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ORGANIZATION STRUCTURE

Thomas Marschak

This Chapter concerns formal models of organizations that regularly acquire information about
a changing environment in order to find actions which are appropriate to the new environment.
Some or all members of the organization are specialists. Each of them privately learns something
about a particular aspect of the new environment. The organization operates a mechanism,
which assembles relevant pieces of the specialists’ private observations and uses the assembled
information to obtain the desired new action. The mechanism has various informational costs
and they are measured in a precise way. The research seeks to characterize mechanisms that
strike an appropriate balance between informational cost and the performance of the mecha-
nism’s final actions. As costs drop, due to improved Information Technology, the properties of
good mechanisms, and hence the structure of the organizations that adopt them, may change.
The Chapter starts by examining research in which the organization’s members reliably follow
the mechanism’s rules and so incentives are not an issue. It then turns to research in which
each member is self-interested and needs an inducement in order to make the informational
efforts that the mechanism requires. A number of unmet Research Challenges are identified.



I. INTRODUCTION

This chapter concerns organizations that acquire information about a changing environment in
order to take appropriate actions.

The term “organization” is used in many disciplines and is applied to many groups of persons. The
term covers government agencies, markets, entire economies, firms, nonprofit institutions, the users of
the Internet, the firms in a supply chain, and so on. We shall be concerned with models of organizations
where some or all members are specialists: each of them privately learns something about a particular
aspect of the organization’s newly changed environment. The organization then adjusts its actions.
It seeks new actions that are appropriate to the new environment. It could find them by “Direct
Revelation” — collecting in one central place all the information about the changed environment
that the members have privately collected, and using it to obtain a new action. But that would be
wasteful: much of the transmitted information would not be needed. Instead, the organization seeks to
balance the benefit of appropriate actions against the costs of learning about the current environment,
transmitting some of what has been learned, and using the transmitted information to choose new
actions. Advances in Information Technology (IT) may reduce those costs, and that may change the
structure of successful organizations. In all the models discussed in this chapter, there is some precise
measure of one or more informational costs.

The members of our modeled organization might be totally self-interested, or they might behave
like loyal and selfless team members (or well-programmed robots), choosing their informational efforts
and their actions so as to contribute in the best way to a common goal. In either case we consider
some appropriate measure of the organization’s “gross” performance, before informational costs are
subtracted. For the self-interested traders in a market, gross performance might be closeness to Pareto
optimality or perhaps the sum of individual utilities. For a multi-divisional firm whose divisions are
loyal and selfless, gross performance might be total profit. That might also be our gross performance
measure when each division pursues its own interests. We are concerned with the structure of organi-
zations whose gross performance is high given the informational costs they incur.

The research discussed here approaches the problem in the style that is usual in economic theory:
a formal model, with well-defined concepts, is studied, in order to find the conditions under which
certain interesting conjectures can be shown to hold. Typically the conjectures arise from certain
empirical observations, which suggest loose claims. When it comes to organizations and information,
empirical work is hard and scarce, the issues are complex, and the gap between a general empirical
claim and a tractable formal model might be very large. Consider for example, the following loose claim
which appears to date back almost sixty years, to the time when dramatic advances in Information
Technology first loomed on the horizon: As IT advances, firms (and perhaps other organizations) will
become “flatter”: middle management will fade away, and decisions will be made centrally, at the top
of a flat hierarchy. (That paraphrases the conjectures in Leavitt and Whistler, 1958). Or consider a
much more recent and quite different conjecture: As IT advances, firms will find it advantageous to
adopt decentralized modes of organization, in which unit managers are given wider authority.1 Finally,
consider a classic claim in economics, very much older than the preceding two claims: For organizations

1That conjecture is consistent with the following statement in T. Bresnahan, E. Bryjolfsson, and L. Hitt (2002),
which performs a careful analysis of IT adoptions and organizational characteristics in a variety of industries: “IT use
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whose task is to allocate resources efficiently, the only informationally cheap allocation mechanisms
are those that use prices, since the “amount” of information transmitted in such mechanisms is exactly
what is needed to find an efficient allocation; in any mechanism that achieves the same thing without
prices, the information transmitted exceeds what is needed.

The formal modeler who wants to explore these claims faces major challenges. Terms have to be
defined precisely, while still capturing informal usage. (How, for example, should we define “decentral-
ized”?). The informal claim has to be stated in a precise manner. A way of showing that appropriate
(and plausible) assumptions imply the formalized claim has to be developed. When the modeler is
finished, his demonstrated propositions may be far from those that existing empirical work can support
or refute. Even so, the future empirical study of organizations might be usefully guided by some of
the modeler’s results.

In the formal models which we consider the organization uses a mechanism to obtain appropriate
new actions once its members have learned about the organization’s newly changed environment. The
mechanism uses messages and it has informational costs, which are measured in a precise way. We
are particularly interested in informationally cheap mechanisms, and we often take the viewpoint of
a “designer” whose task is to construct an informationally cheap mechanism that generates actions
meeting the organization’s goals. There is a vast literature on mechanisms, but only a small part of it
makes informational costs explicit. That is the part with which we shall be concerned. We interpret
the term “organization structure” as referring to the mechanism the organization uses, or to certain
properties of the mechanism. Some examples of structural questions: Are the mechanism’s message
flows arranged in a hierarchical pattern? Are the actions it generates chosen by one central person or
are the action choosers dispersed? Is each external environment variable observed by a single person,
who is the sole specialist in that variable, or is each variable observed by several persons?2

We discuss past research as well as new paths.3 A number of unmet Research Challenges are
identified. In Section 2 we consider organizations whose members reliably follow the rules of the
mechanism which the designer has constructed, whatever those rules may be. The designer is not
concerned with incentive issues. In Section 3 the members become self-interested and the designer has
to take incentives into account. In Section 4 we look very briefly at some formal models in which the
primitive terms are no longer “external environment” and “organizational action”. Section 5 offers a
quick retrospective impression.

2. GOALS, MECHANISMS, AND INFORMATIONAL COSTS: THE “INCENTIVE-
FREE” CASE, WHERE INDIVIDUALS OBEY THE DESIGNER’S RULES WITHOUT
INDUCEMENT

Consider an organization composed of n persons. The organization confronts a changing environ-
ment e = (e1, . . . , ek). The set of possible values of each ej is denoted Ej. The set of possible values

is more likely to be effective in organizations with a higher quality of service output mix, decentralized decision-making,
and more skilled workers”. See also T. Bresnahan, E. Bryjolfsson, and L. Hitt, 2000.

2There is a literature which refers to the former case as the “U-form” (unitary form) and the latter case as the
“M-form” (multidivisional). See, for example, Harris and Raviv, 2002 and Creti, 2001.

3Some new (unpublished) results are reported in Section 2.7 (on “speak-once-only mechanisms”) and in Section 3.3
(on networks of self-interested decision-makers, who bear the network’s informational costs).
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of e is denoted E and is the Cartesian product E1 × · · · × Ek.
4 In many settings we will have k = n,

and ej will describe Person j’s local environment, which he privately observes.

At any moment of time, the organization has in force an action a. The action is a vector (a1, . . . , am).
The set of possible values of each aℓ is denoted Aℓ. The set of possible values of a = (a1, . . . , am) is
denoted A and is the Cartesian product A1 × · · · ×Am.5. In many settings m will equal n and aℓ will
be the action variable for which Person ℓ has responsibility.

2.1 Two general frameworks for judging the organization’s actions

2.1.1 First framework: there is a performance function on A × E

Suppose there is a real-valued function F on A×E which measures the organization’s performance,
when the current environment is e and the action in force is a. The organization, or its designer, wants
F (a, e) to take high values. If e never changes and is known to everyone, then the problem reduces to
that of finding, once and for all, an a in A which maximizes F for the perfectly known and unchanging
e. We may study that optimization problem, and it may be challenging. But if we do so, we strip
away the organizational-design issue, and the question of how information about e might be obtained
and who might obtain it. Accordingly, we shall suppose that e varies. We are then in a position to
define the organization’s task. Its task is to learn something about the current e, so that it can find an
appropriate action a. It seeks to strike a good balance between the costs of learning about e and the
value of F (e, a) that it achieves when it chooses an action a that is best, given the information about
e that it has collected. (Here F has to have properties guaranteeing the existence of a best action). A
mechanism is used by the organization to fulfill its task. We defer, until 2.2 below, formal definitions
of “mechanism”, and of the informational costs associated with a mechanism.

Note that this framework covers the case where each component of e is a signal, privately observed
by some person, about a random variable x, whose probability distribution is common knowledge. The
true value of x, which does not become known until after the action has been taken, determines a payoff
W (a, x) for every action a. Then we may let F (a, ē) be the conditional expectation E(W (a, x) | e = ē).

2.1.2 Second framework: for each environment e in E, there is a satisfactory (goal-
fulfilling) set of actions.

Suppose now that for every e in E, there is a set of satisfactory actions (a subset of A), denoted
G(e), where G may be called the goal correspondence. Any action in G(e) meets the organization’s goal
for the environment e. The organization, or its designer, asks: is there a mechanism which generates a
satisfactory action for every environment e in E, and what are the informational requirements of such
a mechanism?

In some settings, any action in G(e) has to meet certain constraints, which are defined by e. In
other settings one starts by defining the performance function F of the first framework. Then an

4There are settings in which one has to relax the requirement that E be the Cartesian product. For example, each ej

may be a parameter which identifies a production technology in a location j, i.e., it identifies the input/output bundles
that are feasible in that location. It may be that because of externalities between the locations, some k-tuples belonging
to the Cartesian product E1 × · · · × Ek cannot occur.

5Again, in some settings one would want to relax the requirement that A be the Cartesian product

3



action a belongs to G(e) if and only if F (a, e) is within some given distance, say δ, of its maximal
value. Thus for any fixed ē in E, we have G(ē) = {a∗ ∈ A : |F (a, ē) − F (a∗, ē)| ≤ δ for all a ∈ A}.

2.1.3 Three examples

First example: an organization that provides health services Suppose each person i ∈
{1, . . . , n} is a diagnostician. Each week he examines a group of Ti patients (who are examined by no
one else). For the tth patient, he correctly determines a diagnosis category, say di

t. Thus the week’s
local environment for i is ei = (di

1, . . . , d
i
T ). The organization’s action for the week is an assigment of a

treatment modality ri
t to each patient t inspected by diagnostician i. (We do not specify who chooses

the modality). The possible modalities comprise the finite collection Q. So the organizational action
a belongs to the set

A =
{(

(r1
1, . . . , r

1
T1

), . . . , (rn
1 , . . . , rn

Tn
)
)

: ri
t ∈ Q for all (i, t)

}

.

Let πe(a) denote the proportion of patients who, X weeks later, are found to be “significantly
improved” given that the observed diagnostic vector is e and the chosen treatment vector is a. For
every (e, a) in E×A, the proportion πe(a) is a random variable with a known probability distribution.
In our first framework we may have a performance function F , where F (a, e) is a weighted sum of (i)
the total cost, denoted C(a), of the treatment vector a, and (ii) the expected value of πe(a).

In the second framework, we have a goal correspondence G, which might, for example, assign to
every e the set of actions for which cost does not exceed an upper bound C∗, and at the same time
the probability that the proportion of significantly improved patients exceeds a specified lower bound
π∗ is at least P ∗ (with 0 < P ∗ < 1). Thus

G(e) =
{

a : C(a) ≤ C∗; P ∗ ≤ prob {πe(a) ≥ π∗}
}

.

Second example: a multidivisional firm Now person i is the Manager of a production facility
which produces product i. The environment component ei is the current week’s cost function for that
product: it costs ei(q) to produce the quantity q. The week’s cost function ei is known with certainty
as soon as the week starts. There are n action variables a1, . . . , an, where ai is the current week’s
quantity of product i. (We suppose that any positive quantity is feasible). The products are related,
and the price at which the quantity ai of product i is sold depends on the entire vector of quantities
a = (a1, . . . , an). The price is denoted ρi(a). For the function F , measuring the week’s performance
(profit), we have

F (a, e) =
n
∑

i=1

[ρi(a) · ai − ei(ai)] .

It may be informationally costly to gather the information about the current e that is needed in
order to find an F -maximizing a. If so, it may be appropriate to consider the second framework. The
goal correspondence G might specify, for each e, the set of actions for which profit exceeds a lower
bound F ∗. Thus

G(e) = {a : F (a, e) ≥ F ∗}.
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Third example: an exchange economy This organization’s n members are consumers in an L-
commodity economy with trade but no production. Person i has a (privately observed) local envi-
ronment ei = (U i, wi), where U i is a utility function defined on all vectors with L real nonnegative
components and wi = (wi

1, . . . , w
i
L) is the vector of Person i’s (nonnegative) initial endowments of the

L commodities. An action a specifies trades. It is an nL-tuple a =
(

(a1
1, . . . , a

1
L), . . . , (an

1 , . . . , a
n
L)
)

,

where ai
ℓ may be positive (an addition to i’s endowment of commodity ℓ), negative (a deduction), or

zero. Let ai denote (ai
1, . . . , a

i
L). An action a is feasible for e = (e1, . . . , en) if ai

ℓ ≥ −wi
ℓ for all ℓ and

the trades balance, i.e.,
∑n

i=1 ai = 0. The set of actions that are feasible for e is denoted Ae.

A possible performance function F is as follows:

F (e) is a value of a which maximizes
n
∑

i=1

U i(wi + ai) on Ae.

That performance function would be appropriate if the designer of resource-allocating schemes is
willing to compare utilities across individuals and to take their sum as an appropriate standard.

On the other hand, it is more conventional to take Pareto optimality and individual rationality as
the goal. A trade vector a is individually rational for e if

(1) U i(wi + ai) ≥ U i(wi) for all i.

The trade vector a ∈ Ae is Pareto optimal for e if

(2)















for all i and all ā in Ae, the following holds:

“U i(āi+wi) > U i(ai+wi)” implies that for some j we have “U j(āj+wj) < U j(aj+wj)”.

Note that for a given environment e = ((U1, w1), . . . , (Un, wn)), conditions (1) and (2) are restrictions
on a alone.

To study the informational requirements of schemes that achieve this goal, the second framework
is needed since, for a given e, there may be more than one trade a that is feasible (belongs to A),
individually rational, and Pareto optimal. (We would have to restrict the U i in order to guarantee
uniqueness). Formally, the goal correspondence is:

G(a, e) = {a ∈ Ae : a satisfies (1) and (2) given e}.

2.2 How the organization finds its current action when incentives are not an issue

We now consider mechanisms which the organization may repeatedly use in order to find its current
action. A mechanism requires the transmission of messages. In our first framework the organization (or
its designer) seeks a mechanism which strikes a good balance between the performance measure and the
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mechanism’s informational costs. In the second framework it seeks a mechanism which always yields
goal-fulfilling actions and is, at the same time, informationally cheap. We start with the assumption
that once the mechanism has been chosen, all members of the organization reliably follow its rules.
They may be thought of as robots. So we need not worry about designing the mechanism so that each
member will want to follow the mechanism’s rules. Incentives are introduced in Section 3.

2.2.1 Decentralized many-step broadcast mechanisms which obtain the organization’s
action at the final step

Until we reach Section 2.7, where the designer decides who shall observe a given environment
variable, we will assume that our n-person organization’s current environment e is a vector (e1, . . . , en),
and the local environment ei is privately observed by Person i. The possible values of ei comprise the
set Ei, and the possible values of e comprise the Cartesian product E = E1×· · ·×En. There is a set A
of possible organizational actions. In our first characterization of a mechanism, we shall suppose that
it proceeds in a sequence of steps. At each step each person i broadcasts or announces an individual
message to everyone. The vector of n individual messages is simply called a message. Person i’s
announcement at a given step (his part of the broadcast message) is a function, denoted fi, of the
preceding broadcast message and of ei. But the variable ej, for any j 6= i, does not directly enter the
function fi. The privacy of every person is preserved. Others can only learn about the current value of
ei indirectly, through the broadcast message. “Informational decentralization” is an alternative term
for privacy preservation.6 Suppose that, for a given e, the message m̄ has the property that once it is
broadcast, the next broadcast message is again m̄. Then m̄ is called an equilibrium message for e or a
stationary message for e. When an equilibrium message, say m∗, has been reached, the sequence stops
and the organization takes the action h(m∗). The function h : M → A is called the outcome function.

Formally, let M i be i’s individual message space, i.e., the set of individual messages that Person i
is able to announce. Then the message space (the set of possible messages) is M = M1 ×· · ·×Mn. At
step t, Person i broadcasts the message mt

i = fi(m
t−1, ei), where mt denotes (mt

1, . . . ,m
t
n). There is an

initial message m0(e) = (m0
1(e1), . . . ,m

0
n(en)) ∈ M . The message m∗ = (m∗

1, . . . ,m
∗
n) is an equilibrium

message for e if, for all i, we have

(3) m∗
i = fi(m

∗, ei).

The quadruple 〈(M1, . . . ,Mn), (m0
1, . . . ,m

0
n), (f1, . . . , fn), h〉 is an n-person privacy-preserving (decen-

tralized) broadcast mechanism on E, with action set A, written in dynamic form. The term “broadcast”
will often be omitted but understood, until we reach section 2.2.9 below, where individually addressed
messages are introduced.

In many studies one ignores the message-forming functions fi. Moreover, one does not require that
a message have n components, one for each person. Instead it suffices, for the purposes of the study,
to define, for each e and each i, the set of messages µi(ei) (a subset of M) for which the equilibrium

6In Section 3.2 the term “decentralized” is given another meaning, related to incentives: in a “decentralized” organi-
zation, each person is free to pursue her own self-interest. In particular, she makes a self-interested choice as to whether
or not to obey a proposed mechanism’s rules.
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condition (3) is satisfied. That set can be specified without taking the trouble to specify the individual
message spaces and the functions fi.

Then the individual-message-correspondence form of a decentralized (privacy-preserving) mecha-
nism on the environment set E with action set A is a triple 〈M, (µ1, . . . , µn), h〉. Its elements are as
follows.

• M is the message space.

• µi is a correspondence from Ei to M (i.e., µi is a function from Ei to the subsets of M); the µi

define a correspondence µ, from E to M , namely µ(e) = µ1(e1) ∩ · · · ∩ µn(en); a message m in
µ(e) is called an equilibrium message for e.

• µ has the coverage property7, i.e., for all e in E, the set µ(e) is not empty (for every e there is at
least one equilibrium message).

• h (the outcome function) is a function from M to A.

One can give the broadcast mechanism 〈M, (µ1, . . . , µn), h〉 an interpretation that is sometimes
called the verification scenario. In this scenario, we imagine a central agent who broadcasts a sequence
of trial message announcements. When a message m is announced, each person i responds by saying
YES if he finds, using his private knowledge of ei, that m belongs to the set µi(ei), and he says NO
otherwise. The announcements stop when and only when the announcer has announced an m∗ for
which all n persons say YES. The organization then takes the action h(m∗). The message m∗ lies in
the set µ(e) = µ1(e1) ∩ · · · ∩ µn(en).

In a still further condensed formalism, one does not trouble to identify the individual µi, but merely
specifies the correspondence µ. Then a mechanism is a triple 〈M, µ, h〉. The term “decentralized” or
“privacy-preserving” is a restriction on µ. It means that there exist correspondences µ1, . . . , µn such
that µ(e) = µ1(e1)∩ · · · ∩ µn(en), even though we don’t identify them. Thus it is understood, without
being made explicit, that m ∈ µ(e) means that Person i has determined that m belongs to µi(ei),
using his own private knowledge of the current ei to do so.

Now suppose the mechanism designer is given a goal correspondence G from E to A, as in our
second framework. Then we say that the mechanism 〈M, µ, h〉 realizes G if

for every e in E, “m ∈ µ(e)” implies “h(m) ∈ G(e)”.

An important observation is that any goal correspondence can be realized by a Direct Revelation (DR)
mechanism. In a DR mechanism each person i reveals his current ei, i.e., his announced message mi

belongs to Ei. An action in G(e) is taken once a complete description of the current e is assembled.
Formally, we have

• M = E.

7In an alternative terminology, introduced by Hurwicz (1960) in an early and fundamental discussion of mechanisms,
the mechanism is called decisive on E if it has the coverage property.
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• µi(ei) = {ei}

• h(m) ∈ G(e).

The only equilibrium message for e is e itself. A DR mechanism is, of course, informationally costly. On
the other, hand it has the merit that it can reach an equilibrium message in just one step.8 Moreover
DR mechanisms play a central role in the incentive literature. That literature often confines itself
to DR mechanisms, on the ground that any mechanism can be rewritten as a DR mechanism (the
“revelation principle”). That may be a correct claim, but it is not useful if one seeks mechanisms that
are informationally cheap.

2.2.2 A three-message example wherein messages may be visualized as rectangles that
cover E. The organization has two persons. For person i, the set of local environments is the real
interval Ei = [0, 1]. Consider the three-message mechanism portrayed in the following figure.

FIGURE 1 HERE

The message space is M = {m1, m2, m3}, where mj identifies the rectangle labelled mj. Then

µ1(e1) =











{m1, m3} for 0 ≤ e1 < 1
2

{m1, m2, m3} for e1 = 1
2

{m2, m3} for 1
2

< e1 ≤ 1.

µ2(e2) =











{m1, m2} for 0 ≤ e2 < 3
4

{m1, m2, m3} for e2 = 3
4

{m3} for 3
4

< e2 ≤ 1.

Let the outcome function h be the following:

h(m1) =
5

8
; h(m2) =

9

8
; h(m3) =

11

8
.

It is easy to verify that the mechanism 〈M, (µ1, µ2), h〉 so defined realizes the following goal correspon-
dence:

G(e) =
{

a : |a − (e1 + e2)| ≤
5

8

}

.

8Define the initial message to be mo(e) = (m0

1
(e1), . . . ,m

0

n(en)) = (e1, . . . , en), and let Person i’s message-forming
rule have the property that

fi(m, ei) = mi if and only if mi = ei.

Then the initial message is already an equilibrium message. The message formed at Step 1 just repeats it. At Step 1,
the action is taken, and it belongs to G(e).
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Fig. 1.



That is the case because h(mj) is the value of e1 + e2 at the center of the rectangle mj. Call the center
(ej

1, e
j
2). The largest value taken by the distance |(ej

1 + ej
2) − (e1 + e2)|, over all e in the rectangle mj,

occurs at the “northeast” and “southwest” corners of the rectangle. At those corners the distance
equals one quarter of the rectangle’s perimeter. All three rectangles have the perimeter 5

2
.

The above goal correspondence belongs to a class of goal correspondences Gδ, where δ > 0 and
Gδ(e) = {a : |a − (e1 + e2)| ≤ δ}. To interpret this class, go back to our first framework. Suppose
that â(e) is the organizational action which uniquely maximizes a performance function F , defined
on A × E, where the set A is the positive reals and (as in our example) E = [0, 1] × [0, 1]. Suppose
that it is very costly for the action taker to learn the exact current value of e (as he would in a DR
mechanism). Instead the action taker only learns the rectangle in which e lies. Having learned that
the rectangle is mj, he takes the action h(mj). As a result there is an “error” |â(e)− h(mj)| at each e
in the rectangle mj. It is straightforward to verify that for any correct-action function â, no outcome
function h achieves a lower maximum error (with respect to â), on any given rectangle, than the
function which assigns to that rectangle an action that is midway between the minimum of â on the
rectangle and the maximum.9 So a mechanism which minimizes error on each rectangle will use that
outcome function, and such a mechanism minimizes error on all of E.

