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Abstract

Estimating trading costs in the absence of recorded data is a problem that con-

tinues to puzzle financial market researchers. We address this challenge by in-

troducing two low frequency bid-ask spread estimators using daily high and low

transaction prices. The range of mid-prices is an increasing function of the sam-

pling interval, while the bid-ask spread and the relationship between trading di-

rection and the mid-price are not constrained by it and are therefore independent.

Monte Carlo simulations and data analysis from the equity and foreign exchange

markets demonstrate that these models significantly out-perform the most widely

used low-frequency estimators, such as those proposed in Corwin and Schultz

(2012) and most recently in Abdi and Ranaldo (2017). We illustrate how our mod-

els can be applied to deduce historical market liquidity in US, UK, Hong Kong and

the Thai stock markets. Our estimator can also effectively act as a gauge for market

volatility and as a measure of liquidity risk in asset pricing.
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1 Introduction

Estimating trading costs in the absence of recorded data is a problem that continues to

puzzle financial market researchers. A bid-ask spread estimator that can be used on a

range of market instruments with minimum input data and which is both accurate and

efficient has become the sine qua non in scholarly research when true trading cost data

is unavailable. Much effort is spent on arriving at an estimator that resolves this issue

of opacity in historical trading cost data. New models are being introduced and ideas

on how to estimate spreads have evolved considerably in the years since Roll (1984)

originally formulated the concept. In this paper, we introduce two low frequency bid-

ask spread estimators, these can create estimates of costs using the range between daily

and two day high and low prices.

We also demonstrate how the models we propose significantly outperform exist-

ing versions, namely those introduced by Corwin and Schultz (2012) (the CS estimator

hereafter), Abdi and Ranaldo (2017) (the AR estimator hereafter) and the benchmark

estimator introduced in Roll (1984). We perform tests using Monte Carlo simulations,

and real foreign exchange and U.S. equity market data. Our models are designed along

similar principles to the CS estimator in that it assumes that high and low prices are

based on buy and sell transactions respectively. We present two models, the first, which

we call our basic version uses a transaction range which is determined in part by the

mid-price range and by the bid-ask spread. We posit that the mid-price range is a

function of the time interval from which it is calculated. Therefore, by comparing the

ranges of transaction prices from two different sampling frequencies, we can isolate

the impact of the bid-ask spread. Our second model, which we refer to as our sophis-

ticated version, builds on ideas proposed in Bleaney and Li (2016) (the BL estimator

hereafter). In the model that we present, the bias that occurs as a result of feedback

trading which is evident in the BL model is used to link the one and two day ranges in

order to arrive at an estimation of the spread. We note that the bias that results through

feedback trading is a function of the time interval. By comparing both the one and two

day BL spreads we obtain our estimates of the bid-ask spread. In order to analyse esti-

mator performance we examine the mean and standard deviation of estimated errors

alongside the correlation between those and the true spreads. In addition we move
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beyond simply relying on one single criterion such as correlation to indicate perfor-

mance. We instead show that to gauge performance on a range of indicators, such as

mean, standard deviation and root mean square error (RMSE), is the optimum path to

choose for researchers who are keen to attain a more accurate measure of trading costs.

The estimation of accurate bid-ask spreads has for a long time been considered a

significantly important part of market microstructure theory. Bid-ask spread estima-

tors allow researchers and practitioners to develop trading strategies that incorporate

an idea of the costs attached to each transaction. In turn, this allows for a more accu-

rate determination, of the profitability that follows on from applying . Understanding

market liquidity is also important to researchers, so a precise estimation of the bid-ask

spread offers a clearer picture of this market characteristic (Mancini et al. 2013; Banti

et al. 2012). Another possible use for these models arises from the fact that bid-ask

spreads can influence measures associated with price volatility, so scholars analysing

this metric can use estimator models to arrive at an accurate measure of this (e.g. Bandi

and Russell 2006).

As excessive costs are attached to accessing bid-ask spread data this has meant that

researchers increasingly rely on such estimators to aid their analysis of market activity.

Much research supports this approach indicating that the cheaper daily closing quoted

bid-ask spread can be good proxy for the intraday spread (Holden and Jacobsen 2014,

Chung and Zhang 2014 and Fong et al. 2017). Inavailability of spread data is not simply

a consequence of poor research budgets, historical information on both quoted and

true spreads is not always available, a strong performing estimator model is useful

even to well-resourced researchers.

Bid-ask spread estimation models need to satisfy certain requirements before they

become useful to researchers. Models must be accurate, efficient in terms of hav-

ing a low standard deviation of estimates and it is preferable that they have low re-

quirements on the type of data needed for computation. In order to improve on ac-

curacy and efficiency, the signal to noise ratio becomes an important consideration;

this is because the spread (signal) is more difficult to estimate when it is considerably

smaller than the mid-price volatility levels (noise). Assets with higher levels of liq-

uidity demonstrate typically smaller spreads; however with more infrequently traded

instruments, the bid-ask spreads can be quite large. Longer sampling intervals have
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a tendency to display higher mid-price volatility levels, therefore, the signal to noise

ratio is smaller in more infrequent samples. This leads to poorer performance in the

accuracy and efficiency of estimators that rely on low sampling frequencies, this is

pointed out by Bleaney and Li (2015). In addition to the need for models to be both

accurate and efficient, other barriers to inquiry may inhibit a model’s usefulness. Con-

straints on accessing data imposed by availability or cost mean that models with more

modest data requirements are of greater use to researchers. For instance, Roll (1984)

requires just the transaction price of assets in order to apply the estimator, whereas

Huang and Stoll (1997) require both the transaction price and the trade direction. Cor-

win and Schultz (2012) require the high low price range. Abdi and Ranaldo (2017)

require the closing price and the high-low price range.

In this paper, we analyse the performance of the estimators through conducting a

series of tests using both randomly generated and real data, the latter is taken from

both the foreign exchange and equity markets. In most cases, both of our estima-

tors outperform all others tested. In comparison, the CS estimator exhibits instabil-

ity as it only works well for equities. The AR estimator produces estimates which are

highly correlated with the true spread, while displaying a tendency to remain lower

than those we estimate, it also performs poorly in terms of the root mean square error

(RMSE). Simulation experiments produce a signal to noise ratio over 125000 months

of generated data ranging from 0.005 to 0.387. This covers most cases which have oc-

curred in actuality. Both of our proposed models outperform the others we test in both

efficiency and accuracy. We also move beyond time series testing to investigate the

cross sectional performance on a generated sample of 75000 data months, again at this

level we find that our models outperform the others tested.

In the existing literature, bid-ask spread estimators are tested using the price data

taken from the equities markets. An additional benefit offered by our models is that

these are suitable for use both in the equities and foreign exchange markets because

they are independent of the market structure. In this paper we run tests using data

taken from both types of financial markets. In both markets the empirical tests are

conducted using spreads calculated from tick by tick data as a benchmark, we find

that our estimators again perform better than the other models currently available to

researchers.
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In presenting the significant contributions of our work, the rest of our paper is or-

ganised as follows. Section 2 discusses existing bid-ask spread estimators, while sec-

tion 3 introduces our new models. In section 4 the performances of these are reported

against that of the Roll, CS and AR estimators. Section 5 provides an illustrate of some

applications of our estimator using equity markets while section 6 concludes.

2 Relevant bid-ask spread estimators

Spread estimator models are generally classified into one of four categories, the Roll,

the LOT, the Effective Tick and the more recent High-low estimator. Each approach

provides alternative methods which are based on the return autocovariance, the in-

terval fractions in trade prices, the frequency of zero returns and the specific interval

determined price range.

Roll (1984) was the first to propose a bid-ask spread estimator. This model was pop-

ularly received generating considerable interest at the time, giving rise to attempts to

refine it further later by other scholars. Roll’s premise was to use return autocovariance

to estimate the spread. Underpinning this approach was the assumption that prices

followed a random walk. It was also assumed that the closing stock price equalled

its true value plus or minus half of the effective spread. The estimated spread could

then be calculated as twice the square root of minus one multiplied by the autoco-

variance of the sample of daily returns. Some problems with this approach have been

noted, for instance, the estimator produces results which can often underestimate the

spread (Harris 1990). To deal with this autocorrelated mid-price return biasa, George

et al. (1991) suggest modifying the original Roll estimator. Similarly, Choi et al. (1988)

introduce adjustments to the model in an attempt to deal with the problem of auto

correlated trade directions. Stoll (1989) tackles the problem by taking the impact of in-

ventory control and asymmetric information costs into account. To reach a general so-

lution to the problem, Huang and Stoll (1997) incorporate each of the estimators above

in one general model. However, gathering the data required to run this is a difficult

process as trade direction data is also required. Hasbrouck (2004, 2009) suggests that

a more accurate spread can be achieved through employing Gibbs estimation. Unlike

aThe bias arises as the assumption that returns are random is not satisfied.
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Roll’s approach the computational requirements to employ Hasbrouck’s estimators are

considerably more intensive. The problem of normality in Hasbrouck’s is addressed in

Chen et al. (2016) who propose a non-parametric method to estimate the spread based

on the Roll model. A further development is found in Abdi and Ranaldo (2017) who

incorporate the CS model into the Roll to derive a new estimator. The correlation be-

tween its estimates and the true spread is higher than the CS estimator, but the RMSE

is not significantly better than the CS.

Another estimator used to deal with the problem of the spread opacity due to the in-

availability of data is proposed by Lesmond et al. (1999). Otherwise known as the LOT

model, an effective spread is calculated by considering the fraction of returns which

are different from zero. This model has not quite reached the popularity levels of the

Roll model as comparatively it tends not to perform as well in empirical testing (Cor-

win and Schultz 2012). Holden (2009) and Goyenko et al. (2009) put forward a more

sophisticated approach which estimates spreads using effective tick measures based

on the phenomenon of price clustering, a term describing the tendency for trade prices

to occur most frequently on rounder price increments. However, results produced fol-

lowing testing on an extensive FX market data sample by Karnaukh et al. (2015) show

that the LOT and effective tick estimators display only a weak relationship with true

spreads.

The high-low spread estimator introduced by Corwin and Schultz (2012) adds new

power to the toolkit of estimators. Despite being relatively new, it is used extensively in

recent literature as testing shows that it satisfies the estimator requirements to a greater

extent than previous innovations (Corwin and Schultz 2012, Holden and Jacobsen 2014

and Karnaukh et al. 2015). The model is derived using the high and low prices of an

asset over two day and daily horizons. The relative ease with which input data can

be accessed further enhances the appeal of the estimator. The estimator we introduce

here operates in the spirit of the CS model by adopting similar assumptions that the

high (low) prices are most likely buy (sell) orders.
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3 The High-low estimators

The general structure of both of our estimators can be expressed in the following equa-

tion:
E
(√

2 · Xdaily − Xtwoday

)

√
2 − 1

(1)

Where X is the price range or the estimated spread by the Bleaney and Li (2016) esti-

mator. The innovations we introduce for both the basic and sophisticated models are

discussed in the following subsections.

3.1 The basic high-low estimator (the BHL model)

The basic high-low estimator is similar to the CS model, but unlike its quadratic struc-

ture, the BHL uses a linear structure which assures the unbiasedness and consistency

of its estimates. Furthermore, the combination of BHL and the sophisticated high-low

estimator introduced in the next section sometimes works better than a single estima-

tor, because the estimated errors from different estimators offsets each other to some

extent.

When estimating a model using the high and low transaction prices, the first char-

acteristic that we can note is that the range increases as the time interval widens and as

the mid-price volatility grows in proportion. The other factor contributing to the range

is the bid-ask spread, however this is independent of the time interval. Therefore, it

is possible to extract the bid-ask spread by calculating the difference between the high

and low transaction prices, whilst considering inconsistencies that may arise as a result

of volatility.

In order to accomplish this, we assume that the mid-price, denoted as Mt, follows a

one-dimensional Wiener process. The link between the unobserved mid-price and the

observed transaction price (st) is given through the following equation.

st = Mt +
SP

2
· BSt (2)

Where BSt is the trade indicator showing 1 (−1) for a buyer (seller) initiated trade.

The relationship between the daily high mid-price (HM
t ) and the daily high transaction

price (HT
t ) as well as the link between the daily low mid-price (LM

t ) and the daily low
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transaction price (LT
t ) are demonstrated in the following set of equations:

HT
t = HM

t +SP
2 · BSt LT

t = LM
t +SP

2 · BSt

THT
t = THM

t +SP
2 · BSt TLT

t = TLM
t +SP

2 · BSt

(3)

Where T and M represent the transaction and mid-price respectively. TH and TL de-

note the high and low prices over a two day window.

We can eliminate the need to establish trade direction by assuming that the highest

(lowest) prices are buy (sell) orders. Formally, it can be represented as:

BSt =





1 i f st = HT
t

−1 i f st = LT
t

(4)

The daily and two-day ranges of transaction prices represent the difference between

the highest and lowest prices. Formally, taking equations (3) and (4) into account, these

ranges are given as:

RangeT
t,daily = HT

t − LT
t

=
(

HM
t +SP

2 · BSt

)
−
(

LM
t +SP

2 · BSt

)

=
(

HM
t +SP

2

)
−
(

LM
t −SP

2

)

=
(

HM
t − LM

t

)
+ SP

= RangeM
t,daily +SP

(5)

RangeT
t,twoday = THT

t − TLT
t

=
(

THM
t +SP

2 · BSt

)
−
(

TLM
t +SP

2 · BSt

)

=
(

THM
t +SP

2

)
−
(

TLM
t −SP

2

)

=
(

THM
t − TLM

t

)
+ SP

= RangeM
t,twoday +SP

(6)

Where RangeT
t,daily and RangeT

t,twoday are daily and two-day ranges respectively. The

equations above demonstrate our earlier suggestion that the range of transaction prices

is influenced by volatility in both the mid-price and the bid-ask spread. Taking expec-

tations of both sides, the equations become:

E
(

RangeT
daily

)
= E

(
RangeM

daily

)
+ SP (7)

E
(

RangeT
twoday

)
= E

(
RangeM

twoday

)
+ SP (8)
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The left hand sides of Equations (7) and (8) can be calculated from observed trans-

action prices. With the unobserved terms, the expected ranges of daily and two-day

mid-prices can be eliminated, allowing us to extract the bid-ask spread. Parkinson

(1980) shows that if the mid-price follows a one-dimensional Wiener process, its ex-

pected range is an increasing function of the sampling time interval and its diffusion.

