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Abstract

In a model of investment in product development in duopoly we study the implications of
different costs of innovating and imitating for firm strategies and optimal IP protection, relating
these to the dynamic characteristics of a stochastic demand. A critical relative cost is identified
that determines whether strategic competition takes the form of attrition or preemption, with
industry value being maximized when firms neither stall nor hasten entry. Provided that
demand growth and volatility are sufficiently low, as typically arises in mature industries, it is
socially desirable to provide innovators with complete protection (winner-take-all), implying
a preemption race. But when demand is rapidly expanding and highly unpredictable a social
optimum can involve a low level of protection, implying attrition, albeit with a positive lower
bound for the optimal level of imitation cost (winner-pays-some). Industry profits increase if
firms can commit not to seek stronger IP protection once they have innovated, providing a
rationale for open standards. While buyouts have ambiguous welfare effects, simple licensing
schemes are welfare improving.
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1 Introduction

When developing an invention into a commercial product requires significant resources, only a few
firms may jockey for positions in an industry either as a first-mover or as a second entrant. In these
circumstances the timing of product introductions is determined by investment strategies that are
driven by the relative costs of innovation and imitation and respond to such policy variables as the
strength of intellectual property (IP) rights, whose effectiveness must hinge therefore on dynamic

characteristics of the final product market.

In a model of innovation focusing on competing investments in the development of a new
product, we study the implications of differences in the costs of innovating and imitating for
the strategies of firms when their roles as an innovator or imitator are endogenous, in order to
characterize the regulator’s choice of optimal IP protection level. By identifying the role played
by the drift and the volatility of demand in this context we are able to shed light on the timing
of innovative and imitative investment and its implications for welfare, so as to contribute a novel

perspective on the necessity of strong IP protection in certain types of markets.

A high degree of IP protection that induces a preemption race between firms is seen to consti-
tute a second-best from a welfare standpoint under general conditions that are satisfied in common
oligopoly models if demand growth and volatility are sufficiently low, as typically occurs in mature
industries. When the level of these demand characteristics is sufficiently low in fact, it is socially
desirable to provide innovators with complete protection and let strategic investment take the
form of a winner-take-all contest. Conversely, attrition arises if innovation has positive spillovers
for the imitating firm, and it is all the more likely when demand growth and volatility are high, a
case that corresponds to the circumstances most commonly associated with innovative industries.
Even then an optimal level of IP protection still sets a positive cost of imitating that we identify,

so that dynamic competition between firms should always be winner-pay-some in nature.

Specifically, we investigate the exercise of strategic growth options by two initially identical
firms contemplating the development of a product for a new market in which they are potential
horizontal competitors.! Investment levels are fixed and irreversible and product development oc-
curs in a context of uncertainty, as market demand evolves stochastically over time through a scale

2

parameter that follows a geometric Brownian motion.” Both firms independently choose invest-

'Our focus on industries in which firms are horizontal competitors is therefore complementary to research on

cumulative innovation such as Green and Scotchmer [15].
*We thus focus on the effect market uncertainty rather than R&D uncertainty on innovation incentives, the

latter having been extensively studied in the patent race literature (see e.g. Denicolo [6]).



ment thresholds that determine the timing of their investment, and once performed investments
result in a perpetual profit flow whose magnitude at any moment depends on the number of active
firms. We thus study a real option game? but depart from existing work by introducing an ez-post
asymmetry through the differing fixed costs of innovation and imitation that firms face. We do not
restrict the relative magnitude of these fixed costs, so the model allows for either a broad level of
IP protection which implies a relatively high cost of imitation, or significant spillovers that result

in a comparatively low cost of imitation.

Through the difference between the costs of innovating and imitating we parametrize first- and
second-mover advantage in a parsimonious way, which allows us to nest in the same framework
two classic games of timing (the deterministic models of attrition and preemption of Hendricks et
al. [17] and Fudenberg and Tirole [11]) whose combination and formulation in the stochastic case
present several challenges (Thijssen et al. [34], Riedel and Steg [29]). In order to allow a tractable
welfare analysis of the effect of the level of IP protection on firm investment incentives and in-
dustry outcomes, we consider a timing game in which the strategies of firms consist of investment
thresholds or hurdle rates that determine stochastic investment times, for which we provide a sim-
ple strategic form and characterize the unique symmetric equilibrium in the investment threshold
choices of firms (in Section A.5 we complement the strategic form with a more technical discussion

of extended mixed strategies and a dynamic view of the investment game).

Our first result relates equilibrium strategic investment to the relative costs of innovation and
imitation (Proposition 1), and we identify a critical level of imitation cost that determines whether
strategic competition between firms takes the form of attrition or preemption. For sufficiently low
or high values of the cost of imitation, we find that strategic competition between firms has the
form of a standard attrition or preemption game. A sufficiently low imitation cost leads to a
situation of attrition as firms seek to enter second, delaying product introduction and inducing
more or less rapid imitation.* Conversely a sufficiently high imitation cost leads to a situation of
preemption as firms seek to enter first, accelerating product introduction but generally delaying
imitation. For intermediate imitation cost values, strategic competition takes the form either of a
waiting game in which firm investment thresholds are continuously distributed over a disconnected

support, or of a preemption race in which an attrition phase may occur off the equilibrium path.

3Chevalier-Roignant and Trigeorgis [4] provide a thorough presentation of such games, in which firms balance

the value of retaining flexibility in the face of uncertainty with the strategic incentive to invest early.
*Our model thus encompasses dynamics akin to those described by Scherer (1980, quoted in Fudenberg and

Tirole [11]) as “each industry member holding back initiating its R&D effort in the fear that rapid imitation by

others will be encouraged, more than wiping out its innovative profits.”



Attrition occurs provided that innovation has positive spillovers, if product market competition
is sufficiently weak, and market growth and volatility are sufficiently high. This is because high
growth and volatility raise the option value of delaying investment, eventually compensating for
the lost monopoly profit phase if the firm manages to enter second and imitate instead. A useful
additional result concerns the optimal balance between first- and second-mover advantage from the
standpoint of the industry. Under both attrition and preemption, positional rents are dissipated
in equilibrium, so that expected industry value is maximized if the imitation cost attains a critical
level at which there is neither a race to preempt nor a war of attrition, as firms thus do not

compete for positional rents by unduly either rushing or waiting to innovate (Proposition 2).

Because the model has a tractable equilibrium solution we are able to study the choice of
socially optimal IP protection levels by a regulator who adjusts the cost incurred when imitating an
innovation. The welfare trade-offs associated with raising imitation cost are largely intuitive. Aside
from the effect on industry profit described above, a higher imitation cost makes the investment
game more preemptive, accelerating innovation but also increasing the lag before imitation occurs
with corresponding implications for consumer surplus. Viewed as a function of the imitation
cost chosen by the regulator, social welfare generally has local maxima in both the attrition
and preemption ranges, and either type of stationary point may constitute a global maximum
(Proposition 3). We are able to identify a lower bound on the socially optimal imitation cost as well
as to characterize the optimal imitation cost under preemption. We further identify conditions on
economic primitives for one form or another of dynamic competition to be optimal: social welfare
maximization involves attrition if the lack of competition is very damaging for consumers (like
when the monopoly operator practices perfect price discrimination), and preemption is optimal
when the introduction of additional competition does not bring much to consumers (for example,

when there is product market collusion under duopoly).

It is challenging to draw more general conclusions regarding optimal IP levels, but we are able
to show in our model that, provided that the static entry incentive is socially excessive — as occurs
in the presence of a business-stealing effect — preemption is optimal when market growth and
volatility are sufficiently low (Proposition 4). In a model of irreversible investment these market
characteristics are associated with a greater discounting parameter so this result seems intuitive
at first glance, since the adverse effect of higher imitation cost on welfare primarily stems from the
ensuing delay in imitation which clearly decreases with discounting. However the welfare realized
under attrition does not have a closed-form expression, and it is only by identifying an upper bound
on this welfare expression that we are able to establish our result. Moreover, when the optimal

imitation cost level induces preemption, the closed form expression for the (second-best) optimal



imitation cost that we obtain leads us to ascertain when the optimal form of competition for an
industry is to set an arbitrarily high (winner-take-all) cost of imitation. Our model thus provides
an argument for strong IP rights in certain industries, which is grounded in specific demand
characteristics (low growth and uncertainty). In addition, we are able to identify a positive lower
bound for the optimal level of imitation cost, implying that free imitation is always socially costly

(winner-pay-some).

Finally, we discuss several extensions of the investment game by incorporating a broader set
of firm decisions. First we endogenize the cost of imitation by allowing the innovator to pursue
patent protection more aggressively or to make reverse engineering of its product more difficult,
and find that a higher baseline cost of imitation reduces the effort exerted by innovators to raise
entry barriers.® In addition, firms are shown to gain from coordinating ex-ante not to introduce
subsequent complexity, a policy we refer to as an open standard (Proposition 5). We also discuss
contracting between innovator and imitator that can take the form either of a buyout or of a

license agreement, and show that efficiency always increases in the latter case (Proposition 6).

Our paper is related to early research on innovation incentives, which addresses the issue of
optimal IP protection. Among the influential articles in this literature, Klemperer [23] and Gilbert
and Shapiro [13] study the socially optimal trade-off between patent length and breadth for a given
discounted present value to the innovator, and Gallini [12] introduces a cost of imitation that the
regulator may control as a third patent instrument. We similarly emphasize the role of the cost
of inventing around and determine an optimal level of patent breadth, but in contrast with these
earlier approaches we allow for the possibility that firms in imperfectly competitive industries may
wait to invest rather than developing a new product right when its net present value is positive,
and derive the consequences of optimal investment timing for welfare. Closer to our work is
Denicold [6]’s model of optimal IP protection in a patent race, as we also formalize innovation
and imitation as the outcome of a non-cooperative interaction that precedes market competition,
though in contrast to his model we allow for second-mover advantage and possible attrition, which

we show is likely to arise in industries with high growth and volatility.