In the Figure-1 example, â equals e1 + e2 and our “midpoint” action is the value of e1 + e2 at the
rectangle’s center. The maximum error of our mechanism (relative to the true e1+e2) is 5

8
. It is natural

to ask: is our value of δ, namely δ = 5
8
, the smallest δ such that Gδ can be realized by a three-rectangle

mechanism? Is there some other three-message mechanism in which the maximum error (relative to
the true value of e1 + e2) over all e in E is less than 5

8
? The answer turns out to be NO. The argument

which establishes that fact has not yet been generalized to the case of k messages. We do not know,
in general, the smallest maximum error (relative to the true e1 + e2) that is achievable by a k-message
(k-rectangle) mechanism.10

2.2.3 The“rectangle” definition of a broadcast mechanism The preceding example suggests
that we can define a decentralized (privacy-preserving) mechanism by specifying a covering of E =
E1×· · ·×En, provided that the sets in the covering are generalized rectangles, i.e., each is the Cartesian
product of its n projections. Let Σ be such a covering of E. Its typical element, denoted σm, is a
generalized rectangle, i.e., it is a Cartesian product, σm = σ1

m × · · · × σn
m, where σi

m is a subset of Ei.
The collection of possible values of the index m is denoted M .

9That statement holds as well if the rectangle is a “generalized” one, i.e., it is the Cartesian product of its e1-projection
and its e2-projection and may consist of disjoint pieces.

10For the general case, one first has to establish that nothing is lost by confining attention to rectangles (such as the
three in Figure 1), which are “proper”, rather than being generalized rectangles (each the Cartesian product of its two
projections) consisting of disjoint pieces. We next have to argue that we lose nothing by further confining our attention
to proper rectangles of equal perimeter. (Recall that the maximum error on a rectangle, relative to the true e1 + e2,
equals its quarter-perimeter). That can be shown for our three-rectangle case and certain other cases, but a general
argument, for arbitrarily many proper rectangles, is not available. Finally, we have to calculate the smallest obtainable
perimeter when we cover E (the unit square) with k proper rectangles of equal perimeter. For our case (k = 3) that
can indeed be shown to be 5

2
, as in Figure 1. For general k, there is no known formula giving the smallest obtainable

common perimeter. There is a conjectured formula, and bounds on the distance between that formula and the unknown
true one have been obtained. See Alon and Kleitman, 1986.
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To complete our rectangle definition of mechanism, we only need an outcome function h from
M to A. Then a broadcast mechanism is defined by the triple 〈M, Σ, h〉, with Σ = {σm}m∈M . We
obtain the 〈M, (µ1, . . . , µn), h〉 specification from the 〈M, Σ, h〉 specification, by letting µi(e) be the set
{m ∈ M : ei ∈ σi

m}. We obtain the 〈M, Σ, h〉 specification from the 〈M, (µ1, . . . , µn), h〉 specification
by letting σi

m be the inverse of µi, i.e., σi
m = {ei ∈ Ei : m ∈ µi(ei)}.

The verification scenario provides one way to interpret a broadcast mechanism that is specified
in the 〈M, Σ, h〉 form. Imagine a central announcer who displays successive rectangles σm to all n
persons. Each responds with YES if he finds that his privately observed ei lies in the projection σi

m

and NO otherwise. When the announcer has found a rectangle σm to which all say YES, then he takes
the action h(m).

2.2.4 A broadcast mechanism in “agreement function” form In the verification scenario, as we
have described it so far, person i responds to an announced message m ∈ M by inspecting his privately
observed ei and saying YES is he finds that m lies in the set µi(e). In a number of settings it is useful
to be more explicit about person i’s procedure, by specifying a function which he computes. Let gi

be a function whose domain is M × Ei and whose range is a finite dimensional Euclidean space. Let
person i say YES to the message m if he finds that gi(m, ei) = 0. We may call gi person i’s agreement
function. When gi(m, ei) = 0, then we may think of person i’s YES announcement as “agreement
with” the message m. A mechanism in agreement-function form is a triple 〈M, (g1, . . . , gn), h〉. We
obtain the 〈M, (µ1, . . . , µn), h〉 form from the 〈M, (g1, . . . , gn), h〉 form by specifying that µi(ei) is the
set {m ∈ M : gi(m, ei) = 0}. We obtain the 〈M, (g1, . . . , gn), h〉 form from the 〈M, (µ1, . . . , µn), h〉
from by choosing, for each i, any function gi which takes the value zero if and only if m ∈ µi(ei).

Now suppose that M is the Cartesian product of n individual message spaces M i, where each M i

is a linear vector space, so that subtracting one value of mi from another is well defined. Suppose
we have written the mechanism in dynamic form, i.e., we have specified a message-forming rule fi for
each person i. Suppose we are interested in the action generated by the mechanism when m is an
equilibrium message for e. Then we can rewrite the mechanism in agreement-function form. Let gi

express i’s equilibrium condition for the rule fi. That is to say, we define

gi(m, e) = fi(m, ei) − mi.

When (and only when) gi(m, ei) = 0, person i’s response to the announced message m = (m1, . . . ,mn)
(in the dynamic version of the mechanism) is to repeat his piece of that announcement. Thus message
m is an equilibrium message for e (in the dynamic version) when and only when all n persons i find
that gi(m, e) = 0.

2.2.5 A summary We have identified several different ways of specifying a decentralized (privacy-
preserving) n-person broadcast mechanism on the environment set E = E1 × · · · × En, which the
n-person organization may use to obtain actions in reponse to a new environment e in E. The
alternative specifications are:

• A mechanism with individual messages in dynamic form. This is a triple 〈(M1, . . . ,Mn),
((m0

1, . . . ,m
0
n)), (f1 . . . , fn), h〉. Here m0

i is a function from Ei to M i and m0
i (ei) is i’s initial
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individual message when i’s local environment is ei. In each sequence of announced messages,
Person i forms his next individual message by using the message-forming rule fi.

• A mechanism with individual message correspondences. This is a triple 〈M, (µ1, . . . , µn), h〉, where
µi is a correspondence from Ei to M .

• A mechanism in which only an equilibrium message correspondence is identified. This is a triple
〈M, µ, h〉, where µ is a correspondence from E to M , and it is understood that there are (un-
specified) individual message correspondences µ1, . . . , µn such that for all e we have µ(e) =
µ1(e1) ∩ · · · ∩ mn(en).

• A mechanism in rectangle form. This is a triple 〈M, {σm}m∈M , h〉, where each σm is a generalized
rectangle in E.

• A mechanism in “agreement function” form. This is a triple 〈M, (g1, . . . , gn), h〉, where gi is a
function from M × Ei to a (finite-dimensional) Euclidean space.

2.2.6 An example: a price mechanism for an exchange economy. Return now to the n-
person L-commodity exchange economy discussed in Section 2.1.3 above. In the classic (Walrasian)
mechanism for obtaining individually rational and Pareto optimal allocations, the typical message,
broadcast to all n persons, consists of

• a nonnegative price vector p = (p2, . . . , pL), with the price of commodity 1 (the numeraire) being
one

• a proposed trade vector a =
(

(a1
1, . . . , a

1
L), . . . , (an

1 , . . . , a
n
L)
)

, whose components may be positive,

negative, or zero

The proposed trades specified in any message m have the property that
∑n

i=1 ai = 0 (where ai =
(ai

1, . . . , a
i
L)), or equivalently, for every i and every commodity ℓ:

(†) ai
ℓ = −

∑

j 6=i

aj
ℓ.

The prices and proposed trades in m have the further property that each Person i’s budget balances
11, i.e.,

(††)
L
∑

ℓ=2

pℓ · a
i
ℓ = −ai

1.

11That is to say, the amount that i spends on positive additions to his endowment must equal the value of the
quantities that he subtracts from his endowment and makes available to others.
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Let us write the mechanism in agreement-function form. For person i, the local environment is
ei = (U i, wi). Assume U i to be differentiable and increasing in each of its arguments. The agreement
function gi has L − 1 components, denoted gi2, . . . , giL. Each corresponds to one of the commodities
2, . . . , L. All of person i’s functions giℓ equal an arbitrary nonzero number if i’s proposed trade
vector is infeasible with regard to some commodity ℓ̄, i.e., if ai

ℓ̄
< −wi

ℓ̄
(where, as (††) specifies,

ai
1 = −

∑L
ℓ=2 pℓ · a

i
ℓ). For the feasible case, where ai

ℓ ≥ −wi
ℓ for all ℓ, consider the bundle that person i

holds after the proposed trades have taken place, and consider the ratio of person i’s marginal utility
for commodity ℓ (at that post-trade bundle) to his marginal utility for commodity 1. The function giℓ

equals that ratio minus the price of ℓ. For an equilibrium message, each function giℓ equals zero. That
implies that for the prices p, person i’s bundle (wi

1 + ai
1, . . . , w

i
l + ai

L) satisfies the first order condition
for utility maximization subject to the constraint that the bundle’s value not exceed

∑L
ℓ=1 pℓ ·w

i
ℓ. Let

U i
ℓ(x1, . . . , xL; ei) denote i’s marginal utility for commodity ℓ (the partial derivative of U i with respect

xℓ) when he consumes the bundle (x1, . . . , xL) if his utility function is the function U i specified in ei.

Using (†), (††), we have the following for a message m = (a, p) such that ai
ℓ ≥ −wi

ℓ for all ℓ: For
ℓ = 2, . . . , L,

giℓ((a, p), ei) =
U i

ℓ

(

wi
1 −

∑L
ℓ=2 pℓ · a

i
ℓ, w

i
2 + ai

2, . . . , w
i
L + ai

L; ei

)

U i
1

(

wi
1 −

∑L
ℓ=2 pℓ · ai

ℓ, w
i
2 + ai

2, . . . , w
i
L + ai

L; ei

) − pℓ.

In view of the condition (†), we can reduce the size of m, by deleting the proposed-trade vector of
one person, say person n. In person n’s agreement rule we replace each an

ℓ (where ℓ = 2, . . . , L), with

−
∑n−1

j=1 aj
ℓ. We replace the commodity-1 term −

∑L
ℓ=2 pℓ · a

n
ℓ , with the term

∑L
ℓ=2 pℓ

[

∑n−1
j=1 ai

ℓ

]

. Then

the message m is a vector of n(L − 1) real message variables, namely (n − 1)(L − 1) trade variables
plus (L − 1) prices.

To complete our definition of the mechanism, we have to provide the outcome function h. We let
that function be a simple projection operator, i.e., h(a, p) = a. If we now assume that each utility
function U i is strictly concave, then the mechanism has the coverage property: for every e ∈ E,
there exists an equilibrium message (a, p). Moreover the allocation a is feasible, Pareto optimal, and
individually rational.

Now consider any other mechanism whose equilbrium actions (trades) are also individually rational
and Pareto optimal. Under what further restrictions on the rival mechanism can we claim that its
message space cannot be “smaller” than that of the mechanism we have just constructed? In particular,
if the rival mechanism’s messages are again real vectors, when can we claim that those vectors cannot
have fewer than (n)(L − 1) components? That is a well-studied question. We shall return to it in
Section 2.2.8 below.

2.2.7 Another example: a price mechanism for a firm with managers and a resource
allocator12 In this organization, persons 1, . . . , n − 1 are Managers and person n is an Allocator.
Manager j is in charge of nj activities. An activity uses resources and it generates profit. There are

12This example is discussed in Ishikida and Marschak (1996).
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L resources and the quantity en
ℓ of resource ℓ is available to the firm. Manager j operates each of his

nj activities, say activity k, at some level xi
k (a nonnegative real number). We assume nj > L, j =

1, . . . , n− 1. When Manager j’s activity-level vector is xj = (xj
1, . . . , x

j

nj), he contributes ej
0(x

j) to the

organization’s profit and he uses the quantity ej
ℓ(x

j) of resource ℓ, for ℓ = 1, . . . , L, provided that the
Allocator gives him those resource quantities. In each period there are new resource availabilities en

ℓ ,
and these become known to the Allocator. For each Manager j, there are also new profit functions ej

0

and new resource-requirement functions ej
ℓ, and those become known to Manager j.

So the Allocator’s local environment is an L-tuple of resource availabilities, namely en = (en
1 , . . . , e

n
L),

and Manager j’s local environment is an (L + 1)-tuple of functions, namely ej = (ej
0, e

j
1, . . . , e

j
L). The

organization’s action is an allocation vector y =
(

(y1, . . . , y1
L), . . . , (yn−1, . . . , yn−1

L )
)

, where yℓ
j is the

quantity of reource ℓ allocated to manager j. The action y meets the organization’s goal if it per-
mits the managers to choose activity-level vectors that maximize the firm’s total profit subject to the
current reource availabilities. So the goal correspondence is G, defined by:

G(e) =
{

y : some nonnegative (x1, . . . , xn−1) satisfies ej
ℓ(x

j) = yj
ℓ , j = 1, . . . n − 1, ℓ = 1, . . . , L,

and maximizes
n−1
∑

j=1

ej
0(x

j) subject to
n−1
∑

j=1

ej
ℓ(x

j) ≤ en
ℓ , ℓ = 1, . . . , L

}

.

Now suppose that the sets of possible local environments are as follows. For each Manager j

Ej = {ej : ej
0 is strictly concave and differentiable ; ej

ℓ is convex and differentiable , ℓ = 1, . . . , L},

while for the Allocator we have En = IRL+
. Assume that for every e in E = E1 × · · · × En, the set

G(e) is nonempty. Then we can construct a mechanism 〈M, µ, h〉 which uses prices and realizes G on
E. To do so, consider a vector p of nonnegative resource prices, (p1, . . . , pL), and, for each Manager j
consider the following local problem:

find xj so as to maximize ej
0(x

j) −
∑L

ℓ=1 pℓe
j
ℓ(x

j) subject to xj ≥ 0 .

Let Sj(ej, p) denote the set of solutions to that problem.

We use the individual-message-correspondence form 〈M, (µ1, . . . , µn), h〉 to define our mechanism.
The message space M is IRnL+

. The typical message, broadcast to everyone, is a pair m = (p, y),
where p is a price vector and y is a proposed allocation vector. For Manager j = 1, . . . , n − 1, define

µj(ej) = {(p, y) ∈ M : for some xj in Sj(ej, p) and for all ℓ = 1, . . . , L,

we have (1) ej
ℓ(x

j) ≤ yj
ℓ and (2) pℓ · (y

j
ℓ − ej

ℓ) = 0}.

For the Allocator, define

µn(en) = {(p, y) ∈ M :
n−1
∑

j=1

yj
ℓ ≤ en

ℓ and pℓ · (e
n
ℓ −

n−1
∑

j=1

yj
ℓ) = 0, ℓ = 1, . . . , L}.
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Finally, the outcome function is a projection operator (just as it was in the exchange-economy price
mechanism): h(p, y) = y. It is quickly verified that if (p, y) is an equilibrium message for e (i.e.,
(p, y) ∈ µ1(e1)∩· · ·∩µn(en)), then y, together with some activity-level vector (x1, . . . , xn−1), satisfies the
first requirement in our definition of G. Moreover that activity-level vector satisfies the Kuhn-Tucker
conditions associated with the maximization described in the second requirememt of our definition of
G. The equilibrium vector p is the vector of Lagrange multipliers in those Kuhn-Tucker conditions. So
we have y ∈ G(e). Under our assumptions on E, a Kuhn-Tucker solution exists for every e in E. That
means that for every e in E, there exists an equilibrium (p, y). So our mechanism has the coverage
property.

We conclude that our price mechanism indeed realizes our goal correspondence G on the environ-
ment set E. Its message space has dimension nL. It is natural to ask: is there another mechanism
(with appopriate regularity properties) which also realizes G on E and does so with a message space
of dimension less than nL? The next section deals with questions of that sort.

2.2.8 Using the “uniqueness property”, or “fooling sets”, to obtain a useful lower bound
to the message-space size of a “smooth” goal-realizing broadcast mechanism The best
known cost measure for a broadcast mechanism is the size of its message space M . Suppose each
broadcast message m is a vector of Q ≥ 1 real numbers m1, . . . ,mQ, and M is the cube {m : Aq ≤
mq ≤ Bq, q = 1, . . . , Q}, where Aq < Bq for all q. Then the natural size measure for M is its dimension,
namely Q. More generally, the dimension of M is a suitable cost measure as long as M is any subset
of IRQ for which “dimension” is defined. (For example, M may be a differentiable manifold). Even
more general classes of message space have been studied, and message space size measures have been
defined for those classes as well.

Whatever the definition, we typically seek to identify the broadcast mechanisms that realize a given
goal correspondence G while using the smallest possible message space. When we do so, however,
smuggling of many numbers into a single number is a basic difficulty. If, for example, we start with
a mechanism in which each message is a vector of Q > 1 real numbers, then we may define a new
mechanism, which realizes the same goal correspondence as the original mechanism, but has messages
comprised of just a single real number. One way to do this is to let the single real number be a decimal
which encodes the qth of the Q original numbers as a string composed of our decimal’s qth digit, its
(Q + q)th digit, its (2Q + q)th digit and so on. That particular smuggling trick is ruled out if, when
writing the mechanism in the message-correspondence form, we require that every set µi(ei) contain
an element ti(ei), where ti is a continuous function. A more elaborate smuggling trick uses the Peano
“space-filling-curve” mapping. (See, for example, Apostol, 1957, pp. 396-8). That mapping allows
us to recover the Q numbers from a single number in a continuous manner. A requirement stronger
than continuity (e.g., differentiability) is therefore needed in order to exclude it. If we want to give a
nontrivial meaning to the message-space minimality of a particular mechanism within some interesting
class of mechanisms, then smoothness requirements on the candidate mechanisms are unavoidable .

Now consider the case of a two-person organization. We are given a goal correspondence G from
E = E1 × E2 to an action set A. Suppose we suspect that no suitably smooth mechanism can realize
G with a message space of dimension less than D. Suppose further that E is a subset of a Euclidean
space, and that we have found Ē, a subset of E — called a test class of environments — which has
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dimension D. Suppose further that G has the uniqueness property on Ē. That means that there
is no action which is goal-fulfilling for all four corners of the “cube” defined by a pair of distinct
environments e∗, e∗∗ in Ē, i.e., the four environments (e∗1, e

∗
2), (e

∗∗
1 , e∗∗2 ), (e∗1, e

∗∗
2 ), (e∗∗1 , e∗2). Thus for any

e∗, e∗∗ in Ē, the following holds:

If G(e∗1, e
∗
2) ∩ G(e∗∗1 , e∗∗2 ) ∩ G(e∗1, e

∗∗
2 ) ∩ G(e∗∗1 , e∗2) 6= ∅, then e∗ = e∗∗.

Now note that if a mechanism realizes G on all of E, then, in particular, it realizes G on the test
class Ē. Next, recall that a mechanism is privacy preserving: in determing whether or not to agree
to a broadcast message m (or determining whether or not m lies in µi(ei)), each person i looks only
at his own local environment ei. Thus if a message m̄ is an equilibrium message for both (e∗1, e

∗
2)

and (e∗∗1 , e∗∗2 ), then m̄ is also an equilibrium message for (e∗1, e
∗∗
2 ) and (e∗∗1 , e∗2). So if the mechanism’s

action h(m̄) is indeed going to lie in the sets G(e∗) and G(e∗∗), as realization of G requires, then
h(m̄) lies in G(e∗1, e

∗∗
2 ) and G(e∗∗1 , e∗2) as well. Since G has the uniqueness property on Ē, it follows

that e∗ = e∗∗. So a pair of distinct environments in the D-dimensional test class Ē cannot share the
same equilibrium message. Since M must contain at least one equilibrium message for all e in Ē (the
coverage requirement), we can claim, informally, that M must be at least as large as Ē.

More precisely, consider any mechanism which realizes G on E and hence on Ē. Consider the
restriction of µ to Ē and call that restriction µ̃. So µ̃ is a correspondence from Ē to a subset of M ,
namely the set µ̃(Ē) = µ(Ē). Now since Ē has the uniqueness property for G, the inverse of the
correspondence µ̃ is a function, which we may call t : µ̃(Ē) → Ē. For example t might be the Peano
mapping, which assigns a member of Ē to every message in µ̃(Ē), even though Ē has higher dimension
than µ̃(Ē). A message m in µ̃(Ē) is an equilibrium message for the environment t(m) ∈ Ē and for no
other environment in Ē. Since every environment in Ē must have some equilibrium message in µ(Ē)
(by the coverage property), our function t is onto (it is a surjection).

Now suppose our smoothness requirement on the candidate mechanisms is that the function t, the
inverse of µ̃, be differentiable. If M , and hence µ(Ē) = µ̃(Ē), had a smaller dimension than Ē, then t
would be a one-to-one function from one set onto a second set having higher dimension. That cannot be
the case if t is differentiable. (For example, the Peano mapping, while continuous, is not differentiable,
so a mechanism in which t is the Peano mapping from µ̃(Ē) onto the higher-dimensional set Ē violates
our smoothness requirement). So we have confirmed our suspicion that D is indeed a lower bound for
smooth mechnisms which realize G on all of E. We obtain the same conclusion for other smoothness
requirements. Some of them are weaker than our requirement that the function t (the inverse of the
message correspondence, restricted to the test class) be differentiable.13 Moreover, there is another
way to force M to have a dimension at least as large as Ē. We can impose requirements directly on
the correspondence µ̃ rather than on its inverse. Suppose we require µ̃ to be locally threaded. That
means that for any neighborhood N in Ē, we can find a continuous function v : N → M which is a
selection from µ̃, i.e., v(e) ∈ µ̃(e) for all e in N . The uniqueness property of Ē tells us that for any

13In particular, we may use the weaker requirement that t be “Lipschitz-continuous”, i.e., there exists K > 0 such
that for all m′,m′′ in µ̃(E), we have ||t(m′) − t(m′′)|| ≤ K · ||m′ − m′′||. (Here the symbol ||x||, for x = (x1, . . . , xℓ),
denotes max{|xj | : j ∈ {1, . . . , ℓ}}). The Peano mapping is not Lipschitz-continuous.

15



two distinct environments ē,
=
e in N , we have v(ē) 6= v(

=
e). It can be shown that this fact rules out a

continuous v if M indeed has a smaller dimension than Ē.14

The technique extends to n-person mechanisms. Let the symbol e∗∗/e∗i denote the vector obtained
from e∗∗ = (e∗∗1 , . . . , e∗∗n ) when we replace e∗∗i with e∗i . Then the statement “the correspondence G from
E = E1 × · · · × En to an action set A has the uniqueness property on the test class Ē ⊆ E” means
that

if e∗, e∗∗ ∈ Ē and G(e∗) ∩
(

∩n
i=1G(e∗∗/e∗i )

)

6= ∅, then e∗ = e∗∗.

It is interesting to note that the idea just sketched was developed independently by computer
scientists and economists.15 In the computer science field known as “communication complexity”16,
one studies dialogues between n persons that end with one person having enough information to
compute a function F of n numbers, each of them privately known by one of the n persons. The
dialogue is a sequence of binary strings. The dialogue changes when the privately known numbers
change. One wants the worst-case dialogue to be as short as possible. If the function possesses a
“fooling set”, then the size of the fooling set provides a lower bound to the length of the worst-
case dialogue. In the terminology we have just developed, a fooling set is a set on which F has the
uniqueness property.

An illustration of the uniqueness technique: resource allocating mechanisms for a class
of exchange economies Let us return to the n-person L-commodity exchange economies discussed

14We may want to consider mechanisms whose message space M is not Euclidean but consists, for example, of
certain infinite sequences, or of integer k-tuples, or of preference orderings (as when an environment specifies agents’
individual preference orderings and a message identifies a set of possible environments). That has motivated the study
of mechanisms with message spaces that are general topological spaces. Then, instead of comparing dimensions, we
use a general topological definition of the statement that one message space is “at least as large as” another. If M is

Euclidean, then “at least as large as” reduces to “having a dimension no smaller than”. For example, one may define
M∗ to be at least as large as M∗∗ if and only if there is a subspace of M∗ which is homeomorphic to M∗∗. For each
such topological definition, we seek an associated smoothness requirement on the message correspondence µ used by
a G-realizing mechanism, so that a smooth mechanism’s message space is at least as large as a test class Ē having
the uniqueness property for G. One such requirement is “spot-threadedness” of µ on the test class. That is a weaker
requirement than local threadedness. It means that there is an open set W ⊆ Ē and a function q : W → M such that
q(e) ∈ µ(e) for all e in W . If a G-realizing mechanism obeys that condition, while its message space and the test class Ē

are both Hausdorff and Ē is locally compact, then the message space must be at least as large as the test class, where
“at least as large as” has the meaning just given. The details are carefully developed in Section II.3 of Hurwicz, 1986,
which concerns “a strategy for obtaining minimality results”. See also (among others) Mount and Reiter, 1974; Walker,
1977; Hurwicz and Marschak, 1985.

