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Abstract

We consider social choice problems where different agents can have different sets of
admissible single-peaked preferences. We show every unanimous and strategy-proof social
choice function on such domains satisfies Pareto property and tops-onlyness. Further, we
characterize all domains on which (i) every unanimous and strategy-proof social choice
function is a min-max rule, and (ii) every min-max rule is strategy-proof. As an application
of our result, we obtain a characterization of the unanimous and strategy-proof social choice
functions on maximal single-peaked domains (Moulin (1980), Weymark (2011)), minimally
rich single-peaked domains (Peters et al. (2014)), maximal regular single-crossing domains
(Saporiti (2009), Saporiti (2014)), and distance based single-peaked domains.
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1. INTRODUCTION

1.1 BACKGROUND

We consider a standard social choice problem where an alternative has to be chosen based on

privately known preferences of the agents in the society. Such a procedure is known as a social
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choice function (SCF). Agents are strategic in the sense that they misreport their preferences

whenever it is strictly beneficial for them. An SCF is called strategy-proof if no agent can benefit

by misreporting her preferences, and is called unanimous if whenever all the agents in the society

unanimously agree on their best alternative, that alternative is chosen.

Most of the subject matter of social choice theory concerns the study of the unanimous and

strategy-proof SCFs for different admissible domains of preferences. In the seminal works by

Gibbard (1973) and Satterthwaite (1975), it is shown that if the society has at least three alternatives

and there is no particular restriction on the preferences of the agents, then every unanimous and

strategy-proof SCF is dictatorial, that is, a particular agent in the society determines the outcome

regardless of the preferences of the others. The celebrated Gibbard-Satterthwaite theorem hinges

crucially on the assumption that the admissible domain of each agent is unrestricted. However, it

is well established that in many economic and political applications, there are natural restrictions

on such domains. For instance, in the models of locating a firm in a unidimensional spatial

market (Hotelling (1929)), setting the rate of carbon dioxide emissions (Black (1948)), setting

the level of public expenditure (Romer and Rosenthal (1979)), and so on, preferences admit a

natural restriction widely known as single-peakedness. Roughly speaking, single-peakedness of

a preference implies that there is a prior order over the alternatives such that the preference

decreases as one moves away (with respect to the prior order) from her best alternative.

1.2 MOTIVATION AND CONTRIBUTION

The study of single-peaked domains dates back to Black (1948), where it is shown that the

pairwise majority rule is strategy-proof on such domains. Later, Moulin (1980) and Weymark

(2011) characterize the unanimous and strategy-proof SCFs on these domains.1,2 However, their

characterization rests upon the assumption that the set of admissible preferences of each agent

in the society is the maximal single-peaked domain, i.e., it contains all single-peaked preferences

with respect to a given prior order over the alternatives. Note that demanding the existence of

1Barberà et al. (1993) and Ching (1997) provide equivalent presentations of this class of SCFs.
2A rich literature has developed around the single-peaked restriction by considering various generalizations and

extensions (see Barberà et al. (1993), Demange (1982), Schummer and Vohra (2002), Nehring and Puppe (2007a), and
Nehring and Puppe (2007b)).
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all single-peaked preferences is a strong prerequisite in many practical situations.3 Furthermore,

the assumption that every agent has the same set of admissible preferences is also quite strong.

This motivates us to analyze the structure of the unanimous and strategy-proof SCFs on domains

where different agents can have different admissible sets of single-peaked preferences. We show

that every unanimous and strategy-proof SCF on such domains satisfies Pareto property and

tops-onlyness.4 Moreover, we show by means of examples that the exact structure of such SCFs

will depend heavily on the domain. In order to obtain a tractable structure of the strategy-proof

SCFs, we restrict our attention to top-connected single-peaked domains. The top-connectedness

property with respect to a prior order requires that for every two consecutive (in that prior order)

alternatives, there exists a preference that places one at the top and the other at the second-ranked

position.5 In this paper, we provide a characterization of the unanimous and strategy-proof SCFs

on top-connected single-peaked domains.

The unanimous and strategy-proof SCFs on the maximal single-peaked domain are known

as min-max rules (Moulin (1980), Weymark (2011)). Min-max rules are quite popular for their

desirable properties like tops-onlyness, Pareto property, and anonymity (for a subclass of min-max

rules called median rules). Owing to the desirable properties of min-max rules, Barberà et al.

(1999) characterize maximal domains on which a given min-max rule is strategy-proof. Recently,

Arribillaga and Massó (2016) provide necessary and sufficient conditions for the comparability of

two min-max rules in terms of their vulnerability to manipulation. Motivated by the importance

of the min-max rules, we characterize all domains on which (i) every unanimous and strategy-

proof social choice function is a min-max rule, and (ii) every min-max rule is strategy-proof. We

call such a domain a min-max domain.

Note that min-max domains do not require that the admissible preferences of all the agents

are the same. Furthermore, it is worth noting that in a social choice problem with m alternatives,

the number of preferences of each agent in a min-max domain can range from 2m − 2 to 2m−1,

whereas that in the maximal single-peaked domain is exactly 2m−1. Thus, on one hand, our result

characterizes the unanimous and strategy-proof SCFs on a large class of single-peaked domains,

3See, for instance, the domain restriction considered in models of voting (Tullock (1967), Arrow (1969)), taxation
and redistribution (Epple and Romer (1991)), determining the levels of income redistribution (Hamada (1973),
Slesnick (1988)), and measuring tax reforms in the presence of horizontal inequity (Hettich (1979)). Recently, Puppe
(2016) shows that under mild conditions these domains form subsets of the maximal single-peaked domain.

4Chatterji and Sen (2011) provide a sufficient condition on a domain so that every unanimous and strategy-proof
SCF on it is tops-only. However, an arbitrary single-peaked domain does not satisfy their condition.

5The top-connectedness property is well studied in the literature (see Barberà and Peleg (1990), Aswal et al. (2003),
Chatterji and Sen (2011), Chatterji et al. (2014), Chatterji and Zeng (2015), Puppe (2016)) and Roy and Storcken (2016).
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and on the other hand, it establishes the full applicability of min-max rules as strategy-proof

SCFs.

