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Abstract

Many real-world conflicts are to some extent determined randomly

by noise. The way in which noise is modeled in contest success func-

tions (CSFs) has has important implications both for the possibility

of forming cooperative relationships as well as for the features of such

relationships. In a one-shot conflict, we find that when noise is mod-

eled as an exponential parameter in the CSF, there is a range of values

for which an alliance between two parties can be beneficial, whereas

that is not the case for an additive noise parameter. In an infinitely

repeated conflict setting with additive noise, sustaining collusion via

Nash reversion strategies is easier the more noise there is and more

difficult the larger the contest’s prize value, while an increase in the

contest’s number of players can make sustaining collusion either more

or less difficult, all in marked contrast to the case of an exponential

noise parameter. Which noise specification is appropriate is therefore

an important consideration for modeling any conflict situation.
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1 Introduction

Conflict situations are often modeled as contests, in which players compete

by making irrecoverable expenditures or costly efforts to increase their prob-

ability of winning a prize.1 In many cases, however, players’ winning proba-

bilities are determined not only by their expenditures, but also by additional

factors of chance or noise. For example, a military conflict could be decided

not only by the sizes of the countries’ armies, but also by the geography and

prevailing weather where the conflict takes place.

Another prominent aspect of conflicts is cooperation among competing

parties, and whether or not such agreements are worthwhile or sustainable.

Throughout history some warring factions have been able to ally with one

another against rivals while others have fought on their own, all with varying

degrees of success. In other circumstances, parties have managed to sustain

collusive agreements of peace for extended periods. In this paper we con-

sider the impact of incorporating noise into a contest model as one of the

many factors that may influence whether or not conflicting parties can ally,

cooperate, or collude.

The usual (one-shot) contest model features a finite set of players I =

{1, ..., n}, n ≥ 2, with each player i ∈ I spending an irrecoverable amount

xi in an effort to win a conflict. Each player’s probability of victory is de-

termined by a contest success function (CSF), pi(x1, . . . , xn). If all players

assign a value of v to the prize awarded to the winner of the contest, each

player i ∈ I then simultaneously maximizes

πi(x1, . . . , xn) = pi(x1, . . . , xn)v − xi.

1Other applications of contest models include political lobbying, electoral competition,
litigation, advertising competition, R&D competition, and sporting competition.
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The most popular CSF is the Tullock (1980) CSF, which takes the form

pi(x1, ..., xn) :=







x
γ
i

x
γ
i
+
∑

j 6=i x
γ
j

if xγ
i +

∑

j 6=i x
γ
j 6= 0

1
n

otherwise.
(1)

The exponent 0 ≤ γ ≤ 1 measures the CSF’s sensitivity to expenditures

in determining winning probabilities.2 It is commonly referred to in contest

theory literature as the CSF’s discriminatory power following Hillman and

Riley (1989), but can also be thought of as a noise parameter. For low levels

of γ (i.e., high levels of noise), winning probabilities do not vary much among

players with small expenditure differences; in the limit as γ → 0, the CSF

is completely insensitive to expenditures and each player has a uniform 1/n

probability of winning no matter their expenditure choice. For high levels of

γ (i.e., low levels of noise), winning probabilities vary widely among players

with small expenditure differences; in the limit as γ → ∞, the CSF becomes

the all-pay auction CSF in which the player making the highest expenditures

wins with probability 1.

An alternative CSF similar to the Tullock form but with an additive

(rather than exponential) noise parameter was put forth by Amegashie (2006b).

This CSF posits player i’s probability of victory as

pi(x1, ..., xn) :=
xi + α

xi + α +
∑

j 6=i(xj + α)
, (2)

where α > 0 is the noise parameter.3 For the remainder of the paper, we will

often refer to (2) simply as the additive noise CSF.