15Economic applications of the technique, so as to establish lower bounds to the message-space size required to
achieve various resource-allocation goals, include the following papers, in each of which the lower bound is shown to be
attainable by a particular mechanism that uses prices: Mount and Reiter (1977); Osana (1978); Sato (1981); Jordan
(1982), which shows that the only mechanisms that have minimal message space while realizing Pareto-optimality are
versions of the competitive mechanism; Chander (1983); Aizpura and Manresa (1995); Calsamiglia and Kirman (1998);
Tian (2004); Stoenescu (2004); Osana (2005). On the other hand, the following papers find that realization of the
resource-allocation goal requires a message space of infinite dimension: Calsamiglia (1977) (which permits increasing
returns in production); Hurwicz and Weinberger (1990), Manresa (1993), and Kaganovitch (2000) (which consider
efficient intertemporal resource allocation); and Jordan and Xu, (1999), on expected profit maximation by the managers
in a firm.

16See, for example, Lovász (1990), Karchmer (1989, Kushilevitz and Nisan (1997).
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in 2.1.3 and 2.2.6 above. Recall that person i’s local environment is a pair ei = (U i, wi), where U i

is a utility function and wi = (wi
1, . . . , w

i
L) is an endowment vector. As before, there is a set Ei of

possible local environments ei. Recall also that the action the economy chooses is a trade nL-tuple
a = (a1, . . . , an), where ai = (ai

1, . . . , a
i
L). Call the action a interior for e if ai

ℓ > −wi
ℓ for all (i, ℓ).

Slightly modify the goal correspondence defined in 2.1.3 so that it is now defined by:

G(e) = {a :
∑n

i=1 ai = 0 ; for the economy defined by e, a is interior, Pareto-optimal

and individually rational}.

The price mechanism introduced in 2.2.6 has a message space of dimension n(L − 1) and realizes
G on certain environment sets E = E1 × · · · × En. Can we show n(L − 1) to be a lower bound for
any suitably smooth mechanism which realizes G on E? Yes we can, using the uniqueness technique,
provided E contains a suitable test class Ē whose dimension is n(L − 1). In the test class most
used in the literature17, utility functions have the Cobb-Douglas form and endowments are fixed.
Specifically, if e is in Ē, then person i’s endowment vector wi is (1, 1, . . . , 1), and his utility for the
bundle (X1, . . . , XL) is ΠL

ℓ=1X
αi

ℓ , where the αi are positive numbers such that α1 + · · ·+αL = 1. Thus
each ei is uniquely determined by L − 1 real numbers and so the set Ēi has dimension L − 1. The
dimension of Ē is n(L − 1), which equals the dimension of our price mechanism’s message space.

The uniqueness property of G on the set Ē is readily shown, using the first order conditions that
characterize the unique n interior trade vectors ai that maximize each person i’s Cobb-Douglas utility
subject to the balancing constraint

∑

ai = 0. One then has a choice of several smoothness conditions
to be imposed on the candidate G-realizing mechanisms. If the set of messages that are equilibrium
messages for the environments in Ē has dimension less than n(L − 1), then each of these smoothness
conditions rules out a one-to-one mapping from that set of equilibrium messages onto the n(L − 1)-
dimensional environment set Ē. But if the mechanism indeed realizes G on Ē, then such a mapping
must exist, by the uniqueness property of G on Ē. So if the entire set E contains our test class Ē, we
can rule out18 a smooth broadcast mechanism that realizes G on all of E and has a message space of
dimension less than n(L − 1). 19

17See, among others, Mount and Reiter (1977) and Jordan (1982).
18For the organization considered in 2.2.7 (N − 1 managers and an Allocator), a similar argument (given in Ishikida

and Marschak, 1996) establishes that no suitably smooth mechanism can realize the goal function G (defined in 2.2.7)
with a message space dimension less than nL (the message-space dimension of the G-realizing price mechanism that we
constructed). In our nL-dimensional test class, the kth activity for manager j (who has nj < L activities) uses only the

resource k and earns a profit of 2αj
k

√

x
j
k when it is operated at level x

j
k. Each member of the test class is defined by an

nL-tuple of positive numbers (the numbers α
j
k), so the test class has dimension nL. It is straightforward to show that

G has the uniqueness property on that test class.
19Another interesting setting for dimensionally minimal broadcast mechanisms is the allocation of one or more objects

among n persons, each of whom has a private valuation for each object. Consider the case of a single object. Let ei

be i’s valuation for the object and let Ei be the interval [0,H], where H > 0. Let the action set be {1, . . . , n}, where
“action i” is the allocation of the object to person i. Let the goal be allocation to a maximal-value person, i.e., the
goal correspondence G is defined by G(e) = {j : ej ≥ ei for all i}. Then one G-realizing broadcast mechanism uses
messages m = (t, J), where t is a real number and J is an integer in {1, . . . , n}. Person i agrees to m if and only if: (i)
i 6= J and ei ≤ t or (2) i = J and ei = t. The outcome function h is a projection: h(t, J) = J . This mechanism is one
way to model a Dutch (descending) auction. Consider a subclass of E = E1 × · · · × En, namely the “diagonal” class
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2.2.9 Mechanisms in which messages are not broadcast but are individually addressed,
and responsibility for each action variable is assigned to a selected person We have assumed
thus far that all parts of a given message are broadcast. They are “seen” or “heard” by all of the
organization’s n members. It may, of course, be true that while an agreement function gi has the
entire broadcast message m as an argument, the function gi is sensitive to only a portion of m, namely
the portion that i hears. Even though m is broadcast to everyone, we can interpret “hearing only a
portion of the broadcast message m” as ignoring all of m except that portion. Formally, for every
person i, we may be able to write every message m as a pair (mi, m−i), where mi is the portion of
m that i hears, and to write the agreement function gi(m, ei) as g∗

i (mi, ei). Similarly we may able to
write the set µi(ei) as {m = (mi, m−i) ∈ M : mi ∈ µ∗

i (ei)}, where µ∗
i is a correspondence from Ei to

M∗
i and M∗

i is the set of possible values of mi.

But if we want to permit messages to be individually addressed, and if we want to study the cost
born by person i as he hears and processes the messages he receives, and responds to them by sending
further messages to certain other persons, then it is more convenient to extend our previous formalism
by introducing network mechanisms20. That will also have another advantage: it will allow us to be
explicit about who is responsible for a given action variable. Our mechanism concept thus far has been
silent on this matter.

In defining a network mechanism we may again use the agreement-function form, but an agreement
function’s domain and range are now different. We start by letting M denote an n-by-n matrix of
sets Mij, where Mij is the set of possible messages that i may send to j. The set Mii on the diagonal
of M may be empty, or, if it is not, we may interpret the self-addressed messages in Mii as stored
information. Moreover, Mik may be empty for some k 6= i. That means that i never sends a message to
k. Next let M i denote the Cartesian product of the sets in the ith row of M , i.e., M i = Mi1×· · ·×Min.
Let Mi denote the Cartesian product of the sets in the ith column of M , i.e., Mi = M1i × · · · × Mni.
Let Pi(M) denote the Cartesian product of the sets that are in the ith row or the j th column of M .
Thus Pi(M) = Mi × {M i \Mii}. We shall say that a message muv ∈ Muv is heard by i if it is received
by i (so that u 6= i, v = i), sent by i (so that u = i, v 6= i) or stored by i (so that u = v = i). Then
Pi(M) is the set of the possible message vectors that i can hear.

We shall speak of a message array m ∈ M . Its typical component is an individually addressed
message mij ∈ Mij, where mij is a vector of sij real numbers; sij may be zero. The symbol Pi(m) will
denote the portion of m that i hears; Pi(m) is an element of the set Pi(M). Let the domain of person
i’s agreement function gi be the Cartesian product of Ei with the set Pi(M) of possible message vectors

that i can hear, and let its range be IR
∑n

j=1
sij . The statement “gi(Pi(m), ei) = 0”, means that person

Ē = {e ∈ E : e1 = e2 = · · · = en}. It is easily seen that G has the uniqueness property on Ē. But Ē has dimension one,
so it does not provide a useful lower bound for mechanisms whose messages are real vectors. The “auction” mechanism,
however, uses both real numbers and integers. One has to be careful in choosing a cost measure, and smoothness
requirements, for mechanisms of that sort. Much more challenging is the case of several objects, when each person has
a valuation for each subset of the set of objects, and each person may be allocated a subset. One seeks a mechanism
which finds (at equilibrium) an allocation that maximizes the sum of the valuations. Lower bounds for such mechanisms
have been developed by Nisan and Segal, 2005. The mechanisms considered again use both real numbers and integers
in their messages. The uniqueness technique, using a counterpart of the “diagonal” test class, plays a central role in
that study. The ideas are extended to a much larger class of allocation problems in Segal, 2004.

20They are studied in Marschak and Reichelstein, 1995 and 1998.
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i finds the message array m to be acceptable: given his current local environment ei, and given that he
has received the messages m1i, . . . ,mni, he finds it appropriate to send the messages mi1, . . . ,min. The
message array m is an equilibrium message array for the environment e = (e1, . . . , en) if all persons
find it acceptable, i.e., gi(Pi(m), ei) = 0 for all persons i.21

To complete the definition of a network mechanism, we have to specify how the action variables
are chosen once an equilibrium message array is found. Let the organization have k action variables,
z1, . . . , zk; let Zj be the set of possible values of zj, j = 1, . . . , k; and let Z = Z1×· · ·×Zk be the set of
possible organizational action k-tuples z = (z1, . . . , zk). Partition the index set {1, . . . , k} into n sets
(some of them may be empty), namely J1, . . . , Jn. The (possibly empty) set Ji identifies the action
variables for which i is responsible. Those are the variables zr, where r ∈ Ji; they comprise a vector
zJi belonging to the set ZJi = ×

t∈Ji
Zt. Person i chooses the value of the action variables that are in

his charge as a function of what he has heard. So he uses an outcome function hi : Pi(M) → ZJi .

As before, we want the agreement functions to have the coverage property: for every e ∈ E, there
exists a message array m which is an equilibrium array for e. If coverage is satisfied, then a triple
〈M, (g1, . . . , gn), (h1, . . . , hn)〉, whose elements we have just defined, is a (privacy-preserving) n-person
network mechanism on the environment set E = E1 × · · · × En with action space Z = Z1 × · · · × Zk.
As before, we may be given a goal correspondence G : E → Z, where the set G(e) consists of
the organizational actions z which meet a certain goal when the environment is e. As before, we
shall say that a given network mechanism realizes G if, for every e in E, the organizational action
(h1(Pi(m)), . . . , hn(Pi(m)) lies in the set G(e) whenever m is an equilibrium message array for e. Note
that every network mechanism has a communication graph. Its nodes are the n persons, and there is
an edge between i and j if and only if at least one of the sets Mij, Mji is nonempty.

An example: a network “price” mechanism for a three-plant four-person firm Consider
a four-person firm. Person 4 markets two products. He obtains revenue from the quantities Q1 and
Q2 of the products, which are produced, respectively, by person 1 and person 2. Person 4’s privately
observed local environment is a function, namely the revenue function e4(Q1, Q2). Person 1’s local
environment is the cost function e1(Q1). For person 2, cost depends not only on product quantity
but also on the quantity I of an intermediate material used in production (the material is supplied
by person 3). So person 2’s local environment is the cost function e2(Q2, I). Person 3 produces the
intermediate material; his local environment is the cost function e3(I). For persons 1 and 3 the local-
environment set Ei (where i = 1 or 3) is the set of all continuous convex functions from a closed
interval [Ai, Bi] (with 0 ≤ Ai < Bi) to the positive real numbers. For person 2, the local-environment
set E2 is the set of all continuous convex functions of two variables, from a set [A2, B2]× [C, D] (with
0 ≤ A2 < B2, 0 ≤ C < D) to the positive real numbers. For person 4, E4 is the set of all continuous
concave functions from a closed interval [A4, B4] (with 0 ≤ A4 < B4) to the positive real numbers.
The numbers Ai, Bi, C,D stay the same for all the environments e = (e1, . . . , en).

Now consider a network mechanism in which person 4 sends prices u1 and u2 to persons 1 and
2, respectively, and 1 and 2 reply with quantities Q1, Q2 that they are willing to supply to 4 at
those prices. Similarly, person 2 sends an intermediate-material price v to 3, who replies with an

21We can also write a network mechanism in dynamic form, in message-correspondence form, or in rectangle form,
just as we can for broadcast mechanisms.
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intermediate-material quantity I that he is willing to supply to 2 at that price. So there are six message
variables: m14 = Q1, m23 = v, m24 = Q2, m32 = I, m41 = u1, m42 = u2. Let each of the sets Mij of
possible message-variable values be the nonnegative real numbers. For all other i, j combinations
let the set Mij be empty. Ignore the empty sets and note that for the typical message array, say
m = (Q̄1, Q̄2, Ī , ū1, ū2, v̄), we have P4(m) = (u1, u2, Q1, Q2), P1(m) = (u1, Q1), P2(m) = (u2, Q2, v, I),
and P3(m) = (I, v).

Figure 2 portrays the message flows in this six-message-variable mechanism.

FIGURE 2 HERE

The agreement rules of our price mechanism will express the usual conditions for divisional profit
maximization. Consider the typical message array m̄ = (Q̄1, Q̄2, Ī , ū1, ū2, v̄). Person 4 agrees with
m̄ (he finds that g4(P1(m̄), e4) = 0) if and only if his divisional profit e4(Q1, Q2) − u1Q1 − u2Q2 is
maximized by (Q̄1, Q̄2). He can determine whether or not that is so without knowing two components
of the array m̄, namely Ī and v̄. Person 1 agrees if and only if the profit u1Q1 − e2(Q1) is maximized
by Q̄1, and does not need to know Ū2, Q̄2, Ī or v̄. Person 2 agrees if and only if u2e2(Q2, I) − vI is
maximized by (Q̄2, Ī), and does not need to know ū1 or Q̄1. Finally person 3 agrees if and only if
vI − e3(I) is maximized by Ī, and does not need to know ū1, ū2, Q̄1 or Q̄2.

The organization’s action variables are Q1, Q2 and I. (To minimize notation we use the same
symbol for the action variable as for the message variable associated with it). For each action variable,
we let the set of possible values (one of the sets Zk in our general definition) be the nonnegative
reals. We have many choices in designing the outcome function. We may, for example, give person
4 responsibility for the action variables Q1, Q2, while Person 3 has responsibility for I, the remaining
action variable. Then we write:

h4(P4(m)) = h4(Q1, Q2, u1, u2) = (Q1, Q2); h3(P3(m)) = h3(I, v) = I.

(The outcome function is simply a projection operator, just as it was in the exchange-economy price
mechanism that we considered before introducing network mechanisms).

Under our assumptions on the Ei, our agreement functions have the coverage property. Moreover
if Q̄1, Q̄2, Ī are the actions of an equilibrium message array, then they maximize the firm’s profit. That
is to say, our network mechanism realizes the following goal correspondence:

G(e) = {(Q̄1, Q̄2, Ī) : (Q̄1, Q̄2, Ī) maximizes e4(Q1, Q2) − e1(Q1) − e2(Q2, I) − e3(I)}.

Note that we may, if we wish, reverse the directions of the flows depicted in Figure 2. We may,
for example, let person 1 send a price to person 4, who replies with a quantity. Let the agreement
rules stay as they were. Then the set of equilibrium messages for any e does not change and hence the
set of actions obtained at equilibrium for any given e does not change. The revised mechanism again
realizes G.
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The costs of a network mechanism One cost measure is simply the dimension of the entire message
space M , the set of possible message arrays. Since each mij is a vector of sij ≥ 0 real variables, we
have dim M =

∑

i,j sij. If there are no self-addressed messages (i.e., the sets Mii are empty), and if
we think of each of the sij real message variables as requiring a “pipeline” between i and j, then the
dimension of M is the total number of pipelines. In the preceding example there are no self-addressed
messages and there are six pipelines.

But it is also of considerable interest to study the n individual communication burdens. Person i’s
burden is the number of variables he hears, i.e,

∑

{j:Mij 6=∅}
sij. That is also the dimension of the set

Pi(M), so we may use the symbol dim Pi(M) for i’s burden. Note that if there are no self-addressed
messages, then dim M equals half the sum of the individual burdens, since that sum counts each
pipeline twice. In the example, sij is either one or zero and the vector of individual burdens, for 1,2,3,
and 4, respectively, is (2, 4, 2, 4). It is natural to ask: is there another network mechanism which
also realizes G, but does so with fewer than six message variables, and with an individual-burden
vector that dominates (2,4,2,4) — i.e., one person’s burden is less than in our price mechanism and no
person’s burden is higher? Once again a smoothness requirement has to be imposed on the candidate
mechanisms, to avoid the smuggling of many numbers into one.

We shall define one such smoothness requirement in a general way, for a class of n-person network
mechanisms where (as in our three-plant example) (i) each person i’s environment is a real-valued
valuation function ei whose arguments are certain action variables, and (ii) the mechanism realizes
a goal correpondence, in which the goal-fulfilling action variables maximize the sum of the valuation
functions. (That is the case in our three-plant example if we define the valuation function for 1,2, and
3 to be the negative of the cost function, while 4’s evaluation function is his revenue function; then
the firm’s profit is indeed the sum of the four valuation functions).

We start by considering the k action variables z1, . . . , zk. Let each set Zr — the set of possible
values of the action variable zr — be a closed real interval, so that Z = Z1 × · · · × Zk is a closed
cube in IRk. Next we shall say that the action variable zr is one of person i’s concerns if it enters his
function ei. A given action variable may be the concern of several persons. (Thus, in our example,
person 4’s concerns are the action variables Q1 and Q2; person 2’s concerns are Q2 and I). Let Ai be
the index set that identifies i’s concerns, i.e., Ai = {r ∈ {1, . . . , k} : zr enters the function ei}. Then
a given vector zAi specifies a value for each of i’s concerns, and ZAi (a closed cube or closed interval)
denotes the set of possible values of zAi . We now fix the concern sets Ai and we consider mechanisms
and environment sets for which the following is true:

(†)







The local environment set for person i is Ei =
{ei : ei is a concave function from Z̃Ai to IR+}, where Z̃Ai is an
open convex set that includes ZAi .

Now consider the goal correspondence Π defined by:

Π(e) = {z ∈ Z : z maximizes
n
∑

i=1

ei(z
Ai) on Z}.
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Consider a subclass of the environment set E, namely Ē = Ē1×· · ·×Ēn, where each concave valuation
function ei ∈ Ēi takes a separable quadratic form. That is to say, if ei ∈ Ēi, then

ei(z
Ai) =

∑

a∈Ai

[

xa
i · z

a −
1

2
ya

i · (z
a)2
]

,

where xa
i , y

a
i are numbers privately observed by i. So we may identify each local environment ei in

Ēi by a point in IR2|Ai|. (For a finite set H, we let |H| denote the number of elements it contains).
Moreover if e ∈ Ē, then the goal-fulfilling action set Π(e) has a single element, since there is a unique
maximizer of

∑n
i=1 ei(z

Ai) on the cube Z. We now let Π(E) denote that unique maximizer. Call an
element e of Ē interior if that unique maximizer is an interior point of Z. Let t(a) denote the set of
persons concerned with the action variable za, i.e., t(a) = {i : a ∈ Ai}. Assume (to avoid trivial
cases) that each set t(a) has at least one member. Write the action k-tuple Π(e) as (Π1(e), · · · , Πk(e)).
It is quickly checked that for an interior environment ē ∈ Ē, we have, for every a ∈ {1, . . . , k}

Πa(e) =

∑

i∈t(a) xa
i

∑

i∈t(a) ya
i

.

We are now ready to define our smoothness requirement.

Consider a network mechanism 〈M, (g1, . . . , gn), (h1, . . . , hn)〉 on the environment set de-
fined in (†). Let each message mij in a nonempty set Mij be a vector of real numbers.
The mechanism is smooth on the separable quadratic subset Ē if for some interior environ-
ment ē ∈ Ē, there exists a neighborhood U(ē) and a continuously differentiable function
r : U(ē) → M , such that

for all e ∈ U(ē) we have g1(r(e), e1) = 0, . . . , gn(r(e), en) = 0.

Thus the function r identifies an equilibrium message for each e in the neighborhood U(ē), and that
message varies in a continuously differentiable fashion as we move away from ē. Using a variant of
the uniqueness argument sketched in Section 2.2.8 above, we obtain a lower bound on each person’s
communication burden. The following can be shown:

Proposition A

Suppose 〈M, (g1, . . . , gn), (h1 . . . , hn)〉 is a network mechanism on the environment set E defined in
(†), and each message mij in every nonempty set Mij is a vector of real numbers. If the mechanism is
smooth on the separable quadratic subset Ē and realizes the goal correspondence Π on E, then the number
of real message variables that each person hears is at least twice the number of his concerns, i.e., for each
person i we have dim Pi(M) ≥ 2|Ai|.

If we now return to our four-person three-plant example, we see that the concern-set sizes are
(1, 2, 1, 2) for persons 1,2,3,4, respectively. But (as already noted) the vector of message variables
heard is (2, 4, 2, 4). So Proposition A tells us that no smooth mechanism whose equilibrium messages
yield actions that maximize the firm’s profit can improve on the Figure-2 price mechanism with regard
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to any person’s communication burden. That is a strong result in favor of price mechanisms. Is it
confined to situations that do not depart significantly from our example? The answer is not known.
In particular, suppose we consider Π-realizing mechanisms in which each individual burden need not
be minimal but instead a weaker efficiency requirement is met. Call a mechanism efficient in a class
if no other mechanism in the class has a lower burden for some person and not higher burdens for the
others. The following challenge is unmet.

RESEARCH CHALLENGE # 1: Consider the class of all Π-realizing mechanisms on the above
environment set E which are smooth on the separable quadratic subclass Ē. If such a mechanism is
efficient in that class, is it always possible to write it so that it becomes a price mechanism, where each
message variable can be interpreted as a price or a quantity, and the agreement functions express divisional
profit maximization?

Other fundamental results on network mechanisms concern the size of the overall message space
M rather than the individual burdens. These results require a stronger condition than the smoothness
we have defined. Call the stronger condition regularity on the separable quadratic subclass Ē.22. For
regular mechanisms, there is a useful lower bound to the size of M . For any Π-realizing mechanism
which is regular on Ē we can show that:

dim M ≥ 2
∑

a∈{1,...,k}

(|t(a)| − 1).

A mechanism is dimensionally minimal in a certain class if no other mechanism in the class has
a smaller value of dim M . It is of particular interest to know when the communication graph of a
dimensionally minimal regular Π-realizing mechanism is hierarchical, i.e., the graph is a tree. That may
have advantages that are related to incentives (e.g., it may facilitate “control”). But trees may have
communication costs that are higher than needed. Using the above lower bound we can characterize
the situations where trees turn out to be dimensionally minimal. Before doing so, note that the
communication graph of a network mechanism defines a subgraph for every subset of persons. In
particular, there is a subgraph for t(a), the set of persons who are concerned with the action variable
za. If the communication graph of the mechanism is a tree, then that subgraph may or may not be a
tree as well. The following has been shown.