1.3 APPLICATIONS

An outstanding example of a top-connected single-peaked domain is a top-connected regular single-

crossing domain.6,7 Saporiti (2014) shows that an SCF is unanimous and strategy-proof on a maximal

single-crossing domain if and only if it is a min-max rule.8 In contrast, our result shows that an

SCF is unanimous and strategy-proof on a top-connected regular single-crossing domain if and

only if it is a min-max rule. Thus, we extend Saporiti (2014)’s result in two ways: (i) by relaxing

the maximality assumption on a single-crossing domain, and (ii) by relaxing the assumption that

every agent has the same set of preferences. However, we assume the domains to be regular. Note

that in a social choice problem with m alternatives, the number of admissible preferences of each

agent in a top-connected regular single-crossing domain can range from 2m − 2 to m(m − 1)/2,

whereas that in the maximal single-crossing domain is exactly m(m − 1)/2.

Other important examples of top-connected single-peaked domains include minimally rich

single-peaked domains (Peters et al. (2014)) and distance based single-peaked domains. A single-peaked

domain is minimally rich if it contains all left single-peaked and all right single-peaked preferences.9,10

Further, a single-peaked domain is called distance based if the preferences in it are derived by

using some type of distances between the alternatives. It follows from our result that an SCF is

unanimous and strategy-proof on these domains if and only if it is a min-max rule.

1.4 REMAINDER

The rest of the paper is organized as follows. We describe the usual social choice framework in

Section 2. In Section 3, we study the structure of the unanimous and strategy-proof SCFs on single-

peaked domains, and in Section 4, we characterize such SCFs on top-connected single-peaked

6A domain is regular if every alternative appears as the top-ranked alternative of some preference in the domain.
7Single-crossing domains appear in models of taxation and redistribution (Roberts (1977), Meltzer and Richard

(1981)), local public goods and stratification (Westhoff (1977), Epple and Platt (1998), Epple et al. (2001)), coalition
formation (Demange (1994), Kung (2006)), selecting constitutional and voting rules (Barberà and Jackson (2004)), and
designing policies in the market for higher education (Epple et al. (2006)).

8Saporiti (2014) provides a different but equivalent functional form of these SCFs which he calls augmented
representative voter schemes.

9A single-peaked preference is called left (or right) single-peaked if every alternative to the left (or right) of the
peak is preferred to every alternative to its right (or left).

10Such preferences appear in directional theories of issue voting (Stokes (1963), Rabinowitz (1978), Rabinowitz
et al. (1982), Rabinowitz and Macdonald (1989)).
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domains. Section 5 characterizes min-max domains. In Section 6, we discuss some applications of

our results, and we conclude the paper in the last section. All the omitted proofs are collected in

Appendices A - D.

2. PRELIMINARIES

Let N = {1, ..., n} be a set of at least two agents, who collectively choose an element from a finite

set X = {a, a + 1, . . . , b − 1, b} of at least three alternatives, where a is an integer. For x, y ∈ X

such that x ≤ y, we define the intervals [x, y] = {z ∈ X | x ≤ z ≤ y}, [x, y) = [x, y] \ {y},

(x, y] = [x, y] \ {x}, and (x, y) = [x, y] \ {x, y}. For notational convenience, whenever it is clear

from the context, we do not use braces for singleton sets, i.e., we denote sets {i} by i.

A preference P over X is a complete, transitive, and antisymmetric binary relation (also called a

linear order) defined on X. We denote by L(X) the set of all preferences over X. An alternative

x ∈ X is called the kth ranked alternative in a preference P ∈ L(X), denoted by rk(P), if |{a ∈ X |

aPx}| = k − 1.

Definition 2.1. A preference P ∈ L(X) is called single-peaked if for all x, y ∈ X, [x < y ≤

r1(P) or r1(P) ≤ y < x] implies yPx.

For an agent i, we denote by Si a set of admissible single-peaked preferences. A set SN = ∏
i∈N

Si

is called a single-peaked domain. Note that we do not assume that the set of admissible preferences

are the same across all agents. An element PN = (P1, . . . , Pn) ∈ SN is called a preference profile.

The top-set of a preference profile PN, denoted by τ(PN), is defined as τ(PN) =
⋃

i∈N

r1(Pi). A set

Si of admissible preferences of agent i is regular if for all x ∈ X, there exists a preference P ∈ Si

such that r1(P) = x. Throughout this paper, we assume that the set of admissible preferences of

each agent i is regular.

Definition 2.2. A social choice function (SCF) f on SN is a mapping f : SN → X.

Definition 2.3. An SCF f : SN → X is unanimous if for all PN ∈ SN such that r1(Pi) = x for all

i ∈ N and some x ∈ X, we have f (PN) = x.

Definition 2.4. An SCF f : SN → X satisfies Pareto property if for all PN ∈ SN and all x, y ∈ X,

xPiy for all i ∈ N implies f (PN) 6= y.
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REMARK 2.1. Note that since Si is single-peaked for all i ∈ N, an SCF f : SN → X satisfies Pareto

property if f (PN) ∈ [min(τ(PN)), max(τ(PN))] for all PN ∈ SN.

Definition 2.5. An SCF f : SN → X is manipulable if there exists i ∈ N, PN ∈ SN, and P′
i ∈ Si

such that f (P′
i , PN\i)Pi f (PN). An SCF f is strategy-proof if it is not manipulable.

Definition 2.6. Two preference profiles PN, P′
N ∈ SN are called tops-equivalent if r1(Pi) = r1(P′

i )

for all i ∈ N.

Definition 2.7. An SCF f : SN → X is called tops-only if for any two tops-equivalent PN , P′
N ∈ SN ,

f (PN) = f (P′
N).

Definition 2.8. An SCF f : SN → X is called uncompromising if for all PN ∈ SN, all i ∈ N, and all

P′
i ∈ Si :

(i) if r1(Pi) < f (PN) and r1(P′
i ) ≤ f (PN), then f (PN) = f (P′

i , PN\i), and

(ii) if f (PN) < r1(Pi) and f (PN) ≤ r1(P′
i ), then f (PN) = f (P′

i , PN\i).

