ψ)
)2

= φ2h
h
∑

i=0

h
∑

j=0

φ−i−j(ψ− min(i,j)−1 − 1).

which can be simplified by elementary calculations after splitting the sums according to whether

i ≥ j or j > i.
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M Proof of Lemma E.1

For h = 0, Equation (D.1) holds with P0(B) = φ1 + φ2B
2 . . .+ φqB

q−1 and Q0(B) = 1. We have

Xt+h = a0,hXt−1 +
q−1
∑

i=1

ai,hXt−i−1 +
h
∑

i=0

bi,hut+i

= a0,h





q−1
∑

i=0

φi+1Xt−i−2 + ut−1



+
q−1
∑

i=1

ai,hXt−i−1 +
h
∑

i=0

bi,hut+i

=
q−2
∑

i=0

(

ai+1,h + a0,hφi+1

)

Xt−i−2 + a0,hφqXt−q−1 + a0,hut−1 +
h
∑

i=0

bi,hut+i.

Since this last formula holds at any t ∈ Z, this last equation yields

Xt+h+1 =
q−2
∑

i=0

(

ai+1,h + a0,hφi+1

)

Xt−i−1 + a0,hφqXt−q + a0,hut +
h+1
∑

i=1

bi−1,hut+i.

However, we also have by definition

Xt+h+1 = Ph+1(B)Xt−1 +Qh+1(F )ut =
q−1
∑

i=0

ai,h+1Xt−i−1 +
h+1
∑

i=0

bi,h+1ut+i.

Thus, by identification,

aq−1,h+1 = a0,hφq,

ai,h+1 = ai+1,h + a0,hφi+1, for 0 ≤ i ≤ q − 2,

a0,h = b0,h+1,

bi,h+1 = bi−1,h, for 1 ≤ i ≤ h+ 1.

We deduce from these equations that for any h ≥ 0,

bi,h+1 = a0,h−i, for 0 ≤ i ≤ h+ 1,

ai,h+1 =

min(q−i−1,h)
∑

j=0

a0,h−jφi+1+j , for 0 ≤ i ≤ q − 1,

with the convention a0,−1 = 1. We obtain that (a0,h) is the solution of the linear recurrent equation

of order q

a0,h+q = φ1a0,h+q−1 + . . .+ φqa0,h, for h ≥ 0, (M.1)

with initial values (a0,0, . . . , a0,q−1) that could be expressed as functions of φ1, . . . , φq. Denote

λ1, . . . , λs the distinct roots of the polynomial F qφ(B) with respective multiplicities m1, . . . ,ms,
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with s ≤ q, m1 + . . . + ms = q. Since φ has all its roots outside the unit circle, we know that

|λi| < 1 for all i. Therefore, there exist polynomials C1, . . . , Cq of respective degrees m1, . . . ,ms

such that for any h ≥ q,

a0,h = C1(h)λh1 + . . .+ Cs(h)λhs .

N A recursive scheme for computing polynomials Ph and Qh of

Lemma D.1

Lemma N.1 Polynomials Ph and Qh of Lemma D.1 satisfy the following recursive equations:

BPh+1(B) = Ph(B) − Ph(0)φ(B), Qh+1(F ) = FQh(F ) + Ph(0), (N.1)

with initial conditions Q0(B) = 1, P0(B) = φ1 + φ2B + . . .+ φqB
q−1.

Proof. By applying polynomial φ(B) to (D.1), we get by (B.1)

φ(B)Xt+h = Ph(B)φ(B)Xt−1 +Qh(F )φ(B)ut,

B−hut = BPh(B)ut +Qh(F )φ(B)ut,

which implies Bh+1Ph(B) + BhQh(F )φ(B) = 1. The same holds at rank h + 1. Thus, denoting

Qh(F ) =
∑h
i=0 qi,hF

i and Q∗
h(B) := BhQh(F ) =

∑h
i=0 qh−i,hB

i, we also have: Bh+2Ph+1(B) +

Qh+1(B)ψ∗(B)φ(B) = 1. Subtracting the expressions at ranks h and h+ 1 yields:

Bh+1
(

BPh+1(B) − Ph(B)
)

+ φ(B)
(

Q∗
h+1(B) −Q∗

h(B)
)

= 0. (N.2)

We can notice that the term of degree zero in this expression is: φ(0)
(

Q∗
h+1(0) − Q∗

h(0)
)

= 0,

hence qh+1,h+1 = qh,h. Focusing on the next terms of degrees i = 1, . . . , h, we can iteratively

show that qh+1−i,h+1 = qh−i,h. Finally, focusing on the term of degree h + 1, we now deduce that

−Ph(0) + q1,h+1 − q0,h = 0. This leads us to the equality

Q∗
h+1(B) = Q∗

h(B) +Bh+1Ph(0), (N.3)

or equivalently Qh+1(F ) = FQh(F ) + Ph(0), which establishes the right-hand side equation of

(N.1). Finally, replacing (N.3) in (N.2) concludes the proof of Lemma N.1.
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O Diagnostic test of extreme residuals clustering

Figure 6: Theoretical tail probability (given by Equation (4.18)) of cluster sizes of extreme errors (4.20) (true

model, triangles) and (4.21) (misspecified model, points) for α = 1.5, ψ0 = 0.9 at different horizons h.

We illustrate the extreme clustering behaviours of the two error sequences considered in Section

4.3.3 for horizons h = 1, . . . , 20 and parameter values α = 1.5, ψ0 = 0.9. From equations (4.20) and

(4.21), we deduce the sequence (c(k)) and compute the tail probability distributions of the cluster

size using (4.18). As depicted on Figure 6, the errors of the all-pass alternative are rather unlikely to

appear by large clusters for small horizons (e.g. h = 1), which makes them difficult to distinguish
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from the errors of the strong representation. However, for intermediate values of h, the error

sequence of the all-pass displays a much higher probability of large clusters of extremes whereas

the clusters sizes of the errors of the strong representation have probability zero of exceeding h.