Proposition B

There exists a Π-realizing mechanism that is (i) regular on the separable quadratic subset Ē, (ii) dimen-
sionally minimal among all such mechanisms, and (iii) hierarchical, if and only if there is an n-node tree
with the property that for every action variable za, the tree’s subgraph for the persons concerned with that
variable is also a tree.

Propositions A,B, and further propositions that we do not summarize here, all deal with envi-
ronments that are valuation functions and with a goal correspondence that requires maximization of
their sum. The valuation functions have a “public good” property, since a given action variable may

22For regularity on Ē, we have to add the requirement that the matrix of second partial derivatives of the gi has full
rank at (m̄, ē), where ē ∈ Ē is the interior environment in our previous smoothness condition and m̄ = r(ē); moreover
the rank does not change when we vary e in a neighborhood of ē while keeping the message array constant at m̄.
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enter several of them. Are there analogues of these propositions for other classes of environment sets
and goal correspondences, where there are no public goods? In particular suppose that person i’s
privately observed local environment is a “revenue” function ei whose argument is a “private” action
vector zi that does not enter any other ej, where j 6= i. Suppose, however, that all the action vari-
ables have to meet a common resource constraint. We require z ∈ C, where C is some subset of a
finite-dimensional Euclidean space. Suppose, in particular, that the set C can be written in the form
{(z1, . . . , zn) : r1(zB1) ≤ 0, . . . , rk(zBn

) ≤ 0}. Here the Bi are index sets and each is a subset of
{1, . . . , n}. The functions r1, . . . , rk are fixed and known to all persons. Now we may view person i as
being “concerned with” those constraint functions rt in which his own action vector enters , i.e., those
for which i ∈ Bt. Consider the goal correspondence Π∗ defined by

Π∗(e) = {z : z maximizes
n
∑

i=1

ei(z) on the set C}.

RESEARCH CHALLENGE # 2: Are there propositions characterizing those Π∗-realizing network
mechanisms which are regular (in a suitable sense) and are efficient with regard to individual burdens, or are
dimensionally minimal? In particular, are there propositions which describe the situations where efficient or
minimal mechanisms are hierarchical?

2.3 Finite approximations of mechanisms whose message spaces are continua In most
mechanisms studied in the literature, the message space M is a continuum. That is not surprising, since
typically the mechanism’s final action maximizes some function, in which actions and environments
are the arguments. Maximization is most easily studied with the tools of calculus and those tools
deal with continua, not with finite sets. Thus in a classic price mechanism, a message specifies prices
and proposed quantities. The first order conditions for the required maximization can be expressed
in a statement about prices and quantities, and that statement holds at the mechanism’s equilibrium
messages. The message space is a continuum composed of possible prices and possible quantities.

But continua are not realistic. In practice, one cannot send all the messages in a continuum (e.g., all
the points in a real interval). Moreover it may take infinite time to find that message in a continuum
which satisfies the required equilibrium conditions. If an organization wants to use a continuum
mechanism in a practical way, it has no choice but to approximate the continuum mechanism with an
appropriate finite mechanism, whose message space is a finite set. The penalty paid for such finite
approximation may be an error: the actions generated (at equilibrium) by the finite approximation
may differ from the goal-fulfilling actions which the original continuum mechanism generates.

If we take the issue seriously, then the following question immediately comes to mind: will the
informational advantages of the original continuum mechanism be reflected in its finite approximation?
In particular, if we have found (using the tools of smooth mathematics) a continuum mechanism that
realizes a given goal correspondence and does so with minimal message space dimension, are finite
approximations to that mechanism superior (in an appropriate sense) to finite approximations of a
continuum mechanism which also realizes the goal correspondence but has a higher-than-minimal
message-space dimension? Does dimension still matter when we turn from continuum mechanisms to
their finite approximations?
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In fact, for broadcast mechanisms, a theory of finite approximations has been begun23 and several
“dimension still matters” propositions have been established. In these propositions, the environment
set is a continuum as well as the message space of the mechanism we are approximating. The view
taken is that “nature” is able to choose the organization’s current external environment from some
continuum of possible environments, but the continuum message space is “man-made” (for analytic
convenience) and we are free to replace it with a finite message space.

The first step is to define a style of approximation. Suppose we are given an n-person broadcast
mechanism Λ on an environment set E = E1 × · · · × En, with action set A, where both M and each
Ei are continua. In particular (as in our introductory discussion of mechanisms in 2.2.1), let M be the
Cartesian product MD1×· · ·×MDn . Let each MDi be a closed Di-dimensional cube in IRDi

, while each
Ei is a closed Ji-dimensional cube in IRJi . Write the continuum mechanism Λ in agreement-function
form: Λ = 〈M, (g1, . . . , gn), h〉. Recall that each agrement function gi has M × Ei as its domain and
MDi as its range. Thus each gi has Di real-valued components, say gi1, . . . , gik, . . . , giDi

. Let D denote
∑n

i=1 Di.

In a finite approximation to Λ, our finite message space, denoted Mǫ, is the intersection of the
D-dimensional continuum message space M with a mesh-ǫ lattice of points, which are spaced 2ǫ apart
(ǫ > 0). That lattice, denoted SD

ǫ , is the D-fold Cartesian product of the set

Sǫ = {. . . ,−2(ℓ + 1)ǫ,−2ℓǫ, . . . ,−4ǫ,−2ǫ, 0, 2ǫ, 4ǫ, . . . , 2ℓǫ, 2(ℓ + 1)ǫ, . . .}.

Next we replace each agreement function gi with a new function gηǫ
i = (gηǫ

i1 , . . . , gηǫ
iDi

). Each gηǫ
ik is the

following two-valued function:

for every m ∈ Mǫ, g
ηǫ
ik (m, ei) =

{

0 if |gik(m, ei)| ≤ η
1 otherwise;

,

where η > 0 is called the tolerance. Finally, we have to specify the outcome function of our finite
approximation. In the simplest approach, we let the outcome function be the original one, i.e., it is
the restriction of h, the outcome function in Λ, to the new finite message space Mǫ (which is a subset
of M). Denoting the new outcome function h0, we have h0(m) = h(m).

Suppose that our new agreement functions satisfy the coverage requirement: i.e., for every e ∈ E,
there exists m ∈ Mǫ such that gηǫ

i (m, ei) = 0, all i. Then the finite mechanism
Ληǫ = 〈Mǫ, (g

ηǫ
1 , . . . , gηǫ

n ), h0〉 is called the finite exact-outcome approximation of Λ with message mesh
ǫ and tolerance η. To obtain it we have, in effect, rounded off the original functions gi to a speci-
fied accuracy. The accuracy is determined by the the mesh ǫ and the tolerance η. In an alternative
approximation of Λ, we do not require the outcome for the message m to be exactly what it was in
Λ. Rather we place a mesh-ν lattice on the action set A, so that our finite mechanism’s action set
becomes A∩Sα

ν . We then choose the outcome to be a lattice point that is closest to the action chosen
in Λ. Suppose there are α real-valued action variables and that A is contained in a closed cube in
IRα. Then in the finite rounded-outcome approximation of Λ with message mesh ǫ, action mesh ν and
tolerance η, all elements except the outcome function are the same as those just defined. The outcome
function hν : Mǫ → A ∩ Sα

ν is defined as follows:

23In Marschak,1987, and Hurwicz and Marschak 2003A, 2003B, 2004.
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hν(m) =























the element a = (a1, . . . , aα) of A ∩ S
α
ν

which is closest to h(m), where distance

is measured by maxr∈{1,...,α}

(

|h(m) − ar|
)

and ties are broken downward.

For both versions, we shall say that our finite mesh-ǫ approximation has the minimal tolerance property
if η has the smallest value that permits coverage. (Such a smallest value can be shown to exist).

If the mechanism L is a finite approximation of the continuum mechanism Λ, then for any e ∈ E,
we define the error at e of L to be the worst-case distance between the (equilibrium) value of an action
variable in the continuum mechanism and its value in the approximation. Let h# denote the finite
approximation’s outcome function. (This is either the exact outcome of the continuum mechanism or
it is a rounded-outcome approximation). Since there are α real action variables, the function h# has
α real-valued components ha. The error at e of L is

sup
{

|h#
j (m̄) − hj(m)| : m ∈ M, m̄ ∈ Mǫ; gi(m, ei) = 0, gǫη

i (m̄, ei) = 0, i = 1, . . . , n; j ∈ {1, . . . , α}
}

.

The overall error of L is supe∈E (error at e of L).

We define the cost of the approximation L to be the number of messages in its finte message space.
We impose some regularity conditions24 and obtain the following “dimension still matters” proposition.

Proposition C

Consider two regular continuum mechanisms Λ = 〈M, (g1, . . . , gn), h〉 and Λ∗ = 〈M∗, (g∗
1, . . . , g

∗
n, h

∗〉.
Each is a mechanism on the same environment set, namely the compact set E = E1 × · · · ×En, and each
has an action set which is a subset of IRα. The two message spaces are distinct: M is a D-dimensional
subset of IRD, while M∗ is a D∗-dimensional subset of IRD∗

, where D∗ > D. Let L be a mesh-ǫ rounded-
outcome minimal-tolerance approximation of Λ, and let L∗ be a mesh-ǭ rounded-outcome minimal-tolerance
approximation of Λ∗. Suppose that L∗ costs no more than L. Then if ǫ is sufficently small, the overall
error of L∗ exceeds the overall error of L.

Note that the proposition does not require us to specify goal correspondences realized by the two
continuum mechanisms. But it can certainly be applied to two continuum mechanisms which realize
the same goal correspondence. In that case it tells us, informally speaking, that if we want to come
close to achieving our goal, then the low-dimensional mechanism Λ is a better candidate for finite
approximation than the high-dimensional mechanism Λ. We achieve lower overall error, for a given
“budget” if we approximate Λ than if we approximate Λ∗. So dimension indeed continues to matter.25

It remains open whether or not there are similar propositions for network mechanisms.

24In a regular mechanism each function gik is continuously differentiable. Moreover there exists a number δ > 0 such
that for all δik ∈ [−δ, δ] and for all e in E, there is a unique message m satisfying all the equations gik(m, ei) = δik.

25Another proposition lets us be “kind” to the high-dimension mechanism by permitting its approximation to have
the original exact outcomes, while we are “harsh” to the low-dimension mechanism by requiring its outcomes to be
rounded off. Even so, it is better to approximate the low-dimension mechanism. This proposition, however, requires the
high-dimension mechanism to have a “projection” property: each message is a pair (a, q) and the outcome function is
h(a, q) = a.
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RESEARCH CHALLENGE #3: If two continuum network mechanisms realize the same goal cor-
respondence and have suitable regularity properties, but the second has a higher number of individually
addressed message variables, is it better to approximate the first? (Do we achieve a smaller overall error,
for a given “budget”, when we do so?)

Returning to the case of broadcast mechanisms, a very difficult question remains unaddressed.
In constructing finite broadcast mechanisms, we have confined our attention to finite mechanisms
which approximate regular continuum broadcast mechanisms. Do we ignore certain efficient finite
mechanisms when we do so?

RESEARCH CHALLENGE # 4: Given a goal correspondence G, can there be a finite broadcast
mechanism which is NOT an approximation of any regular G-realizing continuum broadcast mechanism but
makes better use of a given “budget” (achieves lower overall error with respect to G while not using more
messages) than any such approximation?

2.4 The dynamics of a mechanism Return now to the dynamic form of a broadcast mechanism,
which started our discussion in 2.2.1. The mechanism is a quadruple 〈(M1, . . . ,Mn), (m0

1, . . . ,m
0
n),

(f1, . . . , fn), h〉. It defines a difference-equation system, namely:

mt = f((mt−1
1 , . . . ,mt−1

n ), ei), i = 1, . . . , n,

with an initial message m0(e) = (m0
1(e1), . . . ,m

0
n(en)). We have been interested thus far in the achieve-

ments of the mechanism once it has reached an equilibrium message. A difficult missing piece in the
story has to do with the stability properties of the difference-equation system. We would like the
action taken once an equilibrium message is reached to meet a specified goal, but we would also like
the difference-equation system to display some sort of convergence to the system’s equilibria. Do the
mechanism’s informational requirements (e.g., its message-space size) grow if we require stability as
well as goal realization?. One can construct examples where the answer is Yes.26

Some progress has been made on this question when the difference equations are replaced by
differential equations. In particular, Jordan (1995) developed the following new mechanism concept.27

For each person i there is a real-valued “control message” ci, whose possible values comprise a set
Ci. There is also a broadcast “state message” m = (m1, . . . ,mq), with q real components, which is
continually adjusted as a function of both c = (c1, . . . , cn) and m. It is not required that q = n. We

26A two-person example, due to Reiter and discussed in Hurwicz, 1986, is as follows. Person i’s local environment
is a real-number pair ei = (e1

i , e
2

i ). The action set is IR. For each e the goal specifies a unique action for all e such

that e1

1
6= e1

2
, namely F (e) =

e1

1
e2

2
−e2

1
e1

2

e1

1
−e2

1

. If we do not require stability, we can realize the goal with a two-message-

variable mechanism. The typical message is a pair m = (m1,m2). The mechanism’s difference-equation system is
mt

1
= 2mt−1

1
− e1

1
mt−1

2
− e2

1
,mt

2
= mt−1

1
+ mt−1

2
− e1

2
mt−1

2
− e2

2
. The outcome function is a projection: h(m) = m1.

But this system fails to satisfy the following local stability requirement: for m0 sufficiently close to an equilibrium
value of m, the system should converge to that equilibrium. Moreover, if we seek any two-message-variable difference
equation system which realizes F at equilibrium and uses the projection outcome function, we find that if the functions
f1, f2 have continuous partial derivatives, then the system is not locally stable. On the other hand, a locally stable
F -realizing mechanism with four message variables can be constructed.

27See also Jordan,1986; Mount and Reiter, 1987; Saari and Simon, 1978.
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have the differential-equation system

ci = fi(m, ei), i = 1, . . . , n;
dmj

dt
= αj(c, m), j = 1, . . . , q,

where t is a time point. Note that the function αj does not have ei as an argument. The interpretation
is that each person i continually adjusts his own control variable ci in a privacy-preserving manner.
We do not specify who adjusts a given component of m itself, but that adjustment does not require
direct knowledge of the privately observed eis. In the case where q = n and i has responsibility for
the message variable mi, we have a complete privacy-preserving scenario: person i observes the entire
broadcast message m, adjusts his own part of m, and chooses his control variable as a function of the
broadcast message and his local environment.

The general question is then as follows. Suppose we are given a particular message correspondence
µ from E = E1 × · · · × En to the state-message space M (the set of possible values of m). We
are interested in this correspondence because it realizes some goal (i.e., if m ∈ µ(e), then there is
an action h(m) which lies in a set G(e) of goal-fulfilling actions), but the goal itself is not part of
the research question. Instead we ask: how large do the sets Ci have to be if the equilibria of the
differential-equation system always lie in the set µ(e) and the system has a local stability property for
every e? How large, in other words, is the extra informational cost of stability? Several general results
characterize the required size of the Ci.

One would like applications of these results to classic questions, notably the informational merits
of price mechanisms. Consider, once again, the n-person L-commodity exchange economy and the
Pareto-optimal message correspondence. If we construct a privacy-preserving dynamic mechanism
which uses prices, has suitable regularity properties as well as local stability, and achieves Pareto-
optimality at the equilibrium message, then is its total message space (i.e., M × C) dimensionally
minimal among all dynamic mechanisms with those properties? Much remains to be learned about
this question, but for certain reasonable classes of economies, and certain versions of the dynamic
price mechanism the answer is Yes. For one such class, Jordan (1995) studies dynamic mechanisms
in which the message m specifies current trades, the control variable ci is a vector of i’s “demand
prices” (marginal utilities), and the adjustment rules for m (i,.e., the functions αj) adjust the trades
so that they are Pareto-improving. It is shown that if we delete the stability requirement for such
mechanisms, then a lower bound on the dimension of each C is n(L−1). It is then shown that stability
can be achieved without increasing the dimension of C beyond n(L − 1). In other types of dynamic
mechanism, the control variables are trades as well as prices. It turns out that if such a mechanism
is formulated so that privacy is preserved and local stability is achieved, then C has to be very large
and the stabilized price mechanism may no longer be minimal among all such mechanisms.

Note that for a finite broadcast mechanism we have an upper bound on the time required to achieve
equilibrium —namely the time required to announce all the messages in the finite set M , in some pre-
determined sequence. If M is large, that upper bound is of little interest. We may then want to choose
the sequence with care, perhaps by approximating (in some suitable way) the rules of a locally stable
mechanism in which the sets M and C are continua. Such approximation remains to be studied.

Note also that if we truncate a difference-equation broadcast mechanism 〈(M1, . . . ,Mn), (m0
1, . . . ,m

0
n),

(f1, . . . , fn), h〉 after T steps, then we have defined a new privacy-preserving broadcast mechanism in
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which every possible broadcast message describes a possible T -step “conversation”, namely a proposed
sequence of announcements m0, m1, . . . ,mT . Person i agrees to the proposed conversation if he finds —
given his ei, given the proposed sequence of announcements by others, and given his function fi — that
the proposed sequence m0

i , m
1
i , . . . ,m

T
i is exactly what he would announce. So, using the uniqeness

technique discussed in 2.2.8, one could study the goal correspondence realized by the T -step truncation
and could ask whether there are broadcast mechanisms which realize the same goal correspondence
using a smaller message space.

2.5 Constructing an informationally efficient mechanism The informationally efficient (or
cheap) mechanisms that have appeared in the literature are, in a sense, historical accidents. They
are mechanisms which allocate resources so as to satisfy a goal correspondence that expresses Pareto-
optimality, or perhaps profit maximization. Typically each message proposes prices and quantities, and
agreement to the message by all persons means that its prices and quantities correspond to the required
first-order maximization conditions. With some exaggeration one might say that the literature started
by asking: “what is the precise information-related question to which ‘price mechanisms’ (or ‘competi-
tive mechanisms’) is the answer?” That was a natural challenge, given the long history of sweeping but
never rigorously defended claims about the price (or competitive) mechanism’s informational merits.

But what if prices had not yet been discovered? Imagine looking for low-cost mechanisms among
all those that realize a goal correpondence. If the goal required Pareto optimality, then a search for
such mechanisms would eventually discover mechanisms that use prices. How might such a search
proceed?

Two new books, one by Hurwicz and Reiter (2006), and the other by Williams (forthcoming), deal
with this fundamental puzzle. It would be futile to attempt any kind of summary here. But we can
roughly visualize one of the main issues in the Hurwicz/Reiter agenda by going back to the “rectangle”
definition of a mechanism in 2.2.3 and the two-person, three-message example in Figure 1 of 2.2.2.
Suppose that our environment sets are Ei = [0, 1], i = 1, 2 and that we have an action variable a that
takes three values, namely u, v, w. Suppose we have not yet constructed a mechanism which yields (at
equilibrium) a value of the action for every e ∈ E = E1 ×E2. Relabel the three rectangles m1, m2, m3

in Figure 1 as U, V,W respectively. Let those rectangles (which overlap at boundary points) define
the goal correspondence G that we want to realize. Thus

G(e) = {a : a = u if e ∈ U ; a = v if e ∈ V ; a = w if e ∈ W}.

We may call U the level set of the correspondence G for the action u, and similarly for V and W .
Formally the level set corresponding to the action a is G−1(a) = {e ∈ E : a ∈ G(e)}. Consider the
mechanisms which realize G and suppose that we write all of them in rectangle form, so that there is a
generalized rectangle σm for every message m, and m is an equilibrium message for all the environments
in σm. (Recall that a generalized rectangle is a set of environments e that is the Cartesian product
of its E1-projection and its E2-projection). There are many such mechanisms, but they all use more
generalized rectangles (messages) than we need except the three-message mechanism defined in 2.2.2.
In that mechanism there are just three rectangles σm, namely the same three rectangles U, V,W that
define the goal correspondence. An inefficient G-realizing mechanism might, for example, needlessly
add a fourth message, by dividing the rectangle σm3 = W into two further generalized rectangles.
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The three-message mechanism defined in 2.2.2 is efficient: it covers each level set of our goal
correspondence with rectangles σm in such a way that the total number of rectangles σm is minimized.
To illustrate further, suppose we modify our example by allowing just the two actions u and w and
letting w be goal-fulfilling for all environments that lie in W or V . (The action u remains goal-fulfilling
for all e ∈ U). Now the level set for the action w is no longer a (generalized) rectangle; it is now the
union of W and V . Nevertheless, an efficient goal-fulfilling mechanism has to cover that level set
(as well as the level set corresponding to u) with generalized rectangles σm and it has to do so in a
minimal way. The efficient mechanism will again require three messages. It will cover the level set
corresponding to the action w with two generalized rectangles, namely the rectangles W and V .

So the search for an efficient goal-realizing privacy-preserving mechanism requires us to inspect the
level sets, to find a way of covering each of them with generalized rectangles, to find a way of indexing
(labelling) each of our generalized rectangles with an index m, and to do all this while keeping the
size of M (the set of values if the index m) as “small” as possible. The basic set-theoretic properties
of such a mechanism-designing algorithm are worked out in the Hurwicz/Reiter book. The algorithm
yields efficient mechanisms whatever the goal correspondence may be, whether the action set and the
environment sets are finite or are continua.

The book of Williams also deals with a mechanism-designing algorithm, but from a very different
point of view. Smoothness requirements are imposed on the goal and on the candidate mechanisms.
Tools of differential topology are used rather than purely set-theoretic tools. Some of the results
imply that the agreement functions of an efficient goal-realizing mechanism can be found by solving
an appropriate system of partial differential equations.

Once these two books are understood, they may open a massive research agenda for the designers of
practical computer-friendly algorithms that construct mechanisms (protocols). It remains to be seen,
for example, whether the general results in these books will eventually allow a computer to generate
protocols that yield the minimal-length dialogues studied in the computer-science communication-
complexity literature (briefly discussed above in 2.2.8). At present that literature finds bounds on the
length of the dialogues but does not tell us how to construct the minimal-length dialogues themselves.

2.6 Finding a best action rule (outcome function) once a mechanism has conveyed infor-
mation about the environment to each person: the methods of the Theory of Teams The
central problem studied in the Theory of Teams (J. Marschak and R. Radner, 1972) is the choice of
a rule that tells each member of an organization —called a team — what action to choose, given cer-
tain information about the organization’s randomly changing environment. The rule has to maximize
the expected value of a payoff function whose arguments are the environment and the team action.
Mechanisms, as we have defined them, do not appear in the statement of the central problem studied
in the Theory of Teams, but they are part of the story which implicitly precedes that problem.28

Here is one version of the central n-person team problem. The team has to chose an action, namely
a vector a = (a1, . . . , an), where ai is the responsibility of person i. Let Ai denote the set of possible
values of ai and assume that every n-tuple a in A1 × · · · × An is a possible team action. The team

28In Chapter 8 of The Economic Theory of Teams, there is a discussion of “networks”, with a number of examples.
One may interpret the network concept developed in that chapter as a mechanism in our sense.
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earns a (real-valued) payoff H(a, e), where e = (e1, . . . , en) is a vector of random local-environment
variables. We study a given information structure, specifying what each person knows about a given e.
The set of possible values of e is denoted E. Let ηi be a function from E to a signal set Yi. Let E be a
subset of a (finite-dimensional) Euclidean space, and similarly for each Yi and each Ai. A probability
distribution P on E is given. In the information structure η = (η1, . . . , ηn), person i observes the signal
yi = ηi(e) when the environment is e.