Our analysis relates to several other papers that develop a welfare comparison across two
alternative policy regimes, namely a strict winner-take-all regime where only the first firm to
innovate receives a patent, and a more permissive winner-take-most regime where late investors
are allowed to compete with the first before its patent expires. In La Manna, Macleod, and de

Meza [24] firms spend a fixed initial amount in R&D that determines a probability of inventing

5This extension also has implications for a patent system that allows firms to self-select protection levels, as

proposed by Encaoua et al. [9], so as to endogenously raise the investment cost of follower firms.



at a future date. Simple cost and demand conditions, such as constant returns to scale and
a linear demand, are identified for the permissive regime to be welfare superior. Henry [18]
introduces a mechanism whereby a late inventor can share the patent with the innovator within
a given time period. When adjusted, together with other policy instruments, this mechanism is
socially beneficial under mild conditions, notably with a linear demand and quantity competition.
However, in a model where firms incur a flow cost, in Denicolo and Franzoni [7] it is the strict
patent regime that is found to be optimal in broad set of circumstances, in particular when demand
is linear, product market competition is weak, and duplication flow costs are large. Our approach
is consistent with these contributions, although we do not compare discrete policy regimes and
rather seek to characterize the optimal degree of IP protection in a continuous measure of the
relative imitation cost, with the winner-take-all regime occurring as a limit case. Moreover, the
model of investment under uncertainty allows us to connect optimal protection with measurable
demand characteristics that were not considered in this stream of literature. Accordingly, our
results depart from the comparison of contrasted policy regimes and point rather to adapting IP

protection to measurable properties of the dynamics of markets.

Our paper is also close to studies of the effect on investment decisions of informational spillovers
which can imply a second-mover advantage. Katz and Shapiro [22] is an early model in which a firm
benefits from its rival’s innovative activity through post-development dissemination of knowledge
in a deterministic framework. Hoppe [21] allows for uncertainty regarding the success of new
technology adoption whereas in Thijssen et al. [33] information regarding the value of a project
arrives continuously over time, and the second investor faces an identical cost but learns about
a project’s true profitability from the first. Femminis and Martini [10] allow for a disclosure
lag of random duration before the follower receives the information. In all of these models both
preemption and attrition can occur as in ours, depending on the level of spillovers, but aside from
Thijssen et al., all focus on pure strategy equilibria, whereas we characterize the symmetric mixed
strategy equilibrium — a reasonable methodological choice when firms are assumed to be ex-ante
symmetric, which provides what seems to us to be a more intuitive characterization of socially

optimal IP protection.

Finally, similar licensing and reverse engineering decisions to those that we examine in our
final extensions are found in Mukherjee and Pennings [27] and Henry and Ruiz-Aliseda [19], albeit
once the roles of firms as incumbents or potential entrants have been determined, so that unlike

in our approach their focus is on inherently asymmetric firms.

In Section 2 we describe the pharmaceutical sector as a natural example to examine in light of

our analysis. Section 3 presents our model and characterizes the symmetric equilibrium. Section



4 studies welfare when a regulator uses an instrument such as breadth of IP protection to regulate

the cost of imitation. In Section 5 two extensions are discussed. Section 6 concludes.

2 An example: contrasted market conditions in the pharmaceuti-

cal industry

The theoretical model that we develop points towards a policy prescription that consists in tailoring
IP protection to general industry or market segment characteristics. The biopharmaceutical sector,
in which R&D spending and innovation play a critical role, provides a natural industry example
to examine in light of our analysis, as significant steps have already been taken in order to adjust
IP protection in response to identifiable categories of market conditions. For instance for orphan
drugs and rare disease development, the U.S. Food and Drug Administration has enacted an
enhanced form of IP protection (Orphan Drug Exclusivity) together with a tax credit that lowers
the costs of clinical trials (Grabowski et al. [14]). Our analysis offers theoretical support to
regulatory measures of this kind that adapt the relative cost of innovation and imitation to a
market’s specific characteristics, and which could also involve patent narrowing in case of high

demand growth and volatility.

Pharmaceutical firms face market conditions that impact product introductions and that can
vary significantly across geographic areas. In low- and middle-income countries, economic and
demographic drivers often imply high demand growth, but political instability can also result in
less demand predictability than in high-income economies, and thus discourage the industry from
introducing new treatments or preventives. Managers of big pharmaceutical companies are very
aware of such market characteristics, and emphasize that although “pharmaceutical markets in
key emerging economies, such as China, India, and Brazil, are expanding at rates of more than 12
percent per year (...) uncertain demand, and political and economic instability in some countries

have deterred private investors for decades” (Witty [36], pp. 118 and 124).

In such circumstances, initiatives have been taken that alter the relative cost of imitation in
order to encourage generic competition by local producers. For example, in order to increase
access to antiretroviral drugs to treat HIV infection in the developing world, over the last decades
political mobilization has facilitated the production of generic versions of the medicines patented
in developed countries (Hoen et al. [20]). However, any adjustment in the IP protection regime
also modifies innovation incentives, and absent a theoretical reflection as conducted in the present

paper it is not clear how such changes should relate to demand characteristics in order for firms’



decisions to result in greater social value. Our results show that when demand is rapidly expanding
and highly uncertain, although shifting to weaker IP protection may reduce expected industry
value (Corollary 2 and Proposition 2) it has the potential to improve social welfare, provided that
patents are not abolished altogether and thus imitation costs are not too low (Proposition 3), and
that it is in more mature markets such as those of high-income economies that strong IP protection
should be upheld.

Within this same industry, conditions of imitation for drugs strongly differ from those for
vaccines.® Pharmaceutical firms rely on intellectual property rights in order to increase the costs
of imitators for new drugs “which otherwise could be copied more easily than products whose
production processes can be kept secret, or for which the time and relative expense needed to copy
the invention are much higher” (Scherer and Watal [31], p. 4). If such patent protection is not
available, a generic product can be introduced at a much lower fixed cost than incurred by the
branded product supplier. However, this ease of imitation is not found in the case of vaccines,
which are made from living micro-organisms, and unlike drugs “are not easily reverse-engineered,
as the greatest challenges often lie in details of production processes that cannot be inferred from
the final product,” implying that “there is technically no such thing as a generic vaccine” (Wilson
[35], p- 13).

The regulatory implication is that the imitating firm must reinvest in clinical trials which can
involve subjects in the tens of thousands, and in complex manufacturing facilities that comply with
demanding regulatory standards, before applying for approval of the product by the regulator. The
fixed cost that must be incurred by a new entrant for the delivery of a follow-on vaccine can thus
be prohibitively high, which is consistent with less systematic reliance on patenting by established
firms than in the drugs segment. We return to this issue in light of the theoretical model in Section

5.1, where the imitation cost is assumed to depend on the innovator’s choice of protection level.

3 A model of the timing of new product development in duopoly

This section describes our model of strategic investment in product development that reflects the
characteristic features of innovation and imitation identified in the introduction and illustrated in

the industry example above. Assumptions regarding industry structure are presented in Section

S Another salient characteristic of the pharmaceutical industry is the R&D uncertainty that is introduced by
late-stage clinical trials regarding the outcome of a research project, most often after significant costs have already

been sunk, but the focus of our model is on market uncertainty which is also important (see footnote 2).



3.1, those regarding firm conduct and the investment game are presented in Section 3.2, and

equilibrium is characterized in Section 3.3.

3.1 Industry structure

Two identical firms seek to enter a market by introducing their version of a novel product. Orga-
nizational constraints preclude a firm from selling two variants of the product and technological or
regulatory barriers shield both firms from further entry. Development of the new product involves

an irreversible investment in the face of uncertainty regarding future demand levels.

The introduction of the product generates a baseline profit flow my; when a single firm 4,7 €
{1,2} is active and wp when both are, with 0 < mp < mps. Flow profit at time ¢ takes the form
mpmY: or mpY; where the multiplicative component Y; is a measure of market size and is assumed
to follow a geometric Brownian motion, dY; = aY;dt 4+ oYidZ; where (Z;)i>0 is a standard Wiener
process, « is the drift of the process and the volatility parameter o > 0 reflects the notion that
demand for a new product evolves in a context of uncertainty. Profit flows instantaneously and
with certainty once investment has occurred. Firms have a common and constant discount rate

assumed to be large enough that the investment problem is economically meaningful (r > a).

Introducing the new product involves a positive irrecuperable fixed cost I for the the first
firm that invests to serve demand, i.e. for the innovator. If its rival has innovated, a firm can
invest afterwards (even immediately) as a second entrant, i.e. as an imitator, and introducing the
imitative product also involves a fixed cost K which is also irrecuperable. The imitator’s fixed cost
is allowed to be either higher or lower than the innovator’s, and we allow for the extreme cases of
costless or arbitrarily costly imitation (K = 0 or K = oo). The cost of imitation typically includes
various standard setup costs associated with bringing a product to market such as dedicated plant
and equipment, marketing expenditures, and so forth, as well as the cost of developing the firm’s
version of the new product. If the second firm can develop the same product independently,
imitation should be no more expensive than innovation in the absence of IP, and even cost strictly
less to the extent that there are knowledge spillovers (K < I). When IP protection is sufficiently
strong however, imitators must invent around any patents held by the innovator and the second

mover can incur higher entry costs than the leader (K > I).7

"Other circumstances can lead to asymmetric fixed costs for initially identical firms. For example, if developing
the new product involves an input in scarce supply, the imitator typically face a higher cost. Alternatively, Billette
de Villemeur et al. [2] show that if the cost of investment is determined endogenously by a monopoly input supplier,

the input price is endogenously discounted for the first firm that invests.