The two CSFs are similar, and each has desirable properties. The Tullock

CSF’s popularity in the literature stems from a variety of features, including

2The restriction on γ is sufficient to ensure an interior pure-strategy Nash equilibrium.
3Dasgupta and Nti (1998) also use a similar CSF specification in their study of optimal

contest design, but interpret their parameterization as the probability that the contest
does not award the prize, which is more like the contests with the possibility of a draw
studied by Blavatskyy (2010) and Jia (2012).
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its intuitive economic interpretation and the axiomatic properties provided

by Skaperdas (1996). A stochastic foundation for its functional form is also

provided by Jia (2008). The additive noise CSF preserves many, though not

all (homogeneity of degree zero, for example), of the Tullock CSF’s properties

while, as Amegashie (2006b) notes, improving tractability in some cases. Rai

and Sarin (2009) provide an axiomatic foundation and Jia (2012) provides a

stochastic foundation for CSFs of the form in (2).

While the two CSFs are different in terms of what they allow a researcher

to focus on, most importantly yielding solutions in terms of different param-

eters, the one-shot equilibria they admit are not all that different from one

another qualitatively, especially when players are symmetric. When compar-

ing the two models in the presence of opportunities for alliance formation

or collusive arrangements, however, we find that they lead to very different

results. In particular, in a one-shot conflict, a sufficient degree of exponen-

tial noise can make an alliance between two parties profitable relative to

a non-cooperative state, while no such alliance exists under additive noise.

This is due to the fact that only exponential noise allows the allies’ expendi-

tures to be sufficiently imperfectly substitutable in the allied CSF, mitigating

free-riding incentives.

Perhaps more surprising is the difference between the two models when

players attempt to sustain collusion in an infinitely repeated conflict. With

the additive noise CSF, we show that an increase in the contest’s degree

of noise makes sustaining collusion easier, an increase in the contest’s prize

value makes sustaining collusion more difficult, and an increase in the con-

test’s number of players can make sustaining collusion either more or less

difficult. These results stand in rather stark contrast to the existing results

on sustaining collusion with the Tullock CSF by Shaffer and Shogren (2008),

who show that the prize value has no effect on collusion, while more noise

and more players both make sustaining collusion more difficult.

The reason for these differences is the type of deviation made by defecting
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players in each case. With exponential noise a player can deviate from a col-

lusive state of zero expenditure to win the prize with probability 1 with only

an arbitrarily small amount of spending. With additive noise the optimal de-

viation is more complicated, since noise still to some extent determines the

contest’s outcome, even if all other players’ spending levels are zero. This is

also the reason why an increased number of players does not always make

collusion more difficult, as it does in most other models.

In the following section, we consider a one-shot conflict with the possi-

bility of alliance formation and how noise affects whether or not alliances

are profitable for the allies themselves. We then develop a model of repeated

conflict with noise, derive novel results on sustaining collusion via Nash rever-

sion strategies with the additive noise CSF, and then compare those results

to existing results on collusion in repeated conflicts with the Tullock CSF. A

final section concludes the paper.

2 Alliance Formation in One-Shot Conflicts

with Noise

What is the impact of noise on the prospect of alliance formation or collusive

arrangements in conflict situations? We begin by considering a one-shot

contest in which parties choose their expenditures simultaneously once and

for all. In such a setting, some parties may choose to ally with one another,

combining forces to take on another rival. For simplicity and for ease of

comparison with other work in the alliance puzzle literature, in this section

we confine our analysis to a three-party conflict, though it could be expanded

to n parties.

Konrad (2009) and Ke et al. (2013) consider a three-party conflict in

which two parties are predesignated to ally with one another. Those two

parties can be interpreted as perhaps compatible in some military or cultural

way, while the third is not. Assuming parties 1 and 2 are the allies, the
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advantage to being in the alliance is that the allies’ probabilities of victory

are modified as

p1 = p2 =
x1 + x2

x1 + x2 + x3

.

The third party’s CSF is the standard Tullock CSF with γ = 1.

A downside to being in an alliance is that, in the event of a victory, the

prize must be shared in some way. Ke, Konrad, and Morath (2013) consider

two possibilities: that the prize may be shared equally between between the

two parties, perhaps due to some prearranged binding contract, or fought

over in a second-stage contest among the allies. We will primarily focus on

the former case, so the value to winning the contest for each ally is simply v
2

rather than v, but will address results with the latter as well.