A long sampling time interval or large diffusion will lead to a wider range. Formally,

the expectation of the range of mid-prices can be calculated through the following

equation:

E
(

RangeM
)
=

√
8D · ti

π
(9)

Where D is the diffusion of mid-prices in a unit time interval (ti). If this period is one

day, the expectations for daily and two-day ranges are given through the following

equations:

E
(

RangeM
daily

)
=

√
8D

π
(10)

E
(

RangeM
twoday

)
=

√
8D

π
·
√

2 (11)

Therefore, the expectation is that the two-day range is
√

2 times that of the daily range.

Formally, the relationship is expressed through the following equation:

E
(

RangeM
twoday

)
=

√
2 · E

(
RangeM

daily

)
(12)

From Equations (7), (8) and (12), we can solve for the bid-ask spread (SP), because we

have three equations and three unknown variables. We solve Equation (8) through

deducting
√

2 times each side of Equation (7):

E
(

RangeT
twoday

)
−
√

2 · E
(

RangeT
daily

)

= E
(

RangeM
twoday

)
+ SP −

√
2 ·
[

E
(

RangeM
daily

)
+ SP

] (13)

When we substitute Equation (12) into (13), and rearrange the yields, the estimate of

the bid-ask spread becomes:

SP =
E
[√

2 ·
(

RangeT
daily

)
−
(

RangeT
twoday

)]

(√
2 − 1

) (14)

Equation (14) represents the basic estimator which we propose in this paper (BHL here-

after); this is an expectation of the linear function of the daily and two-day high and
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low transaction prices. One of its key features is that it is unbiased and easy to com-

pute. It outperforms the CS estimator because it produces an unbiased result while

remaining linear. Using BHL, it is possible to increase the number of observations in

order to obtain a more accurate and efficient estimate of the spread. The reason is that

statistical errors and noise can be eliminated from large sample sizes; this is not the

case for non-linear estimators (Bleaney and Li 2015). Furthermore, the estimates re-

main consistent across a variety of sampling periods. This suggests that when higher

sampling frequency data becomes available we can use it to obtain a more accurate

and efficient estimate because, as Bleaney and Li (2015) suggest, the noise (the price

volatility) is relatively low in comparison with the bid-ask spread.

Similar to the CS estimator, we can also estimate the daily diffusion, which is ex-

pressed as D, using the same process. This is represented in the following equation:

E
(

RangeM
daily

)
=

E
(

RangeT
twoday

)
−E
(

RangeT
daily

)

(
√

2−1)
=
√

8D
π

D = π
8

[
E
(

RangeT
twoday

)
−E
(

RangeT
daily

)

(
√

2−1)

]2 (15)

3.2 The sophisticated high-low estimator

Our sophisticated estimator (the SHL model hereafter) introduces innovations to the

design proposed by Bleaney and Li (2016). The BL estimator is distinctive in that it

outperforms Roll (1984), Huang and Stoll (1997), Corwin and Schultz (2012) and Has-

brouck (2009) estimators, following extensive testing. The disadvantage with the BL

model is that its computation requires both the transaction price and information on

the direction of trade and often researchers don’t have access to this information.

SHL introduces the assumption that the highest prices recorded daily are ask-prices

and the lowest are bid-prices. Through this assumption we can lower the data require-

ments for the model and allow the estimator to operate using only the highest and

lowest transaction prices in the estimation window.

In a similar manner to Bleaney and Li (2016), we assume that we have random

conjectures of the true bid-ask spread. We let set A be a set of all conjectures where the

symbol ∼ represents conjectural values.

A =
{

S̃P1, S̃P2, · · ·, S̃Pn

}
(16)
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At this stage, we do not know which element in set A is the true spread. Through tak-

ing the following steps, we would be able to find it. First, we would calculate a series

of conjectural mid-price returns according to each element (a conjectural spread) in set

A using equation (2). Formally, the conjectural mid-price return is given as follows,

M̃t = st −
S̃Pt

2
· BSt (17)

Second, we calculate the variance of conjectural mid-price returns for each conjectural

series.

B denotes a set of variances of conjectural mid-price returns, the conjecture being

that the true spread is taken to be:

B = {Var1, Var2, · · ·, Varn} (18)

Where

Vari = Var
[
∆M̃(S̃Pi)t

]
(19)

Third, based on these settings we can find the true spread among the conjectures by

find the biggest relevant variance. Formally, we propose the following:

Proposition 3.1 When the components of the spread do not include feedback trading, inven-

tory control or asymmetric information, we can consider that the spread and its estimates, and

thus the estimated errors, are either serially independent or fixed. If an estimate of the spread

S̃Pi ∈ A corresponds to Vari = max(B), it equals the true spread which is then denoted as:

S̃Pi = SP.

Proof The full proof is given in the appendix. The variance of two adjacent conjectures

of mid-price returns is:

Vari = Var
[
∆M̃t

]

= E

{[
∆M̃t − E

(
∆M̃t

)]2
} (20)

We will assume that the expectation of the value of the conjectural mid-price is zero.

Thus, the equation above can be rewritten as:

Vari = Var
(

∆M̃t

)

= E
(

∆M̃t
2
)

= E

[(
∆ Mt +

1
2 Ω BSt −1

2 Ω BSt−1

)2
] (21)
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Where Ω denotes the conjectural error which represents the difference between the

conjectural mid-price and the true mid-price, alternately expressed as the difference

between the conjectural spread and its true value. Formally, Ω is given as:

Ω = ∆M̃t − ∆Mt = S̃Pi − SP (22)

The assumptions of this proposition imply that BS is independent of ∆ M at all ob-

servation points, therefore many of the terms in (21) such as E(∆ Mt BSt) and E(∆ Mt−1 BSt)

equate to zero. The variable BS is a binary variable (1 or -1), thus E (BSt−1
2) = 1. Fi-

nally we obtain:

Vari = Var
(

∆M̃t

)

= E
(

∆M̃t
2
)

= E
[(

∆ Mt +
1
2 Ω BSt −1

2 Ω BSt−1

) (
∆ Mt +

1
2 Ω BSt − 1

2 Ω BSt−1

)]

= E
(

∆Mt
2 + 1

2 Ω
2
)

(23)

The final step of Equation (23) given above is the quadratic polynomial of the expec-

tation of the error of the conjecture. For a given series, the first term E(∆M2
t ) is a

constant. We can surmise directly from this that when the error is zero (i.e. Ω = 0),

the second term 1
2 Ω2 is zero. Furthermore, when Ω = 0, there is a global extreme for

the right hand side polynomial in the final step, and symmetrically, the left hand side

of the equation Vari = Var
(

∆M̃t

)
is also at the extreme value. Formally this can be

expressed as:

arg max
Ω

Var
(

∆M̃t

)
= 0 (24)

When the conjectural error is zero, the conjectural spread becomes the true spread:

S̃Pi = SP + Ω = SP (25)

Therefore the conjectural spread which maximises the covariance equals the true spread.

arg max
S̃Pi∈A

Var
(

∆M̃t

)
= SP (26)

Q.E.D.

Figure 1 outlines the reasoning underpinning this proposition where for the purposes

of economy we hold that the mid-price is fixed, , while mid-prices following a random
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walk will not affect the derivation of the model. The conjectural spread (S̃Pi) is less

than the true spread. This allows us to estimate the conjectural mid-price M̃; this is

represented by the dotted line in Figure 1, and the true mid and transaction prices are

both represented by unbroken lines. Also in Figure 1, A and B denote observed ask

and bid prices, whereas M is the unobserved true mid-price.

At any one point we can only observe one price, which is either the bid or ask.

In Figure 1, three periods are displayed. In the period labelled t − 2, the bid price is

recorded and in period labelled t − 1, the ask price is observed. In period t − 2, the

conjectural spread is lower than the true spread and the conjectural mid-price error is

−0.5Ω , which is less than the true value. In period t − 1, the conjectural mid-price

error is 0.5Ω, therefore this is greater than the true one. In the intervening period

between t − 2 and t − 1, the direction of the trade shifts from sell to buy, and because

of the conjectural error, we overestimate the mid-price return, formally we express this

as:

∆M̃t−1 = ∆Mt−1 +Ω = Ω (27)

In Figure 1, the hypothetical example shows that the variance of mid-price returns

equates to zero because returns remain fixed. However the variance of conjectured

mid-price returns is greater than zero. The reason for this is that in the case where

the spread is underestimated, the conjectured mid-price fluctuates more than its true

counterparts.

[Insert Figure 1 here]

According to the abovementioned proposition, we find that the true spread max-

imises the variance of conjectural mid-price returns and can be expressed as follows:

Var
(

∆M̃t

)
= E

(
∆M̃t

2
)

= E

[(
∆ st − S̃P

2 ∆ BSt

)2
]

= E
(

∆ st
2
)
− S̃P · E (∆ st ∆ BSt) +

S̃P
2

4 · E
(

∆ BSt
2
)

(28)

Using first order conditioning, we find that the estimated spread satisfies the following

equation:

− E (∆ st ∆ BSt) +
1

2
S̃P · E

(
∆ BSt

2
)
= 0 (29)
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SP = S̃P =
2E (∆st∆ BSt)

E
(

∆ BSt
2
) (30)

Equation (30) is now the variance version of the BL estimator, thereby reflecting one of

the suggested innovations that we propose in this paper.

In order to allow Equation (30) to become operational, we must introduce the fol-

lowing processes. On each day, we pick either the high or low price randomly to create

a trail series of prices (st) and use Equation (4) to determine the trade direction: a buy

order when st is the high price and a sell order when st is the low price. We can then

calculate the estimated spread using Equation (30). In the same manner as Corwin

and Schultz (2012), we calculate an estimate of spread using the two-day high and low

prices SPtwoday.

However, Equation (4) creates the link between order flow and price when only

high and low prices are used. When the covariance between order directions and

mid-price returns is non-zero, the BL estimator is biased and the error is expressed

as E (BSt ·∆ Mt) b. Therefore, when high and low prices and relevant trade directions

are used, the BL estimator significantly overestimates the spread. It is invariably the

case that the estimated spread will contain errors, these nevertheless can be offset if

we compare the estimates using daily and two-day data ( E(SPdaily) and E(SPtwoday) ).

This is because it is possible to predict the relationship between errors from daily and

two-day estimates.

The true spread is then taken to be the estimated spread minus the error. Formally,

the true spread is given as follows:

SP = SPdaily −E
(

BSdaily ·∆ Mdaily

)

SP = SPtwoday −E
(

BStwoday ·∆ Mtwoday

) (31)

Where the subscripts ”daily” and ”twoday” represent the sampling frequencies. SPdaily

and SPtwoday are the BL estimates using daily and two-day high low data respectively.

Following the discussion in the previous section, the relationship between daily and

two-day ranges can be used to eliminate the estimated error above. The errors are in

fact half of expected ranges of daily and two-day ranges and are expressed as follows

bThe feedback trading bias is discussed in Bleaney and Li (2016). Proofs are given in the appendix of

this paper.
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(proof can be found in the appendix):

E
(

BSdaily ·∆ Mdaily

)
= 1

2 E (Ht −Lt) =
1
2 E
(

RangeM
daily

)

E
(

BStwoday ·∆ Mtwoday

)
= 1

2 E (THt − TLt) =
1
2 E
(

RangeM
twoday

) (32)

Following steps similar to the process outlined in section 3.1, we substitute Equations

(32) and (12) into Equation (31), the rearrangement yields the spread for one trial series.

This trial estimate is given as:

SPonetrial =

√
2 SPdaily − SPtwoday√

2 − 1
(33)

We repeat the trail series creation and estimation process over 1000 times, the mean of

these estimates becomes our estimation of the spread. Although this process is compu-

tationally intensive, this makes little practical difference given the power of the current

stock of computers available to researchers.

SP = E

(√
2 SPdaily − SPtwoday√

2 − 1

)
(34)

Equation (34) is the sophisticated high low estimator (SHL). Theoretically, SHL should

produce more accurate results than its BL counterpart. Unlike the BL model, the SHL

estimator will not be influenced by feedback trading and the estimates produced will

be unbiased.

When the ratio of the spread to the standard deviation of mid-prices is small, some

trail estimates in Equation (33) could be negative. In order to avoid a negative result

in Equation (34) we let all negative trial estimates equal zero. However, when we do

this, the estimates produced by SHL might overestimate the spread. The simulation

experiments we conduct in the next section show that it will not be an issue when the

ratio becomes larger.