REMARK 2.2. If an SCF satisfies uncompromisingness, then by definition, it is tops-only.

Definition 2.9. Let β = (βS)S⊆N be a list of 2n parameters satisfying: (i) βS ∈ X for all S ⊆ N, (ii)

β∅ = b, βN = a, and (iii) for any S ⊆ T, βT ≤ βS. Then, an SCF f β : SN → X is called a min-max

rule with respect to β if

f β(PN) = min
S⊆N

{max
i∈S

{r1(Pi), βS}}.

REMARK 2.3. Every min-max rule is uncompromising.11

3. SCFS ON SINGLE-PEAKED DOMAINS

In this section, we establish two important properties, namely Pareto property and tops-onlyness,

of the unanimous and strategy-proof SCFs on arbitrary single-peaked domains.

Theorem 3.1. Every unanimous and strategy-proof SCF f : SN → X satisfies Pareto property.

The proof of Theorem 3.1 is relegated to Appendix A.

Theorem 3.2. Every unanimous and strategy-proof SCF f : SN → X satisfies tops-onlyness.

The proof of Theorem 3.2 is relegated to Appendix B.

11For details, see Weymark (2011).
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4. SCFS ON TOP-CONNECTED SINGLE-PEAKED DOMAINS

In this section, we characterize the unanimous and strategy-proof SCFs on single-peaked domains

satisfying top-connectedness. First, we present an example to show that the structure of the

unanimous and strategy-proof SCFs on arbitrary single-peaked domains is quite intractable.

Example 4.1. Fix x, y ∈ X with y− x ≥ 2. For all i ∈ N, define the set of single-peaked preferences

S
xy
i as follows: for all P ∈ S

xy
i , r1(P) ∈ (x, y) implies ry−x−1(P) = x and ry−x(P) = y. In other

words, the set of preferences S
xy
i is such that if the top-alternative of a preference is in the interval

(x, y), then all the alternatives in that interval are ranked in the top y − x − 2 positions, and x

and y are ranked consecutively after those alternatives. Similarly, define S
yx
i as follows: for all

P ∈ S
yx
i , r1(P) ∈ (x, y) implies ry−x−1(P) = y and ry−x(P) = x.

Let β = (β j)j∈N be such that β j ∈ [x, y] for all j ∈ N with min
j∈N

β j = x and max
j∈N

β j = y. Consider

the SCF f xy : S
xy
N → X as given below:

f xy(PN) =







median{r1(P2), . . . , r1(Pn), β1, . . . , βn}, if r1(P1) ∈ [x, y)

r1(P1), otherwise

Similarly, define f yx : S
yx
N → X as follows:

f yx(PN) =







median{r1(P2), . . . , r1(Pn), β1, . . . , βn}, if r1(P1) ∈ (x, y]

r1(P1), otherwise

Note that both f xy and f yx are unanimous by definition. We show that f xy is strategy-proof on

S
xy
N , but manipulable on S

yx
N . It follows from similar arguments that f yx is strategy-proof on S

yx
N ,

but manipulable on S
xy
N .

Clearly, no agent can manipulate f xy at a profile PN ∈ S
xy
N where r1(P1) /∈ [x, y). Consider a

profile PN ∈ S
xy
N where r1(P1) ∈ [x, y). Since f xy(PN) = median{r1(P2), . . . , r1(Pn), β1, . . . , βn}

and S
xy
i is single-peaked, by the property of a median rule, an agent i 6= 1 cannot manipulate

at PN. Now, consider a preference P′
1 ∈ S

xy
1 . If r1(P′

1) ∈ [x, y), then f xy(P′
1, PN\1) = f xy(PN) and

hence agent 1 cannot manipulate. On the other hand, if r1(P′
1) /∈ [x, y), then f xy(P′

1, PN\1) =

r1(P′
1) /∈ [x, y). However, by the definition of S

xy
1 , uP1v for all u ∈ [x, y) and all v /∈ [x, y), this

means f xy(PN)P1 f xy(P′
1, PN\1), and hence agent 1 cannot manipulate at PN.

Now, we show that f xy is manipulable on S
yx
N . Consider a profile PN ∈ S

yx
N where r1(P1) ∈
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(x, y) and r1(Pj) = x for all j 6= i. Then, by the definition of f xy, f xy(PN) = x. Let P′
1 ∈ S

yx
1 be

such that r1(P′
1) = y. Then, f xy(P′

1, PN\1) = y. However, since P1 ∈ S
yx
1 , by the definition of S

yx
1 ,

yP1x. This means agent 1 manipulates at PN via P′
1.

Note that for all i ∈ N, S
yx
i can be obtained from S

xy
i by swapping x and y in the preferences

with top-ranked alternative in (x, y). Furthermore, the ranks of x and y are bigger than y − x − 2.

This shows that, if x and y are far apart, then the structure of a unanimous and strategy-proof SCF

will crucially depend on the lower ranked alternatives of the preferences making the presentation

of such SCFs intractable. Therefore, we impose a mild restriction called top-connectedness

on single-peaked domains, and characterize the unanimous and strategy-proof SCFs on such

domains. We begin with a few formal definitions.

Definition 4.1. A set of single-peaked preferences S is called top-connected if for all x, y ∈ X with

|x − y| = 1, there exists P ∈ S such that r1(P) = x and r2(P) = y.

Note that the minimum cardinality of a top-connected set of single-peaked preferences with m

alternatives is 2m − 2. Also, since the maximal set of single-peaked preferences is top-connected,

the maximum cardinality of such a set is 2m−1. Thus, the class of top-connected set of single-

peaked preferences is quite large. In what follows, we provide an example of a top-connected set

of single-peaked preferences with five alternatives.