Regardless of which of the two sharing rules is used, taking first order

conditions and solving for equilibrium expenditures and payoffs leads to what

is known as the alliance puzzle. First, because the allied parties have identical

first order conditions, only the sum of the alliance members’ expenditures,

and thus the sum of their expected payoffs are uniquely determined, not

their individual values. Second, the combined allies’ expenditures are less

than the expenditure of either party on their own in the standard, unallied

case, which leads the allies to have at best a combined payoff equal to that

they would achieve if they were unallied.4 Specifically, for the case of equal

prize division among allies:

(i.) (x∗
1 + x∗

2) =
v
9
while x3 =

2v
9
,

(ii.) p∗1 = p∗2 =
1
3
while p∗3 =

2
3
,

(iii.) and (π∗
1 + π∗

2) =
2v
9
while π3 =

4v
9
.5

At best, the allies will end up with the same payoff they would have if

they had not allied, and one may end up worse off. This is due in large

4In a standard contest with a Tullock CSF as in (1) with all parties maximizing their

payoffs individually, x∗
i = γ(n−1)

n2 v and π∗
i = n−γ(n−1)

n2 v for all i ∈ I.
5Splitting the prize via second-stage intra-alliance conflict only harms the allies relative

to the unallied party, as the additional conflict further dissipates the prize value for the
allies.
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part to the free-riding effects caused by the perfect substitutability of allies’

expenditures in the CSF, but also to the weakened expenditure incentives

caused by splitting the prize.

With sufficient noise in the CSF, the alliance puzzle disappears. Note,

however, that the noise must be of the exponential rather than the additive

variety. Otherwise, if the allies’ CSFs were modified to include noise as

p1 = p2 =
x1 + x2 + 2α

x1 + x2 + x3 + 3α
.

with a complementary unallied p3, the same results for the alliance paradox

would persist. The allies’ expenditures would remain perfectly substitutable

in the CSF, so the free-riding effects would remain.

Suppose instead of being perfectly substitutable, the allies expenditures

combine in the CSF as

p1 = p2 =
xγ
1 + xγ

2

xγ
1 + xγ

2 + xγ
3

(3)

with 0 < γ < 1, and p3 the complementary probability. With equal prize

division, the following first order conditions obtain:

∂π

∂x1

=
xγ−1
1 xγ

3

(xγ
1 + xγ

2 + xγ
3)

2

v

2
− 1 = 0,

∂π

∂x2

=
xγ−1
2 xγ

3

(xγ
1 + xγ

2 + xγ
3)

2

v

2
− 1 = 0,

and
∂π

∂x3

=
xγ−1
3 (xγ

1 + xγ
2)

(xγ
1 + xγ

2 + xγ
3)

2

v

2
− 1 = 0.

With three unique first order conditions, as opposed to only two in the per-

fectly substitutable case, it is possible to solve for unique expenditures and

expected payoffs for all three parties. Along with the probabilities of victory,

they are:
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(i∗.) x∗
1 = x∗

2 =
22γ−1γv

(4γ+2)2
and x∗

3 =
22γ+1γv

(4γ+2)2
,

(ii∗.) p1 = p2 =
1

1+22γ−1 and p3 =
22γ−1

1+22γ−1

(iii∗.) π1 = π2 =
(2+22γ−γ22γ−1)

(2+22γ)2
v and π3 = ( 22γ

2+22γ
− 22γ+1γ

(22γ+2)2
)v.

Remark. The allies’ collective action problem is more evident in x∗
1 and x∗

2

in (i∗)., as ∂x∗
1/∂γ < 0 and ∂x∗

2/∂γ < 0. The more sensitive the CSF is to

the parties’ efforts (i.e., the less noise there is), the worse is the incentive to

free ride. More noise actually dampens the incentive to free ride, since ally

expenditures become less substitutable.