We can also estimate the daily diffusion, which is expressed as D, from Equations

(31) and (32) and using the same process. This is represented in the following equa-

tions:

SPtwoday − SPdaily = E
(

BStwoday ·∆ Mtwoday

)
− E

(
BSdaily ·∆ Mdaily

)

= 1
2 E
(

RangeM
twoday

)
− 1

2 E
(

RangeM
daily

)

= (
√

2−1)
2

√
8D
π

(35)
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The rearrangement of the equation above yields an expression of daily diffusion as

follows:

D =
π

2
·
[

E

(
SPtwoday − SPdaily√

2 − 1

)]2

(36)

4 Comparison of the estimators

In this section, we examine the performance of a range of estimators. Using empirical

tests, we gauge how BHL, SHL, Roll, CS and AR perform in addition to a number of

equally weighted combinative models. Currently, the range of estimators available to

researchers is wide, but we focus on these models for several reasons. The first is that

we wish to contrast the performance of our proposed models (BHL and SHL) with

that of the best performing estimator available, the CS model. Corwin and Schultz

(2012) demonstrate that the CS model outperforms all other low frequency estimators

in terms of accuracy and efficiency. Holden and Jacobsen (2014) and Karnaukh et al.

(2015) also show similar results to the model originators. We also choose the Roll model

as this has traditionally been the benchmark for estimator performance. Researchers

less familiar with the relatively recent CS model can understand how our models per-

form in comparison. Finally, we select the model proposed in Abdi and Ranaldo (2017)

because it is the latest development of the spread estimator and is directly related

to both the Roll and CS models. Our motivation behind including the combinatory

models relates to the tendency for some estimators to over(under)estimate the spread.

Combinations of estimators have been shown in (Holden 2009)c to perform better in

terms of accuracy. The data we use to test each of the models is tick by tick equity prices

and foreign exchange rates; these are sourced from TAQ and Hotspot and DataStream

respectively. In addition to using real world data testing, simulation experiments were

also carried out. Our findings show that in general our BHL and SHL estimators out-

perform all other estimators included in the study.

cCombination models tested in Holden (2009) and used here for testing are explained in Table 1.
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4.1 Comparison strategy

Following testing on each of the estimators, the results are reported using average

relative estimated errors together with their root mean square and standard deviation

values. Formally, the relative error is defined as follows:

Rel − Err =
Estimates − Spread

Spread
(37)

The average relative error (Rel-Error-Mean) reports the mean difference between the

estimated and true spread, indicating where possible bias may exist in the estimators.

When Rel-Error-Mean is positive (negative) it suggests that the models over (under)

estimate the spread. Good estimates are those with ’close-to-zero’ relative error aver-

ages. Formally, this is presented as:

Rel − Err − Mean = E (Rel − Err) (38)

The standard deviation of the relative estimated errors (Rel-Err-Std) is also reported

and provides a measure for the efficiency of the estimates. Good estimates have low

Rel-Err-Stds. Formally, this is expressed as:

Rel − Err − Std = Std.Dev (Rel − Err) (39)

Finally, the RMSE is the most widely used criteria by which to judge the performance

of the estimators. Therefore we follow this trend in analysing how our models perform.

Formally, RMSE is given as:

RMSE =

√
E
[
(Rel − Err)2

]
(40)

4.2 Simulation experiments

In this section we report the results of a number of simulations designed to test the

relative strength of each measure. We find that the estimators proposed in this paper

outperform the other models in terms of accuracy and efficiency. Simulation experi-

ments are widely used in literature to examine and to compare various estimators (e.g.

Corwin and Schultz 2012, Bleaney and Li 2015, 2016,Karnaukh et al. 2015,Abdi and

Ranaldo 2017). Compared to the real data, the statistical properties of estimators can
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be extracted using a large number simulation experiments. One also could identify the

factors that influence the performance of estimators, which help researchers to choose

from various estimators according to their purpose.

4.2.1 Estimation under various ’signal to noise’ ratios

It is difficult for an estimator to isolate the bid-ask spread from transaction prices when

the volatility of mid-prices is relatively large. We test the performance of the estimators

under various ’signal to noise’ values which are the ratios of the spread to the standard

deviation of the mid-price. The ’signal to noise’ ratio is low for heavily traded equities

and major currency pairs because the liquidity levels are consistently high, and the

assumption is that mid-prices and order directions are random. We allow the standard

deviation of one-minute mid-price returns to be 0.005 (about 0.19 daily). We consider

six bid-ask spreads ranging from 0.001 to 0.3. The ’signal to noise’ ratio extends from

0.00527 to 1.58 on a daily basis. In comparison, Corwin and Schultz (2012) test their

model using the ratios which begin at 0.167 and end at 3.33; therefore the performance

hurdles we employ to evaluate our estimators are more difficult to overcome.

Our simulation experiments are therefore more challenging and mirror real mar-

ket conditions. For example, assuming that there are 20 trading days in a month, we

compare the estimates of 25000 months. Formally, the data generation system is given

as:

st = Mt +
SP
2 · BSt

BSt ∼ B(1, 0.5)

∆Mt ∼ N(0, 0.05) (one − minute)

SP =





0.001

0.002 report online f or brevity

0.006 report online f or brevity

0.010 report online f or brevity

0.030

Tables 1 to 5 report, the testing using various versions of our BHL, SHL and CS mod-

elsd. In general, those estimates are more accurate and efficient from the top left to

the bottom right, as the ratio (True spread/Midstd) increases (from 0.00527 to 0.387) the

dSee the caption of Table 1 for full details of the versions of the estimators used.
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number of observations increasese; this is consistent with findings of Bleaney and Li

(2015, 2016). By setting negative trials and results to be zero, the BH3, SHL2, CS3, AR

and Roll estimators demonstrate significant bias. For example, the relative error of

SHL2 is 74.97% and those of BH3, CS3 and AR are 330%, 234% and 155% respectively

when the ratio is 0.158 (The left panel of Table 5). If the ratio is 0.387 (The right panel

of Table 5), the relative error of SHL2 is −0.593% which is close to zero, and therefore

demonstrates the power of the model. For the other estimators, the relative errors of

SHL1, BHL1 and BHL2 are less than 5% when the ratio is greater than 0.0258. Accord-

ing to the second column of Table 3, the average ranking of all simulation experiments

in section 4.2.1 suggests that the combination of SHL2 and BHL1 is the best perform-

ing estimator. In terms of the performance of single rather than combined estimators,

SHL2 offers the best results and is the second best performer from the entire array of

models.

[Insert Tables 1 to 5 here]

4.2.2 Cross-sectional properties of the estimators

In this section, the cross-sectional properties of the estimators are examined. In contrast

to the previous section, the bid-ask spreads are assumed to vary each month and are

evenly distributed from 0.002 to 0.0177. We also break the full sample into five groups

according to the mean of the bid-ask spread. Thus, we can examine the cross-sectional

performances of the estimators across the five ranges of spread. The other parameters

in the data generation process are the same as in the previous section.

eOutliers of relative errors, the highest and lowest 1% of the relative estimated errors, are trimmed

off before further calculation. We also test the cases of full sample and the case where the trimming is at

the 0.05% and 2% level, the results produced are similar.
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Formally, the data generation system is given as:

st = Mt +
SP
2 · BSt

BSt ∼ B(1, 0.5)

∆Mt ∼ N(0, 0.05) (one − minute)

SP =





f rom 0.001 to 0.00513

f rom 0.00513 to 0.00829 report online f or brevity

f rom 0.00829 to 0.0114 report online f or brevity

f rom 0.0114 to 0.0146 report online f or brevity

f rom 0.0146 to 0.0177

(41)

The results of the simulation experiments are reported in Tables 6 to 11. The corre-

lations between the true and estimated spreads are also reported. Table 6 reports the

pooled results while the other panels are represented in the equation above according

to each grouping of spreads. In the case of spreads where the range is between 0.01

and 0.03, the correlations reported are quite weak.

In the pooled case, although CS3 has a slightly stronger correlation than SHL2 with

values of 0.136 and 0.127 respectively, it reports a much higher value for RMSE at 12.32

that the SHL2 value which is 5.51. In terms of correlation, the best performers are CS3,

SHL2 and BHL3. From the third column of Table 12, it is evident from the average

ranking of all simulation experiments that the combination of SHL2 and BHL1 and

that of SHL2 and CS2 are the best performing estimators. For single models, SHL2

shows the best performance and is placed third in rank overall.

Table 12 shows a summarised average ranking for all simulations. According to the

first column, the average ranking of all cases of simulation experiments suggests that

the combination of SHL2 and BHL1 is the best performing estimator. SHL2 is the best

performing single estimator and takes second place overall. The other combinations

outperform the other single estimators. The remaining alternate versions of our new

models (BHL1, BHL2, SHL1) perform better than all the versions of the CS and Roll

estimators.

[Insert Tables 6 to 12 here]
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4.3 Comparisons in foreign exchange markets

In this section, we use our chosen estimators to gauge historical spreads for the foreign

exchange markets. To do this, we test the estimators using closing prices and quoted

spread data of 22 currency pairs in a sample beginning in January 1990 and finishing

in December 2016, using data extracted from DataStream. We also use the prices and

effective spreads of 12 Currency pairs in a sample dating from December 2015 to Au-

gust 2016, this data is taken from Hotspot. In testing on both currency samples our

sophisticated high-low estimator outperforms all others employed in the test.

4.4 DataStream 22 currency pairs 1990-2016

In this subsection, we evaluate the performance of the estimators using daily high and

low prices and closing bid-ask spread data of 22 currency pairs taken from DataStream.

For brevity, we report only the pooled results and not the result of the individual tests

on each currency pair. The times series properties of the estimators are reported in Ta-

ble 14 through the average performance ranking of the models for each pair examined;

of these, SHL2 and the combination of SHL2 and BHL1 are the best performers.

According to Table 13, the combination of SHL2 and BHL1 outperforms the other

estimators in terms of RMSE. Although CS2 has the lowest average estimated error

(17.05%), its standard deviation of 2.315 is large relative to the others tested. SHL2

has a lower standard deviation than the aforementioned combination but a greater er-

ror (90.49%) and thus it takes second place in terms of performance. CS3 and BHL3

report high correlations between true and estimated spreads with the values of 0.876

and 0.869 respectively. However, the errors and the standard deviations of CS3 and

BHL3 are much bigger than the others, and therefore CS3 and BHL3 perform poorly

according to RMSE. SHL2 performs quite well in comparison, with a cross-sectional

correlation figure of 0.726, but reports a much lower error and standard deviation fig-

ure than CS3. Table 14 also suggests that the combination of SHL2 and BHL1 is the

best choice while SHL2 provides a good alternative. Table 15 reports average cross-

sectional correlations between true and estimated spreads generated by each of the

estimators. All the estimators exhibit very high correlations. BHL3’s correlation of

0.95 is the highest. CS3 and AR’s correlation of 0.948 are the second strongest. SHL2
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exhibits a moderate correlation of 0.864. Table 15 also reports currency-by-currency

time series correlations between true and estimated spreads generated by each of the

estimators. Similar to those reported in Corwin and Schultz (2012), all the estimators

exhibit weaker correlations than in the cross-sectional case. BHL3, CS3 and SHL2 ex-

hibit the highest correlations, which are 0.271, 0.265 and 0.198 respectively.

[Insert Tables 13 to 15 here]

Figure 2 illustrates an example of the estimates and the actual closing quoted spread

in the form of the USD/JPY currency pair over a 50 month period. We can see that

all estimators, except for SHL2, show negative estimates. CS2 and the combinations

appear more volatile than SHL2, the combination of SHL2 and BHL1 has the lowest

average estimated error.

[Insert figure 2 here]

4.4.1 Hotspot 12 currency pairs Dec 2015-Aug 2016

In this section, we evaluate the performance of the estimators using daily high and

low prices and the effective time-weighted bid-ask spread data of 12 currency pairs

sourced from Hotspot. Results are reported in Table 16. Hotspot is a large electronic

communication network (ECN) platform for foreign exchange transactions conducted

worldwide. We extract quotes and transaction data similar to that taken from the TAQ

database. Trade volume weighted effective spreads are calculated for each pair over

time the sample period begins in December 2015 and ends in August 2016. Spreads

are arrived at through the matching of quote and transaction data. The trade volume

weighted effective spread can be formally expressed as:

2 · (st − Mt−1) f or buyer initiated trades

2 · (Mt−1 − st) f or seller initiated trades
(42)

In order to reduce the possibility of errors in the data we eliminate outliersf and neg-

ative effective spreads. Table 16 displays the results of the pooled case where the 12

currencies over the entire sample period are examined. SHL2 is the best performing

model in terms of RMSE, although its estimated error is very high (754%) but is sim-

ilar to the others models. The standard deviation of SHL2 is the lowest (7.66) among

fOutliers are deemed to be those spreads which exceed the daily average by over 50 times.
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the estimators tested, where each model either significantly over or under-estimates

the spread. The currency-month pooled correlation coefficients for the estimated and

true spreads for AR and BHL3 are 0.73 and 0.72 respectively; these are higher than the

other models tested. However, their relative errors and standard deviations are greater

in magnitude than the others. Therefore, AR and BHL3 are not the best performing es-

timators as the RMSEs place these at 13th and 14th in order of performance. The Roll

estimator exhibits a high correlation coefficient (0.60), however, at least in half of the

total cases, it obtains a negative number in the square root and we thus set it to zero.

Although the combination of SHL2 and BHL1 is the second best in terms of RMSE,

its correlation with the true spread is negative. SHL2’s correlation coefficient is 0.24;

this is acceptable in comparison with others. Also, its RMSE is the lowest amongst

the models; therefore we rank this as the best performer. In Table 17, the average

cross-sectional correlations between true and estimated spreads are reported across all

currency pairs. AR and BHL3 exhibit the highest correlations, which are 0.8 and 0.77.

SHL2’s correlation is 0.636, performing slightly less well than AR and BHL3 in this

instance but still at an adequate level. The average time series correlations between

true and estimated spreads are reported across all currency pairs. BHL3 and AR ex-

hibit the highest correlations, which are 0.51 and 0.48 respectively while with SHL2

the correlation is 0.04. The average time series correlations are much lower than those

generated through cross-sectional analysis; this may be as a result of the time series

being relatively short with its length being 12 months.