P Monte Carlo study: complementary results and methodology

P.1 Asymptotic distribution of the LS estimator

α = 1.5 ψ = 0.7 φ = 0.9 α = 1 ψ = 0.7 φ = 0.9

n q0.1 q0.25 Median q0.75 q0.9 q0.1 q0.25 Median q0.75 q0.9

500 δ̂1 -2.759 -1.338 -0.527 -0.061 0.231 -12.69 -3.569 -0.731 0.012 0.691

δ̂2 -0.265 0.038 0.495 1.284 2.653 -0.873 -0.049 0.694 3.430 12.13

2000 δ̂1 -1.558 -0.746 -0.226 0.086 0.417 -6.321 -1.732 -0.221 0.247 1.382

δ̂2 -0.448 -0.105 0.214 0.730 1.521 -0.662 -0.320 0.001 0.322 0.655

5000 δ̂1 -1.188 -0.565 -0.132 0.156 0.513 -4.564 -1.269 -0.097 0.387 1.824

δ̂2 -0.536 -0.172 0.125 0.561 1.177 -2.098 -0.469 0.096 1.357 4.749

∞ δ̂1 -0.726 -0.252 0.000 0.246 0.719 -5.470 -0.856 0.000 0.954 5.686

δ̂2 -0.762 -0.264 0.000 0.268 0.768 -6.687 -1.110 0.000 1.006 6.503

α = 0.5 ψ = 0.7 φ = 0.9 α = 1.7 ψ = 0.3 φ = 0.4

500 δ̂1 -1307 -114.6 -5.247 0.157 14.06 -1.003 -0.513 -0.042 0.408 0.870

δ̂2 -21.31 -0.412 5.176 114.8 1239 -0.958 -0.484 -0.008 0.466 0.956

2000 δ̂1 -524.3 -40.97 -0.493 2.804 54.63 -0.662 -0.328 -0.016 0.290 0.618

δ̂2 -74.37 -4.171 0.506 46.28 563.9 -0.662 -0.320 0.001 0.322 0.655

5000 δ̂1 -385.3 -28.11 -0.109 5.402 96.34 -0.641 -0.313 -0.008 0.292 0.608

δ̂2 -127.1 -7.493 0.111 33.07 445.0 -0.647 -0.318 -0.001 0.316 0.648

∞ δ̂1 -1546 -31.43 0.000 32.34 1614 -0.555 -0.235 0.000 0.231 0.554

δ̂2 -2129 -42.88 0.000 41.63 2068 -0.614 -0.257 0.001 0.261 0.621

Table P.1: Characteristics of the empirical distribution of δ̂i =
(

n
ln n

)1/α
(η̂i−η0i), for i = 1, 2 over 100,000 simulated

paths of α-stable MAR(1,1) processes (Xt) solution of (1 −ψF )(1 −φB)Xt = εt with four different parametrisations

(α,ψ0, φ0) ∈ {(1.5, 0.7, 0.9), (1, 0.7, 0.9), (0.5, 0.7, 0.9), (1.7, 0.3, 0.4)}. The empirical a-quantile is denoted qa. The

results for n = ∞ are obtained by simulations of the asymptotic distribution in (4.8). [See Example 4.1]

P.2 Direct implementation of the Portmanteau test

We conducted an experiment to assess the direct implementation of the Portmanteau test (without

bootstrap) and focused on α = 1.5, which seems more realistic for financial series (see Footnote
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4). We computed the residuals of the 100,000 simulated paths based on the weak causal AR(2)

fits, evaluate the statistic (4.10) for h = 1, . . . , 10 and simulate its asymptotic distribution. For

each path, we performed the test at three different different nominal sizes 1%, 5% and 10% by

comparing the statistic to the appropriate quantile of the asymptotic distribution. The empirical

sizes are reported in Table P.2. The test suffers heavy distortions, especially in finite sample, which

was expected from the results by Lin and McLeod (2008) in the pure causal AR framework. It is

generally oversized for small lags and progressively becomes undersized as more lags are included.

The empirical sizes slowly approach the nominal sizes as the number of observations increases and

the discrepancy between few and more lags also gets smaller.

n = 500 n = 2000 n = 5000

H 1% 5% 10% 1% 5% 10% 1% 5% 10%

1 6.69 21.2 31.7 3.08 9.42 17.0 1.92 6.28 12.5

2 4.54 16.4 27.1 2.40 7.80 14.7 1.60 5.77 11.6

3 3.40 13.4 22.8 1.96 6.41 12.4 1.36 4.84 10.1

4 2.65 10.7 19.0 1.64 5.38 10.3 1.17 4.17 8.74

5 2.11 8.96 16.2 1.37 4.58 8.96 1.04 3.59 7.61

6 1.61 7.58 13.8 1.16 3.93 7.94 0.91 3.20 6.84

7 1.24 6.49 12.1 1.01 3.51 7.17 0.80 2.86 6.22

8 0.96 5.66 10.6 0.89 3.19 6.58 0.70 2.62 5.73

9 0.74 5.08 9.62 0.81 2.94 5.99 0.64 2.42 5.30

10 0.57 4.55 8.74 0.75 2.70 5.50 0.60 2.26 5.00

Table P.2: Empirical sizes of Portmanteau tests with nominal sizes 1%, 5% and 10% using the first H lags,

H = 1, . . . , 10 of the residuals’ autocorrelations of 100,000 simulated paths of process (Xt) solution of (1 − 0.7F )(1 −

0.9B)Xt = εt, with 1.5-stable noise.