Example 4.2. Let X = {x1, x2, x3, x4, x5}, where x1 < x2 < x3 < x4 < x5. Then, the set of

single-peaked preferences in Table 1 is top-connected.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

x1 x2 x2 x2 x2 x3 x3 x3 x3 x4 x4 x5

x2 x1 x3 x3 x3 x2 x4 x4 x4 x3 x5 x4

x3 x3 x4 x1 x4 x4 x2 x5 x2 x5 x3 x3

x4 x4 x1 x4 x5 x5 x5 x2 x1 x2 x2 x2

x5 x5 x5 x5 x1 x1 x1 x1 x5 x1 x1 x1

Table 1: A top-connected set of single-peaked preferences

Now, we provide a characterization of the unanimous and strategy-proof SCFs on top-connected

single-peaked domains.
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Theorem 4.1. Let Si be a top-connected set of single-peaked preferences for all i ∈ N. Then, an SCF

f : SN → X is unanimous and strategy-proof if and only if it is a min-max rule.

The proof of Theorem 4.1 is relegated to Appendix C.

The following corollary is immediate from Theorem 4.1.

Corollary 4.1 (Moulin (1980), Weymark (2011)). Let Si be the maximal set of single-peaked preferences

for all i ∈ N. Then, an SCF f : SN → X is unanimous and strategy-proof if and only if it is a min-max

rule.

5. MIN-MAX DOMAINS

In this section, we introduce the notion of min-max domains and provide a characterization of

these domains.

Definition 5.1. Let Di ⊆ L(X) for all i ∈ N and let DN = ∏
i∈N

Di. Then, DN is called a min-max

domain if

(i) every unanimous and strategy-proof SCF on DN is a min-max rule, and

(ii) every min-max rule on DN is strategy-proof.

Our next theorem provides a characterization of the min-max domains.

Theorem 5.1. A domain DN is a min-max domain if and only if Di is a top-connected set of single-peaked

preferences for all i ∈ N.

The proof of Theorem 5.1 is relegated to Appendix D.

6. APPLICATIONS

6.1 REGULAR SINGLE-CROSSING DOMAINS

In this subsection, we introduce the notion of regular single-crossing domains and provide a

characterization of the unanimous and strategy-proof SCFs on these domains.

Definition 6.1. A set of preferences S is called single-crossing if there is a linear order ⊳ on S such

that for all x, y ∈ X and all P, P̂ ∈ S ,

[x < y, P ⊳ P̂, and xP̂y] ⇒ xPy.

9



Definition 6.2. A single-crossing set of preferences S is called maximal if there is no single-crossing

set of preferences S ′ such that S ( S ′.

In what follows, we provide an example of a maximal regular single-crossing set of preferences

with five alternatives.

Example 6.1. Let X = {x1, x2, x3, x4, x5}, where x1 < x2 < x3 < x4 < x5. Then, the set of

preferences in Table 2 is maximal regular single-crossing with respect to the linear order given

by P1 ⊳ P2 ⊳ P3 ⊳ P4 ⊳ P5 ⊳ P6 ⊳ P7 ⊳ P8 ⊳ P9 ⊳ P10 ⊳ P11. To see this, consider

two alternatives, say x2 and x4. Then, x2Px4 for all P ∈ {P1, P2, P3, P4, P5, P6} and x4Px2 for all

P ∈ {P7, P8, P9, P10, P11}. Therefore, x2P̂x4 for some P̂ ∈ D and P ⊳ P̂ imply x2Px4.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

x1 x2 x2 x2 x2 x3 x3 x3 x4 x4 x5

x2 x1 x3 x3 x3 x2 x4 x4 x3 x5 x4

x3 x3 x1 x4 x4 x4 x2 x5 x5 x3 x3

x4 x4 x4 x1 x5 x5 x5 x2 x2 x2 x2

x5 x5 x5 x5 x1 x1 x1 x1 x1 x1 x1

Table 2: A maximal regular single-crossing set of preferences

REMARK 6.1. Note that a maximal regular single-crossing set of preferences is not unique.

The following lemmas establish two crucial properties of a (maximal) regular single-crossing

set of preferences.

Lemma 6.1 (Elkind et al. (2014), Puppe (2016)). Every regular single-crossing set of preferences is

single-peaked.

Lemma 6.2. Every maximal regular single-crossing set of preferences is top-connected.

Proof. Let S be a maximal regular single-crossing set of preferences. Then, by Lemma 6.1, S is a

regular set of single-peaked preferences. Take x ∈ X \ {b}. We show that there exist P, P′ ∈ S

such that r1(P) = r2(P′) = x and r2(P) = r1(P′) = x + 1. Without loss of generality, assume

for contradiction that for all P ∈ S with r1(P) = x, r2(P) 6= x + 1. Because S is single-peaked,

if x = a, then r2(P) = a + 1 for all P ∈ S with r1(P) = a, which is a contradiction. So, assume

10



x 6= a. Because S is single-peaked and x /∈ X \ {a, b}, for all P ∈ S with r1(P) = x, r2(P) 6= x + 1

implies r2(P) = x − 1. Let ⊳∈ L(S) be such that for all u, v ∈ X and all P, P̂ ∈ S ,

[u < v, P ⊳ P̂, and uP̂v] ⇒ uPv.

Take P̂ ∈ S with r1(P̂) = x such that for all P ∈ S with P̂ ⊳ P, r1(P) 6= x. Consider the preference

P̃ with r1(P̃) = x and r2(P̃) = x + 1 such that for all u, v ∈ X \ {x, x + 1}, uP̃v if and only if

uP̂v. Because r1(P̃) = x and r2(P̃) = x + 1, by our assumption, P̃ /∈ S . Therefore, since S is

regular single-crossing, it follows that S ∪ P̃ is also single-crossing with respect to the ordering

⊳
′∈ L(S ∪ P̃), where ⊳

′ is obtained by placing P̃ just after P̂ in the ordering ⊳, i.e., for all

P, P′ ∈ S , P ⊳
′ P′ if and only if P ⊳ P′, and there is no P ∈ S̄c with P̂ ⊳

′ P ⊳
′ P̃. However, this

contradicts the maximality of S , which completes the proof. �

The following corollary follows from Theorem 4.1 and Lemma 6.2. It characterizes the unani-

mous and strategy-proof SCFs on maximal regular single-crossing domains.