[Insert Tables 16 to 17]

4.4.2 Comparisons in equity markets TAQ data 2014

In this section, we use our chosen estimators to gauge spreads for the U.S equity market

using the constituents of the S&P 1500 index as a sample. A snapshot of TAQ data,

offers tick by tick pricing in 2014, which is used to calculate time-weighted quoted

bid-ask spread and daily high and low prices. Tables 18 to 20 report the results of

S&P 1500 (pooled case), S&P 600 (small cap), S&P 400 (mid cap), S&P 500 (large cap)

stocks. In the pooled case, the SHL2 is the best performer in terms of RMSE results.

It must be noted that all estimators significantly over or underestimate the spread.
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SHL2 displays the smallest estimated error but underestimates the spread by 59% on

average, while the next best performing model (CS3) has an error of 104%. In contrast

to a relatively poor performance with FX simulations, CS3 is ranked second out of all

the estimators. The combination of SHL2 and BHL1 takes the third place. The pooled

equity-month correlation coefficients of BHL3 and SHL2 are 0.78 and 0.74 respectively;

this is significantly higher than the others and suggests a high correlation with the true

spread. CS3 slightly outperforms SHL2 in the case of equities listed on the S&P600

because of its -1% average error. However, it represents an isolated example because

the error of the CS3 estimator for simulations, equity and FX sample tests throughout

the paper is high. Table 22 reports the average ranking of the small, mid and large cap

equity group cases. It is apparent that SHL2 is still the best choice for estimator while

CS2 and the combination of SHL2 and BHL1 produce results that could offer a good

alternative. Table 23 reports the equity-by-equity cross-sectional correlations for each

of the estimators. BHL3 and SHL2’s correlations are 0.82 and 0.75 respectively; these

are significantly higher than the others reported through the testing. AR’s correlation

of 0.70 is the third strongest. Table 23 reports average time series correlations of the

estimators. BHL3 and CS3’s correlations are 0.34 and 0.32. SHL2’s correlation is 0.09.

[Insert Tables18 to 23 here]

5 Application of SHL2

Moving beyond simulation, in this section, we demonstrate the application of SHL2

by using this estimator to gauge monthly average spreads for developed and emerg-

ing market stock exchanges. We find that the SHL2 acts as a good proxy for market

liquidity as predictions of periods of intense uncertainty are often accompanied with

low liquidity (high bid-ask spreads) levels in financial markets. In the samples we

investigate, the data for the true spread is unavailable.

5.1 NYSE 1926-2015

Figure 3 shows the monthly average estimated spread of all US stock markets includ-

ing New York Stock Exchange (NYSE), American Stock Exchange (AMEX) and teh
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Nasdaq from 1926 to 2015; this is generated by SHL2 using daily CRSP data. The

monthly average estimated spread of each market are also shown separately. The

spread was relatively large in the years before 1935. A further period of low liquid-

ity can be observed from 1970 to 1992, which is mainly caused by the low liquidity

in the Nasdaq. In 2008 at the nadir of the global financial crisis, the SHL2 estimator

recorded considerable lower liquidity levels through increased spreads, than in the

years surrounding the event.

5.2 Non-US equity markets applications

Figures 4 to 6 show the monthly average estimated spreads for equities listed on the

London, Hong Kong and Thai stock exchanges respectively. Data was obtained from

Bloomberg.

We observe several increases in bid-ask spreads estimated by SHL2, i.e. transaction

costs, around notable market events. For example, the average spread jumped to over

0.8% when the sterling crisis occurred in September 1992 (Figure 4). When the Asian

financial crisis began in July 1997, transaction costs rose significantly in both the Thai

and Hong Kong equity markets (Figures 5 and 6). The collapse of Lehman Brothers in

September 2008 and the financial crisis which heralded drove a jump in spreads in al-

most all equity markets used in our samples. After the results of the Brexit referendum

became clear in June 2016, transaction costs in the UK equity market also appeared to

rise sharply.

[Insert figures 3 to 6 here]

The applications in this section suggest that SHL2 can act as an estimator that is

sensitive enough to capture notable market events affecting transaction costs and as

a consequence, liquidity levels. SHL2, as a spread estimator, can also be used as a

liquidity measure in asset pricing models in a similar manner to that demonstrated in

Corwin and Schultz (2012) and Abdi and Ranaldo (2017).
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6 Conclusion

In this paper, we introduce two new low frequency bid-ask spread estimators which es-

timate the bid-ask spread using daily and two-day high and low prices. We show that

using similar input data, our estimators, in particular, the sophisticated version, signif-

icantly outperforms both the latest and the popular models such as Abdi and Ranaldo

(2017), Corwin and Schultz (2012) and Roll (1984) in terms of accuracy, efficiency, as

well as cross-sectional and time series correlations.

We test the performance of estimators using comprehensive Monte Carlo simula-

tion experiments under various ’signal to noise’ ratios and different sampling frequen-

cies. In addition, the cross-sectional properties of the estimators are also examined.

Our estimators, BHL and SHL, appear to be unbiased throughout all tests carried out.

By setting negative trials to zero which we label SHL2, we can obtain more efficient

estimates; these are exhibited through lower standard errors. The results of simula-

tion experiments suggest that our estimators outperform the AR, CS and Roll models.

We demonstrate that SHL2 is the best single estimator in terms of accuracy and effi-

ciency. We go further and test the performance of combinations of estimators against

our own models and find that the AR, CS and Roll models also fail to match with ours

in performance. The combinations of the estimators are useful as using these can ad-

dress the problems associated with errors which often appear for individual models.

The combination of basic and sophisticated high-low estimators (BHL1 and SHL2) per-

form well and offer a good alternative to using the single estimators, thereby avoiding

the associated error risk.

We then move beyond simulation experiments to study the models using real world

data for both foreign exchange and equity markets. By comparing the closing bid-ask

spread of 22 currency pairs over 26 years, we find that our SHL2 model outperforms

all the others including the AR, CS and Roll models in terms of the root mean square

error (RMSE). We arrive at the same conclusion when we ran tests using trade and

quote data of 12 currency pairs over 9 months and for equities listed on the S&P 1500

throughout 2014. In terms of correlation, BHL3, AR, CS3 and SHL2 all performed well

as estimators.

In general, our BHL and SHL are the best spread estimators. Researchers can choose
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the estimator according to their needs: BHL3 is good for cases where the high corre-

lation is the only requirement and SHL2 can be used for other cases especially when

accuracy and efficiency is of particular importance.

In order to demonstrate the effectiveness of our model (SHL2) through applica-

tions, we provide an illustration of how this can be applied. We generate the average

monthly bid-ask spreads for the US, UK, HK and Thai equity markets. We show how

the estimated spreads follow a pattern that is in line with our expectations in that the

transaction costs increase sharply during crises periods.

Similar to the CS model, our estimators also obtain the estimates of daily mid-price

diffusion at the same time as when the spreads are estimated. Because the spread and

the diffusion are estimated together, a good spread estimator is also a good diffusion

estimator. Thus, our sophisticated version model (SHL2) also offers the best diffusion

estimates. As our estimators are not designed for a particular market structure, further

research could test and apply our suggested estimators to the bonds, futures and op-

tion markets. In particular, these may be interesting for the over-the-counter markets

where quote data can be difficult to obtain.
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7 Appendix

7.1 Proof of Proposition 3.1

When the components of the spread do not include feedback trading, inventory control

or asymmetric information, we can consider that the spread and its estimates, and

thus the estimated errors, are either serially independent or fixed. If an estimate of the

spread S̃Pi ∈ A corresponds to Vari = max(B), it equals the true spread i.e. S̃Pi = SP.

Proof The variance of two adjacent conjectures of mid-price returns is:

Vari = Var
[
∆M̃t

]

= E

{[
∆M̃t − E

(
∆M̃t

)]2
} (43)

We will assume that the expectation of the value of the conjectural mid-prices is zero.

Thus, the equation above can be rewritten as:

Vari = Var
(

∆M̃t

)

= E
(

∆M̃t
2
)

= E

[(
∆Mt +

1
2 ΩBSt − 1

2 ΩBSt−1

)2
]

= E
[(

∆Mt +
1
2 ΩBSt − 1

2 ΩBSt−1

) (
∆Mt +

1
2 ΩBSt − 1

2 ΩBSt−1

)]

= E
(

∆Mt
2 + 1

2 ΩBSt∆Mt − 1
2 ΩBSt−1∆Mt

)

+E
[

1
2 ΩBSt∆Mt +

1
4(ΩBSt)

2 − 1
4 Ω2BStBSt−1

]

−E
[

1
2 ∆MtΩBSt−1 +

1
4 Ω2BStBSt−1 − 1

4(ΩBSt−1)
2
]

(44)

Where Ω denotes the conjectural error which represents the difference between the

conjectural mid-price and the true mid-price, alternately expressed as the difference

between the conjectural spread and its true value. Formally, Ω is given as:

Ω = ∆M̃t − ∆Mt = S̃Pi − SP (45)

The assumptions of this proposition imply that BS is independent of ∆ M at all ob-

servation points, therefore many of the terms in (44) such as E(∆ Mt BSt) and E(∆ Mt−1 BSt)

equate to zero. Formally, we have:
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E(∆ Mt BSt) = 0

E(∆ Mt−1 BSt) = 0

E(∆ Mt BSt−1) = 0

E (BSt BSt−1) = 0

(46)

Furthermore, the variable BS is a binary variable (1 or -1), thus:

E (BSt−1
2) = 1 (47)

Finally we obtain:

Vari = Var
(

∆M̃t

)

= E
(

∆Mt
2 + 1

2 Ω
2
) (48)

The final step of Equation (48) given above is the quadratic polynomial of the expecta-

tion of the error of the conjecture. For a given series, the first term E(∆M2
t ) is a constant.

We can surmise directly from this that when the error is zero (i.e. Ω = 0), the second

term 1
2 Ω2 is zero. Furthermore, when Ω = 0, there is a global extreme for the right

hand side polynomial in the final step, symmetrically, the left hand side of the equa-

tion Vari = Var
(

∆M̃t

)
is also at the extreme value. Formally this can be expressed

as:

arg max
Ω

Var
(

∆M̃t

)
= 0 (49)

When the conjectural error is zero, the conjectural spread becomes the true spread:

S̃Pi = SP + Ω = SP (50)

Therefore the conjectural spread which maximises the covariance equals the true spread.

arg max
S̃Pi∈A

Var
(

∆M̃t

)
= SP (51)

Q.E.D.

7.2 Proof of feedback bias

When feedback trading exists, we have:

E(∆ Mt BSt) ̸= 0 (52)

28



Substituting Equations (46), (47) and (52) and into Equation (44), we can obtain:

Vari = Var
[
∆M̃t

]

= E
[
(∆Mt)

2 + 1
2 ΩBSt∆Mt − 1

2 ΩBSt−1∆Mt

]

+E
[

1
2 ΩBSt∆Mt +

1
4(ΩBSt)

2 − 1
4 Ω2BStBSt−1

]

−E
[
∆Mt

1
2 ΩBSt−1 +

1
4 Ω2BStBSt−1 − 1

4(ΩBSt−1)
2
]

= E
(

∆Mt
2 + 1

2 ΩBSt∆Mt

)

+E
(

1
2 ΩBSt∆Mt +

1
2 Ω2

)

= E
(

∆Mt
2 + ΩBSt∆Mt +

1
2 Ω2

)

(53)

Substituting Ω = S̃P − SP = 0 into the equation above, we have:

Vari = Var
[
∆M̃t

]

= E
[
(∆Mt)

2 + ΩBSt∆Mt +
1
2 Ω2

]

= E

[
(∆Mt)

2 +
(

S̃P − SP
)

BSt∆Mt +
1
2

(
S̃P − SP

)2
] (54)

Using first order conditioning of Equation (54), we obtain:

SP = S̃P − E (BSt ∆ Mt) (55)

Equation above suggests that when there is feedback trading, variance version of the

BL estimator overestimates the spread.

7.3 Proof of Equation (31)

For each day, we choose at random either the daily high or low prices to calculate the

daily price change. Thus, the probability of picking daily high (or low) price is 50%

and there are four cases for the daily price changes with an equal likelihood which are

as follows.

∆ Mdaily =





Ht − Ht−1 with 1
4 chance

Ht − Lt−1 with 1
4 chance

Lt − Ht−1 with 1
4 chance

Lt − Lt−1 with 1
4 chance

(56)
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Thus BSdaily ·∆ Mdaily is given as follows:

BSdaily ·∆ Mdaily =





BSdaily · (Ht − Ht−1) with 1
4 chance

BSdaily · (Ht − Lt−1) with 1
4 chance

BSdaily · (Lt − Ht−1) with 1
4 chance

BSdaily · (Lt − Lt−1) with 1
4 chance

(57)

When daily high (or low) price is picked, trading direction is known (Equation 4).

Formally, we have:

BSdaily ·∆ Mdaily =





[1 · (Ht − Ht−1)] with 1
4 chance

[1 · (Ht − Lt−1)] with 1
4 chance

[−1 · (Lt − Ht−1)] with 1
4 chance

[−1 · (Lt − Lt−1)] with 1
4 chance

(58)

Taking the expectation of BSdaily ·∆ Mdaily , we obtain:

E
(

BSdaily ·∆ Mdaily

)
= 1

4 · E (Ht − Ht−1) +
1
4 · E (Ht − Lt−1)

− 1
4 · E (Lt − Ht−1)− 1

4 · E (Lt − Lt−1)

= 1
2 E (Ht − Lt)

(59)

7.4 A brief introduction to the AR, Roll and CS estimators

Researchers generally opt to use the Roll estimator and modelsg derived from it be-

cause they are easy to program. The Roll estimator is given by the following equation.