3.2 Firm strategies and payoffs

Firms play a game of timing whose normal form is studied in this section for simplicity of expo-
sition. This framework provides enough structure to derive the welfare results in Section 4 and
adequately reflects economic behavior so long as players do not make empty threats. We verify
that this is indeed the case by developing a dynamic view of the same game in which players use
extended mixed strategies as per Fudenberg and Tirole [11] in the appendix. This dynamic view
does not pose any novel difficulties provided that the firms invest at the first-hitting times of the
stochastic process, but it is somewhat lengthy to develop and interested readers may therefore

refer to Section A.5.

Each firm chooses an investment threshold that triggers its investment when it is reached for the
first time and in the absence of rival investment, but which it is free to revise if rival investment
occurs. Each firm’s investment behavior is therefore conditioned on the dynamic evolution of
the market but open-loop with respect to any rival move until an investment occurs.® Once an
investment occurs, any remaining firm may either respond by investing immediately or revise its
strategy in the continuation phase which is a single-firm decision problem. Industry dynamics
thus typically consist of a period of inaction before either firm has entered and over which the
main strategic interaction between the firms unfolds, followed by a possible monopoly phase and

finally a duopoly phase once both firms have entered.

It is assumed that Yy < (r —«)I/m, so that the demand level when the game begins is
sufficiently small for firms to prefer delaying investment. The strategy of firm ¢, ¢ = 1,2, con-
sists of an entry threshold Y; € [Yp,00) that triggers investment when it is reached for the first
time, absent prior rival entry. Investment thresholds determine the roles of firms as innovator or
imitator and the (stochastic) moment at which the product is initially introduced, and once rival
investment (innovation) has occurred any remaining firm is able to revise its investment threshold
in a continuation (imitation) phase. The strategies Y; determine a stochastic time at which the
firm plans to invest, which is a first hitting time 7 (Y;) :=inf {¢ > 0|Y; > Y; }.

If investment by one of the firms occurs at a value of the scale parameter Y; = y, the optimal
policy of any firm that has not yet entered is to invest when the market size has reached an optimal
threshold, denoted Yr. Standard arguments (see Section A.1) establish that the continuation

payoff of such a (follower) firm at a given time ¢ is

C(w:{Acyﬂ , y<Yp
%y_K ) yZYF

(1)

8This difference with Reinganum [28]’s notion of open-loop strategies plays a key role in the investment game.

10



where ( is shorthand for the function of parameters

Blonor) =t - %4 1_oa\, 2 2)
BT TS T 52 2 o2 o2’

Yr = (B(r—a)K)/((B—1)7p) is the optimal investment threshold of a firm that earns a
duopoly profit stream upon entry and A¢ := /BBWBD/ (B—1)""1(r — @)? KP~!. The function in

(2) is a standard expression in models of investment under uncertainty and satisfies § > 1 and
0B/0a,0B/00 < 0.9

Given the starting value of the demand parameter, if initial investment occurs at a threshold
Y > y and any investment in the continuation phase occurs at the threshold max {Y,Yr}, the

expected payoff of a leader (or innovator) at time ¢ = 0 is

T(max{Y,Yr}) 00
LY) = E, / TrMng_TSdse_rT(Y)IJr/
7(Y) T(max{Y,Yr})

T ™ — T B
- (T —MaY_I> (%)B _ Aj_ap [max{lg,YF}]ﬁl (3)

(see Section A.2 for derivations). The first summand in (3) corresponds to the discounted value of

7rDYSe_mds>

perpetual monopoly profits for a firm that invests at the threshold Y and the second is a correction
term corresponding to the reduction in profit flow stemming from the rival’s anticipated entry.
Given that innovation occurs at the threshold Y, the payoff to any remaining firm from becoming
a follower at the moment that Y is first reached is
y B

F(Y) = C (max{Y,Yr}) (M) . (4)
If both firms invest at the same moment the cost of investment is assumed to be I for each. This
may reflect either a legal tolerance for independent discovery, or a lag for information spillovers

to occur that we do not model explicitly.'® The initial expected payoff to firms is then

E, ( [ Yd)
- () 6) »

9A standard result regarding §3 is that for any Y > y, the expected discounted value of a monetary unit received

when the process first hits the threshold Y is E,e™""(Y) = (3/Y). As volatility decreases this discounted value
—r7(Y)

M (Y)

converges to the standard deterministic continuous time discount term, i.e. lim,_0 (y/Y)” = e
'0An alternative assumption would be that IP protection and spillovers are determined randomly when invest-

ments are simultaneous so the expected fixed cost at the moment of investment is (I + K)/2. In this case the first
intersection of L and M is then no longer at Yr rendering the algebraic expressions more complex, but the general

configuration of payoffs and equilibrium upon which our results are based is similar.

11



Figure 1: Attrition, K < I?, Ys is a global maximum of the leader payoff, innovation thresholds

are distributed over [Yg, 00), and imitation occurs immediately after.

Y: Y Y Yy

Figure 2: Attrition, K< K<K , Yg is a global maximum of the leader payoff, innovation
thresholds are distributed over [Y7, Ys/] U [Ys, 00), imitation occurs either at Y if the innovation

threshold is in [Y7, Yy], or immediately otherwise.

12



LM

YpYLYp Y

Figure 3: Preemption, K<K<I , innovation occurs at Yp and imitation at Yp. There is war

of attrition off the equilibrium path (over (Ypr, 00)).

Figure 4: Preemption, K > I, innovation occurs at Yp and imitation at Yp. The dotted curve
represents F' (V') whereas the expected payoff of firms is equal to the concentrated follower payoff
F (Yr) (here with K =1I).

The behavior of L, F and M for different values of K determines the nature of the investment

13



game. There exist three critical levels of the imitation cost, K<K<I 11 that determine four

typical payoff configurations which are represented in Figures 1 — 4.

For K < K (Figure 1),2 F > L for all Y > y and L has a global maximum at Yg :=
(B(r—a)I)/((8—1)7p). For K < K < K (Figure 2), F > L for all Y > y but L has a global
maximum at Yz, := (B (r—a)I)/((8—1)ma). Note also that L is not monotonic to the right
of its global maximum in this case. For K < K < I (Figure 3), F < L over an interval denoted
(Yp,Yps) that includes Yz. Finally, for K > I (Figure 4), F < L for all Y > y.

Although the specific relationships between the payoffs are complex there is a broad intuition
underlying these the figures. Beginning with an extremely low cost of imitation (K = 0), the
payoff to following is globally higher than that of leading (F' > L). Raising the level of K then
increases the follower investment threshold Yz and shifts F' downward, but conversely this higher
investment threshold lengthens the monopoly phase and raises the payoff to leading before follower
investment occurs, shifting L upward over the range (y, Yr). Ultimately if the cost of imitation
becomes large enough (K > I) it is the payoff to leading that is globally higher than that of
following (F' < L).

A last element of structure must be introduced before the payoffs and the investment game
can be fully described. It is well-known that in preemption games, firms face a coordination
problem if both seek to invest at the same threshold when it would be optimal for only one to
do so, i.e. ifat some Y1 =Y, =Y, L(Y) > F(Y) and F(Y) > M (Y). A standard solution
proposed by Fudenberg and Tirole [11] is for players to use augmented mixed strategies that
reflect the coordination that arises in a discrete-time game and which is not captured directly
in a continuous time model. For simplicity we proceed somewhat differently and introduce a
specific tie-breaking rule to determine investment outcomes in such cases, leaving the formulation
of extended mixed strategies for the appendix. Following Thijssen [32], the tie-breaking rule is
chosen so that payoffs are consistent with those that obtain with augmented mixed strategies by

imposing rent equalization.

That is to say, if firms face such a coordination problem at the threshold Y the probability that
either firm invests first (as a leader), p, is chosen so as to solve pL (Y)+pF (Y)+ (1 —2p) M(Y) =

~ 1/(B=1)
"See Section A.2.3 for a derivation of the critical values K = (B ((rm/7p) = 1)/ ((WM/WD)B - 1)) I and

K= ((1 +B((rm/7p) — 1))/ (7TM/7rD)5) 1/(8-1) B

2Pigure 1 is drawn assuming K > (wp/mar)I. Below this value, Y < Yz, and F is decreasing over (y,co) but

the key properties described in the text are unaltered.
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F (Y) leaving firms indifferent between investing at that threshold and a subsequent follower role.
This yields

, (6)

pm—{ Fr L)z F

LY)+F(Y)—2M(Y)

0 if L(Y) (Y)

and accordingly 1 — 2p (Y;; K) is the probability that a mistaken simultaneous investment occurs.
On the basis of these elements the initial payoff to firm ¢ from investing at the threshold Y; if

the other firm invests at Yj is

L(Y3) if Y; <Y;
VY, Yj)=q p(V)LY:)+p(Yo) F(Yo)+ (1 -2p (7)) M (Y;) if Vi =Y (7)
F(Yj) it Y >Y;

and the investment game is represented by the normal form ({1, 2}, [y, 00) x [y,00), (V,V)).