Corollary 6.1 (Saporiti (2014)). Let Si be a maximal regular single-crossing set of preferences for all

i ∈ N. Then, an SCF f : SN → X is unanimous and strategy-proof if and only if it is a min-max rule.

The following corollary is obtained from Theorem 4.1 and Lemma 6.1. It characterizes the

unanimous and strategy-proof SCFs on top-connected regular single-crossing domains. Note

that in a social choice problem with m alternatives, the cardinality of a top-connected regular

single-crossing set of preferences can range from 2m− 2 to m(m− 1)/2, whereas that of a maximal

regular single-crossing set of preferences is exactly m(m − 1)/2.

Corollary 6.2. Let Si be a top-connected regular single-crossing set of preferences for all i ∈ N. Then, an

SCF f : SN → X is unanimous and strategy-proof if and only if it is a min-max rule.

6.2 MINIMALLY RICH SINGLE-PEAKED DOMAINS

In this subsection, we present a characterization of the unanimous and strategy-proof SCFs on

minimally rich single-peaked domains. The notion of minimally rich single-peaked domains

is introduced in Peters et al. (2014). For the sake of completeness, we present below a formal

definition of such domains.
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Definition 6.3. A single-peaked preference P is called left single-peaked (right single-peaked) if for

all u < r1(P) < v, we have uPv (vPu). Moreover, a set of single-peaked preferences S is called

minimally rich if it contains all left and all right single-peaked preferences.

Clearly, a minimally rich set of single-peaked preferences is top-connected. So, we have the

following corollary from Theorem 4.1.

Corollary 6.3. Let Si be a minimally rich set of single-peaked preferences for all i ∈ N. Then, an SCF

f : SN → X is unanimous and strategy-proof if and only if it is a min-max rule.

6.3 DISTANCE BASED SINGLE-PEAKED DOMAINS

In this subsection, we introduce the notion of single-peaked domains that are based on distances.

Consider the situation where a public facility has to be developed at one of the locations x1, . . . , xm.

Suppose that there is a street connecting these locations, and for every two locations xi and xi+1,

there are two types of distances, a forward distance from xi to xi+1 and a backward distance from

xi+1 to xi. An agent bases her preferences on such distances, i.e., whenever a location is strictly

closer than another to her most preferred location, she prefers the former to the latter. Moreover,

ties are broken on both sides. We show that under some condition on the distances, such a set of

preferences is top-connected single-peaked. Below, we present this notion formally.

Consider the directed line graph G = 〈X, E〉 on X.12 A function d : E → (0, ∞) is called a

distance function on G. Given a distance function d, define the distance between two alternatives

x, y as the distance of the path between x and y, i.e., d(x, y) = d(x, x + 1) + . . . + d(y − 1, y) if

x < y and as d(x, y) = d(x, x − 1) + . . . + d(y + 1, y) if x > y. A preference P respects a distance

function d if for all x, y ∈ X, d(r1(P), x) < d(r1(P), y) implies xPy. A set of preferences S is called

single-peaked with respect to a distance function d if S = {P ∈ L(X) | P respects d}.

A distance function satisfies adjacent symmetry if d(x, x + 1) = d(x, x − 1) for all x ∈ X \ {a, b}.

Below, we provide an example of a set of single-peaked preferences with respect to an adjacent

symmetric distance function.

Example 6.2. Let X = {x1, x2, x3, x4, x5}, where x1 < x2 < x3 < x4 < x5. The directed line graph

G = 〈X, E〉 on X and the adjacent symmetric distance function d on E are as given below.

12A graph G = 〈X, E〉 is called a directed line graph if (x, y) ∈ E ⇐⇒ |x − y| = 1.
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Figure 1: The directed line graph G on X and an adjacent symmetric distance function d on G

Then, the set of preferences in Table 3 is single-peaked with respect to the distance function d.

P1 P2 P3 P4 P5 P6 P7 P8

x1 x2 x2 x3 x3 x4 x4 x5

x2 x3 x1 x4 x2 x5 x3 x4

x3 x1 x3 x2 x4 x3 x5 x3

x4 x4 x4 x5 x5 x2 x2 x2

x5 x5 x5 x1 x1 x1 x1 x1

Table 3: A set of single-peaked preferences with respected to the distance function d

Let G = 〈X, E〉 be the directed line graph on X and let d : E → (0, ∞) be an adjacent symmetric

distance function. Then, it is easy to verify that a set of single-peaked preferences with respect

to the distance function d is top-connected. Therefore, we have the following corollary from

Theorem 4.1.

Corollary 6.4. Let G = 〈X, E〉 be the directed line graph on X and let di : E → (0, ∞) be an adjacent

symmetric distance function for all i ∈ N. Suppose that for all i ∈ N, Si is a set of single-peaked preferences

with respect to the distance function di. Then, f : SN → X is unanimous and strategy-proof if and only if

it is a min-max rule.

7. CONCLUDING REMARKS

In this paper, we have studied social choice problems where different agents can have different

sets of single-peaked preferences. We have shown that every unanimous and strategy-proof SCFs

on such domains satisfy Pareto property and tops-onlyness. We have further shown that if such a

domain satisfies a mild restriction called top-connectedness, then every unanimous and strategy-

proof SCFs on it is a min-max rule. Outstanding examples of top-connected single-peaked

domains are maximal single-peaked domains, minimally rich single-peaked domains, distance

based single-peaked domains, and top-connected regular single-crossing domains. Finally, we
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have introduced the notion of min-max domains, the domains for which the set of unanimous

and strategy-proof SCFs coincides with that of min-max rules. We have shown that a domain is a

min-max domain if and only if it is a top-connected single-peaked domain.

APPENDIX A. PROOF OF THEOREM 3.1

Let us introduce a few pieces of notations that we use in the proof of Theorem 3.1. For a profile PN ,

we denote by min
2

(τ(PN)) the second minimum of τ(PN). More formally, min
2

(τ(PN)) = x if and

only if x ∈ τ(PN) and |{y ∈ τ(PN) | y < x}| = 1. Similarly, we denote by max
2

(τ(PN)) the second

maximum of τ(PN). Finally, for k ∈ {1, . . . n}, let SN(k) = {PN ∈ SN | |τ(PN)| = k} be the set of

preference profiles having k different top-ranked alternatives. Note that SN =
n
⋃

k=1

SN(k).