SP = 2
√
−cov (∆st, ∆st−1) (60)

According to Corwin and Schultz (2012), the CS estimator appears to be the best of

low-frequency estimators including the Lesmond et al. (1999) estimator. Furthermore,

our proposed model in this paper shares the same intuition with the CS estimator,

therefore, the CS estimator is picked to examine. Squaring both sides of Equation (7),

we have, (
RangeT

daily

)2
=
(

RangeM
daily +SP

)2

=
(

RangeM
daily

)2
+2 RangeM

daily ·SP + (SP)2
(61)

gRelated models include Glosten and Harris (1988), Choi et al. (1988), Stoll (1989), George et al. (1991),

Huang and Stoll (1997), Hasbrouck (2004, 2009) and Chen et al. (2016)
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Similarly, squaring both sides of Equation (8), we have:

(
RangeT

twoday

)2
=
(

RangeM
twoday +SP

)2

=
(

RangeM
twoday

)2
+2 RangeM

twoday ·SP + (SP)2
(62)

Corwin and Schultz (2012) assume that

E
(

RangeT
twoday

)2
≈ E

[(
RangeT

twoday

)2
]

E
(

RangeT
daily

)2
≈ E

[(
RangeT

daily

)2
] (63)

One could solve the spread from the equation system and obtains:

SP =
2 (eα −1)

1 + eα
(64)

where

α =

√
2β −

√
β

3 − 2
√

2
−
√

γ

3 − 2
√

2
(65)

β = E

{
1

∑
J=0

(
RangeT

daily,t+J

)2
}

; γ =
(

RangeT
twoday

)2
(66)

When the spread is small, SP ≈ α . We may use Equation (65) to estimate the spread.

Abdi and Ranaldo (2017) model incorporates the CS model into the Roll estimator.

Formally, it can be expressed as follows:

SP = 2
√
(st − ηt) (st − ηt+1) (67)

where η is the mid-point of the high and low prices. Formally, it is given by:

ηt =
Ht + Lt

2
(68)
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Table 1: Simulation experiments: Comparison of the estimates over 25000 months

Daily (MidStd= 189.7*0.001) Four hours (MidStd =77.5*0.001)

20 observations per month 120 observations per month

True spread= 1 (*0.001) True spread/Midstd=0.00527 True spread/Midstd=0.0129

Mean*0.001 Rel-Err-Mean Rel-Err-Std RMSE Ranking Mean*0.001 Rel-Err-Mean Rel-Err-Std RMSE Ranking

SHL1 0.953 17.76% 41.177 41.176 8 0.899 -8.763% 6.513 6.514 7

SHL2∗
(negatives to be zero)

35.348 3391% 20.215 39.485 3 4.512 341% 3.609 4.968 1

BHL1⋆

(mean spreads)

0.756 -6.63% 40.958 40.958 6 0.906 -7.918% 6.495 6.496 5

BHL2⋆

(mean parameters)

0.793 0.97% 41.047 41.046 7 0.900 -8.702% 6.510 6.511 6

BHL3⋆

(negatives to be zero)

112.316 11122% 23.817 113.742 13 46.195 4519% 3.775 45.349 14

CS1ˆ

(mean spreads)

21.221 2039% 37.204 42.426 9 9.155 817% 6.100 10.195 10

CS2ˆ

(mean parameters)

2.643 185% 43.125 43.164 10 0.999 1.231% 7.139 7.139 8

CS3‡

(negatives to be zero)

82.901 8180% 19.591 84.112 12 34.266 3326% 3.221 33.415 12

ROLL 93.496 15269% 64.917 165.918 14 20.969 3758% 15.947 40.823 13

AR‡

(negatives to be zero)

74.679 7350% 22.047 76.738 11 30.438 2943% 3.503 29.635 11

Combination1

(BHL1+SHL2)/2

18.052 1693% 29.323 33.859 1 2.709 167% 4.972 5.244 2

Combination2

(SHL2+CS2)/2

18.996 1789% 30.546 35.397 2 2.756 171% 5.247 5.520 3

Combination3

(CS1+BHL1)/2

10.988 1016% 38.554 39.869 4 5.030 404% 6.262 7.454 9

Combination4

(BHL1+BHL2)/2

0.775 -2.55% 40.307 40.306 5 0.903 -8.297% 6.485 6.485 4

The standard divination of daily mid-price return is 0.1897. The true spread is fixed.

∗In the instance where the SHL estimate in a trail is a negative value, we set all negative estimated spreads in a trail to zero.

⋆The BHL estimates can be calculated using two methods: (1) calculate the two-day interval spread for one equity finding the

monthly mean for the spread (reported as ’BHL1 mean spreads’ in the table above); 2) calculate the average daily and two day

interval range each month and then calculate the spread (reported as ’BHL2 mean parameters’ above).

ˆThe monthly CS estimates can be calculated using the two methods described in note ⋆.

‡ Estimates are calculated in a manner similar to that described in notes ∗.

The column ’Ranking’ reports the rankings of the estimators according to values produced in column RMSE.

This table reports the results of the time intervals of daily and four-hours respectively. Midstd represents the standard deviation

of mid-price returns over the relevant interval. For each time interval, there are five panels which report the summary statistics

and the results of the estimators respectively. Mean indicates the average of estimated spreads over 25000 replications. Outliers

of relative errors, the highest and lowest 1% of the relative estimated errors, are trimmed off before further calculation We also

report the rankings of the estimators according to RMSE.

35



Table 2: Simulation experiments: Comparison of the estimates over 25000 months

Daily (MidStd= 189.7*0.001) Four hours (MidStd =77.5*0.001)

20 observations per month 120 observations per month

True spread=2 (*0.001) True spread/Midstd=0.0105 True spread/Midstd=0.0258

Mean*0.001 Rel-Err-Mean Rel-Err-Std RMSE Ranking Mean*0.001 Rel-Err-Mean Rel-Err-Std RMSE Ranking

SHL1 2.181 20.22% 20.577 20.578 8 1.909 -3.972% 3.272 3.272 7

SHL2∗
(negatives to be zero)

36.002 1680% 10.134 19.620 3 5.096 150% 1.951 2.459 1

BHL1⋆

(mean spreads)

1.985 8.91% 20.431 20.431 6 1.909 -4.022% 3.263 3.263 5

BHL2⋆

(mean parameters)

2.169 19.27% 20.546 20.547 7 1.911 -3.887% 3.270 3.270 6

BHL3⋆

(negatives to be zero)

113.081 5550% 11.873 56.758 13 46.773 2238% 1.912 22.466 14

CS1ˆ

(mean spreads)

22.457 1032% 18.541 21.217 9 10.116 406% 3.069 5.092 10

CS2ˆ

(mean parameters)

3.767 97.52% 21.513 21.535 10 1.967 -1.012% 3.593 3.593 8

CS3‡

(negatives to be zero)

83.778 4085% 9.757 41.997 12 34.880 1644% 1.635 16.518 12

ROLL 93.022 7581% 32.519 82.487 14 21.411 1839% 8.006 20.059 13

AR‡

(negatives to be zero)

74.919 3637% 10.969 37.985 11 30.540 1426% 1.756 14.372 11

Combination1

(BHL1+SHL2)/2

18.993 845% 14.672 16.929 1 3.503 72.871% 2.571 2.672 2

Combination2

(SHL2+CS2)/2

19.884 889% 15.277 17.674 2 3.531 74.460% 2.712 2.812 3

Combination3

(CS1+BHL1)/2

12.221 520% 19.240 19.930 4 6.012 201% 3.148 3.736 9

Combination4

(BHL1+BHL2)/2

2.077 14.08% 20.155 20.155 5 1.910 -3.949% 3.257 3.258 4

∗In the instance where the SHL estimate in a trail is a negative value, we set all negative estimated spreads in a trail to zero.

⋆The BHL estimates can be calculated using two methods: (1) calculate the two-day interval spread for one equity finding the

monthly mean for the spread (reported as ’BHL1 mean spreads’ in the table above); 2) calculate the average daily and two day

interval range each month and then calculate the spread (reported as ’BHL2 mean parameters’ above).

ˆThe monthly CS estimates can be calculated using the two methods described in note ⋆.

‡ Estimates are calculated in a manner similar to that described in notes ∗.

The other settings are the same as Table (1).
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Table 3: Simulation experiments: Comparison of the estimates over 25000 months

Daily (MidStd= 189.7*0.001) Four hours (MidStd =77.5*0.001)

20 observations per month 120 observations per month

True spread=6 (*0.001) True spread/Midstd=0.0316 True spread/Midstd=0.0775

Mean*0.001 Rel-Err-Mean Rel-Err-Std RMSE Ranking Mean*0.001 Rel-Err-Mean Rel-Err-Std RMSE Ranking

SHL1 5.896 1.82% 6.900 6.900 8 5.818 -2.781% 1.080 1.081 7

SHL2∗
(negatives to be zero)

38.141 529% 3.523 6.354 3 7.634 25.770% 0.792 0.833 1

BHL1⋆

(mean spreads)

5.805 -0.41% 6.831 6.831 6 5.821 -2.709% 1.080 1.080 5

BHL2⋆

(mean parameters)

5.925 1.97% 6.896 6.895 7 5.817 -2.782% 1.080 1.080 6

BHL3⋆

(negatives to be zero)

115.153 1818% 3.966 18.608 13 48.999 717% 0.646 7.195 14

CS1ˆ

(mean spreads)

25.936 335% 6.219 7.063 9 13.797 130% 1.014 1.650 10

CS2ˆ

(mean parameters)

7.377 25.97% 7.223 7.227 10 5.714 -4.482% 1.184 1.184 8

CS3‡

(negatives to be zero)

85.942 1331% 3.315 13.713 12 37.168 519% 0.561 5.224 12

ROLL 93.559 2455% 10.843 26.840 14 21.573 546% 2.646 6.071 13

AR‡

(negatives to be zero)

74.826 1144% 3.659 12.013 11 30.687 411% 0.586 4.154 11

Combination1

(BHL1+SHL2)/2

21.973 264% 4.975 5.633 1 6.728 11.535% 0.927 0.935 2

Combination2

(SHL2+CS2)/2

22.759 277% 5.193 5.888 2 6.674 10.668% 0.971 0.977 3

Combination3

(CS1+BHL1)/2

15.870 167% 6.443 6.656 4 9.809 63.730% 1.041 1.221 9

Combination4

(BHL1+BHL2)/2

5.865 0.82% 6.750 6.750 5 5.819 -2.740% 1.076 1.077 4

∗In the instance where the SHL estimate in a trail is a negative value, we set all negative estimated spreads in a trail to zero.

⋆The BHL estimates can be calculated using two methods: (1) calculate the two-day interval spread for one equity finding the

monthly mean for the spread (reported as ’BHL1 mean spreads’ in the table above); 2) calculate the average daily and two day

interval range each month and then calculate the spread (reported as ’BHL2 mean parameters’ above).

ˆThe monthly CS estimates can be calculated using the two methods described in note ⋆.

‡ Estimates are calculated in a manner similar to that described in notes ∗.

The other settings are the same as Table (1).
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Table 4: Simulation experiments: Comparison of the estimates over 25000 months

Daily (MidStd= 189.7*0.001) Four hours (MidStd =77.5*0.001)

20 observations per month 120 observations per month

True spread=10 (*0.001) True spread/Midstd=0.0527 True spread/Midstd=0.129

Mean*0.001 Rel-Err-Mean Rel-Err-Std RMSE Ranking Mean*0.001 Rel-Err-Mean Rel-Err-Std RMSE Ranking

SHL1 9.884 0.82% 4.143 4.143 8 9.728 -2.641% 0.657 0.657 6

SHL2∗
(negatives to be zero)

40.456 301% 2.182 3.714 3 10.699 6.274% 0.552 0.556 1

BHL1⋆

(mean spreads)

9.829 -0.04% 4.097 4.097 6 9.730 -2.629% 0.656 0.657 5

BHL2⋆

(mean parameters)

9.833 0.15% 4.133 4.133 7 9.729 -2.626% 0.657 0.658 7

BHL3⋆

(negatives to be zero)

117.638 1076% 2.385 11.017 13 51.223 412% 0.393 4.141 14

CS1ˆ

(mean spreads)

29.716 199% 3.725 4.222 9 17.474 74.802% 0.617 0.970 10

CS2ˆ

(mean parameters)

11.212 14.09% 4.313 4.315 10 9.454 -5.372% 0.718 0.720 8

CS3‡

(negatives to be zero)

88.401 783% 2.014 8.085 12 39.539 295% 0.349 2.974 12

ROLL 93.914 1433% 6.524 15.746 14 21.875 293% 1.611 3.343 13

AR‡

(negatives to be zero)

75.142 650% 2.200 6.860 11 30.997 210% 0.355 2.128 11

Combination1

(BHL1+SHL2)/2

25.142 150% 3.018 3.371 1 10.214 1.822% 0.601 0.601 2

Combination2

(SHL2+CS2)/2

25.834 157% 3.140 3.512 2 10.076 0.455% 0.626 0.626 3

Combination3

(CS1+BHL1)/2

19.772 99.33% 3.862 3.987 4 13.602 36.083% 0.633 0.729 9

Combination4

(BHL1+BHL2)/2

9.831 0.06% 4.048 4.048 5 9.729 -2.628% 0.655 0.655 4

∗In the instance where the SHL estimate in a trail is a negative value, we set all negative estimated spreads in a trail to zero.

⋆The BHL estimates can be calculated using two methods: (1) calculate the two-day interval spread for one equity finding the

monthly mean for the spread (reported as ’BHL1 mean spreads’ in the table above); 2) calculate the average daily and two day

interval range each month and then calculate the spread (reported as ’BHL2 mean parameters’ above).