The signal ηi(e) might be a vector, and ei might be one of its components. In our discussion of
privacy-preserving broadcast mechanisms, each ei was automatically known to one person, namely
person i. We may interpret ηi(e) as the information about the current e that person i possesses once
the mechanism has terminated. Then ηi(e) indeed includes ei, but it also describes the information
about the other ej that is revealed to i by the mechanism’s terminal message.29

For a given information structure η, we consider the possible team action rules α = (α1, . . . , αn),
where αi is a function from Yi to Ai. Thus the team action is (α1(y1), . . . , αn(yn)) when the signal
vector is y = (y1, . . . , yn).30 An action rule α̂ is team-best for the payoff function H and the infor-

mation structure η if EH
(

( α̂1(η1(e)), . . . , α̂n(ηn(e)) ) , e
)

≥ EH
(

( α1(η1(e)), . . . , αn(ηn(e)) ) , e
)

for all action rules α, where E again denotes expectation. A necessary condition for an action
rule α̂ to be team-best for H, η is that it be person-by-person-satisfactory (pbps) for H, η. That
means that for every i and every y, the action α̂i(yi) maximizes the conditional expected value

E
[

H
(

(α̂1(η1(e)), . . . , α̂i−1(ηi−1(e)), ai, α̂i+1(ηi+1(e)), . . . , α̂n(ηn(e)) ) , e
)∣

∣

∣

∣

ηi(e) = yi

]

on the set Ai.

If H is differentiable and strictly concave in a for each e, then the pbps condition is sufficient as well
as necessary.

Consider the case of a team with the linear-quadratic team payoff function W (a, e) = 2a′e− a′Qa.
Here Ai is the real line. The random variables e1, . . . , en also take values in the real line and they are
independently distributed with finite second moments; Q = ((qij)) is an n-by-n symmetric positive
definite matrix. The function W is differentiable and strictly concave in a for each e. Accordingly the
pbps condition is both necessary and sufficient. A best team action rule is linear. Its coefficients can
be found by solving a system of linear equations.

That permits the explorations of information structures with interesting organizational properties.
(For some explorations, it is also helpful to assume that each ei is normally distributed). For example
in a “management-by-exception” information structure, each person i 6= n knows only his own ei. But
person n is a manager who learns the value of every ej whenever that ej lies in a specified “exceptional”
region. A best team action rule α will take advantage of the manager’s exceptional information. In a
variant of this structure, an “emergency conference” of all n persons is called whenever some person j
observes an exceptional value of ej. When that happens, all persons learn that exceptional value. We
can vary the exceptional regions and in each case we can compute the structure’s “gross” performance,

29Thus we can express an information structure as a message correspondence µ, where m lies in µ(e) if and only if
m = (η1(e), . . . , ηn(e)).

30Appropriate measurability assumptions have to be made when E is not finite. They guarantee that (i) P implies a
probability distribution on the set αi(ηi(E)) for every i, and (ii) H( ( α1(η1(e)), . . . , αn(ηn(e)) ) , e) has a finite expected
value.
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i.e., expected team payoff when a best action rule is used. The gross performance of one interesting
structure can be compared to that of another. The cost of each structure, however, needs to be
measured in some consistent way if we are to characterize structures whose net performance is high.

Unfortunately, it is difficult to obtain similar explicit results about gross performance once we leave
the linear-quadratic case. It is difficult even though we remain in the class of payoff functions W that
are strictly concave in a for each e, so that the pbps condition is sufficient as well as necessary. We
are, after all, performing a search in function space, and that is difficult unless the functions can be
parametrized in some convenient way. Nevertheless it would seem plausible that for some class of
concave payoff functions, algorithms could be constructed that come close to yielding best team action
rules.

RESEARCH CHALLENGE # 5: Construct an algorithm that yields best (or nearly best) team
action rules for a wide class of concave functions W (containimg the linear-quadratic function and others as
well), and does so for a wide class of information structures and probability distributions on the environment
variables

2.7 Designing an organization “from scratch”: choosing its members, what each observes,
and the speak-once-only mechanism that they use31 So far we have assumed (without comment)
that the n members of our organization are already in place, and that we have no choice as to the
external variables (the local-environment variables) which a given member observes. That is natural
if our organization is an economy and its members are a given collection of consumers and producers.
There is a natural privately observed external variable for each consumer; it describes her individual
preferences and perhaps her individual resource endowment. For a producer, the natural external
variable describes his current technology. Similarly, when modeling a firm with several divisons, it is
natural to let the members of the organization be the division managers, who are already in place.
For each manager, the natural privately observed external variables are those that characterize his
production technology.

Once we leave such settings, we may want to enrich our modeling toolkit. We may want to take
the view that the organization does not yet exist but is being designed. The designer has a clean slate.
He is given external variables e1, . . . , ek, and a set E which contains their possible values. He is given
a set A of possible organizational actions. He is given a goal, which identifies at least one appropriate
action in A for each external environment e = (e1, . . . , ek) in E. But he can choose the following:

• The size and composition of the collection of persons who make up the organization.

• The identity of the person who will observe each external variable; some external variables may
be observed by more than one person; some persons may not observe any external variable.

• The speak-once-only mechanism which the organization uses to find a new action when the envi-
ronment changes.

31Some of the ideas in this section grew out of conversations with Ilya Segal. Some of the results in Section 2.7.6
are due to Jeff Phan. The discussion of delay in 2.7.10, as well as the result in Section 2.7.7, are largely due to Dennis
Courtney.
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2.7.1 Speak-once-only mechanisms: introductory comments In a speak-once-only mechanism,
the newly changed external variables are observed by their designated observers. Each observer sends
forward to others a message based on those observations and then stays silent. The recipients of
those messages send forward messages to others, based on the messages they have received and on
their external observations (if they are designated external-variable observers), and then stay silent;
the recipients of those messages send forward still further messages and then stay silent. And so on.
When all sending has stopped, one member, called the action taker, takes an action based on the
messages he has received (and on his own external observations if he is a designated external-variable
observer). The mechanism realizes a given goal if the action taker’s action is always goal-fulfilling for
the environment e which initiates the process.

Our speak-once-only requirement is certainly restrictive. For full generality, we would let the
designer choose a mechanism in which each sender sends messages to others at each of a sequence of
steps. But our clean-slate assumption, where the designer chooses the size and composition of the
organization, the observing assigments, and the mechanism used to generate new actions presents a
formidable challenge. Confining attention to speak-once-only mechanisms is a reasonable compromise,
if one wants to start learning something about the structure of the designer’s chosen organization.

To help motivate a research agenda on speak-once-only mechanisms consider the following ques-
tion:32

What might be inefficient about a one-person mechanism, wherein a single
person observes all the external variables and then finds a goal-fulfilling action?

A first step in making sense out of this question (and more complicated ones) is to choose some cost
measures for a speak-once-only mechanism, so that “efficiency” (and inefficiency) can be defined. First
we assume that each external variable ek is real-valued, and that every message in the mechanism is
a vector of real numbers. For simplicity we assume that for every external vector e, there is a unique
goal-fulfilling action F (e) where F (e) is a real number. Consider the following three cost measures for
a speak-once-only mechanism:

• The number of persons.

• Each person’s burden, defined as the number of real variables observed or received.

• The mechanism’s delay, i.e., the total elapsed time until the action-taker has computed F , given
that (i) no one sends message variables or computes F until he has finished doing all the receiving
and observing that the mechanism requires of him, and (ii) it takes one time unit for a person
to observe or receive one real variable, but no extra time is required for the sender of a message
to compute and send it or for the action taker to compute F .

32One can ask a version of this question, even if one specifies that n, the number of persons, is greater than one and
cannot be changed by the designer, and that each external variable is observed by one and only one person. A mechanism
in which one person does essentially all the work, would be one in which, say, Person 1 collects full information about e

from all the others and thereupon finds the goal-fulfilling action.
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2.7.2 The approaches of Radner/Van Zandt and Mount/Reiter Papers by Radner (1993),
Radner and Van Zandt (1995), and Van Zandt (1997, 1998, 2003A, 2003B) study a class of speak-once-
only mechanisms. The messages transmitted are composed of real numbers, and there is an action taker
who acquires enough information from others to compute a real-valued goal function F of external real
variables e1, . . . , ek, each of which is observed by someone. The cost measures are number of persons
and delay. 33 But the function F has to have the form F = H(H1(e1) ∗H2(e2) ∗ · · · ∗Hk(ek)), where ∗
is an associative operation. Moreover, any person i, who receives, say, the real numbers v1, . . . , vr, is
only able to compute v1 ∗ v2 · · · ∗ vr, where ∗ is the same associative operation. It takes one time unit
to perform the operation ∗ and no time is required for communication, so the Radner/Van Zandt work
may be viewed as a model of organizational computing. It can be shown that if F is differentiable
in the k variables, then no generality is lost if the operation ∗ is constrained to be addition. That
is to say, any differentiable F having the above associative form can be rewritten so that it becomes
a function of the sum of certain terms H̃i(ei). Non-differentiable goal functions with the associative
property include max(e1, . . . , ek), where e1, . . . , ek are real numbers.

In the book by Mount and Reiter (2002)34, the goal function F (e1, . . . , ek) can be any analytic
function. The problem is to assemble a minimal-delay F -computing network of processors (persons).
Each of them receives inputs from other processors; each of those inputs consists of at most d real
numbers. In one time unit a processor computes a certain analytic function of the numbers received
and sends the result to one or more other processors. The class of functions that the processors are
able to compute is a primitive of the model. If F itself has d real arguments, and is one of the available
functions, then the problem is trivial, since a single processor can then compute F itself in one time
unit. Instead, one seeks networks (directed graphs) that compute F with minimal delay when the
functions available for each processor belong to an interesting class. The network is not required to be
a tree, so cycles are permitted. But it is shown (under weak assumptions) that no generality is lost if
one confines attention to trees. A tree has no cycles and so it is, in our terminology, an F -computing
speak-once-only mechanism.

While similar models of networks of processors (automota) have been studied by others, the
Mount/Reiter research has a major novelty: the possible values taken by the input numbers, by
F , and by each processor’s function, can be continua rather than finite sets. The research reported in
the book does not explicitly seek efficient combinations of number of processors, individual burdens,
and delay. Instead it seeks to characterize the networks (trees) that are capable of computing certain

33While Radner (1993) and Radner and Van Zandt (1995) consider a “one-shot” situation, where each environment
vector e = (e1, . . . , ek) is processed before a new e appears, papers by Van Zandt (1999, 2003a, 2003b) go on to study
the much more challenging situation where a new e arrives before the previous one has been completely processed, and
the successive es follow a stochastic process. The current computed action, which is a function of the previous e, is then
somewhat obsolete. The penalty due to obsolescence is studied. In particular, Van Zandt (2003b, sketched also in Van
Zandt 1998, Section 3.3) studies the performance of an organization which repeatedly allocates resources and thereby
earns, in each time period, a payoff that is a quadratic function of the allocation and of that period’s environment
vector. But the information used by the allocator reflects an earlier period’s environment vector, since it takes time for
that information to reach him. Results are obtained by exploiting the fact that the mean of k variables is a sum and
hence it can be computed by a sequence of associative operations. Early discussions of obsolescence as one of the costs
of a mechanism appear in Marschak, (1959) and (1972).

34An easily accessible summary of some of the book’s ideas is given in Mount and Reiter, 1998.
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functions F with a given delay, when the processor functions obey key conditions like twice differen-
tiability. Some propositions, for example, concern the number of processors to which each processor
sends. There are also results about the relation between the delay for a continuum-valued F and the
delay for each of a sequence of finite-valued functions that approximates F . It turns out that the
former delay is the limit of the latter sequence of delays.

The Mount-Reiter model is a highly innovative way to study the complexity of a given goal function
F . Since it does not treat number of processors (persons) and individual burdens as explicit costs, it
does not easily lend itself to the study of some of the efficient-organization questions that we shall now
consider. Note that if each processor’s function is required to be addition, and if number of processors
is a cost element, then the Mount/Reiter model becomes the Van Zandt/Radner model. Note also
that in both models one finds, in many interesting cases, that there is an upper limit to the useful
number of persons (processors). Going above that number does not further decrease delay.

2.7.3 A formal definition of a speak-once-only mechanism To define a speak-once-only mecha-
nism, a directed graph has to be specified. It will be useful to modify the conventional terminology of
directed graphs to fit our context. A directed graph is defined by a set of nodes and a set of ordered
pairs whose elements belong to the set of nodes. We shall say that the first node in the pair sends
to the second and the second receives from the first. There is an arc between them. Then node i′s
received-from set, denoted Ri is the set of nodes from which i receives, while i’s sent-to set, denoted
Si is the set of nodes to which i sends. We shall call a node j a leaf if it sends but does not receive.
We call a node r a root if it receives but does not send. (Usually the terms leaf and root are reserved
for trees, but our graph need not be a tree).

An n-person speak-once-only mechanism on the local-environment sets E1 ⊆ IRD1 , . . . , Ek ⊆ IRDk ,
with action space A ⊆ IRα is a pair Λ = 〈G, (~ρk+1, . . . , ~ρn)〉. Here G is a graph and ~ρk+1, . . . , ~ρn are
vectors of sending functions. If j ∈ {1, . . . , k}, then ej is an environment variable; its possible values
comprise the set Ej ⊆ IRDj . We specify that:

• G is a connected directed graph with nodes denoted 1, . . . , k, k + 1, . . . , n, where nodes 1, . . . , k,
with k < n, are leaves (they correspond to the environment variables), node n (the action taker)
is the only root, there are no directed cycles, and there is at least one directed path from every
node to the root.

• for i = k +1, . . . , n− 1, the vector ~ρi has one sending function, ρiℓ, for every ℓ in the sent-to set Si.

Person i sends Diℓ real variables to person ℓ in Si, so the range of ρiℓ is IRDiℓ . The domain of
ρiℓ is the set of possible values of the variables i receives or observes, i.e., the domain is a subset

of IRΣt∈Ri
Dti , where Dti ≡ Dt if t ∈ {1, . . . , k}.

• The remaining vector of functions is ~ρn. It has a single component, denoted simply ρn, which
yields the organization’s action. The range of ρn is A ⊆ IRα and the domain is a subset of
IRΣt∈RnDtn .

• The function ρn, and every function ρij, where i ∈ {k+1, . . . , n−1}, j ∈ Si, satisfies a smoothness
requirement, e.g., it is differentiable at all points of its domain.
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Thus any person i in {k+1, . . . , n} whose received-from set Ri contains t ∈ {1, . . . , k} is an observer
of the environment variable et. In addition, person i receives a message, say mji, from every j ∈ Ri

with j > k. The message mji is a vector with Dji real components. Person i sends a message, say mij,
to every person j ∈ Si; that message is determined by the function ρi. The action taker n receives
message variables, say mjn, from certain persons j > k. His choice of the action a in A is determined
by the function ρn. For person i in {k+1, . . . , n} we shall define i’s individual burden in the mechanism
Λ to be Σt∈Ri

Dti.

2.7.4 An illustration, which leads to three questions To illustrate, consider four real and
positive local-environment variables. It will be notationally convenient to call them w, x, y, z. Suppose
we want to realize the following goal function F ∗:

F ∗(w, x, y, z) =

(

w +
1

w
+ x +

1

x
+ y +

1

y
+ z +

1

z

)

+ (wxyz).

Here is a two-person mechanism that realizes F ∗.

FIGURE 3 HERE

Each person’s burden is 3 and the delay35 is 5.

We can ask the following questions about the Figure-3 mechanism and other possible speak-once-
only mechanisms which also realize F ∗:

(1) If we reduce the number of persons to just one, must the burden and the delay of
an F ∗-realizing mechanism rise? Our one-person mechanism would be a five-node tree, with
four nodes correponding to w, x, y and z, and the sole person at the root. Clearly the burden of
the sole person will be four and the delay will be four. We actually reduce delay when we move to
the one-person mechanism, since no time is used for the processing of messages received from other
persons.36

(2) Is there a two-person F ∗-realizing mechanism in which neither person has a burden
more than two and delay is not more than four? The mechanism would improve on the Figure-3
mechanism with regard to delay and it would improve on the one-person tree with regard to burden.
Such a mechanism would exist if it were possible to aggregate three of the four external variables
into one, i.e., if it were possible to write F ∗ in the form G(H(w, x, y), z)), where G, H are real-valued

35Suppose a new (w, x, y, z) occurs. Three time periods then pass. At that point, Person 1 has completed his observing
(processing) of his three assigned variables w, x, y and Person 2 has completed his observing of z. Now two more time
periods pass. During the first of them, Person 2 receives (processes) the first of the two message variables which Person
1 sends, and during the second, Person 2 receives (processes) the second message variable. At the end of the fifth period,
Person 2 has received (from Person 1) the messages he needs, and is able to take the action F ∗(w, x, y, z).

36That illustrates a deficiency of our definition of delay, where the computing of the final action takes no extra time,
once the action-taker has collected the information needed to do so. On the other hand, if we insisted on measuring
computing time, then we would need a detailed model of computing, such as those studied in the Van Zandt/ Radner
and Mount/Reiter work.
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functions (with suitable smoothness properties). It is natural to call the function H an aggregator.
The single number H(w, x, y) contains all the information about w, x, y that is needed in order to
compute the goal function. Consider a mechanism in which Person 1 observes w, x, y and then sends
the number H(w, x, y) to Person 2, the action taker, who observes z and is able to compute the action
F ∗(w, x, y, z) once he receives the number H. After three periods, Person 1 is done, and the action
taker knows z. It takes just one more period for the action taker to learn H. So delay is indeed four.
The key issue is whether the functions G, H exist.

(3) Is there a two-person F ∗-realizing mechanism in which neither person has a burden
more than 3 and one person has a burden less than 3?

Additional questions about F ∗ can be posed. In trying to answer them, it is clear that we have
to restrict the F ∗-realizing mechanisms that we are permitting. Once again the issue of smoothness is
inescapable. If we permitted the sort of smuggling of many numbers into one number that we have
already discussed (in 2.2.8), then no message need ever contain more than one number, and so we
would obtain trivial and uninteresting answers to our questions. A workable definition of a smooth
mechanism is that its sending functions ρij be differentiable on their domains. Weaker and stronger
definitions can be explored as well.

What is known about efficient speak-once-only mechanisms and what might one hope to learn? To
organize the remarks we now make, we shall use the above illustration, and its accompanying three
questions. For each question, we consider the tools available to answer it, as well as the answer itself
and its possible generalization.

2.7.5 General remarks suggested by Question (1) For a goal function F that is sensitive to all
k external variabes, it is obviously true that a one person F -realizing mechanism has a tree structure,
the sole person’s burden is k, and the delay is also k. A non-tree F -realizing mechanism may improve
on the one-person mechanism with regard to delay if the observing of the external variables is split
among several persons who do their observing simultaneously, provided that the reduction in observing
time exceeds the message-reading time.

2.7.6 General remarks suggested by Question (2) Let us relabel the external variables as
x1, . . . , xm, y1, . . . , yn. Given a real-valued differentiable goal function F (x1, . . . , xm, y1, . . . , yn), the
general aggregation question is as follows:

Is there some neighborhood on which we can aggregate the m variables x1, . . . , xm into
r < m variables, i.e., do there exist a neighborhood U ⊆ IRm+n, and r < m real-valued
functions G, H1, . . . , Hr which are differentiable on U , such that on U we have

(+) F (x1, . . . , xm, y1, . . . , yn) = G(H1(x1, . . . , xm), . . . , Hr(x1, . . . , xm), y1, . . . , yn)?

An important contribution to answering this question is a theorem of Abelson (1980). Let Fi

denote the partial derivative of F with respect to xi. Abelson’s theorem is as follows:

There exists a neighborhood U ⊆ IRm+n and differentiable functions G, H1, . . . , Hr (where r < m) which
satisfy (+) on U if and only if at most r of the functions Fi are linearly independent on U .
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Checking the linear independence of the Fi, is not, in general, a straightforward matter. But
a technique closely related to the Abelson theorem provides answers to the aggregation question in
certain cases. To introduce the technique, let us use the following notation:

• For an n-tuple of nonnegative integers α = (α1, . . . , αn), and for y = (y1, . . . , yn) ∈ IRn, let the
symbol yα denote the array of symbols yα1

1 · · · yαn
n . (This array will be used to identify partial

derivatives of varying orders). The symbol |α| denotes the sum α1 + · · · + αn.

• The symbol D(F, xt, y
α) denotes the following partial derivative of order 1 + |α|:

∂1+|α|F

∂xt∂yα1
1 · · · ∂yαn

n

.

• The symbol D(G, z) denotes the partial derivative
∂G

∂z
.

Now let us associate with the goal function F the Hessian

H(F ) ≡







D(F, x1, y1) . . . D(F, x1, yn)
...

. . .
...

D(F, xm, y1) . . . D(F, xm, yn)





 ,

and the bordered Hessian

BH(F ) ≡







D(F, x1)
...

D(F, xm)

∣

∣

∣

∣

∣

∣

∣

H(F )





 .

For easy reference, note that

The m rows of BH may be indexed by the m variables x1, . . . , xm that are being aggregated.
The first of the n+1 columns may be indexed by the function F and the remaining columns
by the non-aggregated variables y1, . . . , yn.

We now state two propositions about aggregation.37 We call them Proposition (∗) and (∗∗).

Proposition (∗) provides bordered-Hessian conditions that are necessary for the existence of func-
tions G, H1, . . . , Hr satisfying (+).

Proposition38 (∗)

37They are found in Mount and Reiter, 1996 and in Appendix B of the book by Mount and Reiter.
38The proof of Proposition (∗) is as follows:

If (+) holds on U , then everywhere on U we have

D(F, xi) =

r
∑

k=1

D(G, Hk)D(Hk, xi)
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Let F be a C3 function. If there exist C2 functions G, H1, . . . , Hr such that (+) holds on some
neighborhood U , then

rank BH(F ) ≤ r at every point of U.

Now we turn to Proposition (∗∗), which provides conditions that are sufficient for the existence
of functions G, H1, . . . , Hr satisfying (+). In stating Proposition (∗∗), we consider open subsets of
IRm+n of the form W × V where W ⊆ IRm, V ⊆ IRn. We denote points in W × V by (p, q), where
p ∈ W, q ∈ V .

Proposition (∗∗)

Let F be a Ck+1 function, k ≥ 2. Suppose that rank BH(F ) ≤ r everywhere on W × V ⊆ IRm+n

and rank H(F ) = r everywhere on W . Then there exists a neighborhood U ⊆ W × V and Ck functions
G, H1, . . . Hr for which (+) holds.

We can successfully apply Proposition (∗) to the goal function F ∗ = w + x + y + z + wxyz + ( 1
w

+
1
x

+ 1
y

+ 1
z
) considered in Question 2. Any three variables, say w, x, y, can be aggregated into two real

variables, using the C2 functions H1 = x + 1
x

+ y + 1
y

+ z + 1
z
, H2 = xyz, G = H1 + w + 1

w
+ wH2. Can

they be aggregated into just one real variable, i.e., do there exist differentiable functions G, H such
that on every neighborhood in IR

+
we have F = G(H(w, x, y), z)? To check this, the relevant BH is







1 − 1/w2 + xyz xy
1 − 1/x2 + wyz wy
1 − 1/y2 + wxz wx





 .

That has rank two on any neighborhood in which (for example) all four variables are neither zero nor
one, and no two variables take the same value. Proposition (∗) tells us that if the rank exceeds one on
a neighborhood, then on that neighborhood we cannot aggregate three variables into one. There is no

and

D(F, xiyj) =

r
∑

k=1

D(G, Hkyj)D(Hk, xi),

since the Hk are independent of the variables yi . . . , yn. We can therefore write BH(F ) as







∑r

k=1
D(G, Hk)D(Hk, x1)

∑r

k=1
D(G, Hk, y1)D(Hk, x1) . . .

∑r

k=1
D(G, Hk, yn)D(Hk, x1)

...
...

. . .
...

∑r

k=1
D(G, Hk)D(Hk, xm)

∑r

k=1
D(G, Hk, y1)D(Hk, xm) . . .