Proof. We prove the theorem by using induction on the number of different top-ranked alterna-

tives at a profile. By Remark 2.1, it is sufficient to prove that f (PN) ∈ [min(τ(PN)), max(τ(PN))].

By unanimity, min(τ(PN)) = f (PN) = max(τ(PN)) for all PN ∈ SN(1). Take k ∈ {1, . . . , n − 1}.

Suppose f (PN) ∈ [min(τ(PN)), max(τ(PN))] for all PN ∈ SN(k). We show that the same holds

for all PN ∈ SN(k + 1).

Take PN ∈ SN(k + 1). Without loss of generality, assume for contradiction that f (PN) >

max(τ(PN)). Take i1 ∈ N such that r1(Pi1) = min(τ(PN)). Consider P′
i1
∈ Si1 such that r1(P′

i1
) =

min
2

(τ(PN)). Then, by strategy-proofness, f (P′
i1

, PN\i1
) /∈ [min(τ(PN)), f (PN)). To see this,

note that if f (P′
i1

, PN\i1
) ∈ [min(τ(PN)), f (PN)), then agent i1 manipulates at PN via P′

i1
. Since

f (PN) > max(τ(PN)), this means

f (P′
i1

, PN\i1
) /∈ [min(τ(PN)), max(τ(PN))]. (1)

Note that by construction |τ(P′
i1

, PN\i1
)| ≤ |τ(PN)|. Clearly, if |τ(P′

i1
, PN\i1

)| = k, then (1) contra-

dicts our induction hypothesis. Suppose |τ(P′
i1

, PN\i1
)| = k + 1. This means min(τ(P′

i1
, PN\i1

)) =

min(τ(PN)) and max(τ(P′
i1

, PN\i1
)) = max(τ(PN)). If f (P′

i1
, PN\i1

) < min(τ(PN)) then take

i2 ∈ N such that r1(Pi2) = max(τ(PN)), and if f (P′
i1

, PN\i1
) > max(τ(PN)) then take i2 ∈ N

such that r1(Pi2) = min(τ(PN)). Consider P′
i2
∈ Si2 such that r1(P′

i2
) = max

2
(τ(PN)) if r1(Pi2) =

max(τ(PN)), and r1(P′
i2
) = min

2
(τ(PN)) if r1(Pi2) = min(τ(PN)). Using a similar arguments as
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for the derivation of (1), it follows that

f (P′
i1

, P′
i2

, PN\{i1,i2}) /∈ [min(τ(PN)), max(τ(PN))]. (2)

Continuing in this manner, we construct a sequence of agents i1, . . . , il with r1(Pj) ∈ {min(τ(PN), max(τ

and P′
j ∈ Sj with r1(P′

j ) ∈ {min
2

(τ(PN)), max
2

(τ(PN))} for all j = i1, . . . , il such that |τ(P′
i1

, . . . , P′
il

, PN\{i1,...,

k and f (P′
i1

, . . . , P′
il
, PN\{i1,...,il}

) /∈ [min(τ(PN)), max(τ(PN))]. However, this contradicts our in-

duction hypothesis, which completes the proof of the theorem. �

APPENDIX B. PROOF OF THEOREM 3.2

Proof. Let PN ∈ SN, i ∈ N and P′
i ∈ Si be such that r1(Pi) = r1(P′

i ). It is sufficient to prove that

f (PN) = f (P′
i , PN\i). Suppose not. Let r1(Pi) = r1(P′

i ) = x, f (PN) = y, and f (P′
i , PN\i) = y′. By

strategy-proofness, we have yPiy
′ and y′P′

i y. Since r1(Pi) = r1(P′
i ) = x, by single-peakedness

of Si and strategy-proofness of f , this means either y < x < y′ or y′ < x < y. Assume with-

out loss of generality that y < x < y′. Since f (P′
i , PN\i) > x, by Pareto property, we have

max(τ(P′
i , PN\i)) > x. Take i1 ∈ N such that r1(Pi1) = max(τ(P′

i , PN\i)). Consider the preference

P′
i1
∈ Si1 of agent i1 where P′

i1
= P′

i .

Claim 1. f (Pi, P′
i1

, PN\{i,i1}
) = y.

Suppose not. Since r1(Pi1) = max(τ(P′
i , PN\i)) = max(τ(PN)), we have by Pareto property,

f (Pi, P′
i1

, PN\{i,i1}
) ≤ r1(Pi1). Now, if f (Pi, P′

i1
, PN\{i,i1}

) < y, then i1 manipulates at (Pi, P′
i1

, PN\{i,i1}
)

via Pi1 . On the other hand, if f (Pi, P′
i1

, PN\{i,i1}
) > y, then i1 manipulates at PN via P′

i1
. This com-

pletes the proof of the claim.

Claim 2. f (P′
i , P′

i1
, PN\{i,i1}

) > x.

Assume for contradiction that f (P′
i , P′

i1
, PN\{i,i1}

) ≤ x. If f (P′
i , P′

i1
, PN\{i,i1}

) < y, then by Claim

1, i manipulates at (P′
i , P′

i1
, PN\{i,i1}

) via Pi. On the other hand, if f (P′
i , P′

i1
, PN\{i,i1}

) ∈ (y, x], then

again by Claim 1, i manipulates at (Pi, P′
i1

, PN\{i,i1}
) via P′

i . Finally, if f (P′
i , P′

i1
, PN\{i,i1}

) = y, then

by the facts that y′P′
i1

y and f (P′
i , Pi1 , PN\{i,i1}

) = y′, agent i1 manipulates at (P′
i , P′

i1
, PN\{i,i1}

) via

Pi1 . This completes the proof of the claim.