ˆThe monthly CS estimates can be calculated using the two methods described in note ⋆.

‡ Estimates are calculated in a manner similar to that described in notes ∗.

The other settings are the same as Table (1).
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Table 5: Simulation experiments: Comparison of the estimates over 25000 months

Daily (MidStd= 189.7*0.001) Four hours (MidStd =77.5*0.001)

20 observations per month 120 observations per month

True spread=30 (*0.001) True spread/Midstd=0.158 True spread/Midstd=0.387

Mean*0.001 Rel-Err-Mean Rel-Err-Std RMSE Ranking Mean*0.001 Rel-Err-Mean Rel-Err-Std RMSE Ranking

SHL1 29.607 -0.61% 1.387 1.387 8 29.809 -0.603% 0.218 0.218 5

SHL2∗
(negatives to be zero)

52.870 74.94% 0.833 1.121 1 29.818 -0.588% 0.218 0.218 4

BHL1⋆

(mean spreads)

29.567 -0.92% 1.375 1.375 6 29.820 -0.573% 0.218 0.218 3

BHL2⋆

(mean parameters)

29.595 -0.74% 1.385 1.385 7 29.809 -0.607% 0.218 0.218 6

BHL3⋆

(negatives to be zero)

128.947 330% 0.826 3.398 13 63.517 112% 0.142 1.126 14

CS1ˆ

(mean spreads)

48.244 61.34% 1.249 1.391 9 36.619 22.091% 0.206 0.302 11

CS2ˆ

(mean parameters)

30.054 0.83% 1.439 1.439 10 29.055 -3.116% 0.237 0.239 10

CS3‡

(negatives to be zero)

100.202 234% 0.724 2.447 12 52.595 75.295% 0.135 0.765 13

ROLL 95.550 416% 2.206 4.706 14 30.286 47.501% 0.582 0.751 12

AR‡

(negatives to be zero)

76.747 155% 0.750 1.724 11 35.313 17.669% 0.131 0.220 7

Combination1

(BHL1+SHL2)/2

41.218 36.99% 1.067 1.129 2 29.819 -0.581% 0.217 0.217 1

Combination2

(SHL2+CS2)/2

41.462 37.88% 1.103 1.166 3 29.437 -1.856% 0.226 0.226 8

Combination3

(CS1+BHL1)/2

38.905 30.19% 1.296 1.331 4 33.219 10.758% 0.211 0.237 9

Combination4

(BHL1+BHL2)/2

29.581 -0.83% 1.358 1.358 5 29.814 -0.590% 0.218 0.218 2

∗In the instance where the SHL estimate in a trail is a negative value, we set all negative estimated spreads in a trail to zero.

⋆The BHL estimates can be calculated using two methods: (1) calculate the two-day interval spread for one equity finding the monthly

mean for the spread (reported as ’BHL1 mean spreads’ in the table above); 2) calculate the average daily and two day interval range each

month and then calculate the spread (reported as ’BHL2 mean parameters’ above).

ˆThe monthly CS estimates can be calculated using the two methods described in note ⋆.

‡ Estimates are calculated in a manner similar to that described in notes ∗.

The other settings are the same as Table (1).
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Table 6: Simulation experiments: Cross-sectional properties of the estimates

Mean true spread=11.02 (*0.001) Daily (MidStd= 189.7*0.001) Truespread/Midstd=0.0581

Range from 2.00 to 20.00 (*0.001) 75000 months 20 observations per month

Mean*0.001 Rel-Err-Mean Rel-Err-Std RMSE Ranking Correlation

SHL1 10.461 -2.53% 5.612 5.612 7 0.113

SHL2∗
(negatives to be zero)

40.867 378% 4.006 5.506 5 0.127

BHL1⋆

(mean spreads)

10.429 -3.79% 5.560 5.560 6 0.115

BHL2⋆

(mean parameters)

10.438 -2.87% 5.618 5.618 8 0.114

BHL3⋆

(negatives to be zero)

117.774 1343% 10.005 16.748 13 0.112

CS1ˆ

(mean spreads)

30.265 242% 5.339 5.863 10 0.119

CS2ˆ

(mean parameters)

11.820 14.74% 5.849 5.851 9 0.107

CS3‡

(negatives to be zero)

88.586 979.10% 7.484 12.324 12 0.136

ROLL 93.103 1759% 14.736 22.950 14 0.003

AR‡

(negatives to be zero)

74.796 825.24% 6.948 10.788 11 0.008

Combination1

(BHL1+SHL2)/2

25.648 186% 4.286 4.673 1 0.124

Combination2

(SHL2+CS2)/2

26.343 195% 4.462 4.871 2 0.117

Combination3

(CS1+BHL1)/2

20.347 119% 5.314 5.445 3 0.118

Combination4

(BHL1+BHL2)/2

10.434 -3.38% 5.499 5.499 4 0.116

The standard divination of daily mid-price return is 0.1897

Mean indicates the average of estimated spreads over 75000 months. The true spread changes every month ranging

from 0.002 to 0.02.

∗In the instance where the SHL estimate in a trail is a negative value, we set all negative estimated spreads in a trail

to zero.

⋆The BHL estimates can be calculated using two methods: (1) calculate the two-day interval spread for one equity

finding the monthly mean for the spread (reported as ’BHL1 mean spreads’ in the table above); 2) calculate the

average daily and two day interval range each month and then calculate the spread (reported as ’BHL2 mean

parameters’ above).

ˆThe monthly CS estimates can be calculated using the two methods described in note ⋆.

‡ Estimates are calculated in a manner similar to that described in notes ∗.

The column ’Ranking’ reports the rankings of the estimators according to values produced in column RMSE.

This table reports the results of the time interval of daily. Midstd represents the standard deviation of mid-price

returns over the relevant interval. For each time interval, there are five panels which report the summary statistics

and the results of the estimators respectively. Outliers of relative errors, the highest and lowest 1% of the relative

estimated errors, are trimmed off before further calculation.
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Table 7: Simulation experiments: Cross-sectional properties of the estimates

Mean true spread=3.57 (*0.001) Daily (MidStd= 189.7*0.001) Truespread/Midstd=0.0188

Range from 2.00 to 5.13 (*0.001) 15000 months 20 observations per month

Mean*0.001 Rel-Err-Mean Rel-Err-Std RMSE Ranking Correlation

SHL1 3.403 3.51% 12.511 12.511 7 0.010

SHL2∗
(negatives to be zero)

36.725 983% 6.814 11.957 3 0.010

BHL1⋆

(mean spreads)

3.253 -3.09% 12.375 12.375 6 0.013

BHL2⋆

(mean parameters)

3.494 4.31% 12.543 12.543 8 0.015

BHL3⋆

(negatives to be zero)

113.768 3299.10% 11.395 34.903 13 0.019

CS1ˆ

(mean spreads)

23.663 605.75% 11.388 12.899 9 0.017

CS2ˆ

(mean parameters)

4.996 47.54% 13.054 13.062 10 0.018

CS3‡

(negatives to be zero)

84.477 2423% 8.860 25.801 12 0.012

ROLL 93.085 4448% 22.687 49.929 14 0.003

AR‡

(negatives to be zero)

74.800 2133% 8.872 23.101 11 -0.005

Combination1

(BHL1+SHL2)/2

19.989 489% 9.053 10.291 1 0.013

Combination2

(SHL2+CS2)/2

20.861 515% 9.429 10.742 2 0.016

Combination3

(CS1+BHL1)/2

13.458 301% 11.701 12.082 4 0.015

Combination4

(BHL1+BHL2)/2

3.373 0.36% 12.252 12.251 5 0.015

Mean indicates the average of estimated spreads over 15000 months. The true spread changes every month ranging

from 0.002 to 0.00513.

∗In the instance where the SHL estimate in a trail is a negative value, we set all negative estimated spreads in a trail

to zero.

⋆The BHL estimates can be calculated using two methods: (1) calculate the two-day interval spread for one equity

finding the monthly mean for the spread (reported as ’BHL1 mean spreads’ in the table above); 2) calculate the

average daily and two day interval range each month and then calculate the spread (reported as ’BHL2 mean

parameters’ above).

ˆThe monthly CS estimates can be calculated using the two methods described in note ⋆.

‡ Estimates are calculated in a manner similar to that described in notes ∗.

The other settings are the same as Table (6).
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Table 8: Simulation experiments: Cross-sectional properties of the estimates

Mean true spread=6.71 (*0.001) Daily (MidStd= 189.7*0.001) Truespread/Midstd=0.0354

Range from 5.13 to 8.29 (*0.001) 15000 months 20 observations per month

Mean*0.001 Rel-Err-Mean Rel-Err-Std RMSE Ranking Correlation

SHL1 6.533 0.62% 6.311 6.310 8 0.022

SHL2∗
(negatives to be zero)

38.490 476% 3.296 5.786 3 0.020

BHL1⋆

(mean spreads)

6.521 -1.06% 6.268 6.268 6 0.026

BHL2⋆

(mean parameters)

6.458 -0.96% 6.294 6.294 7 0.024

BHL3⋆

(negatives to zero)

115.408 1646% 4.232 16.993 13 0.024

CS1ˆ

(mean spreads)

26.490 302% 5.709 6.457 9 0.025

CS2ˆ

(mean parameters)

7.966 21.36% 6.610 6.613 10 0.023

CS3‡

(negatives to zero)

86.192 1203% 3.458 12.518 12 0.022

ROLL 93.129 2224% 10.244 24.486 14 0.001

AR‡

(negatives to be zero)

74.634 1028% 3.641 10.905 11 0.005

Combination1

(BHL1+SHL2)/2

22.505 237% 4.573 5.152 1 0.025

Combination2

(SHL2+CS2)/2

23.228 248% 4.765 5.374 2 0.022

Combination3

(CS1+BHL1)/2

16.505 150% 5.908 6.095 4 0.026

Combination4

(BHL1+BHL2)/2

6.489 -0.96% 6.177 6.177 5 0.026

Mean indicates the average of estimated spreads over 15000 months. The true spread changes every month ranging

from 0.00513 to 0.00829.

∗In the instance where the SHL estimate in a trail is a negative value, we set all negative estimated spreads in a trail

to zero.

⋆The BHL estimates can be calculated using two methods: (1) calculate the two-day interval spread for one equity

finding the monthly mean for the spread (reported as ’BHL1 mean spreads’ in the table above); 2) calculate the

average daily and two day interval range each month and then calculate the spread (reported as ’BHL2 mean

parameters’ above).

ˆThe monthly CS estimates can be calculated using the two methods described in note ⋆.

‡ Estimates are calculated in a manner similar to that described in notes ∗.

The other settings are the same as Table (6).
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Table 9: Simulation experiments: Cross-sectional properties of the estimates

Mean true spread=9.86 (*0.001) Daily (MidStd= 189.7*0.001) Truespread/Midstd=0.0520

Range from 8.29 to 11.44 (*0.001) 15000 months 20 observations per month

Mean*0.001 Rel-Err-Mean Rel-Err-Std RMSE Ranking Correlation

SHL1 8.527 -11.13% 4.249 4.250 7 0.019

SHL2∗
(negatives to be zero)

39.773 302% 2.218 3.744 3 0.021

BHL1⋆

(mean spreads)

8.584 -10.81% 4.222 4.223 6 0.018

BHL2⋆

(mean parameters)

8.323 -13.21% 4.251 4.253 8 0.018

BHL3⋆

(negatives to be zero)

116.896 1093% 2.644 11.244 13 0.020

CS1ˆ

(mean spreads)

28.435 192% 3.836 4.289 9 0.018

CS2ˆ

(mean parameters)

9.763 1.38% 4.445 4.445 10 0.016

CS3‡

(negatives to be zero)

87.575 793% 2.191 8.230 12 0.021

ROLL 92.115 1447% 6.774 15.979 14 -0.002

AR‡

(negatives to be zero)

74.396 658% 2.345 6.987 11 0.004

Combination1

(BHL1+SHL2)/2

24.178 145% 3.090 3.415 1 0.020

Combination2

(SHL2+CS2)/2

24.768 152% 3.214 3.554 2 0.018

Combination3

(CS1+BHL1)/2

18.509 90.50% 3.978 4.079 4 0.018

Combination4

(BHL1+BHL2)/2

8.453 -12.01% 4.169 4.171 5 0.018

Mean indicates the average of estimated spreads over 15000 months. The true spread changes every month ranging

from 0.00829 to 0.0114.

∗In the instance where the SHL estimate in a trail is a negative value, we set all negative estimated spreads in a trail

to zero.

⋆The BHL estimates can be calculated using two methods: (1) calculate the two-day interval spread for one equity

finding the monthly mean for the spread (reported as ’BHL1 mean spreads’ in the table above); 2) calculate the

average daily and two day interval range each month and then calculate the spread (reported as ’BHL2 mean

parameters’ above).

ˆThe monthly CS estimates can be calculated using the two methods described in note ⋆.

‡ Estimates are calculated in a manner similar to that described in notes ∗.