∑r

k=1
D(G, Hk, yn)D(Hk, xm)






.

So everywhere on U , each column of BH(F ) is a linear combination of the r column vectors







D(H1, x1)
...

D(H1, xm)






, . . . ,







D(Hr, x1)
...

D(Hr, xm)






.

That implies that the rank of BH(F ) is at most r at each point of U .
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two-person F ∗-realizing mechanism with differentiable sending functions in which neither person has
a burden more than two and delay is not more than four.

On the other hand, consider the following goal function F ∗∗, identical to F ∗ except that we now
raise the term 1

w
+ 1

x
+ 1

y
+ 1

z
to the power 2. Thus

F ∗∗(w, x, y, z) = (w + x + y + z) + (wxyz) +

(

1

w
+

1

x
+

1

y
+

1

z

)2

.

Suppose we now ask whether we can aggregate three variables into two (as we could for F ∗), i.e.,
do there exist differentiable functions G, H1, H2 such that on every neighborhood in IR4+

we have
F ∗∗ = G(H1(w, x, y), H2(w, x, y), z)? Again BH has three rows (indexed by the three variables being
aggregated) and two columns (indexed by F and by the remaining variable). Proposition (∗) says that
if the proposed aggregation is possible then BH has rank at most 2. But that is the case whether or
not the proposed aggregation is possible. So Proposition (∗) cannot be used to rule out the proposed
aggregation. Proposition (∗∗) says that the proposed aggregation is indeed possible if the rank of BH
is at most 2 and at some point the rank of H is exactly 2. The latter condition cannot be satisfied,
since H has just one column. So Proposition (∗∗) does not tell us that the proposed aggregation is
possible.

More generally:39

The necessary condition of Proposition (∗) has no force (it is automatically satisfied) if

m < n + 1

(and hence r < n + 1). The sufficient condition of Proposition (∗∗) cannot be satisfied if

n < r.

We can, however, generalize Proposition (∗). The following generalization is more widely applicable
than Proposition (∗).

Proposition (∗′)

Let F be a Ck+1 function, k ≥ 2. Fix an integer ℓ ≥ 0. Using our definition of expressions of the form
D(F, xj, y

α), consider the matrix

M =









D(F, x1, y
α(1)

) . . . D(F, x1, y
α(ℓ)

)
...

. . .
...

D(F, xm, yα(1)
) . . . D(F, xm, yα(ℓ)

)









,

39The limitations of Propositions (∗), (∗∗) (and the extended Proposition (∗′) which follows) might lead one to explore
algebraic approaches. In particular, one might seek counterparts of the Abelson Theorem in which linear independence
is replaced by algebraic independence. T functions are algebraically dependent if there is a polynomial, with the T

functions as its arguments, which takes the value zero at all points in the functions’ domains. The T functions are
algebraically independent if there is no such polynomial. Such a counterpart of the Abelson Theorem might hold for
rational goal functions F , i.e., F is the quotient of two polynomials.
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where, for all t ∈ {1, . . . ℓ}, the symbol α(t) denotes a t-tuple of nonnegative integers with |α(t)| < k. If
there exist Ck functions G, H1, . . . , Hr such that on some neighborhood

F = G(H1(x1, . . . , xm), . . . , Hr(x1, . . . , xm), y1, . . . , yn),

then for all ℓ the matrix

M∗ ≡







D(F, x1)
...

D(F, xm)

∣

∣

∣

∣

∣

∣

∣

M







has rank at most r on that neighborhood.40

While Propositions (∗) and (∗∗) did not allow us to resolve the aggregation question for the function

F ∗∗ = (w + x + y + z) + (wxyz) +
(

1
w

+ 1
x

+ 1
y

+ 1
z

)2
, we can now do so, using Proposition (∗′). To fit

the notation of Proposition (∗′), we first relabel the four variables as x1, x2, x3, y. Our function is :

F ∗∗ = (x1 + x2 + x3 + y) + (x1x2x3y) +

(

1

x1

+
1

x2

+
1

x3

+
1

y

)2

.

We ask whether there exist real-valued C2 functions G, H1, H2 such that
F ∗∗ = G(H1(x1, x2, x3), H2(x1, x2, x3), y) on all neighborhoods in IR4+

.

To apply Proposition (∗′), we first have to choose the partial derivatives that will make up the
matrix M∗. It is clear that if we are going to rule out the existence of a given number of aggregators,
then we want to make M (and hence M∗) as large as possible without repeating columns or introducing
redundant columns like those consisting entirely of zeros. It turns out that the following matrix M∗

suffices to resolve the aggregation question for our function F ∗∗:

M∗ =







D(F, x1) D(F, x1, y1) D(F, x1, y
2
1)

D(F, x2) D(F, x2, y1) D(F, x2, y
2
1)

D(F, x3) D(F, x3, y1) D(F, x3, y
2
1)





 .

If we now choose a suitable neighborhood U and perform a Gauss-Jordan reduction on M∗ for any
point in U , we obtain the identity matrix. So M∗ has rank 3 and Proposition (∗′) tells us that the
proposed aggregation cannot occur on U . The neighborhood U must be chosen so that we do not
divide by zero during the reduction process. To do so, it suffices to pick a U that does not intersect
any of the zero sets of the numerators and denominators of any of the entries of M∗ at any stage
of the Gauss-Jordan process. Since those numerators and denominators are always polynomials in
x1, x2, x3, y1, it is possible to find such a U .41

40The proof is essentially the same as the proof of Proposition (∗). The existence of functions G, H1, . . . ,Hr on some
neighborhood U implies that each column of M∗ is a linear combination of the column vectors







D(H1, x1)
...

D(H1, xm)






, . . . ,







D(Hr, x1)
...

D(Hr, xm)






.

That implies that the rank of M∗ is at most r on U .
41Precisely stated, our result is as follows:
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While Propositions (∗), (∗∗), (∗′) are useful for a variety of goal functions, a general difficulty is
the absence of a usable necessary AND sufficient condition for a proposed aggregation. The Abelson
condition is both necessary and sufficient, but for many goal functions it is very difficult to verify.

2.7.7 A general puzzle suggested by Question (3): Can Question (3), and similar questions,
be answered using the Abelson condition?

Consider again the two-person mechanism in Figure 3, which realizes the goal function F ∗ =
(

w + 1
w

+ x + 1
x

+ y + 1
y

+ z + 1
z

)

+(wxyz). For a general discussion of two-person F ∗-realizing mech-
anisms it will be useful to start by relabeling the two persons. Let us call the action taker A and the
other person B. In the Figure-3 mechanism, Person B observes three environment variables and has a
burden of 3, while Person A, the action-taker, also has a burden of 3. (He observes one environment
variable and he receives two numbers from B). Turning to arbitrary two-person mechanisms, including
mechanisms wherein some environment variable is observed by more than one person, we shall argue
that

(+)
F ∗ cannot be realized by a two-person mechanism in which the maxi-
mum burden is 3 and one person has a burden less than 3.

Suppose a two-person mechanism realizes F ∗ and has maximum burden less than or equal to 3. Since
the values of all four variables are needed in order to compute F ∗, we can claim:

(++) the mechanism’s graph must have a path from each environment variable to A.

Now suppose that B observes exactly two variables, say x and y. Then, by (++), A must observe the
other two, z and w. A cannot observe both x and y (in addition to z and w) since the maximum burden
is less than 3. A cannot observe just one of x, y (in addition to z, w), for if he did, then his burden
would exceed 3, since (by (++)) he must also receive at least one number from B. If A’s burden is
less than 3, then B must send just one number. So F may be written F (x, y, z, w) = A(B(x, y), z, w),
where A and B (in a slight abuse of notation) denote scalar-valued functions computed by persons A
and B. Consulting Abelson’s theorem (for the case r = 1), we see that for any fixed values of x, y, say
x0, y0,

the functions Fx(x0, y0, z, w) = 1−
1

x2
0

+y0wz, Fy(x0, y0, z, w) = 1−
1

y2
0

+x0wz must be linearly dependent,

where the symbol Fj again denotes the partial derivative of F with respect to the variable j. But that
is the case if and only if the vectors (1− 1

x2
0
, y0), (1−

1
y2
0
, x0) are linearly dependent in a neighborhood

in IR2, which is, in turn, the case if and only if x0 − 1
x0

− y0 + 1
y0

= 0 in a neighborhood in IR2.
That, however, is not true. We conclude that F cannot be realized by a two-person mechanism with
a minimal burden of 3 in which B observes exactly two variables.

There exists a finite number of polynomials f1, . . . , fk in the variables x1, x2, x3, y1 such that on any open
subset U of IR4 not intersecting the zero sets of f1, . . . , fk, there do not exist C2 functions G, H1,H2 such
that

F ∗∗(x1, x2, x3, y) = G(H1(x1, x2, x3),H2(x1, x2, x3), y) at every point of U.
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On the other hand, we can easily rule out the possibility that B observes exactly one variable. If he
does, then (by (++)) A must observe the other three. But then A has reached the maximum burden
of 3 and is not able to recieve any variable from B.

So B must observe exactly three variables, say x, y, z. Then the only way that (+) could be violated
(i.e., the only way to improve on the mechanism of Figure 3) would be to give A a burden less than
three. By (++), A must observe w and since A needs to know more than w in order to compute F ,
A must have a burden of at least two. Since A cannot compute F knowing only two environment
variables, he must receive one or more numbers from B. To keep A’s burden below 3, he must receive
only a single number from B. If that were so, we could write

F (x, y, z, w) = A(B(x, y, z), w),

where both of the functions A, B are scalar-valued. But this is again ruled out by the Abelson criterion
(for r = 1), since the three functions

Fx(x0, y0, z0, w)=1 −
1

x2
0

+ y0z0w,Fy(x0, y0, z0, w)=1 −
1

y2
0

+ x0z0w,Fz(x0, y0, z0, w)=1 −
1

z2
0

+ x0y0w

are linearly independent on every neighborhood in IR. So we have established (+).

Looking carefully at the preceding argument, one sees that it generalizes so as to yield the following
Proposition. The statement “s of the n variables in F variables may be smoothly aggregated into
r < s” means that F may be written as a continuously differentiable function whose arguments are
r continuously differentiable scalar-valued functions of those s variables, together with the remaining
n − s variables.

Proposition D Let F : IR4 → IR be continuously differentiable and sensitive to all its variables42 Suppose
that

(I) three of F ’s variables can be smoothly aggregated into two

(II) no two of F ’s variables may be smoothly aggregated into one

(II) no three of F ’s variables may be smoothly aggregated into one.

Then:

(IV) there is a two-person F -realizing mechanism which has the graph shown in Figure 3, is smooth (its
sending functions are continuously differentiable), and has burden 3 for both persons

(V) there is no smooth two-person F -realizing mechanism in which each person has burden at most 3 and
one of them has burden less than 3.

42I.e., there is a neighborhood on which all partial derivatives are nonzero.
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2.7.8 Goal functions for which Perfect Aggregation is possible. It is now clear that one
faces formidable difficulties in characterizing the efficient speak-once-only mechanisms that realize a
given goal function. Is there some general class of goal functions for which the task becomes much
easier? One such class consists of the functions for which Perfect Aggregation (PA) is possible. A goal
function F : E1 × Ek → IR has the PA property if it behaves like a sum: for any partitioning of the
external variables, the variables in each set of the partitioning can be replaced by a single scalar-valued
aggregator. If F is a sum, then the aggregator for a given set is the sum of the set’s variables. As
before, we confine attention to the case where each environmental variable is a scalar, i.e., each Ej is
a subset of the real line.

Formally:

The function F : E1×· · ·×Ek → IR has the PA property if for ANY partitioning of {1, . . . , k},
say into sets T1, . . . , Ts, s ≤ k, there exist differentiable real-valued functions G, A1, . . . , As

such that for any e in E = E1 × · · · × Ek we have

F (e) = G(A1(eT1), . . . , As(eTs
)).

Note that each of the functions A1, . . . , As must itself have the PA property. Examples of a function
with the PA property are:

• e1 + · · · + ek

• e1 · e2 · · · ek−1 · ek

• be1+···+ek .

If our goal function F has the PA property, we have a strong result about the structure of efficient
F -realizing mechanisms. It says that we can confine attention to trees if we seek mechanisms that are
efficient with respect to number of persons and individual burdens.

Proposition E

Suppose F is real-valued and has the PA property. Suppose that Λ = 〈G, (~ρk+1, . . . ~ρn)〉 is an F -realizing
mechanism and that the graph G, with received-from sets Rk+1, . . . , Rn, is not a tree. Then there exists
an F -realizing mechanism Λ′ = 〈G′, (~ρ′

k+1, . . . ~ρ
′
n′)〉, with received-from sets R′

k+1, . . . , R
′
n′ such that

(a) G′ is a tree

(b) n′ ≤ n

(c) for every i ∈ {k + 1, . . . , n′}, we have
#R′

i ≤ #Ri,
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where the symbol # means “number of elements in”.43

The Leontieff Theorem It is remarkable that many years ago Leontieff (1952), inspired by the
search for useful production functions in economics, and unaware of any implications for the theory
of organization, proved a theorem that anticipated the Abelson theorem that we considered above.
(Abelson’s theorem can be viewed as a generalization of Leontieff’s). The theorem says that any
function with the PA property is essentially a sum.44

Proposition F (Leontieff)

Let F : E1 × · · · × Ek → IR be a differentiable function with the PA property. Then there exist
differentiable functions φ, φ1, . . . , φk such that for all (e1, . . . , ek) in E1 × · · · × Ek,

F (e) = φ(φ1(e1) + · · · + φk(ek)).

So the PA property is not only a very strong one (yielding Proposition E) but it is also more restrictive
than one might have supposed. One can develop further propositions about trees that realize PA goal
functions, by imposing further conditions on the costs associated with the individual burdens. For
example one might attach different costs to the “observation” burden (the number of variables that a
node i > k receives from nodes in {1, . . . , k}), than the other burdens. Then one simple proposition
says that if observation cost is linear in the number of observed variables, while the cost associated
with the receipt of non-environment variables is increasing in the number of those variables, then the
only efficient goal-realizing tree — and hence (by Proposition E) the only efficient goal-realizing design
— has just one person, who observes all k environment variables.

Replacing the Perfect Aggregation property by a more general additive-structure prop-
erty Once we drop the strong PA requirement, it is natural to begin by studying goal functions that
lack the PA property but have an additive structure somewhat more general than the “generalized
sum” φ(φ1(e1) + · · · + φk(ek)) of the Leontieff Theorem. Let us relabel the environment components
e1, . . . , ek so that they become the m real variables x1, . . . , xm. For 1 ≤ r < m, we shall say that
F : IRm → IR is r − additive on the open set S = S1 × · · · × Sm in IRm, if there exist C∞ functions
H, H1, . . . , Hr, V1, . . . , Vr such that for all (x1, . . . , xm) ∈ S, we have

(1) F (x1, . . . , xm) = H
(

H1(V1(x1) + · · · + V1(xm)) + · · · + Hr(Vr(x1) + · · · + Vr(xn))
)

.

43The proof has two steps. Step I Since F has the PA property, it is clear that given any n∗-node directed tree G∗

which meets the requirements of the graph of a speak-once-only mechanism on the k environment variables, one can
construct an F -realizing mechanism such that (i) its graph is the tree G∗, and (ii) exactly one real number is sent over
each arc. (In that mechanism some functions ρij may be the identity function).

Step 2 Without loss of generality we may suppose that on any arc of G a single real number is sent. (If more than one
number is sent, then they can be replaced by an aggregator). Now convert the given graph G into a tree as follows:
Whenever there is more than one directed path between a node i 6= n and the node n, delete all but one of those paths.
The result will be a tree, say G′, with fewer than n nodes. The tree retains the original action-taking node. By Step
1, we can construct a new F -realizing mechanism with the tree G′ as its graph and with exactly one real number sent
over each arc. So the new mechanism satisfies conditions (a), (b) and (c).

44Leontieff did not use our terminology, but his theorem can be restated in the form that follows.
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We shall say that F is weakly r-additive on S if

(2) F = H
(

H1(V1(x1) + · · · + V1(xm)), . . . , Hr(Vr(x1) + · · · + Vr(xm))
)

.

We shall say that F is minimally r-additive (minimally weakly r-additive) on S if for any positive integer
r′ < r, F is r-additive on S but not r′-additive (weakly r- additive on S but not weakly r′-additive).
An economic interpretation might be as follows. The function F gives the organizational action
appropriate to the environment (x1, . . . , xm). That action depends on the aspects of the environment
given by the Vi. There are r < m aspects. The ith aspect influences the appropriate action through
the function Hi. We may suppose that the goal function F has been parsimoniously written, so that
minimality is assured.45

AN EXAMPLE: Suppose there are four real environment variables: w, x, y, z and consider once again
our function

(3) F ∗∗(w, x, y, z) = (w + x + y + z) + (wxyz) +

(

1

w
+

1

x
+

1

y
+

1

z

)2

.

This function is 3-additive on any open set in which all four variables are nonzero, since it can be
written

F ∗∗ = (w + x + y + z) + exp(ln w + ln x + ln y + ln z) +

(

1

w
+

1

x
+

1

y
+

1

z

)2

.

The results we obtained above imply that F ∗∗ is minimally 3-additive.

By contrast consider our function F ∗ which we obtain by deleting the exponent 2 in the third term
of (3). The function F ∗ is 3-additive but it is not minimally 3-additive, since it can also be written in
the 2-additive form

(

w +
1

w
+ x +

1

x
+ y +

1

y
+ z +

1

z

)

+ (wxyz).

2.7.8 Conjectures about the aggregation properties of goal functions with an additive
structure What can be said about efficient speak-once-only mechanisms which realize a goal func-
tion that has an additive structure? If certain key conjectures were established, we could develop a
substantial theory about such mechanisms. First let us define F : IRm → IR to be t-aggregative on

45A possible scenario: The organization operates a production facility in each of m locations. Each location always
produces a fixed proportion of the total quantity produced by the organization. That total quantity is the action to be
chosen. The appropriate total quantity depends on total production cost, which depends, in turn, on the amounts of
each of r centrally procured inputs required for each unit of product in each location. For every location, say location
i, the r input requirements are determined by the environmental parameter xi, which describes the current technology
in location i. The r input requirements are V1(xi), . . . , Vr(xi).

Once the case of a scalar-valued additive goal function F is understood, one could turn to the case of a vector-
valued additive goal function F . That would, of course, permit more flexible scenarios, including scenarios wherein the
organization’s action is a vector, specifying (for example) an output level for each of the m locations.
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the open set S ⊆ IRm, if for any proper subset W of {1, . . . ,m}, there exist C2 real-valued functions
G, A1, . . . , At, with t < #W , such that for all x = (xW , x−W ) in S we have46

F (x1, . . . , xm) = G(A1(xW ), . . . , At(xW ), x−W ).

Thus, on the set S, it is enough to know x−W and the values of the t aggregators A1, . . . , At, in order
to compute F . However we partition the m variables into the sets W and −W , we need no more than
t aggregators of the variables in W in order to compute F .

The following key conjectures remain open.

Conjecture 1

If F is symmetric and r-additive on S and t-aggregative on S, with t < r < m, then F is also
t-additive on S.

Conjecture 2 (stronger than Conjecture 1)

If F is symmetric and t-aggregative on S, with t < m − 1, then F is t- additive on S.

Weak versions of these conjectures:

Put “weakly” in front of “r-additive” and “t-additive”

Suppose F is symmetric, and minimally r-additive with r < n − 1. Suppose Conjecture 1 holds.
Then we can claim that if we want to aggregate x = (xW , x−W ) in S, with r < #W , into as few
variables as possible, while retaining our ability to compute F , we cannot do better than to use

(4) G(A1, . . . , Ar, x−W ) = H
(

H1(A1 +
∑

ℓ∈−W

V1(xℓ)) + · · · + Hr(Ar +
∑

ℓ∈−W

Vr(xℓ))
)

,

where

(5) Ai ≡
∑

ℓ∈W

Vi(xℓ), i = 1, . . . , r.

If it were possible to aggregate the variables xW into fewer than r numbers — i.e., if there existed
G, A1, . . . , Aq, with q < r, such that F = G(A1(xW ), . . . , Aq(xW ), x−W ) — then Conjecture 1 says that
F is q-additive. But that contradicts the assumed minimal r-additivity of F . Note that the converse
of Conjecture 2 holds. If F is t- additive, then we can write F in a t-aggregative form, using (4) and
(5) (with r = t). Note also that Conjecture 2 is correct for the case m = 3. To see this, call the three
environment variables x, y, z. Since m − 1 = 2, Conjecture 2 takes the following form:

46Here −W denotes the complement of W .
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If F is symmetric and there exist C2 functions G, A such that

F (x, y, z) = G(A(x, y), z)

then F is 1-additive.

But that is just the simplest (three-variable) version of the Leontieff Theorem.

A modest proposition about mechanisms with a tree structure . Consider again our function

F ∗ =

(

w +
1

w
+ x +

1

x
+ y +

1

y
+ z +

1

z

)

+ (wxyz).

As we saw in Figure 3, F ∗ can be realized by a two-person mechanism whose graph is a six-node tree.
Each person’s burden is 3. There is, however, no F ∗- realizing mechanism whose graph is a tree with
all the individual burdens being two or less. Our discussion of the application of Proposition (∗) to
F ∗ showed that while F ∗ is 2-aggregative it is not 1-aggregative. (If we choose the set W to contain
three variables, then it is not the case that a single aggregator provides the information about those
variables that is needed to compute F ∗). Generalizing from the example of F ∗ and the Figure-3 tree,
we can obtain a rather modest proposition:

Proposition G

Suppose the function
F : IRk → IR,

where k > 2, is 2-aggregative but not 1-aggregative. Then in any two-person tree which realizes F , each
person’s burden is at least 2.

RESEARCH CHALLENGE #6: Find interesting classes of goal functions F for which Conjectures
1 and 2 hold.

2.7.10 Computing a speak-once-only mechanism’s delay A mechanism’s delay is the total
elapsed time until the action taker has completed his computation of the organization’s final action.
We have considered delay informally, and we have illustrated delay, but we have not yet discussed how
one might compute it. To do so we first define delay more carefully. We start by making the following
simplifying assumption.

(α) The environment variables change their values every G time units. For all the speak-once-only
mechanisms we consider, G is sufficiently large that the mechanism’s delay is less than G.

We repeat, in addition, three assumptions already made in our introductory discussion of delay in
Section 2.7.1.

(β) It takes one time unit for a person to receive or observe one (scalar-valued) variable.
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(γ) A person receives all the message variables that the mechanism specifies, and does all the
observing required of him, before he sends messages or computes the final action.

(δ) It takes zero time for a person to compute a message variable to be sent onward, and for the
action taker to compute and put into force the final action.

Thus if a person observes X (scalar-valued) environment variables, receives Y (scalar-valued) message
variables from other persons, and computes Z scalar-valued functions of the observed environment
variables and the received message variables (to be sent forward to other persons), then X + Y time
units are required for him to complete these tasks. He is silent until the mechanism has operated for
at least X + Y time units.

Next, note that for a given speak-once-only mechanism, the sequence of tasks may be subject
to choice. Suppose for example that in a given three-person mechanism Person 1 observes three
environment variables, Person 2 observes three other environment variables, and each sends forward
to Person 3 (the action taker) values of two scalar-valued functions. In one possible sequence, Person
1 first observes all his environment variables, then Person 2 observes all of his, and immediately after
that (with no further time required), both persons compute and send forward the values of their
scalar-valued functions. That would appear to be an inefficient sequence, since time would be saved
if 1 and 2 did their observing simultaneously. Nevertheless it is a possible sequence. In general we
may define a protocol π for a given mechanism as a specification of exactly what tasks (observing,
sending, receiving, computing) each person performs at each time in a sequence of times (one time
unit apart), terminating with the action taker’s final-action computation. A protocol is required to
respect the above assumption γ. (A formal definition of a protocol can be provided, but it requires an
array of new symbols).