The main result of this section comes from simply comparing the allies’

payoffs in (iii∗.) with what they would achieve if all three parties simply

maximized their payoffs individually with the CSF in (1). Both are decreas-

ing in γ, or increasing in noise, because noise reduces equilibrium conflict

expenditures. The allies’ payoffs increase more quickly as noise increases

(γ decreases) when they collude, however, since it alleviates their collective

action problem while preserving some benefits of the allied CSF. There is

therefore a threshold level of noise past which the allies are both unambigu-

ously better off working together. Comparing payoffs and solving then leads

to the following.

Proposition 1. For three-party contests with 0 < 0.245 < γ, parties who

ally with a CSF as in (3) and divide their prize equally are unambiguously

better off together than competing individually in a standard Tullock contest.

Sufficient noise in a conflict situation therefore makes alliances worthwhile

when otherwise parties are better off fending for themselves. Again, however,

this is only for the exponential noise specification, not the additive noise

version.

Two additional features of alliance formation in conflicts with noise de-

serve mention. First, the alliance puzzle feature that remains is that the

unallied party is made better off when two parties ally against it for any
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0 < γ ≤ 1, another result of the allies’ reduced expenditures. For this reason,

a corollary to the previous proposition is that sufficient noise, 0 < γ < 0.245,

makes it Pareto-improving for alliances to form in conflict situations when

allies divide the prize equally. Second, if the allied parties do not share the

prize in the event of victory, and instead divide it via a second-stage conflict,

then alliances are never worthwhile for any 0 < γ ≤ 1 as the prize value is

too badly dissipated.

3 Tacit Collusion in Repeated Conflicts with

Noise

Many real-world contests are also repeated. Repeated contests could provide

players opportunities and incentives to collude by mutually refraining from

competing with one another. If players are sufficiently patient (or, equiv-

alently, believe the contest will repeat with a sufficiently high probability),

then long-term collusion could dominate short-term opportunism when play-

ers use strategies with implicit threats to punish deviations from collusion.

Continuing with the military conflict example, the long-lived nature of inter-

actions among countries could provide them incentives to alter their military

expenditures or reach other agreements that have them refrain from engag-

ing in costly conflicts. Because there are many repeated contests with noise,

gaining insight into how noise affects incentives for collusion in repeated con-

tests is important.

Accordingly, we now analyze incentives for tacit collusion in an infinitely

repeated contest with noise. We focus our analysis on the CSF with additive

noise introduced by Amegashie (2006b), since Shaffer and Shogren (2008)

have already performed a similar analysis for the Tullock CSF.6 Though our

6Other existing studies of contests with noise in the CSF are either one-shot (e.g.,
Cason et al. (2013), Wasser (2013), and Grossmann (2014)) or are repeated but do not
analyze players’ incentives for collusion (e.g., Eggert et al. (2011)).
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results on collusion in repeated conflicts with the additive noise CSF are of

independent interest, comparison with the results from Shaffer and Shogren

(2008) makes clear that the features of collusion in repeated conflicts strongly

depend upon how noise enters the CSF.

If players are sufficiently patient, they can sustain maximal collusion (i.e.,

mutual refraining from conflict) by using Nash reversion strategies with ei-

ther of the CSFs under consideration. With additive noise, we show that

an increase in the contest’s degree of noise makes sustaining collusion eas-

ier, while an increase in the contest’s prize value makes sustaining collusion

more difficult. The latter result is reminiscent of the well-known resource

curse in which countries dependent upon wealth from natural resources like

minerals and petroleum are more prone to violent conflict; for a review of

the extensive resource curse literature, see Ross (2015). An increase in the

contest’s number of players can make sustaining collusion either more or less

difficult. This last result for the additive noise CSF is perhaps the most

interesting, since it means more parties being involved in a conflict does not

always make collusion more difficult, contrary to most other economic models

of competition.