P.3 Extreme residuals clustering

P.3.1 Estimating the term structure of excess clustering

In practice, for one simulated path of the MAR(1,1) process (Xt) and one horizon h, we have

six series of residuals (ζ̂it+h|t)t, i = 1, . . . , 6, one each for the pure causal and noncausal AR(2)

competitors, and two each for the two MAR(1,1) competitors. To compute for each of them the

empirical cluster sizes sequence
(

ξ̂ik,h(x)
)

k
as defined in Section 5.2, we need to choose a threshold

x > 0 which will determine whether a residual is extreme or not. It is desirable to use thresholds

such that we can harmoniously the clustering behaviours of the six series of residuals. For the
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experiment detailed below, instead of directly using the series of residuals, we worked with the

autostandardised series v̂it+h|t :=





ζ̂it+h|t

max
s

|ζ̂is+h|s|





t

which all lie between 0 and 1, and for each

horizon h, we used the threshold

xh := max
i=1,...,6

qa
(

|v̂it+h|t|
)

, (P.1)

where qa(·) the a-percent quantile. In our experiments, a = 0.9 was used. We now detail the

procedure of the experiment. For a given parameterisation (α,ψ0, φ0) and path length n, we

simulate 10,000 paths of process (Xt) solution of (1 − ψ0F )(1 − φ0B)Xt = εt and conducted the

experiment as follows. For each simulated path of (Xt) and a given horizon h ≥ 1:

ι) Estimate the regression Xt = η̂1Xt−1 + η̂2Xt−2 + ζ̂t invoking Proposition 4.3.

ιι) Obtain the (inverted) roots (ψ̂, φ̂) from the estimated characteristic polynomial 1−η̂1B−η̂2B
2

(we impose |ψ̂| ≤ |φ̂| for the sake of identifiability).

ιιι) For each of the four competing models (4.14)-(4.17), decompose the process into pure causal

and noncausal components and compute (v̂it+h|t), the series of standardised errors at horizons h.

ιν) Compute xh, and for each series (v̂it+h|t), i = 1, . . . , 6, compute the cluster sizes sequence
(

ξ̂ik,h(xh)
)

k
and the associated Excess Clustering indicator according to equation (P.1) and (5.1).

For a given parameterisation, this procedure yields for each six series of residuals, 10,000 term

structures of excess clustering. Averaging model-wise across these term structures -recall that the

MAR(1,1) competitors have each two series of residuals whereas the pure causal and noncausal

AR(2) have only one each- allows to gauge the excess clustering of each competing model.

P.3.2 Excess clustering for other parameterisations

If excess residuals clustering is clearly present for the all-pass representations already for small

sample size, it can be seen that the contrast sharply increases as the sample length grows (see the

two upper panels of Figure P.1). Also, even with a much smaller noncausal parameter ψ = 0.2

(lower right panel of Figure P.1), the strong representation still displays the least excess clustering

compared to the three other competitors. We can notice in this case that the pure causal AR(2)

alternative is not far from the strong representation (points). This is coherent with the fact that the

noncausal parameter ψ is relatively small, especially compared to the causal parameter φ, yielding

much weaker dependence across the residuals of the misspecified pure causal AR(2).
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Figure P.1: Across 10,000 simulations of the α-stable MAR(1,1) process (Xt) solution of (1−ψ0F )(1−φ0B)Xt = εt,

average of the term structure of excess clustering of the linear prediction residuals of the four competing models (4.14)

(squares), the strong representation (4.15) (points), (4.16) (triangles) and (4.17) (diamond). The parameterisations

and path lengths are indicated on each panel.

P.3.3 Procedure of EC diagnosis for real data

ι) For increasing total AR order r, fit a backward AR(r) and compute the roots of the charac-

teristic polynomial.

ιι) For all the competing MAR(p, q) models possible, disentangle the causal and the noncausal

components and compute the residuals at multiple horizons.

ιιι) Using the procedure of section 5.2, for each competing model, compute the term structure

of excess clustering.

ιν) Select the specification according to some criterion, a natural criterion for instance: minimal

area under the curve (AUC) of the term structure of excess clustering.

The last step of this procedure might be highly dependent on the chosen selection criterion. In

particular, the natural criterion we mentioned might favour more complex models with higher total

AR order, leading to overfitting. To avoid this, it could be augmented by a penalisation term.
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Alternatively, for each competing model, we could derive the exact asymptotic distribution of the

EC indicator of Equation (5.1) under the null hypothesis that the model is correctly specified to

test whether there is statistically significant excess clustering. These questions are left for further

research.
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