It will be useful to use the term entity for a node of the mechanism’s directed graph, whether
that node identifies an environment variable or a person. For the protocol π we may define a time-to-
completion function fπ on the set of entities. For Person p, the number fπ(p) is the shortest time after
which Person p “does nothing”, i.e., he does no further observing, receiving, sending, or computing.
If the entity j is an environment variable (i.e., it is a node belonging to the set {1, . . . , k}), then we
define fπ(j) to be zero. If the protocol π is used, then the total elapsed time until the mechanism
terminates is fπ(n) where (as before) n is the action taker. Our defintion of delay is then as follows:

Definition: A speak-once-only mechanism’s delay is the minimum value, over all protocols π, of
fπ(n). A protocol π for which fπ(n) is minimal will be called a minimal protocol for the mechanism.

A mechanism’s delay may be computed recursively. To simplify notation, let T denote the function
fπ, where π is minimal, and write Tp instead of T (p). (Thus Tp is the smallest time until p does nothing
further). We shall use the term “listens to” to cover both observation of an environment variable and
receipt of a message variable. Suppose p listens to just one entity, say 1, from whom he receives N1

variables. Then Tp = T1 + N1, since p has to wait T1 units for 1 to finish and then takes N1 units to
listen to the N1 variables sent to him by 1. At that point, p is done. Now suppose that p listens to
more than two entities. We make the following claim:
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Claim There is a minimal protocol in which p listens to each of the persons from whom he receives
in the order in which those persons are done with their sending to him.

To argue this claim, start by supposing that p listens to two persons, say 1 and 2; 1 sends N1

variables to P and 2 sends N2 variables. Assume that T1 ≤ T2. Then there is a minimal protocol in
which

Tp = max(T1 + N1, T2) + N2.

To see this, note first that p must wait T1 time units for 1 to finish. He spends the next N1 time units
listening to 1. If T2 has elapsed by then, (i.e., T2 ≤ T1 + N1), then p spends the next N2 time units
listening to 2. If T2 has not yet elapsed (T2 > T1 + N1), then p must wait for T2 units to elapse and
then spends the next N2 units listening to 2. If p listens to three persons, say 1,2,3, with T1 ≤ T2 ≤ T3,
then we obtain, for some minimal protocol:

Tp = max
(

max(T1 + N1, T2) + N2, T3

)

+ N3.

Recalling that Tp = 0 if the node p corresponds to an environment variable, we now see that the
following general procedure computes Tp for a person p in some minimal protocol.

(1) Label the entities that p listens to as 1, 2, . . . ,m, where T1 ≤ T2 ≤ · · · ≤ Tm.

(2) Initialize values v = T1 + N1 and k = 1. If k = m, then set Tp = v and stop.

(3) Replace v with v∗ = max(v, Tk+1) + Nk+1 and replace k with k + 1.

(4) If k + 1 < m, repeat step (3). If k + 1 = m, then set Tp = v∗ and stop.

Note that the recursive scheme just described is indeed realized by some protocol for a given
mechanism, since the four steps can clearly be carried out for a person p who observes environment
variables but does not receive messages. Since a speak-once-only mechanism has no directed cycles, it
follows that the four steps can also be carried out for a person p who receives messages. Since we can,
in particular, carry out the four steps for p = n (the action taker), the four steps provide a recursive
way of computing the delay; the delay is Tn = fπ(n) where π is a minimal protocol. Roughly speaking,
the steps insure that each person is “as busy as possible”. Each person begins the work of listening as
soon as signals (environment variables or message variables) begin to arrive, and no person stays idle
while there is work (listening) that he could be doing. (Assumption (γ) is crucial for this claim).

Some preliminary computer experiments with the recursive procedure suggest that typically the
time required to compute Tn rises rapidly as n and k grow. It seems likely that one can construct
improved versions which exploit the properties of narrow classes of goal functions.

RESEARCH CHALLENGE # 7: For interesting classes of goal functions, refine the delay-
computation algorithm so that it performs rapidly for mechanisms that realize a function in the class.

Examples of the computation of delay

(a) In a one-person mechanism, where the action taker observes all environment variables, delay
is just the number of those variables.
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(b) Suppose there are k = 2M environment variables, where M is a positive integer not less than
2. Suppose the mechanism’s graph is a binary tree with a person at each non-leaf node. Then delay is
2 log2 k = 2M . Similarly if k = tM , where t and M are integers greater than 2, and the mechanism’s
graph is a t-ary tree with a person at each non-leaf node, then delay is t logt k = tM . (Since each
person listens to t variables, it takes t time units for all the persons at a given tier of the tree to finish,
and all persons in the tier finish at the same time; there are M tiers, so delay is tM). For such a
mechanism no protocol can achieve a delay less than tM . In contrast, a one-person mechanism has a
delay of k = 2M as well as a burden of 2M

(c) Consider once again the goal function

F ∗∗(w, x, y, z) = (w + x + y + z) + (wxyz) +

(

1

w
+

1

x
+

1

y
+

1

z

)2

.

Consider the following two non-tree mechanisms that realize F ∗∗. For each of them delay can be
checked visually or it can be found using our recursive four-step procedure.

FIGURES 4 AND 5 HERE

The six-person Figure-4 mechanism has a property of “U-forms” in the economic literature, briefly
mentioned in the Introduction. Each environment variable is observed by just one person (a specialist).
Persons 1 and 2 are the observers. They report to a “sum” specialist (Person 3), a “product” specialist
(Person 4) and a “reciprocal” specialist (Person 5). Those three specialists report, in turn, to the action
taker (Person 6), who then has all the information needed to compute F .

The five-person Figure-5 mechanism has a property of “M-forms” in the economic literature: each
environment variable is separately observed by several persons. Persons 1,2, and 3 all observe w, x, y.
For those variables, Person 1 is a “sum” specialist, Person 2 is a “product” specialist, and Person 3 is
a “reciprocal” specialist. Person 1 reports directly to Person 5 (the action taker), but Persons 2 and
3 report to an intermediary (Person 4), who also observes z directly, as does Person 5. We find that

• the Figure-4 mechanism uses 6 persons. Five of them have a burden of 2 and one of them (the
action taker) has a burden of 3. Delay is 7.

• the Figure-5 mechanism uses 5 persons. Each has a burden of 3. Delay47 is 6.

The comparison illustrates a general conjecture:

47At the end of the first three periods, 1,2, and 3 have each learned w, x, y, while 4 and 5 have learned z. No messages
have yet been sent. In the fourth period, 5 receives w + x + y from 1, while 4 receives wxy from 2. In the fifth period, 4

receives 1

w
+ 1

x
+ 1

y
from 3. In the sixth period, 5 receives wxyz +

(

1

w
+ 1

x
+ 1

y
+ 1

z

)2

from 4 and is now able to compute

F .
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Fig. 4. This is a six-person nontree F�� realizing mechanism with delay 7. It has the ‘‘U-form’’ property: each environment variable is

observed by a single person.



Fig. 5. This is a five-person nontree F�� realizing mechanism with delay 6. It has the ‘‘M-form’’ property: each environment variable is

observed by more than one person.



Conjecture § Consider a goal function F which is a sum of three scalar-valued functions
of four environment variables and can not be expressed as a function of fewer than three
scalar-valued functions. There does not exist a non-tree F -realizing mechanism which
dominates all the other non-tree F -realizing mechanisms with regard to number of persons,
individual burdens, and delay.

RESEARCH CHALLENGE # 8: Apply the recursive delay-computation algorithm to establish
Conjecture § and similar conjectures.

3. MODELS IN WHICH THE DESIGNER IS CONCERNED WITH INCENTIVES
AS WELL AS INFORMATIONAL COSTS

A gigantic literature considers the designing of schemes that induce the self-interested members of
an organization to make choices that meet a given organizational goal. One branch of this literature
studies contracts. Another studies “implementation”; it considers schemes in which each self-interested
member chooses an individual message, knowing that an organizational action will be chosen once all
the messages are sent, knowing the outcome function that will be used to assign an action to the
individual messages, and knowing the impact of each action on his own personal welfare. Such a
scheme defines a message-choosing game. If the scheme is properly designed then it “implements” a
goal correspondence that has been given to the designer: at an equilibrium of the game, the messages
chosen are those for which the assigned action (prescribed by the outcome function) is goal-fulfilling.48

Contracting schemes and goal-implementing mechanisms have informational costs, and it would be of
great interest to be able to find the cheap ones. Informational costs are often discussed informally.
Indeed some of the classic goal-implementing mechanisms (e.g., those that lead the organization’s self-
interested members to make the correct choice as to the quantity of a public good) are striking in their
informational simplicity.49. But it is very rare for a paper to present a goal-implementing mechanism
and then to argue its informational minimality in a precise way. The managerial accounting literature
studies mechanisms or contracting schemes to be used by a profit-maximizing principal and the self-
seeking “responsibility centers” (cost or profit centers) of a firm. The information transmitted by the
centers (perhaps by using transfer prices) is far more modest than, for example, that transmitted in a
Direct Revelation mechanism which achieves the same result. But again, informational minimality is
not formally shown.50 Occasionally, however, papers in this literature explicitly measure an informa-
tional cost, e.g., the cost of reducing the variance in the noise that accompanies a signal sent from the
agents to the principal.51

48Two excellent introductory surveys of the implementation literature are: R. Serrano, 2004 and M.O. Jackson, 2001.
49Groves and Ledyard, 1977 is the classic paper on public-good provision in an organization whose members differ with

regard to their private valuation of the good , using a mechanism that appears to be informationally cheap, although
no formal claim about its informational minimality is made. By contrast, informational cost is formally studied in a
“non-incentive” paper by Sato (1981). That paper finds a lower bound to the message space size for mechanisms used
by an economy which seeks an efficient allocation of resources to the production of public goods, if we assume that the
agents voluntarily follow the mechanism’s rules.

50See, for example, three papers by N. Melumad, D. Mookherjee, and S. Reichelstein: (1992), (1995), and (1997).
51See, e.g., A. Ziv (2000).
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We now turn to some research in which initial steps toward incorporating informational costs as
well as incentives are taken.

3.1 The message-space size required for implementation of a goal Suppose, as before, that
each person i has a privately observed local environment ei whose possible values comprise the set Ei. In
most implementation discussions, ei determines i’s preferences over the possible organizational actions
(and may contain other information about the organization’s environment as well). Then an n-person
implementation scheme, often called a game form, has two elements: an n-tuple S = (S1, . . . , Sn)
of individual strategy spaces, and an outcome function h : S → A, where A is the set of possible
organizational actions. In particular, a strategy si ∈ Si may be a rule that tells i how to behave at
each stage of a T -step message-announcement process, where the organization’s action is a function
of the step-T announcements. It tells him what message mi, in a set Mi of possible messages, to
announce at step t, given what he knows about the announcements thus far and given his current ei.
The organizational action is therefore a function of the current e = (e1, . . . , en). Given his current
ei, and given any strategy choices by the others, person i (who knows the function h) is able to rank
any two of his own strategies with regard to his own welfare. For each e, we therefore have a game,
denoted Γe, and we may choose a solution concept — say Nash equilibrium — to identify the game’s
equilibria. The scheme 〈S, h〉 implements a goal correpondence G from E = E1 × · · · × En to A if
h(s) ∈ G(e) whenever s = (s1, . . . , sn) is a Nash equilibrium of the game Γe.

Now consider the equilibrium strategy profiles of the game Γe. As before, let m denote (m1, . . . ,mn)
and let M denote M1 × · · · × Mn. Define the correspondence

µi(ei) = {m ∈ M : for some e∗ ∈ E, m is the step-T announcement for (s, e∗),

s is an equilibrium of Γe∗ , and ei = e∗i }.

Let h̃ be an outcome function from M to A, with the following property: h̃(m) = a if (1) a = h(s) and
(2) for some e ∈ E, s is an equilibrium strategy profile of the game Γe and m is the step-T message for
(e, s). The triple 〈M, (µ1, . . . , µn), h̃〉 is a (privacy-preserving) mechanism on E in our previous sense.
Moreover it realizes the goal correpondence G.

One can ask: among the G-implementing mechanisms (obtained from a G-implementing game form
in the manner just described), which ones have a minimal message-space size? Or, less ambitiously, is
there a useful lower bound to such a mechanism’s message-space size? The message-space requirements
for implementation of a goal correspondence are certainly going to be harsher, in general, than the
requirements for realization alone. “How much harsher?” is a difficult question, and very few papers
have addressed it.52

3.2 Models in which the organization’s mechanism is partly designed by its self-interested
members, who bear some of the informational costs.

3.2.1 A model in which the organization’s decentralized self-interested members choose
their search efforts, a “Decentralization Penalty” results, and the effect of improved

52Three of them are: S. Reichelstein (1984); S. Reichelstein and S. Reiter (1980), G. Tian (1990).
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search technology on that penalty can be traced Consider a three-person organization53

consisting of two Managers, called 1 and 2, and a Headquarters (HQ). There is a changing external
environment e = (e1, e2). Manager i, i = 1, 2, observes ei, whose set of possible values is Ei. HQ
does no observing. Whenever there is a new value of e = (e1, e2), HQ learns something about it from
the managers, though their knowledge of the new e is imperfect. Having received reports about the
new e from the managers, HQ chooses an action a. The organization then collects a payoff W (a, e).
[Example: The organization makes a product which it markets in two locations. The variable ei is the
product’s price in location i next week. The action a has two components a1 and a2, where ai is the
amount to be shipped to location i for sale next week. The payoff W (a, e) is the profit earned next
week.]

Manager i always learns something about a new ei in the same way. He has a finite partitioning of
Ei, which he has chosen once and for all out of some set of available partitionings. Whenever ei changes,
he conducts a search to find that set of his partitioning which contains the new ei. Let σ1, σ2 denote the
two chosen partitionings. Manager i reports the set he finds, say Si ∈ σi, to HQ. Then HQ chooses an

action â(S1, S2) which maximizes the conditional expectation E
(

W (a, e) | e1 ∈ S1, e2 ∈ S2

)

, where the

symbol E again denotes expectation. Let Ω̂(S1, S2) denote the value of that conditional expectation
when the maximizing action â is used. The highest attainable expected gross performance of the two
chosen partitionings, which we simply call gross performance (for brevity), is the expected value of Ω̂,
where the expectation is taken over all the possible pairs (S1, S2). Our symbol for gross performance
is just Ω. Thus

Ω(σ1, σ2) = E
(S1,S2)∈σ1×σ2

Ω̂(S1, S2).

Even though the technology of search may be advanced, the managers’ search has a cost, since it
requires human time and human expertise. We suppose that the cost of searching the partitioning σi

is measured by θ · C(σi), where θ and the values taken by the function C are positive real numbers.
When search technology improves, θ drops. Consider two definitions of C(σi). The first is
simply the number of sets in σi. The second is the “Shannon content” of σi, i.e.,

−
∑

Si∈σi

( probability of Si) · (log2( probability of Si)) .

The number-of-sets measure ignores the fact that some sets occur more frequently than others. But
it is an appropriate measure if the searchers who assist the manager have to maintain their ability
to distinguish between the sets. That may require substantial training, and the number-of-sets cost
measure may be viewed as the opportunity cost of the investment made in such training. As the
technology of search improves, the training required to distinguish among a given number of sets
becomes less costly. On the other hand, the Shannon content is sensitive to the set probabilities.
Using the most elementary of the theorems in the Information Theory which Shannon founded (the
noiseless coding theorem)54, one can show that if θ is small then the partitioning’s Shannon content
approximately equals the average number of steps required when a searcher follows a well-chosen binary

53Studied in Marschak (2004).
54See, for example, Abramson (1963), pp. 72-74.
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tree to find the set in which his current ei lies. Then θ times the Shannon content is (approximately)
the average amount of dollars paid for searcher time when search is efficient. That drops when search
technology improves (i.e., when θ drops).55

We now compare a centralized organization with a decentralized one. Here we use the term “decen-
tralized” in a new way, appropriate to the discussion of incentives. In the decentralized organization
the managers are self-interested and are free to make choices that were not available to them in the
centralized case. In the centralized case, monitoring (or perhaps socialization) insures that each man-
ager strikes the correct balance between his search cost and the gross performance that his search
permits. So the chosen partitionings, say σ∗

1, σ
∗
2 are first best. They maximize

Ω(σ1, σ2) − θ · C(σ1) − θ · C(σ2).

In the decentralized case, there is no monitoring and each self-interested manager i is free to choose
his preferred σi. He bears the associated cost, namely θ · C(σi). But he is rewarded with a share of
the expected gross performance Ω. So the two decentralized managers play a sharing game in which
Manager 1 chooses σ1, Manager 2 chooses σ2, and each manager i collects an (average) payoff equal to

ρ · Ω(σ1, σ2) − θ · C(σi),

where ρ, each manager’s share, is greater than zero and not more than 1
2
. In the decentralized case,

the chosen partitionings comprise a Nash equilibrium of the sharing game.

The sharing-game interpretation of decentralization seems very natural if one seeks a workable
and plausible model. “Profit-sharing” is, after all, the oldest (and simplest) of the schemes that
one sees when one looks at decentralized real-world attempts to reconcile individual incentives with
organizational goals. Such schemes will not perform as well as first-best choices would, but they may
be the best practical alternative if the only way to ensure first-best choices is to engage in intrusive
policing, or to adopt (in a real-world setting) some version of the sophisticated but informationally
costly monitoring schemes that theorists have proposed.

Now let (σ†
1, σ

†
2) denote a pair of decentralized partitionings, chosen at an equilibrium of the sharing

game. Our central interest is the Decentralization Penalty when θ is the level of search technology.
The Penalty associated with σ∗

1, σ
∗
2, σ

†
1, σ

†
2 is

P (θ) =
[

Ω(σ∗
1, σ

∗
2) − θC(σ∗

1) − θC(σ∗
2)
]

−
[

Ω(σ†
1, σ

†
2) − θC(σ†

1) − θC(σ†
2)
]

.

In a shirking equilibrium of the decentralized sharing game, the managers’ total search expenditures
are less than the first-best expendures. In a squandering equilibrium the reverse is true. It turns
out that under plausible assumptions a search technology improvement (a drop in θ) decreases the
Decentralization Penalty associated with a squandering equilibrium, but its effect on the penalty
associated with a shirking equilibrium is not so clear-cut.

55Once the two partitionings σ1, σ2 have been specified, they define — using our previous terminology — a speak-
once-only mechanism with HQ as the action-taker. For every e, the action-taker computes the function F (e) which takes
the value â(S1, S2) when e1 ∈ S1, e2 ∈ S2.
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First consider a “short-run” setting, where a finite collection of possible partitionings is available
to each manager, and the technology parameter θ changes but its values lie in some interval [R,S],
where 0 < R < S. The interval is sufficiently small that when θ drops within that interval there is no
change in the decentralized managers’ partitioning choices or in the first-best partitionings. For all θ
in the interval [R,S], the former partitionings are σ†

1, σ
†
2 and the latter are σ∗

1, σ
∗
2. We can rearrange

the expression for the associated Decentralization Penalty to obtain:

P (θ) = Ω(σ∗
1, σ

∗
2) − Ω(σ†

1, σ
†
2) + θ ·

[(

C(σ†
1) + C(σ†

2

)

−
(

C(σ∗
1) + C(σ∗

2)
)]

.

Examining the term in square brackets, we immediately see that if squandering occurs at the decen-
tralized partitionings σ†

1, σ
†
2, then a drop in θ decreases the Decentralization Penalty, but if shirking

occurs at the decentralized partitionings, then a drop in θ increases the Decentralization Penalty.

Now let us turn to a “long-run”, where an infinity of possible partitionings is available and, in
addition, the first-best and decentralized (sharing-game equilibrium) partitionings change whenever
θ changes. Let D∗

i (θ) > 0 identify Manager i’s first-best partitioning and let D†
i (θ) > 0 identify the

decentralized Manager i’s partitioning at an equilibrium of the sharing game. Let θ ·C(D) be the cost
of the partitioning D, where C is increasing. Then for a given θ, the Decentralization Penalty is

P (θ) =
(

Ω(D∗
1(θ), D

∗
2(θ))−θC(D∗

1(θ))−θC(D∗
2(θ))

)

−
(

Ω(D†
1(θ), D

†
2(θ))−θC(D†

1(θ))−θC(D†
2(θ))

)

.

Suppose the functions D∗
i , D

†
i are differentiable.56 For every θ, the first best partitionings D∗

i

have to satisfy the first-order condition for the maximization of Ω− θC1 − θC2, and the decentralized
partitionings D†

i have to satisfy the first-order condition for D1 to be a best reply (in the sharing game)
to D2, and vice versa. When we compute the derivative P ′, while inserting the first order conditions,
we obtain:

P ′(θ)=
[

C(D†
1(θ))+C(D†

2(θ))−
(

C(D∗
1(θ))+C(D∗

2(θ))
)]

−
[

θ

(

1

ρ
− 1

)

(

D†
′

1 (θ)C ′(D†
1(θ))+D†

′

2 (θ)C ′(D†
2(θ)

)]

.

Here primes denote derivatives and ρ, with 0 < ρ ≤ 1
2
, is each manager’s share of the gross performance

Ω in the sharing game which the managers play when they are decentralized. Now suppose we know
the following:

(#)











when search technology improves (θ drops), the decentralized man-
agers spend more on search, i.e., costlier partitions are chosen at
the equilibria of the sharing game

56The differentiability assumption is made for analytic convenience. Typically one would want each of the available
partitionings to be identified by a positive integer T . (Thus Manager i’s external variable ei might have the interval
[A,B] as its support, with 0 < A < B, and T might identify the partitioning in which that interval is divided into T

sub-intervals of equal length). Under very plausible assumptions about Ω, the finding that the derivative P ′ is negative

(when we treat D∗
i , D

†
i as continuous and differentiable rather than integer-valued) implies that for sufficiently small θ,

P remains a decreasing function when we restrict the functions D∗
i , D

†
i to integer values.
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Then D†
′

i (θ) < 0, i = 1, 2 for all θ > 0. Since C is increasing and 1
ρ
−1 > 0), the second of the two

terms in square brackets is negative or zero. If there is squandering at the decentralized partitionings,
then the first of the two terms in square brackets is positive and hence the entire expression for P ′

is positive, i.e., the Decentralization Penalty shrinks when IT improves. If there is shirking, then the
sign of P ′ is indeterminate unless we make further assumptions.

Some of the scarce empirical literature on the effect of IT (Information Technology) improvement
on organizational structure suggests that as IT improves, the case for “decentralizing” an organization
becomes stronger.57 The model of managers who engage in search is a first attempt to see why
this might be so. If the IT improvement in question is the explosive growth of efficiently searched
databases, and if “decentralized” managers can reasonaby be modelled as players of a sharing game,
then it is of considerable interest to find the conditions under which improved search technology
indeed implies a drop in the Decentralization Penalty. An explicit formula for the Penalty has been
found for certain cases.58 But there also examples of a W and a probability distribution on the ei

in which the decentralized sharing game has a squandering equilibrium.59. The effect of a drop in
θ on the Decentralized Penalty associated with squandering is strikingly unambiguous, both in the
“short-run” setting, and (provided the statement (#) holds) in the long-run setting as well. So it
would be valuable to understand the squandering phenomenon much better. For a very wide class of
sharing games a sufficient condition for ruling out squandering is complementarity: an increment in
Manager 1’s search expenditures improves (or does not damage) Manager 2’s “marginal productivity”,
i.e., the increment in Ω due to an increment in Manager 2’s search expenditures.60 On the other hand
a class of functions Ω has been found for which the following is true: if Ω exhibits sufficiently strong
“anticomplementarity”, then there are squandering equilibria in the sharing game defined by Ω and the
shares ρi.(Anticomplementarity means that an increment in Manager 1’s search expenditures damages

57See the papers mentioned in the Introduction: Bresnahan, Brynjolffson, and Hitt (2000), (2002).
58Suppose, in particular, that the payoff function W has the linear/quadratic structure discussed in section 2.6 above,

where the techniques of the Theory of Teams were considered. For that W , person-by-person-satisfactoriness is both
necessary and sufficient for a team action rule to be best for a given information structure. That allows us to find the best
action rules used by HQ once each manager tells HQ the set in which his current local environment lies. Suppose further
that each ei is uniformly distributed on a closed interval, that each manager i divides his interval into Ti subintervals
of equal length, and that each choice of Ti defines one of the manager’s possible partitionings. It then turns out that
(1) in the unique equilibrium of the sharing game, each manager shirks (chooses a Ti that is lower than the first-best
Ti), (2) in the “long-run” setting (where a small change in the technology parameter θ leads to new equilibrium values
of the Ti as well as new first-best values) the Decentralization Penalty indeed drops when θ drops. That is true for the
number-of-sets cost measure as well as the Shannon cost measure.