In addition to its implications for conflict, this section contributes to a

more general literature on collusion in repeated contests. The main message

of this literature is that the long-lived nature of repeated contests can provide

players incentives to collude, which typically leads to lowered contest expen-

ditures. Yang (1993) and Leininger and Yang (1994) analyze contests in

which players take turns choosing whether to increase or leave unchanged

their current expenditures, which accumulate over the contest’s horizon;

when these alternating moves occur over an infinite horizon, a tit-for-tat-like

strategy can enable players to keep their equilibrium expenditures low and

possibly even minimal. Linster (1994) analyzes cooperative arrangements

determined by the Nash bargaining solution when players’ disagreement pay-

offs arise from reversion to Nash equilibrium play in an infinitely repeated
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contest. Amegashie (2006a) shows that increased prize value asymmetry

between players makes sustaining collusion easier in an infinitely repeated

contest. In an infinitely repeated game of investment with imperfect prop-

erty rights, Amegashie (2011) shows that an equilibrium with overinvestment

exists where the asset owner and the potential appropriator cooperate by not

competing for the asset in a subsequent contest as long as the asset owner

makes a transfer increasing in investment. Cheikbossian (2012) studies in-

finitely repeated contests between two groups of unequal size and shows that

collusion (in the sense of a group overcoming its free-rider problem and in-

creasing its expenditures) can be as easy to sustain in the larger group as it

is in the smaller group.7

3.1 The Repeated Conflict Model with Additive Noise

CSF

Each period t = 0, 1, 2, ..., the n players compete in a simultaneous-move

contest to win a prize of value v > 0 to each player. The stage games are the

same as the one-shot contests described above, with each player i ∈ I making

irrecoverable expenditures xit ≥ 0 to increase their winning probability pit,

given by the additive noise CSF with parameter α from Amegashie (2006b):

pit(x1t, ..., xnt) :=
xit + α

xit + α +
∑

j 6=i(xjt + α)
. (4)

As in the case of exponential noise, increasing the degree of noise in this

CSF also has the effect of discouraging expenditures. Thus, we assume that

α ∈ [0, α) where α := (n − 1)v/n2 so that the stage game’s unique Nash

equilibrium is interior; if instead α ≥ α, the stage game’s unique Nash equi-

7There also exist a number of studies that analyze explicit collusion in one-shot contests
(e.g., Alexeev and Leitzel (1991, 1996) and Huck et al. (2002)) and that develop models of
infinitely repeated contests to analyze non-collusive behavior (e.g., Itaya and Sano (2003),
Mehlum and Moene (2006), Krähmer (2007), Eggert et al. (2011), and Grossmann et al.
(2011)).
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librium has each player making an expenditure of 0 and there exists no form

of collusion yielding players a Pareto improvement thus making the analysis

of incentives for collusion moot.

When players make expenditures (x1t, ..., xnt) in period t, the expected

profits of player i ∈ I in period t are:

πit(x1t, ..., xnt) := pit(x1t, ..., xnt)v − xit

=
xit + α

xit + α +
∑

j 6=i(xjt + α)
v − xit. (5)

Each player discounts streams of future profits to their present value accord-

ing to the discount factor δ ∈ (0, 1).

3.2 Results on Collusion

In the absence of collusion, we suppose that players make expenditures ac-

cording to the stage game’s Nash equilibrium. As Amegashie (2006b) shows,

when α < (n − 1)v/n2 the stage game has a unique Nash equilibrium in

which each player makes expenditures

xN =
n− 1

n2
v − α

and earns expected profits

πN =
v

n2
+ α

each period.8

When α < (n− 1)v/n2, players can improve upon the stage game’s Nash

8It is straightforward to show that the first derivative of (5) with respect to xit is
positive when xjt = 0 for all j ∈ I \{i} and α < (n−1)v/n2, ruling out all players making
0 expenditures as a Nash equilibrium. It is also straightforward to show that (5) is strictly
concave in xit.
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equilibrium by collusion where each player makes an expenditure of

xC = 0

and earns expected profits

πC =
v

n

each period. We suppose that players use the following Nash reversion strate-

gies of Friedman (1971) to sustain collusion tacitly as a subgame perfect Nash

equilibrium of the infinitely repeated contest.9 Nash reversion strategies pre-

scribe that each player i ∈ I

• makes an expenditure of xC = 0 in period t = 0;

• makes an expenditure of xC = 0 in periods t = 1, 2, ... as long as

all players have made expenditures of xC = 0 in all periods to date;

otherwise, the player makes an expenditure of xN = (n − 1)v/n2 − α

forever.