Now, we complete the proof of the theorem. Note that since f (P′
i , P′

i1
, PN\{i,i1}

) > x, if

max(τ(P′
i , P′

i1
, PN\{i,i1}

)) = x, then Claim 2 contradicts Pareto property. So, suppose max(τ(P′
i , P′

i1
, PN\{i,i1}

x. Take i2 ∈ N such that r1(Pi2) = max(τ(P′
i , P′

i1
, PN\{i,i1}

)). Consider P′
i2
∈ Si2 such that P′

i2
= P′

i .
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Using similar argument as for the proofs of Claim 1 and Claim 2, we have

f (Pi, P′
i1

, P′
i2

, PN\{i,i1,i2}) = y, and

f (P′
i , P′

i1
, P′

i2
, PN\{i,i1,i2}) > x.

Continuing in this manner, we can construct a sequence i1, . . . , ik of agents with the properties

that (i) for all j = 1, . . . , k, r1(Pij
) = max(τ(P′

i , P′
i1

, . . . , P′
ij−1

, PN\{i,i1,...,ij−1}
)) and P′

ij
= P′

i , and (ii)

max(τ(P′
i , P′

i1
, . . . , P′

ij
, PN\{i,i1,...,ij}

)) = x such that

f (P′
i , P′

i1
, . . . , P′

ij
, PN\{i,i1,...,ij}

) > x.

However, since max(τ(P′
i , P′

i1
, . . . , P′

ij
, PN\{i,i1,...,ij}

)) = x and f (P′
i , P′

i1
, . . . , P′

ij
, PN\{i,i1,...,ij}

) > x,

we have a contradiction to the Pareto property of f . This completes the proof of the theorem. �

APPENDIX C. PROOF OF THEOREM 4.1

Proof. (If part) Note that a min-max rule is unanimous by definition (on any domain). We show

that such a rule is strategy-proof on SN. For all i ∈ N, let S̄i be the maximal set of single-peaked

preferences. By Weymark (2011), a min-max rule is strategy-proof on S̄N. Since Si ⊆ S̄i for all

i ∈ N, a min-max rule must be strategy-proof on SN. This completes the proof of the if part.

(Only-if part) Let Si be a top-connected single-peaked set of preferences for all i ∈ N and let

f : SN → X be a unanimous and strategy-proof SCF. We show that f is a min-max rule. First, we

establish a few properties of f in the following sequence of lemmas.

By Theorem 3.1 and Theorem 3.2, f must satisfy Pareto property and tops-onlyness. Our next

lemma shows that f is uncompromising.

Lemma C.1. The SCF f is uncompromising.

Proof. Let PN ∈ SN, i ∈ N, and P′
i ∈ Si be such that r1(Pi) < f (PN) and r1(P′

i ) ≤ f (PN). It is

sufficient to show f (P′
i , PN\i) = f (PN). Suppose r1(Pi) = x, f (PN) = y, and f (P′

i , PN\i) = y′. By

means of strategy-proofness, we assume that r1(P′
i ) = y′ and min(τ(P′

i , PN\i)) = y′.13 Assume

for contradiction that y 6= y′.

13Since f (P′
i , PN\i) = y′, if r1(P′

i ) 6= y′, then by strategy-proofness, f (P′′
i , PN\i) = y′ for some P′′

i ∈ Si with

r1(P′′
i ) = y′. Similarly, if r1(Pj) < y′ for some j ∈ N \ i, then by strategy-proofness, f (P′

i , P′
j , PN\{i,j}) = y′ for some

P′
j ∈ Sj with r1(P′

j ) = y′.
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By strategy-proofness, we must have y′ < x. This is because, if y′ ∈ [x, y), then agent i

manipulates at PN via P′
i . On the other hand, if y′ > y, then by means of the fact that r1(P′

i ) ≤ y,

agent i manipulates at (P′
i , PN\i) via Pi.

Let T = {j ∈ N | r1(Pj) < x}. For j ∈ T, let P′
j ∈ Sj be such that r1(P′

j ) = x.

Claim 1. f (P′
T, PN\T) = y.

If T is empty, then there is nothing to show. Suppose T is non-empty. Take j ∈ T such that

r1(Pj) = min(τ(PN)). Because f (PN) = y and r1(Pj) = min(τ(PN)), by strategy-proofness and

Pareto property, we have f (P′
j , PN\j) = y. Next, take k ∈ T such that r1(Pk) = min(τ(P′

j , PN\j)).

Using similar logic, we have f (P′
j , P′

k, PN\{j,k}) = y. Continuing in this manner, we have

f (P′
T, PN\T) = y.

This completes the proof of Claim 1.

Let T′ = T ∪ i. For all j ∈ T′, let P̃j ∈ S be such that r1(P̃j) = x.

Claim 2. f (P̃T′ , PN\T′) = x.

Take j ∈ T′ such that r1(Pj) = y′. Consider the preference P′′
j ∈ Sj such that r1(P′′

j ) = y′ + 1.

We show f (P′
i , P′′

j , PN\{i,j}) ∈ {y′, y′ + 1}.14 Suppose not. By tops-onlyness of f , we can assume

r2(P′′
j ) = y′. However, that means agent j manipulates at (P′

i , P′′
j , PN\{i,j}) via P′

j . This shows

f (P′
i , P′′

j , PN\{i,j}) ∈ {y′, y′ + 1}.

Now, take k ∈ T′ \ j (if there is any) such that r1(Pk) = y′. Consider the preference P′′
k ∈ Sk such

that r1(P′′
k ) = y′ + 1. Using similar logic as before, we have f (P′

i , P′′
j , P′′

k , PN\{i,j,k}) ∈ {y′, y′ + 1}.

Continuing in this manner, we can construct a profile P̄N ∈ SN where r1(P̄j) = y′ + 1 for all

agents j with r1(Pj) = y′ and P̄j = Pj for all agents j with r1(Pj) > y′ such that

f (P̄N) ∈ {y′, y′ + 1}.

However, since min(τ(P̄N)) = y′ + 1, by Pareto property,

f (P̄N) = y′ + 1.

Using similar logic, we can construct a profile P̂N ∈ SN where r1(P̂j) = y′ + 2 for all agents j

14If j = i, then the profile (P′
i , P′′

j , PN\{i,j}) is same as (P′′
i , PN\i).
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with r1(P̄j) = y′ + 1 and P̂j = P̄j for all agents j with r1(P̄j) > y′ + 1, and conclude that

f (P̂N) = y′ + 2.