59In the examples found so far, there is a finite set of possible values for each ei.
60Consider n-person sharing games in which each person i chooses a strategy xi, bears the nondecreasing cost ci(xi),

and receives a reward Ri(z) when the organization earns the revenue z = A(x1, . . . , xn), where A is nondecreasing
in each of its arguments. Suppose the functions Ri obey a “nondecreasing residual” property: when z increases by
any positive amount ∆, the sum of the rewards does not rise by more than ∆. (That is satisfied, for example in the
“balanced-budget” case where z =

∑

Ri(z) as well as the “constant-share” case Ri(z) = ρi · z which we have been
considering.) Suppose A obeys complementarity: if we look at the increment in A when any player spends more, we find
that the increment does not drop when some other player spends more. Then in any equilibrium no player squanders
relative to an efficient (first-best) (x1, . . . , xn), where A minus the cost sum is maximal. Every player spends the efficient
amount or less. The argument holds whether the strategy sets are finite or are continua. The argument is provided in
Courtney and Marschak, 2004.
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Manager 2’s marginal productivity).

In an informal way, one can imagine that the much discussed but seldom modeled phenomenon of
“information overload” can indeed lead to anticomplementarity and to squandering. As Manager 1
increases his search effort and the level of detail in his report to HQ, he greatly diminishes the value of
Manager 2’s report, because Manager 2’s report then becomes somewhat redundant, i.e., its marginal
contribution is small. The managers might then be trapped in an equilibrium where Manager 1’s
partitioning is very costly, Manager 2’s partitioning is cheap, and the sum of the costs is higher than
the cost sum for a first-best partitioning pair. A rough conjecture would be as follows:

Conjecture (∗): For sets G ⊆ E1, H ⊆ E2, let â(G, H) denote a value of a which maxi-
mizes the conditional expected value of the payoff W (a, e1, e2), given that e1 ∈ G, e2 ∈ H.
Given the probability distribution of e = (e1, e2), the payoff function W , and partitionings
σ1, σ2, let us measure the marginal contribution of σ2 by

EQ1∈σ1,Q2∈σ2

[

E
(

W (â(Q1, Q2), e1, e2)|e1 ∈ Q1, e2 ∈ Q2

)]

−EQ1∈σ1

[

E
(

W (â(Q1, E2), e1, e2)|e1 ∈ Q1

)]

.

Then if the marginal contribution of σ2 is “sufficiently small but not too small”, (σ1, σ2) is
a squandering equilibrium of the sharing game.

Here “but not too small” seems appropriate, since if σ2 makes an extremely small marginal contribu-
tion, then Manager 2 finds that when compared to the one-set partitioning (the cheapest partitioning),
his share of σ2’s extra revenue fails to justify its extra cost.

RESEARCH CHALLENGE #9: To better understand the squandering phenomenon, find probability
distributions on the local environments, and payoff functions W , such that

• Condition (#) holds: when search technology improves, the decentralized managers spend more on search
at the sharing-game equilibrium. (Then, in the “long-run” setting, a search-technology improvement
diminishes the Decentralization Penalty associated with squandering)

• Conjecture (∗) holds.

3.2.2 The effect of search-technology improvement on the Coordination Benefit. In
addition to studying the Decentralization Penalty, one can conduct a parallel investigation of the
effect of improved search technology on the Coordination Benefit. That might be motivated by informal
suggestions, in some empirical studies, that improved IT leads to greater “lateral communication”61

To define coordination in our two-manager model, let the organization’s action have two components:
a = (a1, a2), where ai is associated with manager i. Then coordination for the centralized organization
(where managers are loyal team members and are not self-interested) means that HQ chooses ai as
a function of both Managers’ search results, while no coordination means that each ai is chosen as a
function of i’s results only. The Coordination Benefit is the improvement in expected net payoff — i.e.,

61Again, see Bresnahan, Brynjolffson, and Hitt, 2002.
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Ω minus the sum of the search costs — when we move from no coordination to coordination. To define
the concept in the decentralized (sharing-game) case, suppose that HQ no longer exists. Instead, the
self-interested Manager i chooses ai himself. Coordination now means that i bases his choice on both
manager’s search results (after “lateral communication” occurs), and no coordination means that he
bases it on his own results only. Two different sharing games are thus defined. The Coordination
benefit is the improvement in net payoff when we move from an equilibrium of the first game to an
equilibrium of the second. Classes of probability distributions and payoff fucntions have been found for
which it is indeed the case that when search technology improves (θ drops), the Coordination Benefit
rises, in both the centralized and the decentralized cases.62

3.2.3 Extending the model so that managers may be decentralized with regard to “pro-
duction” as well as search; studying the effect of a search-technology improvement on the
Decentralization Penalty when the “degree of decentralization” is varied. Suppose that
in our two-manager model the organizational payoff (or gross profit) function W takes the following
form:

W = V (a, e) − K1(a1) − K2(a2).

For the action a = (a1, a2), the function Ki is Manager i’s local production cost while V (a, e), which
may reflect externalities between the two managers, is the gross revenue earned by the organization
when the environment is e. We modify our model of the decentralized organization. Each manager i
now chooses (1) a partioning of Ei (as before) and (2) a rule αi which assigns a value of ai to every
possible search result. He receives a share ρ · V of V , but has to pay a share γ of his production cost,
with 0 < γ < 1. Thus his net payoff in the game is the expected value of ρ · V minus the expected
value of γ · Ki (when he uses the rule αi) minus the search cost for his chosen partitioning. In the
first-best (centralized) situation, by contrast, the partitionings and the rules αi are chosen so as to
maximize the expected value of V − K1 − K2 minus the total search costs. We can call γ the degree
of decentralization. As γ rises towards one, each manager bears more and more responsibility for his
own production costs. We can again study the Decentralization Penalty, i.e., the amount by which the
expected value of [V − K1 − K2] − ( the total search costs )] in the decentralized case falls short of
its first-best value. The Penalty depends on γ and on θ. We now have a new question.

RESEARCH CHALLENGE #10: When is it the case that a search technology improvement (a drop
in θ)“justifies” a higher degree of decentralization? When is it the case, in other words, that the value of
γ which minimizes the Decentralization Penalty for θ̄ exceeds the value of γ which minimizes the Penalty
for θ > θ̄?

This is a subtle question. In answering it, a key role is played by another question: for a given level
of search technology ( a given θ), is the value (to a manager) of another dollar spent on search higher
for low γ or for high γ? What is intriguing about the latter question is that one’s off-the-cuff intuition
can go either way. One could very roughly argue that “when γ goes up, each manager ends up with

62Suppose, once again, that the payoff function W has the linear/quadratic structure and each ei is uniformly dis-
tributed on a closed interval. Then the methods of the Theory of Teams again allow us to find explicit formulae for
the action rules used by HQ in the centralized/ coordinated and centralized/uncoordinated cases, and the rules used by
each manager in the decentralized/coordinated and decentralzied /uncoordinated cases. In all cases one finds (for the
number-of-sets cost measure and for the Shannon cost measure) that the Coordination Benefit rises when θ drops.
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less for every action, so learning a little more about ei becomes less valuable to the manager”. But one
could just as well argue, in an equally primitive way, that “when γ goes up, it becomes more important
for each manager to get his action just right, so learning more about ei becomes more valuable.”

One could start learning about the matter by studying a one-manager version. To give it a concrete
setting, let the organization consist of a manufacturer and a franchised retailer. The manufacturer
can produce and ship the product quantity q to the retailer at a cost C(q). He charges the franchised
retailer a fee of γ for each unit shipped. We can interpret γ as the “degree of decentralization”; the
higher γ is set, the higher the retailer’s contribution to the manufacturing cost. Once the manufacturer
chooses γ, the retailer is entirely on her own. She sells the received product in a local market. The
demand curve she faces is

P = e − Q,

where P is price, Q is quantity, e > 0 and Q ≤ e. But e is a random variable. It changes each
“week” and its possible values comprise an interval [A, B] with B > A. The retailer has to commit
to the quantity she orders for next week’s sales before she knows next week’s demand curve. By
spending money on search (market research) she can learn about next week’s e. She chooses a T -
interval partitioning of [A, B] from a set of available partitionings and searches to find the interval in
which next week’s e lies. Denote the T intervals I1, . . . , It, . . . , IT . The search costs the retailer the
amount θ · T . Once the current interval, say It, has been found, the retailer chooses a quantity Q̂Tγ(t)
so as to maximize the following expectation:

π(t, γ) = E
[

(e − Q) · Q − γ · Q | e ∈ It

]

.

The retailer chooses T so as to maximize

∑

t∈{1,...,T}

(prob. of It) · π(t, γ) − θT.

Let T̂ (γ, θ) denote the retailer’s chosen T . Then the manufacturer’s expected profit depends on both
γ and θ. It is

∑

t∈{1,...,T̂ (γ,θ)}

(prob. of It) ·
(

γ · QT̂ (γ,θ),γ (t) − C(QT̂ (γ,θ),γ (t))
)

.

He chooses the franchise fee γ so as to maximize expected profit. We ask:When is it the case that a
drop in θ leads the manufacturer to raise γ? When is it the case that the drop leads the manufacturer
to lower γ?63

3.3 Networks of self-interested decision-makers, who bear the network’s informational
costs There is an abundant literature on the formation of networks, where every node is occupied

63Preliminary exercises suggest that both can happen. Going back to the general one-manager problem, consider two
examples: (1) V (a, e) = eȧ and K(a) = a2; (2) V = J − 1

ae
,K = b ln a, where J > 0, b > 0, a > 0. In both cases, the

Manager collects (for given a, e) the amount V − γK, where 0 ≤ γ ≤ 1. In both cases, let e be uniformly distributed on
[A,B] and let the partitioning defined by T consist of T equal-length intervals. The partitioning costs the Manager θT .
It turns out that if we keep θ fixed, then in the first example, raising γ leads the manager to choose a lower value of T ,
while in the second example it leads him to choose a higher value.
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by a self-interested person, who obtains information from those persons to whom he is linked.64 That
literature usually takes as given a “value function” defined on the possible networks. The function
expresses the network’s collective performance. Much of the literature then considers alternative
“allocation rules”. Such a rule assigns a share of the network’s value to each of its participants.
Suppose we specify a rule, and we also specify the cost of forming a link, borne by the two persons
who form the link. Then we have a game, in which each person chooses the links to be formed with
others, and each person collects his share of value (for the resulting network) minus his link costs. The
equilibria of these games are studied, with particular attention paid to the structure of the equilibrium
networks. (When is the equilbrium network a tree? When is it a ring?) The literature has developed
a great many interesting results about equilibrium networks.

In this framework, we could, in principle, study the impact of improved Information Technology.
Given a value function and an allocation rule, how does a drop in link costs (due to IT improvement)
change the structure of the equilbrium networks?

Suppose, however, that we venture in a new direction and we no longer take the value function
and the allocation rule as exogenously given. Instead we let each of n persons, say person j, observe
some external random variable ej. In addition, person j learns the current value of ek, for all persons
k who are neighbors of j, i.e., there is a link between i and k. Finally, we let j be a decision-maker. He
responds to the current value of his own and his neigbors’ external environments by taking an action.
He then collects a gross revenue Uj, which depends on his action, the others’ actions, and the current
value of e = (e1, . . . , en). Let Vj denote the expected value of Uj. Person j’s net payoff is Vj minus his
share of the cost of his links. (In one version we assume that a link’s cost is shared equally between
its two users).

In our network formation game, each person chooses his intended neighbors and he also chooses a
rule that tells him, what action to choose for each value of his intended neighbors’ and his own current
external variables. When all n persons have made these choices, a network emerges. That network
has a link between j and some k if and only if both j and k have chosen the link.

RESEARCH CHALLENGE #11: A collection of related questions awaits exploration:

• Which networks and action-rule n-tuples are stable, i.e., they have the property that if a player changes
his intended neighbors or his action rule (while no one else makes any changes) then his expected
payoff drops or stays the same?

• Which networks and action-rule n-tuples are efficient, i.e.,
∑n

i=1 Vi minus the total link costs is as high
as possible?

• When is a stable network efficient and vice versa?

• When is a stable network connected (there is a path between any two persons)? When is an efficient
network connected?

• When is a stable network a tree and when is it a ring? When is an efficient network a tree and when is
it a ring?

64Two surveys are: M.O. Jackson (2003), (2004).
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• For the case of a tree, does its number of tiers shrink as link costs go down — i.e., can we substantiate
the classic claim that an improvement in IT indeed leads to the “flattening of hierarchies”?

• When does an inefficient stable network exhibit shirking (total link costs are less than in an efficient
network) and when does it exhibit squandering (total link costs exceed those of an efficient network)?

Clearly this is an ambitious agenda. The existing literature has made progress on some of these
questions, because it suppresses the decision-making role of each person and takes network value and
its allocation as given. The agenda is even more challenging in the proposed new research path, where
each person is explicitly a decision-maker. Nevertheless, progress has been made in the following
case.65 Suppose the highest attainable value of the expected-revenue function Vj has the property that
it depends only on the number of j’s neighbors.

Here is a simple example where this is indeed so. Let each person j have one unit of a product
to sell. Each of the n persons is located at a market where the product can be sold. The random
variable ei is the product’s current price at location i. Given what he knows about the prices at his
neighbors’ locations, person j has to choose the location where he will sell his product. That can be
his own location, it can be the location of a neighbor, or it can be the location of a non-neighbor. Now
suppose each ei takes just two values: zero and one, each with probability 1

2
, whatever all the other

ek (k 6= i) may be. Suppose Person i is given a neighbor set, say the set Ni. He wants to choose a
selling location so as to maximize the expected value of his revenue. It is clear that he may as well
choose his own location if he observes ei = 1 or if no location k in the set Ni has ek = 1. But if he
sees ei = 0 and some neighbor k has ek = 1, then he chooses the location k. His highest attainable
expected revenue depends only on |Ni|, the number of his neighbors. It is

h(|Ni|) = 1 −
(

1

2

)|Ni|

.

The function h has a fortunate “diminishing marginal product property”: it increases more and more
slowly as |Ni| increases.

When the number of neighbors is all that matters, and each person’s highest attainable expected
revenue depends on the number of his neighbors through an increasing function h which (as in the above
example) has the diminishing marginal product property, then a fairly complete analysis is possible.
Let J be the link cost, and let g(J) denote the largest value of |Ni| for which h(|Ni|+1)−h(|Ni|) ≥ J .
Let half of the cost of each link be paid by each of its users. The results one can establish include the
following:

(i) Let us measure a network’s net performance by
∑n

1=1 h(|Ni|) − ( total link costs). If a network is
stable and its net performance is maximal among all stable networks, then it is efficient.

(ii) If n − 1 ≤ g(J), then both stable and efficient networks are connected.

(iii) If g(J) < n−1
2

< g(J
2
), then an efficient network is connected but a stable network need not be.

65The results given here are due to Xuanming Su.
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(iv) The net performance of an efficient network rises as J drops (i.e. IT improves), but more and
more slowly.

(v) In an inefficient stable network there is shirking, not squandering.

One might view the requirement that “only the number of neighbors matters” as very strong. One
might guess, in particular that it rules out externalities, wherein one person’s action affects the payoffs
collected by others. (There are no externalities in our selling-location example). But this need not
be so, as the following example shows: Each person j again observes a random variable ej and again
learns the current ek for every neighbor k. In response, he chooses an action aj (a real number).
When the action vector a = (a1, . . . , an) has been chosen, then for a given e = (e1, . . . , en), the entire
organization obtains a payoff

W (a, e) =
n
∑

i=1

eiai −
n
∑

i=1

n
∑

i=1

qijaiaj,

where the matrix ((qij)) is positive definite (which insures that there is a unique W -maximing a).
Person i’s own revenue is a share of W , namely r · W , where 0 < r ≤ 1

n
. Thus there are externalities

between the actions. Let the ei be independently distributed and let each be normally distributed
with mean zero. For any given network, consider the possible action rules for each person j. The rule
assigns a value of aj to each value of (ej, eNj

), where eNj
denotes the external variables observed by

j’s neighbors and hence learned by j as well. Because of the linear/quadratic payoff structure we may
use, once again, the methods of the Theory of Teams. It turns out, in spite of the externalities, that
in the rule n-tuple which achieves the highest expected value of W attainable by the network, each
person’s action depends only on the number of his neighbors. If we now turn to the network-formation
game, we find that for a given network, each person’s highest attainable expected payoff (the highest
attainable expected value of r · W ), again depends only on the number of his neighbors, whatever
action rules the n − 1 persons may have chosen. Moreover the function h, which gives that highest
attainable expected payoff, has the required diminishing marginal product property.

4. ORGANIZATIONAL MODELS IN WHICH THE PRIMITIVE IS A “TASK”, “PROB-
LEM”, “PROJECT”, OR “ITEM”.

There are formal models of organization which do not explicitly consider the actions the organiza-
tion takes in response to a changing environment. Instead the model supposes that “tasks” “problems”,
“projects”, or “information items” flow in from the outside world, and the organization has to pro-
cess them. They become the primitives of the model and are not further explained. One seeks to
characterize organizations which process the flow efficiently, in some appropriate sense. Just as in the
approaches we have discussed, processing costs (or capacities) are part of the model. To illlustrate, we
briefly discuss three studies that share this approach but are otherwise rather different.66

In Sah and Stiglitz (1986), the organization has to judge “projects”. A project has a net benefit x,
where x is a random variable with known distribution. The organization consists of evaluators. Once

66Other studies, which use similar primitives and pay some attention to informational costs, include the following: M.
Keren, M and D. Levhari (1983); M. Beckman (1983); A. Arenas, A. Cabrales, L. Danon, A Diaz-Guilera, R. Guimera,
and F. Vega-Redondo (2003); B. Visser (2000).
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he has received a project, an evaluator either chooses to reject it or to pass it on to another evaluator
for further evaluation. The total expected benefit of the project portfolio selected by a ”hierarchy”
is compared to that achieved by a “polyarchy”. In a hierarchy, the evaluators are arranged in two
“bureaus”, called 1 and 2. All projects first flow to a member of Bureau 1, who either rejects it or
passes it onto Bureau 2, where a final judgment is made. The only projects reviewed by Bureau 2 are
those it receives from Bureau 1. In a polyarchy, the organization is divided into two “firms”. Each
receives half of the projects. If it accepts the project no further evaluation occurs; if it rejects the
project then the other firm performs a final evaluation. The quality of the evaluators can be varied,
by changing the conditional distribution of x given the “reject” judgment. Costs could be attached to
quality improvement but the 1986 paper only sketches how that might be done.67

In Bolton and Dewatripont (1994), the main primitive is a “cohort of M information items” re-
ceived by the organization from an external source. Each item is a “type” of information about the
outside world. All cohorts yield the same “value” R to the organization, once they are “processed”.
(“Processing” is another primitive, not further explained). In order for the organization to realize
the cohort’s value, at least one agent must receive the entire cohort. (Thus far the problem can be
restated as the choice of a speak-once-only mechanism, with an action-taker who needs to know the
entire cohort). While one can study delay (time until at least one agent knows the entire cohort), the
paper emphasizes another question. It supposes that economies of scale are achieved when a given
agent processes a given type more and more frequently. A network of agents is given and each can be
made a specialist in one or more items; he processes only those. For each given network, one seeks
an assignment of types to agents so as to minimize “the total labor time spent per processed cohort”.
In efficient networks the labor time for a best assignment is minimal. Some suggestive properties of
efficient networks are worked out.

In Garicano and Rossi-Hansberg (forthcoming), the agents who form organizations belong to a
“knowledge economy”. In each time period each agent receives a problem whose level of difficulty can
vary, and solves it if its difficulty is below her level of knowledge. (“Problem”, “level of difficulty”,
“solve”, and “level of knowledge” are primitives, not further explained). Each problem is identified
by a value of Z, a nonnegative number; a higher Z means the problem is harder. The population of
possible problems has a known probability distribution over the possible values of Z. Each agent is
endowed with a “cognitive ability” α, a random variable with known distribution. By incurring a cost,
an agent can learn to handle all problems of difficulty up to a given level z. The cost is increasing in
z and decreasing in α. An agent receives an income, which is increasing in the proportion of problems
the agent is able to solve. An agent seeks to maximize income minus learning costs. But high-ability
agents can help low-ability agents, and that leads to the formation of organizations. The structure of
those organizations in an equilibrium of the economy is studied.68

5. CONCLUDING REMARKS

67In a further paper (Sah and Stiglitz (1988)), the organization becomes an n-person “committee”. All n persons
judge each project and it is accepted if k ≤ n members judge it favorably. This time the tradeoff between portfolio
quality and cost is central. The cost measure is simply n itself.

68Another model in which “task” is a primitive is developed in Malone (1987) and Malone and Smith (1988). These
papers study a number of cost measures for a given organizational structure.
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We have followed a modeling path with four elements: environment, action, goal, and informational
cost. The models describe, in detail, the process by which the organization reaches new actions when
the environment changes, i.e., they describe the mechanism that the organization chooses. This is not
an easy research path. A great deal more work needs to be done before one can judge whether the effort
is worthwhile. In the present state of knowledge there is a formidable gulf between the propositions
that can be proved and the complexities of organization and information as they appear in the real
world. Yet without theory, it is hard to make sense of that reality and to see why casual claims, like
those about the impact of IT on organizations, might or might not be true. Perhaps models that omit
one or more of our four elements, or forego the detailed description that the concept of mechanism
permits, or use entirely different primitives, may prove more useful guides — for the time being — to
persons who are able to observe real organizations and assemble new datasets. But surely all four of
our elements arise in real organizations, and real organizations follow some procedure in choosing new
actions. It seems inevitable that future empirical work will eventually try to examine that procedure
in detail and will deal, in one way or another, with all four of our elements.

Comparing mechanisms with regard to informational cost is particularly tricky. Minimal message-
space size provides one fundamental way of judging the complexity of an organizational goal, and it
tells us, in a preliminary and abstract way, how expensive one goal is relative to another if the goal is
to be met by an organization which is decentralized in the sense that each mmber privately observes
some aspect of the environment. But delay, the number of persons, and the individual communication
and computation burden that each person faces are all important as well. Modeling of those costs is
still in an early stage.

We have looked primarily at work conducted by economic theorists. But there are parallel efforts
in computer science and in artificial intelligence. Theoretical research that bridges disciplines is finally
emerging.69 There are also many parallel efforts by social scientists who are not economists (e.g.,
persons in the Organizational Behavior field). A review of that literature would doubtless paint a
very different picture as to what has been learned or could be learned about the effect of IT advances
on organizational structure. Economic theorists are endowed (or perhaps burdened!) with a certain
point of view when they approach such a challenging question. That point of view has thoroughly
permeated this Chapter.
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