3.3 Equilibrium

The investment game has a unique symmetric Nash equilibrium involving either pure or mixed
strategies. The resulting representation of equilibrium investment behavior is therefore consistent
with the seminal approaches of Fudenberg and Tirole [11] and Hendricks et al. [17] to preemption
and attrition. In attrition games, authors have sometimes studied (pure strategy) asymmetric
equilibria.!® This is appropriate, for example, if the same entry game is played in several in-
dependent markets and pre-play communication enables coordination between firms, but we do
not allow here for such a possibility. As firms are taken to be initially symmetric, it also seems
natural to suppose that initial investment behavior should be symmetric as well. Moreover the
equilibrium that we characterize involves a smooth dependence of outcomes on imitation cost that

is of compelling simplicity.

To get an intuitive sense of the nature of the investment game for different levels of the imitation
cost, it is useful to refer again to Figures 1 —4. For low enough levels of K (Figure 1, K < I~(), the
leader payoff L (Y) lies below the follower payoff F'(Y') for all Y > y so firms prefer to follow, a
situation of attrition. Investing first at any threshold Y; < Yg is dominated by investing at Yg, and
from that threshold onward L (Y') is decreasing as in the standard war of attrition. For moderately
low levels of K (Figure 2, K<K<K ), the leader payoff is globally lower than the follower payoff

so that firms also play a waiting game. Since Y7, is a global maximum of L (Y), investing at Yg

3For instance Katz and Shapiro [22] and Hoppe [21] proceed this way.
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does not dominate lower thresholds, and in particular thresholds in [Y7,Ys]. Firms therefore
engage in a nonstandard form of attrition, with investment thresholds continuously distributed
over the range [Y7,Ys]| U [Ys, 00) where L (Y) is decreasing. For high levels of the imitation cost
(Figure 3, K < K < I and Figure 4, I < K), there exists a range of thresholds below Yy for which
the leader payoff L (Y) lies above the follower payoff F' (V') for all Y > y so firms prefer to lead, a
situation of preemption. Initial investment then occurs at the preemption threshold Yp, which is
defined as the lowest threshold at which firms are indifferent between leading and following (it is
the lower root of the condition L (Y) = F (Y)). If the imitation cost is moderately high (Figure
3) the preemption game is nonstandard in that firms engage in a waiting game off the equilibrium
path if the threshold Yp: is reached and no firm has yet invested, whereas with a higher imitation
cost (Figure 4) is a standard preemption case in which the leader payoff never drops below the
follower payoff to the left of Y.

The proposition below states these ideas formally and also separately identifies the pivotal case
K = K at which there is neither a first-mover advantage nor a second-mover advantage in the

sense that L (Yz) = F (Yr)), which plays a central role in the welfare analysis of the next section.

Proposition 1 In the symmetric equilibrium of the duopoly investment game,

(1) if the cost of imitation is low (K < IA() firms play a game of attrition. Equilibrium is in mized
strategies with innovation thresholds distributed continuously over [Yg,00) if K < K and over a
disconnected support Y1, Ys/]U[Ys, 00) zfl? < K < K. In the former case imitation is immediate
whereas in the latter it occurs with lag at the threshold Yr with positive probability;

(ii) if the cost of imitation is high (K > I?) firms play a game of preemption. Equilibrium is in

pure strategies at the innovation threshold Yp, and imitation occurs at the threshold Yr;

(#i1) at the critical imitation cost K firms neither wait nor race to enter. Equilibrium is in pure

strategies ot the innovation threshold Yr,, and imitation occurs at the threshold Y.

In the symmetric equilibrium positive rent dissipation occurs whenever the firms play a non-
degenerate timing game (when K # K ). In an attrition regime, the rents of imitation that accrue
to a follower are dissipated in expectation because firms wait before investing, earning the relevant
leader payoff L (Y1) or L (Ys) depending on the level of K. In a preemption regime, the rents to
a leader from innovation are dissipated as firms race to enter early, earning F' (Yr). The expected
value of firms in the investment game therefore has a simple characterization. This is stated in
the following corollary, where the only difficulty stems from the fact that either Yg or Y may

represent a globally maximum of L depending on the value of K.
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Corollary 1 In a symmetric equilibrium the duopoly investment game the expected payoff of firms
are min {F' (Yr) ,max{L (Yz),L (Ys)}}.

Because the nature of the interaction between firms is determined by the level of the mitation
cost K relative to the critical imitation cost K , 18 it useful to have some sensitivity results with
respect to the intensity of competition in the product market (mp;/7p) and parameters of the

demand process (« and o).

Corollary 2 The more intense product market competition is and the lower demand growth and
volatility, the more likely it is that preemption occurs, and conversely for attrition
oK 0K 0K

5/~ B B

To provide intuition for some of the latter comparative statics recall that the process Y; evolves
stochastically and that there is an option value for firms to wait before investing that is positively
related to drift and volatility. Provided that there is an inherent advantage to imitation (K < I),
for some parameter values and in particular for large enough levels of volatility (such that K < K ),
this option value outweighs any preemptive motive to secure monopoly rents. A similar reasoning
holds if the drift in demand is sufficiently high. That is to say, an attrition regime is more likely
i industries with greater trend growth and demand wvolatility. This observation is particularly
noteworthy because it provides a countervailing force to several mechanisms that are highlighted
in the rest of the paper. As the next sections show, institutional conditions such as IP protection
and firm choices regarding both technology and licensing generally serve to make market entry
regimes more preemptive and attrition relatively more rare. One would therefore expect attrition
to seldom occur except in those industries with a significant enough degree of demand growth or

demand uncertainty.

4 Imitation cost, industry profit, and welfare

The preceding section highlighted the role of the fixed cost of imitation in determining the na-
ture of strategic competition and the equilibrium pattern of entry in an industry, and ultimately
consumer surplus and welfare levels. This imitation cost is driven by several factors including
technological conditions and the level of IP protection. It thus varies from industry to industry

and can be influenced ex-ante by regulators, typically through a choice of patent breadth. These
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considerations raise the question of determining what may be socially desirable levels of imitation
cost. At first glance this question appears to involve a simple trade-off since a higher imitation
cost is wasteful but hastens innovator entry. However different effects arise with regard to the
timing of imitator entry in the preemption and attrition regimes that need to be examined more

carefully.

This section therefore studies the effect of K on equilibrium strategies and outcomes. In order
to express the social welfare function more compactly we introduce some further notation. Let
Y7 = min{Y7,Y>} denote the threshold at which innovation occurs, so that in equilibrium by
Proposition 1 Y; = ?A,YL or Yp depending on the level of K and where the random threshold
Y4 in the attrition regime is distributed according to the density Ga (Y;K) =1 — (1 — G. (Y))?,
G. = G4 or Gy, being the relevant equilibrium distribution of innovation thresholds (these are
derived in Section A.3).

4.1 Industry effects

A useful preliminary step before conducting the welfare analysis is to characterize the effect of
K on industry performance, which allows us to derive an intermediate result regarding industry
value. We begin by relating imitation cost to first- and second-mover advantage, and industry

profitability.

A first observation that emerges from the model is that lower imitation cost is a necessary, but
not a sufficient condition for second mover advantage. Too see why this is, consider an industry
in which innovating and imitating firms have identical fixed costs. There is an inherent first-
mover advantage for the innovating firm that stems from the monopoly phase that it enjoys over
the range of thresholds (Y7, Yr), and the degree of first-mover advantage in such an industry is
determined by the relative importance of parameters like the relative monopoly rent (ma/7p).
In order for a second-mover advantage to arise in an industry, it must be that the relative cost
of imitation (K/I) in the input market is sufficiently low to compensate a firm for forgoing the
period of monopoly profit it would earn by innovating. Thus a lower costs for imitators, the most
likely case to arise absent IP protection, does not by itself ensure that firms have a first-mover

advantage or that they will find it desirable to pursue so-called imitation strategies.

Next there are a number of monotone relationships between imitation cost and the equilibrium
investment thresholds and outcomes in the model. First, the higher is the imitation cost, the
higher is the standalone threshold for the follower firm (Yr). Note though that actual follower

entry may or may not occur at this threshold, since innovation can occur at a threshold beyond this
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standalone threshold in an attrition regime where the support of mixed strategies extends beyond
Yr. The effect of imitation cost on the innovation threshold is consistently negative throughout
the range of imitation costs. As imitation cost increases, in the attrition regime the distribution
of innovator entry thresholds is shifted leftward whereas in the preemption regime the preemption
threshold decreases, so innovation occurs earlier in both cases. The effect of higher imitation cost
on the imitation threshold is monotone under preemption since 9Yr/O0K > 0, but this is not
the case under attrition. This is because in an attrition regime, a greater imitation cost delays
imitation only if the innovation threshold realization is low enough that there is a positive lag before
imitation occurs (if Vs < Yr). Otherwise the onset of imitation, immediately after innovation, is
itself random and its distribution (to the right of Yr) is shifted leftward by an increase in imitation
cost. Despite this complex effect of imitation cost on the timing of imitation, the gap (and therefore
the expected time lag) between innovation and imitation thresholds, max {YF, }7,4} — 17,4 is weakly
increasing in K. To summarize, an increase in imitation cost may properly be said to accelerate
innovative investment and the arrival of imitative investment conditional upon innovation having

occurred.