Continuing in this manner, we move all the agents j in T′ to a preference P̃j ∈ Sj with r1(P̃j) = x

while keeping the preferences of all other agents unchanged and conclude that

f (P̃T′ , PN\T′) = x.

This completes the proof of Claim 2.

Now, we complete the proof of the lemma. Consider the profiles (P′
T, PN\T) and (P̃T′ , PN\T′).

Note that for an agent j, if r1(Pj) > x, then her preference is the same in both the profiles

(P′
T, PN\T) and (P̃T′ , PN\T′). Moreover, for an agent j, if r1(Pj) ≤ x, then her top-ranked alternative

is x in both the profiles. This means these two profiles are tops-equivalent. However, since

f (P′
T, PN\T) 6= f (P̃T′ , PN\T′), Claim 1 and 2 contradict tops-onlyness of f . This completes the

proof of the lemma. �

The following lemma establishes that f is a min-max rule.

Lemma C.2. The SCF f is a min-max rule.

Proof. For all S ⊆ N, let (Pa
S , Pb

N\S) ∈ SN be such that r1(Pa
i ) = a for all i ∈ S and r1(Pb

i ) = b for

all i ∈ N \ S. Define βS = f (Pa
S , Pb

N\S) for all S ⊆ N. Clearly, βS ∈ X for all S ⊆ N. By unanimity,

β∅ = b and βN = a. Also, by uncompromisingness, βS ≤ βT for all T ⊆ S.

Take PN ∈ SN. We show f (PN) = min
S⊆N

{max
i∈S

{r1(Pi), βS}}. Suppose S1 = {i ∈ N | r1(Pi) <

f (PN)}, S2 = {i ∈ N | f (PN) < r1(Pi)}, and S3 = {i ∈ N | r1(Pi) = f (PN)}. By uncompromis-

ingness, βS1∪S3
≤ f (PN) ≤ βS1

. Consider the expression min
S⊆N

{max
i∈S

{r1(Pi), βS}}. Take S ⊆ S1.

Then, by Condition (iii) in Definition 2.9, βS1
≤ βS. Since r1(Pi) < f (PN) for all i ∈ S and

f (PN) ≤ βS1
≤ βS, we have max

i∈S
{r1(Pi), βS} = βS. Clearly, for all S ⊆ N such that S ∩ S2 6= ∅,

we have max
i∈S

{r1(Pi), βS} > f (PN). Consider S ⊆ N such that S ∩ S2 = ∅ and S ∩ S3 6= ∅.

Then, S ⊆ S1 ∪ S3, and hence βS1∪S3
≤ βS. Therefore, max

i∈S
{r1(Pi), βS} = max{ f (PN), βS} ≥

max{ f (PN), βS1∪S3
}. Since βS1∪S3

≤ f (PN), we have max{ f (PN), βS1∪S3
} = f (PN). Combining

all these, we have min
S⊆N

{max
i∈S

{r1(Pi), βS}} = min{ f (PN), βS1
}. Because f (PN) ≤ βS1

, we have

min{ f (PN), βS1
} = f (PN). This completes the proof of the lemma. �
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The proof of the only-if part of Theorem 4.1 follows from Lemmas C.1 - C.2. �

APPENDIX D. PROOF OF THEOREM 5.1

Proof. The proof of the if part follows from Theorem 4.1. We proceed to prove the only-if part.

Let DN be a min-max domain. We show that Di is top-connected single-peaked for all i ∈ N. We

show this in two steps: in Step 1 we show that Di is single-peaked for all i ∈ N, and in Step 2, we

show that Di is top-connected for all i ∈ N.

Step 1. Suppose that Di is not single-peaked for some i ∈ N. Then, there is Q ∈ Di and x, y ∈ X

such that x < y < r1(Q) and xQy. Consider the min-max rule f β with respect to (βS)S⊆N such

that βS = x for all ∅ ( S ( N. Take PN ∈ DN such that Pi = Q and r1(Pj) = y for all j ∈ N \ i.

By the definition of f β, f β(PN) = y. Now, take P′
i ∈ Di with r1(P′

i ) = x. Again, by the definition

of f β, f β(P′
i , PN\i) = x. This means agent i manipulates at PN via P′

i , which is a contradiction to

the assumption that DN is a min-max domain. This completes Step 1.

Step 2. In this step, we show that Di satisfies top-connectedness for all i ∈ N. Assume for

contradiction that Di is not top-connected for some i ∈ N. Note that since Di is single-peaked,

for all P ∈ Di, r1(P) = a (or b) implies r2(P) = a + 1 (or b − 1). Because Di is single-peaked,

for all P ∈ Di and all x ∈ X \ {a, b}, r1(P) = x implies r2(P) ∈ {x − 1, x + 1}. Since Di violates

top-connectedness, assume without loss of generality that there exists x ∈ X \ {a, b} such that for

all P ∈ Di, r1(P) = x implies r2(P) = x − 1. Consider the following SCF:15

f (PN) =



















x if r1(Pi) = x and xPj(x − 1) for all j ∈ N \ i,

x − 1 if r1(Pi) = x and (x − 1)Pjx for some j ∈ N \ i,

r1(Pi) otherwise.

It is left to the reader to verify that f is unanimous and strategy-proof. We show that f is not

uncompromising, which in turn means that f is not a min-max rule. Let PN ∈ DN be such that

r1(Pi) = x and r1(Pj) = x − 1 for some j 6= i, and let P′
i ∈ Di be such that r1(P′

i ) = x + 1. Then, by

the definition of f , f (PN) = x − 1 and f (P′
i , PN\i) = x + 1. Therefore, because f (PN) = x − 1 and

x − 1 ≤ r1(Pi) ≤ r1(P′
i ), the fact that f (P′

i , PN\i) = x + 1 is a violation of uncompromisingness.

This completes Step 2 and the proof of the only-if part. �

15Here Di satisfies the unique seconds property defined in Aswal et al. (2003) and the SCF f considered here is
similar to the one used in the proof of Theorem 5.1 in Aswal et al. (2003).
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