As an alternative to Nash reversion strategies, we could analyze collusive

behavior sustainable by the optimal punishment approach of Abreu (1986,

1988). Adopting such an approach would be preferable if Nash reversion

strategies did not sustain maximal collusion because optimal punishments

can support a wider range of collusive behavior in equilibrium. However, as

we show below, since Nash reversion strategies do sustain maximal collusion,

we opt to follow the Friedman (1971) approach.

The optimal deviation xD of a player i ∈ I from the collusive arrangement

above solves

max
xit

πit(xit, 0, ..., 0) =
xit + α

xit + nα
v − xit. (6)

9Numerous studies of collusion in repeated contests follow a similar approach; see,
for example, Linster (1994), Amegashie (2006a, 2011), Shaffer and Shogren (2008), and
Cheikbossian (2012). Therefore, we adopt this approach so that our results on incentives
for collusion are comparable to ones already existing in the literature.
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The first-order condition of (6) is

(n− 1)α

(xit + nα)2
v − 1 = 0, 10

which is satisfied by

x̃D = ±
√

(n− 1)αv − nα,

of which only x̃D =
√

(n− 1)αv−nα > 0 when α < (n− 1)v/n2. Therefore,

the optimal deviation is

xD =
√

(n− 1)αv − nα

and earns expected profits of

πD = v − 2
√

(n− 1)αv + nα.

Nash reversion strategies sustain collusion as a subgame perfect Nash

equilibrium of the infinitely repeated contest if and only if the discounted

profits from collusion exceed the discounted profits from deviation and re-

version to the stage game’s Nash equilibrium forever; that is, Nash reversion

strategies sustain collusion if and only if

∞
∑

t=0

δtπC ≥ πD +
∞
∑

t=1

δtπN ,

which simplifies to
πC

1− δ
≥ πD +

δ

1− δ
πN ,

10It is straightforward to show that (6) is strictly concave in xit.
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or, in terms of a critical discount factor δ∗,

δ ≥ πD − πC

πD − πN

=
v − 2

√

(n− 1)αv + nα− v
n

v − 2
√

(n− 1)αv + nα−
(

v
n2 + α

) := δ∗. (7)

Note that δ∗ ∈ (0, 1) because πD > πC holds if and only if [(n−1)v/n−nα]2 >

0, which always holds, and πC > πN holds if and only if α < (n − 1)v/n2,

which holds by assumption. Any factor increasing δ∗ makes collusion more

difficult to sustain and any factor decreasing δ∗ makes collusion easier to

sustain. The following proposition describes how δ∗ varies with α, v, and n.

Proposition 2. When players attempt to sustain maximal collusion by us-

ing Nash reversion strategies in an infinitely repeated contest with the contest

success function in (4), (i) an increase in the contest’s degree of noise makes

sustaining collusion easier, (ii) an increase in the contest’s prize value makes

sustaining collusion more difficult, and (iii) an increase in the contest’s num-

ber of players can make sustaining collusion either more or less difficult.

Proof. (i) Differentiating (7) with respect to α, we have

∂δ∗

∂α
=

− (n−1)v√
(n−1)αv

+ n

v − 2
√

(n− 1)αv + nα−
(

v
n2 + α

)

−

[

v − 2
√

(n− 1)αv + nα− v
n

]

[

− (n−1)v√
(n−1)αv

+ n− 1

]

[

v − 2
√

(n− 1)αv + nα−
(

v
n2 + α

)

]2

= −

√

(n− 1)αv
{

(n− 1)v − n
[

2
√

(n− 1)αv − nα
]}

α
[

v − 2
√

(n− 1)αv + nα−
(

v
n2 + α

)

]2 < 0,
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which holds if and only if

(n− 1)v − n
[

2
√

(n− 1)αv − nα
]

> 0,

which holds if and only if

[

(n− 1)v − n2α
]2

> 0,

which always holds.