Lastly, there exists a simple relationship between imitation cost and equilibrium industry per-
formance. Because in the different regimes of attrition and preemption, competition between firms
to secure either second- or first-mover advantages results in the dissipation of any positional rents,
equilibrium firm and industry values have a straightforward expression (Corollary 1). Moreover,
max {L (Yy),L (Ys)} which constitutes the equilibrium firm value in an attrition regime is either
independent of (if K < K) or increasing in K (if K < K < K) whereas F (Yy) which constitutes
the equilibrium firm value in a preemption regime is decreasing in K. Since industry value is
nondecreasing and subsequently increasing in K under attrition up until K and decreasing in K
thereafter under preemption, it is therefore only when the level of the imitation cost is such that
neither of these regimes occurs (K = K ) that investment thresholds are set optimally from the
standpoint of industry profit. All else equal then, it is in those industries in which imitation cost
reaches the level at which firms do not have an incentive to seek a positional advantage of either

sort that industry value is maximized.

Proposition 2 FEzpected industry value is a quasiconcave function of imitation cost which is ini-

tially constant (over (07 I?)) with a unigue mazimum when imitation cost is such neither attrition

nor preemption occur (at K = K ).

Proposition 2 states that there exists an initial range over which expected firm value is inde-

pendent of imitation cost before increasing thereafter. In economic terms, this means that starting
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from a sufficiently low level, product introduction is more timely and firms benefit ez-ante from
raising the fixed cost of imitation enough to shield an innovator from instantaneous imitation
with positive probability. Moreover, and despite the wasteful nature of fixed costs for the second
firm ez-post (to the extent that these include duplicative expenditures), raising fixed costs for the
second firm is strictly beneficial for the industry (over (.f( ) K )) when the endogenous timing of
investments is accounted for. Aside from the straightforward description of industry value it pro-
vides, Proposition 2 is also instrumental in establishing our main welfare results in the remainder

of this section, which we turn to next.

4.2 Social welfare and optimal protection of innovation

We take the view that regulators can influence the relative cost of imitation through a choice of
IP protection level which we interpret as patent breadth. With this instrument and provided that
the natural imitation cost is not so high as to constrain the regulator’s choice (it seems doubtful
that imitation would be subsidized), the imitation cost may be viewed as a decision variable. We
consider a second-best welfare benchmark in this section, in which firms are free to select their
entry thresholds and product market output or prices so welfare is a function of the imitation cost,
K.

To provide intuition for the welfare analysis, it is useful to decompose the expected welfare in
the equilibrium of the investment game into three parts: expected industry value, the consumer
surplus resulting from innovator entry and the consumer surplus resulting from imitator entry.
By Proposition 2 the first of these components is single-peaked with a maximum at the critical
imitation cost K. The two consumer surplus terms depend on imitation cost in roughly opposite
ways, at least under preemption. A higher imitation cost unambiguously accelerates innovator
entry which raises the consumer surplus from innovation term, so the second welfare component
is monotonically increasing in K. Under preemption, higher imitation cost unambiguously delays
imitator entry and the third welfare component is monotonically decreasing in K. But under
attrition, the impact of imitation cost on imitator entry is more complex. Over that part of
the support of mixed strategies where innovation occurs early enough (?A < Yr) an increase
of imitation cost delays imitation and reduces the consumer surplus from imitation, but where
innovation occurs late enough (?A > Yp, which holds for the entire support of mixed strategies
if K < K ), imitation is immediate and an increase of imitation cost raises the second consumer

surplus term.

To study social welfare precisely, suppose that consumer surplus is scaled by the market size
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parameter Y; as is the case for firm profits. Let C'Sp; and CSp then denote the unitary flows
of consumer surplus under monopoly and under duopoly respectively. The social discount rate is
assumed to be r for simplicity, identical to that of firms. Recalling the innovation threshold Y;

has a nondegenerate distribution for K < K , expected social welfare then has the specific form

W(K)=2min{F (Yr),max{L (Ys),L(Ys)}}

industry value

ECSM [}7[}—(5—1) )P —|—ECSD — CSy [max {?I,YFH_(B_I) S (8)

r—o r—«

~
consumer surplus from innovation consumer surplus from imitation

The first summand in (8) is expected industry value. By Proposition 2 it is constant for K < K
and strictly quasiconcave in K thereafter with a maximum at K. The second term is the expected
consumer surplus that results from innovative investment. As discussed above this term increases
with K, since a higher imitation cost shifts the distribution of innovator entry thresholds (which
is degenerate at Yp under preemption) leftward. The third term is the expected consumer surplus
that results from the imitator’s entry into the market, which involves a more complex dependence
on K as described above. Although there is no closed-form expression for the entire function (8),
there is a semi-closed form for K > K and we are able to bound the function over the remainder
of its domain sufficiently in order to obtain a partial characterization of the social optimum (see
Section A.6 for the full proof).

First, in the preemption range (for K > K ) the innovator and imitator entry thresholds are
respectively Yp and Yr, the former of which does not have a closed-form expression. Nevertheless
the semi-explicit form of W (K) allows us to evaluate the unique local optimum of (8) under
preemption, which we denote Kp. For a range of parameter values 8 € [fp,00), Bo > 1, this
optimum is a corner solution (Kp = oo). The social planner’s imitation cost instrument is of
too limited a reach to attain its welfare objective in such cases, so that for sufficiently large g
the socially optimal form of preemption is a winner-take-all contest. Since the greatest amount of
preemption that the social planner can generate does not foster enough competition to induce firms
to enter sufficiently early in such cases, a single firm is active ex-post whose investment threshold
is determined by the threat of potential entry. On the other hand, if the discounting parameter is
not too large (5 € (1,p)) as occurs for instance if volatility is sufficiently high, Kp is finite and

strictly greater than K so long as consumer surplus under monopoly is positive (C'Sy; > 0).

Second, even without an explicit form for W (K') within this range, another possible maximum

of welfare can be shown to arise under attrition. To establish this, because W (K) is continuous it
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suffices to show that social welfare is decreasing to the left of the critical value K , which involves
showing that lim, ,~ W'(K) < 0. For simplicity set C'Sps = 0 so that the middle term in (8)
can be ignored. Since the expected industry value term reaches an interior maximum at K , its
derivative at this point vanishes. The left derivative of social welfare at K is then equal to the
left derivative of the consumer surplus from imitation term. In an attrition regime and near K
(for K € <I? ,I? )), this term has two parts that correspond to innovator investment threshold
realizations below Y} (in which case imitator investment occurs at Y, see Figure 2) or above Yy (in
which case imitation immediately follows innovation). Accounting for the equilibrium distribution

of the imitation threshold max {EN/[, YF}, the consumer surplus from imitation is

(CSp — CSur)

r—«

W] 0D 8 (GA (vs)+ [ (v dGA<s>) | ©)

Ys

At K the equilibrium distribution G converges to a degenerate distribution at Y7, and the integral
term vanishes. Just to the left of K , changes in K therefore have a negligible effect on the
distribution of entry thresholds and only the direct effect on Yp matters, which is sufficient to
establish the desired result.

Either type of local maximum (under attrition or preemption) can be a global maximum
depending on the relative magnitude of the consumer surplus resulting from innovation and from

imitation.

Proposition 3 If the timing of entry is requlated indirectly through an imitation cost instrument,
(i) either attrition or preemption may constitute a social optimum;

(i) if the social optimum involves attrition, the cost of imitation is positive with K* > K (“winner-
pays-some”);

(¢4i) if the social optimum involves preemption, innovation occurs at the threshold Y7 = ¢Yy,

Y e[(B—1)/8,1]; for B large enough a perpetual monopoly is optimal, that is K* = oo (winner-
take-all).**

The upshot of Proposition 3 is that there is no “one size fits all” prescription with respect
to balancing the incentives of innovating and imitating firms, suggesting that policy is best de-

termined on a case by case basis according to a number of industry conditions as is generally

1Gee Section A.6 for a characterization of ¢ := max {%, (CSDW;DCSM + %) / (CWSDD — % CTFSAT + %)} Note
that in contrast with the optimal preemption thresholds that we derive explicitly, in preemption games these

thresholds generally do not have analytic expressions.
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understood in the literature on IP protection levels. The proposition is nevertheless informative

in a number of ways.

Part (i7) offers some practical guidance and is especially relevant insofar as some researchers
have argued for the abolition of patents altogether (e.g. Boldrin and Levine [3]). Our model points
to the fact that such an abolition is desirable only to the extent that the natural cost of imitation is
sufficiently high, i.e. that K > K without IP protection. This lower bound on imitation cost has a
straightforward characterization, in that industry conditions must be such that an innovator has a
positive ez-ante probability of earning a monopoly profit rather than face immediate imitation with
certainty, that is to say it must have some chance of avoiding the situation described by Scherer
(see footnote 4 above). This lower bound can be used, for example, to assess the initiatives that
have been taken in the pharmaceutical industry in order to reduce the relative cost of imitation
and encourage generic competition. In low- and middle-income countries, often characterized by
a rapidly expanding and highly uncertain demand which makes attrition more likely to prevail,
optimal social welfare in the local market may involve attrition but in all cases requires that a
minimal level of IP protection be maintained so that there remains a window of market sizes in

which an innovator entering sufficiently early is incentivized by a period of monopoly profits.

Part (ii7) establishes that in other circumstances where firms sufficiently discount the future,
that is when demand growth and volatility are sufficiently low (recall that 98/0a < 0 and 95/00 <
0), the optimal form of preemption is a winner-take-all contest. In that case, the greatest amount
of preemption that the social planner can induce (K* = oo, a corner solution derived in Appendix
A.6) implies that a single firm is active ez-post. Its investment threshold, Yp (K*) = (r — )l /7
corresponds to the Marshallian investment threshold and is determined by the threat of potential

entry by the other firm, which in equilibrium never enters (as limg_, Y = 00).