The other settings are the same as Table (6).
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Table 10: Simulation experiments: Cross-sectional properties of the estimates

Mean true spread=12.99 (*0.001) Daily (MidStd= 189.7*0.001) Truespread/Midstd=0.0685

Range from 11.45 to 14.55 (*0.001) 15000 months 20 observations per month

Mean*0.001 Rel-Err-Mean Rel-Err-Std RMSE Ranking Correlation

SHL1 12.128 -4.66% 3.218 3.218 8 0.020

SHL2∗
(negatives to be zero)

41.823 220% 1.730 2.798 3 0.025

BHL1⋆

(mean spreads)

12.094 -5.31% 3.198 3.198 6 0.018

BHL2⋆

(mean parameters)

12.081 -5.39% 3.217 3.217 7 0.020

BHL3⋆

(negatives to be zero)

118.783 818% 1.939 8.403 13 0.028

CS1ˆ

(mean spreads)

31.829 147% 2.907 3.258 9 0.020

CS2ˆ

(mean parameters)

13.532 5.84% 3.363 3.364 10 0.018

CS3‡

(negatives to be zero)

89.523 591% 1.642 6.137 12 0.027

ROLL 92.732 1086% 5.084 11.992 14 0.010

AR‡

(negatives to be zero)

74.802 477% 1.745 5.080 11 0.012

Combination1

(BHL1+SHL2)/2

26.958 107% 2.370 2.601 1 0.022

Combination2

(SHL2+CS2)/2

27.678 113% 2.463 2.709 2 0.021

Combination3

(CS1+BHL1)/2

21.961 70.83% 3.013 3.095 4 0.020

Combination4

(BHL1+BHL2)/2

12.087 -5.39% 3.156 3.156 5 0.020

Mean indicates the average of estimated spreads over 15000 months. The true spread changes every month ranging

from 0.0114 to 0.0146.

∗In the instance where the SHL estimate in a trail is a negative value, we set all negative estimated spreads in a trail

to zero.

⋆The BHL estimates can be calculated using two methods: (1) calculate the two-day interval spread for one equity

finding the monthly mean for the spread (reported as ’BHL1 mean spreads’ in the table above); 2) calculate the

average daily and two day interval range each month and then calculate the spread (reported as ’BHL2 mean

parameters’ above).

ˆThe monthly CS estimates can be calculated using the two methods described in note ⋆.

‡ Estimates are calculated in a manner similar to that described in notes ∗.

The other settings are the same as Table (6).
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Table 11: Simulation experiments: Cross-sectional properties of the estimates

Mean true spread=16.10 (*0.001) Daily (MidStd= 189.7*0.001) Truespread/Midstd=0.0849

Range from 14.55 to 17.65 (*0.001) 15000 months 20 observations per month

Mean*0.001 Rel-Err-Mean Rel-Err-Std RMSE Ranking Correlation

SHL1 15.941 0.68% 2.590 2.590 7 0.010

SHL2∗
(negatives to be zero)

44.044 172% 1.425 2.232 3 0.008

BHL1⋆

(mean spreads)

15.980 0.71% 2.577 2.577 6 0.013

BHL2⋆

(mean parameters)

15.981 0.82% 2.596 2.596 8 0.011

BHL3⋆

(negatives to be zero)

120.740 652% 1.559 6.699 13 0.012

CS1ˆ

(mean spreads)

35.399 122% 2.346 2.642 9 0.009

CS2ˆ

(mean parameters)

17.234 8.60% 2.718 2.720 10 0.009

CS3‡

(negatives to be zero)

91.672 470% 1.316 4.885 12 0.011

ROLL 93.978 862% 4.100 9.543 14 -0.010

AR‡

(negatives to be zero)

74.862 365% 1.409 3.915 11 -0.010

Combination1

(BHL1+SHL2)/2

30.012 86.30% 1.928 2.112 1 0.012

Combination2

(SHL2+CS2)/2

30.639 90.25% 2.008 2.201 2 0.009

Combination3

(CS1+BHL1)/2

25.689 61.12% 2.431 2.507 4 0.011

Combination4

(BHL1+BHL2)/2

15.981 0.78% 2.546 2.546 5 0.012

Mean indicates the average of estimated spreads over 15000 months. The true spread changes every month ranging

from 0.0146 to 0.0177.

∗In the instance where the SHL estimate in a trail is a negative value, we set all negative estimated spreads in a trail

to zero.

⋆The BHL estimates can be calculated using two methods: (1) calculate the two-day interval spread for one equity

finding the monthly mean for the spread (reported as ’BHL1 mean spreads’ in the table above); 2) calculate the

average daily and two day interval range each month and then calculate the spread (reported as ’BHL2 mean

parameters’ above).

ˆThe monthly CS estimates can be calculated using the two methods described in note ⋆.

‡ Estimates are calculated in a manner similar to that described in notes ∗.

The other settings are the same as Table (6).
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Table 12: Simulation experiments: Average Ranking according to RMSE

All cases Fixed spread cases Cross-sectional cases

according to simulations according to simulations according to simulations

in sections 4.2.1 and 4.2.2 in section 4.2.1 in section 4.2.2

SHL1 7.3 7.2 7.4

SHL2∗ (negatives to be zero) 2.4 2.1 3

BHL1 (mean spreads) ⋆ 5.5 5.3 6

BHL2 (mean parameters) ⋆ 6.9 6.6 7.6

BHL3 (negatives to be zero) ⋆ 13.3 13.5 13

CS1ˆ(mean spreads) 9.4 9.6 9

CS2ˆ(mean parameters) 9.5 9.2 10

CS3‡ (negatives to be zero) 12.1 12.1 12

ROLL 13.6 13.4 14

AR‡ (negatives to be zero) 10.7 10.6 11

Combination1 (BHL1+SHL2)/2 1.3 1.5 1

Combination2 (SHL2+CS2)/2 2.7 3.1 2

Combination3 (CS1+BHL1)/2 5.7 6.5 4

Combination4 (BHL1+BHL2)/2 4.5 4.3 5

This table reports the average ranking of the estimators and the combinations in simulations experiments according to

the columns of ranking in Tables 1 to 11.
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Table 13: DataStream 22 Currency pairs from 1990 to 2016 pooled

Mean closing spread = 14.24

(*0.001)

Mean*0.001 Rel-Err-Mean Rel-Err-Std RMSE Ranking Correlation

SHL1 7.392 -44.49% 2.356 2.397 9 0.043

SHL2∗
(negatives to be zero)

29.880 90.49% 1.398 1.665 2 0.726

BHL1⋆

(mean spreads)

9.044 -37.01% 2.243 2.274 6 0.076

BHL2⋆

(mean parameters)

8.636 -38.69% 2.368 2.399 10 0.069

BHL3⋆

(negatives to be zero)

94.082 505% 3.835 6.343 13 0.869

CS1ˆ

(mean spreads)

29.406 91.16% 1.993 2.192 5 0.628

CS2ˆ

(mean parameters)

16.944 17.05% 2.351 2.357 8 0.251

CS3‡

(negatives to be zero)

60.026 313% 2.488 4.000 12 0.876

ROLL 64.439 580% 5.548 8.031 14 0.591

AR‡

(negatives to be zero)

54.120 253% 2.441 3.517 11 0.832

Combination1

(BHL1+SHL2)/2

19.462 26.73% 1.637 1.659 1 0.423

Combination2

(SHL2+CS2)/2

23.412 53.77% 1.744 1.825 3 0.505

Combination3

(CS1+BHL1)/2

19.225 26.71% 2.033 2.050 4 0.367

Combination4

(BHL1+BHL2)/2

8.838 -37.79% 2.249 2.280 7 0.074

The results above refer to the testing of the following currency pairs: AUD/USD, CAD/USD, CHF/USD,

DKK/USD, EUR/USD, GBP/USD, NOK/USD, SEK/USD, USD/JPY, USD/NZD, AUD/EUR, CAD/GBP,

CHF/EUR, DKK/GBP, EUR/GBP, EUR/JPY, GBP/AUD, GBP/JPY, NOK/EUR, NOK/GBP, SEK/EUR, SEK/GBP.

Daily closing spreads are used to calculate the monthly benchmark bid-ask spread.

∗In the instance where the SHL estimate in a trail is a negative value, we set all negative estimated spreads in a trail

to zero.

⋆The BHL estimates can be calculated using two methods: (1) calculate the two-day interval spread for one equity

finding the monthly mean for the spread (reported as ’BHL1 mean spreads’ in the table above); 2) calculate the

average daily and two day interval range each month and then calculate the spread (reported as ’BHL2 mean

parameters’ above).

ˆThe monthly CS estimates can be calculated using the two methods described in note ⋆.

‡ Estimates are calculated in a manner similar to that described in notes ∗.
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Table 14: Currency-by-currency Average Ranking DataStream from 1990 to 2016

All cases

SHL1 8

SHL2

(negatives to be zero)∗
1.7

BHL1

(mean spreads)⋆

6

BHL2

(mean parameters)⋆

8.3

BHL3

(negatives to be zero)⋆

13.1

CS1

(mean spreads)ˆ

7.3

CS2

(mean parameters)ˆ

8.2

CS3‡

(negatives to be zero)

12

ROLL 13.9

AR‡

(negatives to be zero)

10

Combination1

(SHL2+BHL1)/2

1.5

Combination2

( SHL2+CS2)/2

3.8

Combination3

( CS1+BHL1)/2

5.5

Combination4

( BHL1+BHL2)/2

5.6

This table reports the average ranking of the estimators and the combinations for 22 cur-

rency pairs according to RMSE.

Currency pairs used in this table are listed in Table 13
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Table 15: Currency-by-currency average correlation DataStream from 1990 to 2016

Time series correlation Cross-sectional correlation

SHL1 0.091 0.147

SHL2∗ (negatives to be zero) 0.198 0.864

BHL1⋆ (mean spreads) 0.074 0.176

BHL2⋆ (mean parameters) 0.092 0.179

BHL3⋆ (negatives to be zero) 0.271 0.951

CS1ˆ(mean spreads) 0.158 0.636

CS2ˆ(mean parameters) 0.125 0.297

CS3‡ (negatives to be zero) 0.265 0.948

ROLL 0.108 0.543

AR‡(negatives to be zero) 0.254 0.948

Combination1(BHL1+SHL2)/2 0.127 0.443

Combination2(SHL2+CS2)/2 0.158 0.518

Combination3(CS1+BHL1)/2 0.118 0.4

Combination4(BHL1+BHL2)/2 0.085 0.187

This table reports the average time-series and cross-sectional correlation of the estimators

and the combinations.

Currency pairs used in this table are listed in Table 13

Daily closing spreads are used to calculate the monthly benchmark bid-ask spread.

Highest two correlation coefficients are made bold.
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Table 16: Hotspot 12 Currency pairs from 2015.12 to 2016.8

Effective Spread = 3.012

(*0.001)

Mean*0.001 Rel-Err-Mean Rel-Err-Std RMSE Ranking Correlation

SHL1 -41.563 -1632% 24.020 28.944 10 -0.477

SHL2∗
(negatives to be zero)

34.085 754% 7.659 10.718 1 0.241

BHL1⋆

(mean spreads)

-31.939 -1204% 21.287 24.364 7 -0.500

BHL2⋆ (mean parameters) -38.304 -1618% 25.328 29.955 11 -0.436

BHL3⋆

(negatives to be zero)

169.091 5768% 33.146 66.443 14 0.716

CS1ˆ

(mean spreads)

26.925 876% 10.814 13.874 5 0.088

CS2ˆ

(mean parameters)

12.673 492% 14.244 15.004 6 -0.086

CS3‡

(negatives to be zero)

74.603 2515% 12.350 27.990 9 0.567

ROLL 99.593 4559% 28.853 53.834 12 0.596

AR‡

(negatives to be zero)

159.270 5191% 25.001 57.561 13 0.732

Combination1

(BHL1+SHL2)/2

1.073 -229% 11.608 11.777 3 -0.218

Combination2

(SHL2+CS2)/2

23.379 627% 9.579 11.412 2 0.078

Combination3

(CS1+BHL1)/2

-2.507 -163% 13.433 13.467 4 -0.296

Combination4

(BHL1+BHL2)/2

-35.121 -1411% 23.044 26.924 8 -0.476

The results above refer to the testing of the following currency pairs: AUD/USD, EUR/GBP, EUR/JPY, EUR/SEK,

EUR/USD, GBP/USD, NZD/USD, USD/CAD, USD/CHF, USD/CHF, USD/JPY, USD/MXN, USD/ZAR. Tick by

tick transaction and quoted data are used to generate the monthly effective spread.

∗In the instance where the SHL estimate in a trail is a negative value, we set all negative estimated spreads in a trail

to zero.

⋆The BHL estimates can be calculated using two methods: (1) calculate the two-day interval spread for one equity

finding the monthly mean for the spread (reported as ’BHL1 mean spreads’ in the table above); 2) calculate the

average daily and two day interval range each month and then calculate the spread (reported as ’BHL2 mean

parameters’ above).

ˆThe monthly CS estimates can be calculated using the two methods described in note ⋆.

‡ Estimates are calculated in a manner similar to that described in notes ∗.
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Table 17: Currency-by-currency average correlation Hotspot from 2015.12 to 2016.8

Time series correlation Cross-sectional correlation

SHL1 -0.409 -0.325

SHL2 (negatives to be zero) ∗ 0.035 0.636

BHL1 (mean spreads) ⋆ -0.292 -0.501

BHL2 (mean parameters) ⋆ -0.298 -0.331

BHL3 (negatives to be zero) ⋆ 0.514 0.772

CS1 (mean spreads) ˆ 0.058 0.338

CS2 (mean parameters) ˆ 0.042 -0.133

CS3‡ (negatives to be zero) 0.321 0.739

ROLL 0.239 0.575

AR‡ (negatives to be zero) 0.480 0.800

Combination1 (BHL1+SHL2)/2 -0.235 -0.156

Combination2 (SHL2+CS2)/2 0.081 0.192

Combination3 (CS1+BHL1)/2 -0.194 -0.305

Combination4 (BHL1+BHL2)/2 -0.297 -0.383

This table reports the average time-series and cross-sectional correlations of the estimators

and the combinations.

Currency pairs used in this table are listed in Table 16

Tick by tick transaction and quoted data are used to generate the monthly effective spread.