(ii) Differentiating (7) with respect to v, we have

∂δ∗

∂v
=

1− (n−1)α√
(n−1)αv

− 1
n

v − 2
√

(n− 1)αv + nα−
(

v
n2 + α

)

−

[

v − 2
√

(n− 1)αv + nα− v
n

]

[

1− (n−1)α√
(n−1)αv

− 1
n2

]

[

v − 2
√

(n− 1)αv + nα−
(

v
n2 + α

)

]2

=

√

(n− 1)αv
{

(n− 1)v − n
[

2
√

(n− 1)αv − nα
]}

v
[

v − 2
√

(n− 1)αv + nα−
(

v
n2 + α

)

]2 > 0,

which holds if and only if

(n− 1)v − n
[

2
√

(n− 1)αv − nα
]

> 0,

which always holds, as we have shown above in (i).
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Figure 1: Critical Discount Factor Sustaining Collusion (α = 0.9, v = 100,
n ∈ [2, 100])

(iii) Differentiating (7) with respect to n, we have

∂δ∗

∂n
=

− αv√
(n−1)αv

+ α + v
n2

v − 2
√

(n− 1)αv + nα−
(

v
n2 + α

)

−

[

v − 2
√

(n− 1)αv + nα− v
n

]

[

− αv√
(n−1)αv

+ α + 2v
n3

]

[

v − 2
√

(n− 1)αv + nα−
(

v
n2 + α

)

]2 ≷ 0.

Figure 1 illustrates the nonmonotonic relationship between n and δ∗ by

graphing (4) for α = 0.9, v = 100, and n ∈ [2, 100]. Figure 1 shows that an

increase in n initially makes collusion more difficult to sustain and eventually

makes collusion easier to sustain.

The properties of δ∗ are fairly intuitive. An increase in α decreases πD,

decreasing incentives to deviate from collusion, while it increases πN , increas-

ing deviation incentives because of the less severe Nash reversion punishment;

the former effect dominates, thus an increase in α makes sustaining collusion
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easier. An increase in v has three effects on δ∗: it increases πD and πN ,

both of which decrease incentives to deviate from collusion, and it increases

πC , increasing incentives for collusion; the first two effects dominate, thus an

increase in v makes sustaining collusion more difficult. An increase in n also

has three effects on δ∗: it decreases πD and πN , both of which decrease in-

centives to deviate from collusion, and it decreases πC , decreasing incentives

for collusion; which of the three effects dominate depends upon the levels of

α, v, and n, thus an increase in n can make sustaining collusion either more

or less difficult.

3.3 Comparing Models of Repeated Conflicts with Noise

Our results on the factors affecting the sustainability of collusion with ad-

ditive noise differ markedly from the closely related analysis of Shaffer and

Shogren (2008), who analyze incentives for collusion in an infinitely repeated

contest with the Tullock CSF. When players attempt to sustain collusion

by using Nash reversion strategies, Shaffer and Shogren (2008) show that a

decrease in γ (i.e., an increase in the level of noise in the contest) makes

sustaining collusion more difficult by making the Nash reversion punishment

less severe.11 Shaffer and Shogren (2008) also show that an increase in the

contest’s prize value does not affect the sustainability of collusion and that

an increase in contest’s number of players makes sustaining collusion more

difficult. Broadly speaking, our results differ from one another because of

the nature of players’ deviations from collusion.