Even in the absence of a universal policy prescription certain industry characteristics can play
a role in determining optimal protection levels. The following corollary provides two intuitive

applications of part (i) of the previous proposition.

Corollary 3 In o constrained social optimum:
(i) if there is perfect price discrimination under monopoly (C'Syr = 0), attrition is socially optimal;

(i) if there is collusion in the product market (CSp + 2np = CSpr + war), preemption is socially

optimal.

In part (i) of the corollary, the innovator can price discriminate perfectly, so it does not

contribute to the consumer surplus. Therefore, imitation is needed for consumers to benefit from
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the sequence of investments and an optimal protection regime favors imitation incentives under
the constraint that innovation, as a necessary condition for imitation, must be incentivized as well.
At the opposite extreme is the situation of part (i7), where imitator entry does not change the
instantaneous welfare because of collusion in the product market. Then only innovation contributes
to social welfare, and a high —though not necessarily infinite- imitation cost is needed to incite

early enough investment in a preemption regime.

Aside from such specific cases as those above, the absence of a closed form in the preemp-
tion range renders the characterization of optimal welfare more complex. By making an ad-
ditional restriction however, we are able to obtain a general result relating optimal welfare to
demand characteristics. Suppose therefore that the static entry incentive is socially excessive
(mp > (CSp + 27p) — (CSar + mar)). To provide a rationale for this restriction, recall that in a
static setting with symmetric firms and homogeneous goods, Mankiw and Whinston [25] show that
there is excess entry in an industry if total output increases whereas individual outputs decrease
in the number of firms (the business-stealing effect) and argue that these assumptions characterize
a broad range of common models of oligopoly. In our dynamic setting, this assumption is useful
because it allows us to bound the welfare associated with the imitator’s entry by the expected

value of a duopoly firm, and hence by EV (Y7, Yr) (according to Proposition 2), so as to

k-r
establish the following.

Proposition 4 Suppose that the static private entry incentive is socially excessive. Then, in a

constrained social optimum preemption is optimal if

CSm
™™

>Q(p).1° (10)

As the right-hand term is decreasing in 8 with lim_,o, © (8) = 0, the condition (10) is satisfied
for any given demand specification if there is sufficient discounting, as occurs if industry growth
and volatility are sufficiently low. This condition provides a rigorous foundation for the idea that

IP protection should be significant in such markets.
We conclude this section by applying Proposition 4 to two common homogeneous goods
oligopoly specifications.

FEzample Suppose that the product market is characterized by a linear inverse demand P = A—BQ),
A, B > 0 and that firms have constant unit variable cost ¢. Then CSy;/my; = 0.5 and evaluating
Q2 () establishes that (10) is satisfied for 5 > 3.14. If the product market is characterized instead

15Gee Section A.7 for a derivation of Q (8):=2/ (</Bﬁ/ (B - 1)ﬁ_1) — ﬁ)
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by a constant elasticity inverse demand P = AQ~'/¢, A > 0 and ¢ > 1, then straightforward

calculations establish CSys/mp = 1/ (e — 1) so (10) is satisfied for any f if demand is sufficiently
elastic (if e > 1+ (1/Q2(B))).

5 Endogenous imitation cost, buyout and licensing

In this section, we discuss further real-world aspects of innovation and imitation and show how
they fit into the framework of the previous sections. One aspect is the ability of an innovating firm
to raise the entry barrier of the imitator, either by developing a product that is more costly to
reverse engineer or by strengthening the patentability of its product. Another aspect is contracting
between the innovator and the imitator, which can take the form of buyout of the rival firm or of
a technology transfer that reduces the follower’s imitation cost. From a formal standpoint these
two extensions both add an intermediate decision layer to the investment game in the monopoly
phase, once the innovator’s entry has occurred and before the imitator invests. By raising the
standalone value of the innovating firm, both extensions tend to favor first-mover advantage and
the emergence of preemption regimes although the implications for imitation timing and welfare

largely differ.

5.1 Endogenous imitation cost

Suppose that the innovating firm may rely on a variable amount of either technical or legal pro-
tection in order to determine the imitation cost of a subsequent entrant. In case of technical
protection, imitation cost is determined in part by the cost of reverse engineering, which can be
raised by increasing product complexity. For example an innovating firm can expend effort to
render its product more difficult to disassemble, or even add misleading complexity (Samuelson
and Scotchmer [30]). In the case of legal protection, the imitation cost is related to patent breadth
with wider patents implying higher costs for inventing around so as to develop a non-infringing
imitation, and firms moreover may decide to pursue patent protection more or less aggressively,

as is the case for pharmaceutical firms as discussed in Section 2.

Such behavior is incorporated into the model of investment by supposing that at the time of
its investment at a threshold Y; an innovating firm chooses to expend an additional irrecuperable
cost, which we denote by p, that raises the imitating firm’s fixed cost by an amount f(p). The
increase in imitation cost is assumed to be instantaneous and the function f is taken to twice
differentiable with f' > 0, f” < 0 as well as f(0) = 0 and lim, o f’(p) = co. The investment
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costs of the innovator and imitator are redefined as I (p) := Ip+ p and K (p) := Ko + f (p) where

Ip and K represent then baseline values where no cost-raising expenditure is undertaken.

Proceeding by backward induction, in the continuation stage the imitator payoff F'(Y) and
standalone threshold Yz are accordingly functions of the innovator’s effort through K(p). At
the moment of innovation therefore, an innovator entering at the threshold Y; faces the decision

problem

B B

™ Y ™ — TD Yy
max Lg (Y5, p) := Yi— 1 Y. — 3 .
pER e (¥i,p) <7“—a e ,0> ( Z> 7= [max{Y;Y (P)}]B_l

Let p* (Y;) denote the solution to this problem. At an interior solution, Yz (p*) > Y; and p*

(B0 o= (52

A straightforward comparative static argument establishes that the optimal cost-raising effort is

satisfies

increasing in the investment threshold and decreasing in the baseline imitation cost. The latter
property is in line with the biopharmaceutical industry case discussed in Section 2, where firms
typically place greater reliance on patenting in the medications segment in which natural entry

barriers are low than in the vaccines segment.

To proceed further we focus on the situation where Kg > K so the investment game is naturally
preemptive.'8 Allowing the cost of imitation to be endogenous results in a higher leader payoff
Lg (Y, p* (Y)) and a lower follower payoff I (Y, p* (Y)) = F(Y)|g_g 4 p+(v) that when this cost
is exogenous. This makes the investment game more preemptive. Since equilibrium payoffs are
pegged to the follower value under preemption, firms have a lower expected value in equilibrium.
To avoid this penalizing outcome firms would prefer to both commit ex-ante not to exert any
cost-raising effort in case they happen to lead the investment process. One way to achieve such a

commitment is by agreeing to an open or common technological standard.

Proposition 5 If the cost of imitation is endogenous and the investment game is naturally pre-

emptive firms benefit from agreeing ex-ante to a common standard.

16T his restriction is not necessarily strictly speaking necessary for the analysis but relates specifically to optimal
stopping. If the innovation threshold is high enough, corner solutions p* = 0 arise that result in a kink of the
function Lg. In such cases the threshold strategies we assume firms to follow needn’t correspond to optimal
investment behavior. Under preemption however such high innovation thresholds occur only off the equilibrium
path.
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5.2 Buyout and licensing

Contracting in a variety of forms, ranging from joint ventures and different types of licensing
contracts to acquisitions and pay-for-delay agreements, generally plays an important role in inno-
vation decisions. These different measures have contrasting effects on investment incentives that
can be readily sketched out within our framework. Suppose that firms have the opportunity to
contract only once to transfer either asset or technology ownership in exchange for a lump sum
transfer (¢) from the innovating firm to the imitating firm, and assume for simplicity that the

contract is written by the innovator who detains all bargaining power.

Because of the efficiency effect (wy; > 27p), it is profitable in principle for an innovator to
pay for its rival not to subsequently enter the market, by buying it out if it can or engaging in a
limiting case of a pay-for-delay agreement. Proceeding by backward induction, in the continuation
phase that begins when innovation occurs at a threshold Y;, the remaining firm has an expected
payoff F' (Y;). At the moment the first firm innovates, the rival’s continuation payoff constitutes a
participation constraint for any contract that the innovator offers. The innovating firm therefore

offers a transfer ¢* (Y;) =C (Y;) when it invests whose value at ¢t = 0is F'(Y') and the leader payoff

Ly (Y) = ( e Y—I) (%)ﬁ—F(Y).

r—«

becomes

The effect of allowing buyouts on the investment game is intuitive. In comparison with the
case where they are ruled out, the follower payoff is unchanged whereas the leader payoff is at
least as large rendering preemption more likely. It can be shown that all else equal the magnitude
of the impact of the buyout option on the leader payoff depends on the strength of the efficiency
effect, and if the latter is sufficiently strong or in industries with sufficiently high demand growth

or volatility (specifically if 7y /7p > 5+ 1) attrition does not occur for any level of K.

Whether the possibility of buyout runs in the interest of firms or not depends on the cost
of imitation. Under preemption expected profits are pegged to the follower value and therefore
unaffected by the possibility of buyouts, whereas if the industry functions naturally under attrition
(K < K ) they are pegged to the leader value and increase if the possibility of buyouts is introduced,
so that one would expect a more active market for acquisitions to develop in such industries, and

all the more so if demand growth and volatility are high.