Highest two correlation coefficients are made bold.
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Table 18: TAQ (Quoted Spread) S&P 1500 2014.01-2014.12

Quoted Spread = 310.2

(*0.001)

Mean*0.001 Rel-Err-Mean Rel-Err-Std RMSE Ranking Correlation

SHL1 -264 -356% 3.758 5.177 11 -0.086

SHL2∗
(negatives to be zero)

70 -59% 0.512 0.779 1 0.743

BHL1⋆

(mean spreads)

-277 -367% 3.764 5.259 12 -0.083

BHL2⋆

(mean parameters)

-256 -351% 3.751 5.135 9 -0.082

BHL3⋆

(negatives to be zero)

362 193% 2.648 3.274 7 0.779

CS1ˆ

(mean spreads)

-44 -211% 2.277 3.106 5 0.301

CS2ˆ

(mean parameters)

-236 -375% 4.332 5.732 13 0.009

CS3‡

(negatives to be zero)

222 104% 1.849 2.119 2 0.527

ROLL 426 466% 6.109 7.683 14 0.276

AR‡

(negatives to be zero)

306 174% 2.748 3.255 6 0.679

Combination1

(BHL1+SHL2)/2

-104 -212% 1.903 2.852 3 0.030

Combination2

(SHL2+CS2)/2

-83 -217% 2.208 3.094 4 0.303

Combination3

(CS1+BHL1)/2

-161 -290% 2.985 4.164 8 -0.039

Combination4

(BHL1+BHL2)/2

-267 -359% 3.728 5.175 10 -0.083

Tick by tick quoted data are used to generate the monthly quoted spread.

∗In the instance where the SHL estimate in a trail is a negative value, we set all negative estimated spreads in a trail

to zero.

⋆The BHL estimates can be calculated using two methods: (1) calculate the two-day interval spread for one equity

finding the monthly mean for the spread (reported as ’BHL1 mean spreads’ in the table above); 2) calculate the

average daily and two day interval range each month and then calculate the spread (reported as ’BHL2 mean

parameters’ above).

ˆThe monthly CS estimates can be calculated using the two methods described in note ⋆.

‡ Estimates are calculated in a manner similar to that described in notes ∗.
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Table 19: TAQ (Quoted Spread) S&P 500 2014.01-2014.12

Quoted Spread = 202.3

(*0.001)

Mean*0.001 Rel-Err-Mean Rel-Err-Std RMSE Ranking Correlation

SHL1 -462 -632% 5.317 8.256 11 -0.273

SHL2∗
(negatives to be zero)

55 -40% 0.743 0.843 1 0.527

BHL1⋆

(mean spreads)

-468 -646% 5.264 8.329 12 -0.292

BHL2⋆

(mean parameters)

-451 -624% 5.358 8.227 9 -0.286

BHL3⋆

(negatives to be zero)

416 415% 3.253 5.270 6 0.858

CS1ˆ

(mean spreads)

-106 -348% 3.322 4.808 5 0.204

CS2ˆ

(mean parameters)

-370 -667% 6.230 9.127 13 -0.275

CS3‡

(negatives to be zero)

241 256% 2.287 3.431 2 0.623

ROLL 569 981% 8.223 12.797 14 0.368

AR‡

(negatives to be zero)

402 413% 3.438 5.375 7 0.814

Combination1

(BHL1+SHL2)/2

-207 -342% 2.727 4.373 3 -0.256

Combination2

(SHL2+CS2)/2

-157 -353% 3.236 4.788 4 -0.097

Combination3

(CS1+BHL1)/2

-287 -499% 4.218 6.532 8 -0.269

Combination4

(BHL1+BHL2)/2

-460 -635% 5.261 8.244 10 -0.290

Tick by tick quoted data are used to generate the monthly quoted spread.

∗In the instance where the SHL estimate in a trail is a negative value, we set all negative estimated spreads in a trail

to zero.

⋆The BHL estimates can be calculated using two methods: (1) calculate the two-day interval spread for one equity

finding the monthly mean for the spread (reported as ’BHL1 mean spreads’ in the table above); 2) calculate the

average daily and two day interval range each month and then calculate the spread (reported as ’BHL2 mean

parameters’ above).

ˆThe monthly CS estimates can be calculated using the two methods described in note ⋆.

‡ Estimates are calculated in a manner similar to that described in notes ∗.
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Table 20: TAQ (Quoted Spread) S&P 400 2014.01-2014.12

Quoted Spread = 365

(*0.001)

Mean*0.001 Rel-Err-Mean Rel-Err-Std RMSE Ranking Correlation

SHL1 -225 -304% 2.892 4.199 10 -0.011

SHL2∗
(negatives to be zero)

78 -61% 0.454 0.757 1 0.829

BHL1⋆

(mean spreads)

-240 -317% 2.911 4.302 12 0.025

BHL2⋆

(mean parameters)

-213 -298% 2.905 4.165 9 0.019

BHL3⋆

(negatives to be zero)

373 155% 1.987 2.519 5 0.817

CS1ˆ

(mean spreads)

-45 -189% 1.828 2.626 7 0.369

CS2ˆ

(mean parameters)

-225 -321% 3.445 4.710 13 0.101

CS3‡

(negatives to be zero)

219 79% 1.398 1.603 2 0.584

ROLL 393 372% 4.561 5.885 14 0.459

AR‡

(negatives to be zero)

295 129% 1.984 2.367 3 0.867

Combination1

(BHL1+SHL2)/2

-81 -188% 1.497 2.406 4 0.292

Combination2

(SHL2+CS2)/2

-73 -191% 1.782 2.611 6 0.525

Combination3

(CS1+BHL1)/2

-142 -253% 2.328 3.441 8 0.093

Combination4

(BHL1+BHL2)/2

-226 -308% 2.884 4.215 11 0.022

Tick by tick quoted data are used to generate the monthly quoted spread.

∗In the instance where the SHL estimate in a trail is a negative value, we set all negative estimated spreads in a trail

to zero.

⋆The BHL estimates can be calculated using two methods: (1) calculate the two-day interval spread for one equity

finding the monthly mean for the spread (reported as ’BHL1 mean spreads’ in the table above); 2) calculate the

average daily and two day interval range each month and then calculate the spread (reported as ’BHL2 mean

parameters’ above).

ˆThe monthly CS estimates can be calculated using the two methods described in note ⋆.

‡ Estimates are calculated in a manner similar to that described in notes ∗.
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Table 21: TAQ (Quoted Spread) S&P 600 2014.01-2014.12

Quoted Spread = 364

(*0.001)

Mean*0.001 Rel-Err-Mean Rel-Err-Std RMSE Ranking Correlation

SHL1 -123 -176% 1.324 2.203 10 -0.024

SHL2∗
(negatives to be zero)

76 -72% 0.290 0.776 2 0.614

BHL1⋆

(mean spreads)

-139 -184% 1.351 2.282 12 -0.040

BHL2⋆

(mean parameters)

-120 -174% 1.315 2.181 9 -0.042

BHL3⋆ (negatives to be

zero)

307 40% 1.033 1.107 4 0.745

CS1ˆ

(mean spreads)

9 -120% 0.837 1.462 6 0.352

CS2ˆ

(mean parameters)

-129 -184% 1.644 2.468 13 0.056

CS3‡

(negatives to be zero)

207 -1% 0.733 0.733 1 0.576

ROLL 324 140% 2.236 2.639 14 0.308

AR‡

(negatives to be zero)

232 14% 0.975 0.985 3 0.691

Combination1

(BHL1+SHL2)/2

-31 -128% 0.712 1.462 5 0.150

Combination2

(SHL2+CS2)/2

-27 -128% 0.869 1.547 7 0.231

Combination3

(CS1+BHL1)/2

-65 -152% 1.068 1.859 8 0.093

Combination4

(BHL1+BHL2)/2

-129 -179% 1.320 2.223 11 -0.041

Tick by tick quoted data are used to generate the monthly quoted spread.

∗In the instance where the SHL estimate in a trail is a negative value, we set all negative estimated spreads in a trail

to zero.

⋆The BHL estimates can be calculated using two methods: (1) calculate the two-day interval spread for one equity

finding the monthly mean for the spread (reported as ’BHL1 mean spreads’ in the table above); 2) calculate the

average daily and two day interval range each month and then calculate the spread (reported as ’BHL2 mean

parameters’ above).

ˆThe monthly CS estimates can be calculated using the two methods described in note ⋆.

‡ Estimates are calculated in a manner similar to that described in notes ∗.
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Table 22: Average Ranking S&P 2014.01-2014.12

All cases

SHL1 10.3

SHL2 (negatives to be zero)∗ 1.3

BHL1 (mean spreads)⋆ 12

BHL2 (mean parameters)⋆ 9

BHL3 (negatives to be zero)⋆ 5

CS1 (mean spreads)ˆ 6

CS2 (mean parameters)ˆ 13

CS3‡ (negatives to be zero) 1.7

ROLL 14

AR‡ (negatives to be zero) 4.3

Combination1 (SHL2+BHL1)/2 4.0

Combination2 ( SHL2+CS2)/2 5.7

Combination3 ( CS1+BHL1)/2 8.0

Combination4 ( BHL1+BHL2)/2 10.7

This table reports the average ranking of the estimators and the

combinations according to the columns of ranking in Tables 19

to 21.
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Table 23: Stock-by-stock average correlation S&P 1500 2014.01-2014.12

Time series correlation Cross-sectional correlation

SHL1 -0.052 -0.105

SHL2 (negatives to be zero) ∗ 0.088 0.749

BHL1 (mean spreads) ⋆ -0.039 -0.111

BHL2 (mean parameters) ⋆ -0.053 -0.106

BHL3 (negatives to be zero) ⋆ 0.342 0.816

CS1 (mean spreads) ˆ 0.027 0.31

CS2 (mean parameters) ˆ -0.037 0.008

CS3‡ (negatives to be zero) 0.322 0.539

AR‡ (negatives to be zero) 0.269 0.697

ROLL 0.063 0.364

Combination1 (BHL1+SHL2)/2 -0.02 0.061

Combination2 (SHL2+CS2)/2 -0.019 0.292

Combination3 (CS1+BHL1)/2 -0.018 -0.042

Combination4 (BHL1+BHL2)/2 -0.046 -0.109

This table reports the average time-series and cross-sectional correlation of the estimators and

the combinations.

Tick by tick quoted data are used to generate the monthly quoted spread.

Highest two correlation coefficients are made bold.
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Figure 1: The Conjecture of the Spread
Source Bleaney and Li (2016)

Figure 1 outlines the reasoning underpinning this proposition where for the purposes of economy we hold that the mid-price is

fixed. The conjectural spread (S̃Pi) is less than the true spread. This allows us to estimate the conjectural mid-price M̃; this is

represented by the dotted line in Figure 1, and the true mid price and transaction price are both represented by unbroken lines.

Also in Figure 1, A and B denote observed ask and bid prices, whereas M is the unobserved true mid-price. In addition, ∆ is taken

to be the first-order difference operator and Ω denotes the conjectural error.

At any one point we can only observe one price, either the bid or ask. In Figure 1, three periods are displayed. In the period

labelled t − 2, the bid price is recorded and in period labelled t − 1, the ask price is observed. In period t − 2, the conjectural

spread is lower than the true spread and the conjectural mid-price error is −0.5Ω , which is less than the true value. In period

t − 1, the conjectural mid-price error is 0.5Ω, therefore this is greater than the true one. In the intervening period between t − 2

and t − 1, the direction of the trade shifts from sell to buy, and because of the conjectural error, we overestimate the mid-price

return, formally we express this as:

∆M̃t−1 = ∆Mt−1 +Ω = Ω

In Figure 1, the hypothetical example shows that the variance of mid-price returns equates to zero because returns remain fixed.

However the variance of conjectured mid-price returns is greater than zero. The reason for this is that in the case where the spread

is underestimated, the conjectured mid-price fluctuates more than its true counterparts.
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Figure 2: Monthly true and estimated spread, USD/JPY

The graphs above display estimates together with true values for a spread over a 50 month period from July 2012 to August 2016.

The currency pair chosen for the illustration without losing generality is USD/JPY. True spreads (TRUESP) data are monthly

average closing spreads taken from DataStream.
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Figure 3: Monthly average estimated spread by SHL2 from 1926 to 2015, CRSP

Depicted here is SHL2 estimated bid-ask spreads for all stocks listed on the New York Stock Exchange American Stock Exchange

and Nasdaq on a monthly basis from January 1926 to December 2015. The figure plots the monthly equally weighted average

spread of all stocks with each recording at least 16 daily spread observations within the month. All data is taken from CRSP.
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Figure 4: Monthly average estimated spread by SHL2 from 1990 to 2017, UK

Depicted here is SHL2 estimated bid-ask spreads for all stocks listed on the London Stock Exchange on a monthly basis from

October 1988 to March 2017. The figure plots the monthly equally weighted average spread of all stocks with at least 16 daily

spread observations within the month. All data is taken from Bloomberg.
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Figure 5: Monthly average estimated spread by SHL2 from 1986 to 2017, Hong Kong

Depicted here is SHL2 estimated bid-ask spreads for all stocks listed on the Hong Kong Stock Exchange on a monthly basis from

April 1986 to March 2017. The figure plots the monthly equally weighted average spread of all stocks with each recording at least

16 daily spread observations within the month. All data is taken from Bloomberg.
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Figure 6: Monthly average estimated spread by SHL2 from 1990 to 2017, Thailand

Depicted here is SHL2 estimated bid-ask spreads for all stocks listed on the Stock Exchange of Thailand on a monthly basis from

January 1990 to March 2017. The figure plots the monthly equally weighted average spread of all stocks with each recording at

least 16 daily spread observations within the month. All data is taken from Bloomberg.
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