In the case of the Tullock CSF, as in Shaffer and Shogren (2008), each

player’s optimal deviation from collusion involves making an infinitesimally

small expenditure and winning the contest with probability 1 because the

Tullock CSF lacks noise in this case. This means πD ≈ v, πC = v
n

as

before, and πN = n−γ(n−1)
n2 v is the well-known Nash equilibrium for the one-

11Shaffer and Shogren (2008) analyze the critical discount rate (r∗) sustaining collusion,
which relates to the critical discount factor (δ∗) we analyze as δ∗ = 1/(1 + r∗).
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shot Tullock contest. Importantly, then, the only payoff affected by noise is

the Nash equilibrium payoff, the punishment for defection, which increases

as noise increases (i.e., as γ decreases). More noise therefore makes the

punishment for deviating less severe, making collusion more difficult. The

collusive, deviation, and Nash equilibrium payoffs are all proportional to v, so

it drops out of the threshold δ∗ completely and has no impact on collusion,

and the dominant impact of an increase in n is to decrease the collusive

payoff, making collusion harder to sustain. Specifically, for the Tullock CSF

we can calculate the threshold

δ∗ =
n2 − n

n2 − n+ γ(n− 1)
,

which is much simpler than the δ∗ in the case of additive noise presented in

the previous subsection.

By contrast, the additive noise CSF always has noise, whether players

make expenditures or not, and thus each player’s optimal deviation from

collusion is more complex. Simply making some positive expenditure when

all other players make 0 expenditures does not guarantee that a player wins

the contest with probability 1. The more complicated nature of the optimal

deviation, and in turn πD, is then what leads to the different results for

the additive noise model when it comes to sustaining collusion, since πD is

nonlinear in all three of the parameters of interest. The collusive payoffs are

the same in both cases, and the Nash equilibrium payoffs are qualitatively

very similar, both increasing in noise and decreasing in n. The fact that

more noise, a larger prize, and more players have such different impacts on

the ability to sustain collusion in a repeated conflict with additive noise, as

compared to exponential noise, is therefore due to the payoff to defection,

and how those factors impact that payoff in each case.
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4 Conclusion

In this paper, we develop and study models of one-shot and repeated con-

flicts whose outcomes are to some extent determined by noise. In one-shot

conflicts where players have the possibility of forming alliances, exponential

noise in the Tullock CSF can make alliance formation profitable to allies and

overcome the alliance puzzle while additive noise in the CSF from Amegashie

(2006a) cannot. In repeated conflicts with additive noise and the possibility

of collusion, we show that sustaining collusion is easier the more noise there

is and more difficult the larger the contest’s prize value, while an increase in

the contest’s number of players can make sustaining collusion either more or

less difficult, all in marked contrast to the exponential noise case analyzed

by Shaffer and Shogren (2008). Though we make no claim as to which form

of noise in conflicts is more realistic, our results clearly demonstrate that the

form of noise present in a conflict has important implications both for the

possibility of forming cooperative relationships as well as for the features of

such relationships.

Thinking in terms of what our results mean for conflict situations, it

seems reasonable that the degree of randomness present in any situation

may prevent players’ expenditures from impacting their probability of victory

precisely. In addition to having the effect of lowering individual spending in

a standard contest, we have shown that the presence of such imperfections

can actually make alliances between warring parties worthwhile, since the

imprecision makes their spending less substitutable, and thus more valuable

to one another. Having more precise control over events would actually make

it more difficult for the parties to trust one another due to stronger free-

riding incentives. This suggests that military alliances might be less common

if the conflict outcomes were made less random through, for example, the

deployment of enhanced military technologies.

Does randomness disappear if players refrain from conflict spending? This

question proves to be important in a repeated setting. If players in a re-
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peated conflict situation have achieved a peaceful arrangement, the incentive

to break the peace is very different if one player can win the prize with cer-

tainty with an arbitrarily small effort, as opposed to a situation in which the

now one-sided conflict’s outcome is to some extent random. If more players

means a larger amount of extant randomness (nα in the denominator of the

additive noise CSF), for example, then a larger number of players actually

makes a collusive outcome easier to sustain. This result, which is fairly un-

usual, is due to the fact that there is more randomness to overcome for any

would-be defector. In conflicts with additive noise, growth in the number of

players in conflict has the effect, among others, of amplifying the amount of

noise determining the conflicts outcome. Since we have demonstrated that

an increase in noise makes sustaining collusion relatively easier, it stands to

reason that an increase in the number of players can in some cases have the

same overall effect.
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