If a buyout is not possible an innovator must contend with follower entry but can recoup
revenue from the imitator’s investment by setting an appropriate license fee. Suppose that K =

Ko+ Kj where Ky is an incompressible level of imitation cost reflecting such items as distribution
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and marketing expenses and K denotes the part of the imitator’s product development cost that
can be eliminated by a technology transfer from the innovator. Because licensing does not allow
the innovator to push back the moment of imitation, the optimal policy is to set the maximum

license fee at the moment of imitation consistent with the participation constraint, ¢* = —Kj.

Proceeding by backward induction, the expected revenue from licensing constitutes an addi-

tional term and raises the leader payoff which becomes

Ly (V) := <T7T_May - I> (%)B - (7”‘:;:[’ max {Y, Vp} — K1> <Hm{yY,Y}:}>B'

As the leader payoff shifts up to the left of Yz while leaving the follower payoff function un-

changed, the investment game is more preemptive with licensing as in the case of buyouts. How-
ever whereas the welfare consequences of introducing buyouts are ambiguous (firms weakly benefit
and the consumer surplus from innovation increases because product innovation occurs earlier,
but the consumer surplus from imitation is eliminated), the welfare consequences of licensing are
unambiguously positive. The visible effect of licensing is of course the corresponding reduction in
the duplication of R&D efforts, but the indirect benefit (beyond any increase in firm value that
may occur if the industry functions initially under attrition) stems from the resulting acceleration

of innovation which raises consumer surplus.

Thus,

Proposition 6 With contracting between the innovator and the imitator (i) buyoutls are the pre-
ferred instrument of an innovator and raise industry profit if K < K whereas (ii) licensing is

Pareto improving.

6 Conclusion

We have sought to develop a framework to study the allocation of resources to innovation and
to imitation that explicitly incorporates interrelated investment decisions under uncertainty by
imperfectly competitive firms. As compared with the classic literature on patent breadth, by
endogenizing the time at which innovation and imitation occur we are able to highlight a novel
channel through which IP protection levels act upon welfare through their effect on the dynamic

competition between firms.

The main message that emerges from our analysis is a broadly familiar one insofar as we find

that IP protection levels must be sufficiently high to provide appropriate incentives for innovation.
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By integrating the theory of investment under uncertainty into the analysis of innovation incentives
we are able to sharpen this general perspective by pinpointing specific market characteristics
that correspond to key determinants of investment, and which provide a grounding for strong IP
protection in circumstances that seem most likely to be present in mature industries. In such
industries then we find that the barriers to imitation should be sufficiently high so as to render
dynamic competition between firms preemptive, and if discounting is important enough it should

take the form of a winner-take-all contest.

In those industries in which growth and volatility are sufficiently high, and which are those most
typically associated with vibrant innovation, attrition may also be optimal so that the additional
benefits of imitation resulting from greater product market competition do not arrive excessively
late. Even then IP protection may be necessary if the cost of imitation is extremely low, in order
to ensure that a firm that develops an imitative product as the winner of the attrition game
nevertheless “pays some” and that an industry does not become mired in inefficient dynamics
described by Scherer (1980).

Throughout our analysis we have sought to illustrate the theory with stylized facts pertaining
to a specific industry, the biopharmaceutical industry, in which both innovation and the regulation
of innovation play a central role. In the practice of antitrust and industrial policy decisions it is
common to focus upon static product market characteristics. Those demand characteristic that
we have sought to highlight though, demand growth and volatility, play at least as significant
a role in determining the investment incentives and product development decisions, and as such

should naturally underlie any determination of optimal IP protection levels.
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A Proofs and derivations

A.1 Continuation payoff C

Once the rival firm has invested at Y; = y any remaining firm holds a standard growth option
(Dixit and Pindyck [8]) whose value is obtained by solving an optimal stopping problem

o0

C(y) =supE, /WDYSeTSdS —Ke '
T>t

From the Hamilton-Jacobi-Bellman equation it follows that the value function C(y) satisfies
rC (y) dt = E,dC (y)

and expanding the right-hand side using It6’s lemma yields the ordinary differential equation that

C(y) solves in the continuation region (0, Yr),

1
rC = ayC' + 502y20”,

along with boundary and smooth pasting conditions

C(0) =0
C(Yr) = rW—DaYF K
C'(Yp)=1.
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The function C (y) = A1y + Ayy” is a candidate solution. The associated fundamental quadratic
is 0.5023 (8 — 1) + Ba —r = 0. Tt has two roots of which only

gol_a fla 1y 2
2 g2 o2 2 02

is positive. Setting 81 = § and As = 0 to satisfy the first boundary condition, it follows from the

remaining conditions that
B r-a K

Vi — 2
FT8-1 mp

and that A; = (1/0) [Yp]f(ﬁfl) which yields the expression for A¢ in the text.

A.2 Leader, follower and simultaneous investment payoff functions L, F' and
M

A.2.1 Derivation of L, F' and M

The expression (3) is obtained from the definition of L (Y') by the following steps. Since the rival’s
entry can equivalently be viewed as a negative shock to the firm’s perpetual stream of monopoly

profits starting at time 7 (max{Y,Yr}),

7(max{Y,Yr}) 00
E, / ayYee "Sds — e T +/ mpYse "ds
7(Y) T(max{Y,Yr})

=E, (/ Ty Yse "Pds — Paate) g / (mpr — D) Yse_”ds> )

(Y) T(max{Y,Yr})

Moving the constant terms outside the integrals and using E,e™""(¥)ds = (y/Y)B7 the martingale

property of Brownian motion and E, fooo Yie "ds = (y/ (r — a)),

E, ( / T Yse "Sds — e 7TV — / (m:m — 7D) Yse—”ds>

(Y) T(max{Y,Yr})
B

[ ™™ y\? 7w —7p Y
- Y 1 (7) - -
r—ao Y r—a [max{Y,Yr}""

The expression for the follower payoff (4) results from discounting the continuation payoff C,

which is realized at the threshold max{Y,Yr}, to the current time and level of the stochastic
shock. Finally the simultaneous payoff (5) is derived similarly to (3), noting that the flow profit
upon investment is wp instead of wy; and that there is no follow-on entry so the bound oo can be

substituted for 7 (max {Y,Yr}) in the first integral and the second integral dropped altogether.

33



A.2.2 Behavior of L, ' and M

The most straightforward continuation payoffs to study are M and F, and these are discussed

first before studying L.

First, M (Y) = ((zp/ (r — a))Y —I) (y/Y)”? is quasiconcave in Y over (y,00) with a max-
imum at Ys = (B(r—a)I)/((#—1)7p) such that Yg¢ > y by the assumption on Yj, and
limy oo M (Y) = 0. Observe that M (Y') is independent of K.

Next, it is convenient to express F' (Y'), which is the value at ¢ = 0 of perceiving the continu-
ation payoff C (Y; K), as

P (Y) Acyﬁ , Y <Yp
= B
(r7r—DaY B K) (%) ’ Y Z YF

Note that F' is differentiable at Yp. If K < (8 —1)7py) /(B (r —«)), Yr < y and F is strictly
decreasing in Y over (y,00). Otherwise F' is constant over [y, Yr| and decreasing over (Yr,o0)
with limy e F (Y) = 0.

An increase in K has two principal effects on F' (Y'): Yr increases so the graph of F' is flat over
a longer interval and F'(Y') increases for all K so the graph of F shifts upward. The comparison
of M (Y) and F (Y) is straightforward: Yg < (>)YF if and only if K > (<) I and if K < I then
M) < F(Y) for all Y whereas if K > I then M (Y) > F (Y) over a half-line (a,00) where
ac(y,Ys).

Finally, the leader payoff L (Y) is typically defined in parts according to whether Y is greater or
smaller than Yr. If K < (8 —1)7mpy) /(B (r — a)), necessarily Yr < Y and follower investment
is immediate at any threshold, so that L(Y) = M (Y) since the leader firm does not enjoy a
monopoly phase. Thus

L(Y)= (%Y_I> (%)6_%YF(Y%)B , Y <Yp
M(Y) .

?

Note that L is continuous with a kink at Yr. The first part of L is quasiconcave in Y with a

maximum at Y7, := (8 (r — «)I)/ ((8 — 1) mpr) such that Y7, > y by assumption.

An increase in K has two principal effects on L (Y): Yp increases reducing the range over
which the graphs of L and M overlap, and the first part of L (Y') increases shifting the graph of
L upward (a level effect). Because 7y > wp, Y7, < Yg for all K whereas Y, < (>) Yr if and only
if I < (>)(mp/mp) K. Given the ranking of Yg and Y discussed above it follows that whenever
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K < I, L has two local maxima (Y7, and Yg). It is shown in the next subsection that there exists
a critical threshold K < I such that Y, (Ys) is a global maximum of L if and only if K > (<) K.

The relationship between L and M is straightforward as L is greater than M over (y,Yr) and
the two functions coincide over [Yp,00). To compare L and F first note that for sufficiently low
values of K, L < F for all Y, but otherwise the two functions may intersect. It is also shown
in the next subsection that there exists a critical threshold K < I such that i) Yz, is a global
maximum of L and ii) both L and F attain the same maximum value at Y7, and Yz respectively.
Above this threshold, direct calculations establish that either K < I in which case F' > L over an
interval (a’,b") C (y,Yr) or K > I in which case L > F for all Y.

A.2.3 Critical thresholds K and K

The threshold K solves L(Yz) = M (Ys). If K < (wp/ma)I then max{Yy,Yp} = Yz so after
substituting, L (Yz) = ((7p/ (r — a)) Yz, — I) (y/Y1)? = M (Y1) < M (Ys) since Yg is the unique
global maximizer of M. Hence it must be that K > (wp /7)1, and therefore satisfies

J&j B B
TM Yy T™ — TD Y D Yy
Y, -1 - - Y | = = Yo—1 -] .
<r—a L > (YL) r—« F<YF> (r—a s > <Y5>

Multiplying both sides by (Yz/y)? (note that Y/Yy, = (mar/7p) (I?/I) and Y /Ys = K /I here)
and substituting for remaining Yy, Yr and Yg terms yields

L (o 117 e B ™\ g L %) e
5—1(7rD> [K} d +,3—1(1_7TD>K_5—1[K] !

which has a unique positive solution,

1

B—1
2 (P
K = 5 1.
™ —
(%)
The threshold K solves L (Yz) = L (Yp). If K < K then as shown above L (Yz) < M (Ys)

whereas M (Ys) < L(Yr). Hence it must be that K > K (and max{Yz,Vr} = Yp). This

threshold therefore solves

B _ B B

M Y M — TD Y )
Yr-T)||=) ————Yp|= | =—F——71—.
(r—a L > <YL> r—a © (YF> B[YF](ﬁfl)




Multiplying both sides by (Yr/y)” (note that here Yp/Yy, = (mar/7p) ([?/I)) and substi-

tuting for remaining Y7, and Yr terms yields
8 ~
T (mu [g]ﬁpwlui ™M\ g K
g—1\7p p—1
which has a unique positive solution,

™D

K = I (12)

()
D

_ 1+6(M—1> -

A.3 Proof of Proposition 1
A.3.1 Part (i)

As discussed in the text and illustrated in Figures 1 and 2 there are two subcases to consider in
order to establish this part of the proposition, K < Kand K < K < K.

K < K case This case corresponds to a standard attrition game over (Yg,00). It is therefore
only necessary to verify that firms do not move in [y, Ys| with positive probability, in which case

a specific form for the equilibrium distribution can be derived following standard arguments.

First, if Y; € [y,Ys), V (Y3, Y;) =L (Y;)) <M (Ys) ifY; <Y;, =M (Y;) < M (Ys) if V; =Y,
= F(Y;) ifY; > Yj, s0 V(Y;,Y;) < V(Ys,Y)) for any Y; so that any Y; in this interval is a
dominated strategy. If Y; = Yg then it must be verified that players do not play an atom at
this point in a symmetric equilibrium. But if player j invests at Yg with probability ¢ > 0, by
continuity of L there exists € > 0 such that EV (Yg, }N/]) =qgM (Ys)+ (1 —q)L(Ys) = M (Ys) <
gF (Ys+¢)+(1—q)L(Ys+¢) = EV(Ys +¢,Y;).

Following Hendricks et al. [17] firms randomize investment triggers continuously over [Yg, 00).
To derive the unconditional equilibrium distribution assume that firm j # ¢ randomizes her invest-
ment trigger according to a distribution G with density g. Firm ¢’s expected payoff from investing
at a threshold Y; > Yy is

00 Y; 00

[ Vs = /Y " F(gs)ds + /Y M(¥:)g(s)ds
Y;

= [ Fe(s)s+ (1= G) MY,
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Firm ¢ is willing to mix over investment thresholds if 0 <f;; V(Y;, s)g(s)ds) /0Y; = 0 over (Yg, 00),
that is if G is such that [F(Y) - MY)]g(Y)=-M'(Y)[1 -G (Y)] for al Y € (Yg,00). As the

same condition holds for the other by symmetry the equilibrium distribution satisfies

Y !
M'(s)
G, (Y)=1—-exp / —_
() ve Fs) M3
so substituting for F' and M the equilibrium distribution is

ds

0 LY <Yy

I

6_7
() oot (51} e

K < K < K case As L(Y) < F(Y) for all Y firms engage in a war of attrition but since
L (Y) is decreasing over (Y7, Yss), constant over [Ys/,Ys] and decreasing over (Yg,o00) the war
of attrition has a nonstandard form, where Yg denotes the unique solution in [Y7,Yr] to the
condition L (Y) = M (Ys).

The support of mixed strategies follows from an argument similar to above. Any threshold
Y; € (y,Yr) is a strictly dominated strategy and no player puts positive probability on Y7, in a
symmetric equilibrium. Similarly investing at any threshold Y; € (Yy, Ys) is strictly dominated by
investing at Yg and no player invests with positive probability at Yg in a symmetric equilibrium.

Investment thresholds are therefore continuously distributed over [Y7,Ys/] U [Ys, 00).

Letting Gy and ¢gp denote the unconditional equilibrium distribution and density assume
that firm j # ¢ randomizes her investment trigger. Firm i is indifferent between investment
thresholds if 0 <f;; V(Y;, s)gb(s)ds> /0Y; = 0 over [Y1,Ys] U [Ys,00), that is if Gy is such that
[F (V) = L(Y)] gy (Y;) = —L/(Y) [1= Gy (V)] for all Y € (Y;Yer) and [F (V) = M(Y)] gy (V) =
—M'(Y)[1=Gp(Y)] for all Y € (Yg,00). The former condition holds for

B Y L/(S)
Gy (Y) =1 —exp/YL mds

L(Yy) = L(Y)
F(Yp)—L(Y)
while the latter condition is satisfied by G, so that the equilibrium distribution is
0 if Y<Yg
Gy (Y if V<Y <Yy
Gy (ry={ o) |
Gy (YS/) if Yoo <Y <Yy
Gy (YS’) + (1 — Gy (YS/)) G, (Y) if Y>Yg



A.3.2 Part (ii)

As discussed in the text and illustrated in Figures 3 and 4 there are two subcases to consider in
order to establish this part of the proposition. It is simpler to begin with the more standard case
I < K before considering the case K<K<I.

I < Kcase ForK>1, L(Yr)>F (Yr)sothat there exists aunique Yp < Yz such that L (V) =
F(Y). Over (Yp,Yr), the preemption range, L (Y) > F (Y). Following standard arguments over
this range firms seek to enter before the rival and in equilibrium both firms invest at Yp which,

by the tie-breaking rule, results in either firm investing at Yp with equal probability.

In preemption models, joint investment equilibria may also arise and it must be verified that
this is not the case here. Investment at the optimal simultaneous investment threshold Yg by both

firms results in a payoff M (Yg) and evaluating the ratio of payoffs,

voer == (o) o () (&)

This ratio is increasing in K and therefore bounded below by its value at K (over the range

of investment costs for which preemption occurs). Substituting K for K and simplifying gives
~\ (B-1) ~
L(Yz) /M (Ys) = (I/K) > 1. The best response to Yj = Yg is thus Y7, for all K > K and

simultaneous investment is not an equilibrium.

K < K < I case For K < K < I, the condition L (Y) = F (Y) has two roots Yp, Yp with
Yp < Yy and Ypr € (Y,,Yp). For a given Y > Ypr and any Yj, V (Y,Y;) < F (YF) so playing
beyond the preemption range (Yp,Yps) is a dominated strategy. Over the preemption range
(Yp, Yp/) firms preempt one another as in case 3 above and in equilibrium both firms invest at Yp

which by the tie-breaking rule results in either firm investing at Yp with equal probability.

A.3.3 Part (ii7)

IfK =K , then any Y; = Y7, and Y; > Y7 constitute an equilibrium as players are indifferent
between the resulting leader and follower roles (L (Yz) = F (Yr)), and of these equilibria only
(Y, Yr) is symmetric. O
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A.4 Corollary 2

To establish the comparative statics results the effects of mys/7mp and 8 and on K need to be

determined. Evaluating the relevant partial derivatives and rearranging yields
K ] ~
ok, E I3 ”
8(TFM/7TD) 7TM <1+6<7FA4_1>>

after rearrangement so 0K /0 (mp;/mp) < 0 directly, whereas

0K
okt _
e 1 () () - (e (e on) () uw

=)

G-1' P (s (1) ()]
(
(

-1 1 myp/mp) — 1 mym/mp) —1
CE: (hl : 5(;MM/{TDD) - (1 +ﬁ)( TFJ\;V[/{TDD))— 1))> )
The sign of 0K /Op is the opposite of that of the (bracketed) middle term. Applying the logarithm
inequality Inz > (z — 1) /z for x > 0,2 # 1 with 2 = (1 + 8 ((map/7p) — 1)) / (mar/7p) yields
1+ 8 ((mu/mp) =1) _ (B=1) ((mm/mp) — 1)
TM/TD 1+ B ((mm/7p) — 1)
so 0K /0B < 0 and therefore 0K /0, 0K /8o > 0.

In (16)

A.5 Extended mixed strategies and dynamic representation of the timing

game

Suppose that the feasible firm investment strategies are taken to consist of investment times
that are first-hitting times 7 (Y;) :=inf {¢ > 0|Y; > Y; } consistently with the idea that managers
determine optimal hurdle rates for investment at any point in time. Then the investment game is
quasi-deterministic in nature in the sense that there is a one-to-one mapping between distributions
of investment times and threshold strategies. We can then apply the framework of Fudenberg and
Tirole [11] directly by defining extended mixed strategies over investment thresholds rather than

time, even though the underlying demand process is stochastic.'”

7 A more general dynamic representation allows for firms to choose arbitrary stopping times (see notably Riedel
and Steg [29]) which renders the investment game more complex. In the framework we adopt for instance, the
investment game remains in the attrition region once it has been initially attained whereas otherwise the demand

process exits the attrition regions with positive probability over any time interval.
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A.5.1 Strategies, payoffs and equilibrium definitions

In a dynamic representation of the investment game the continuation payoffs are defined in terms of
the current state of the stochastic process y, and accordingly denoted LY (Y'), F¥ (V) and MY(Y),
by setting

L(Y) if Y<y

Ly(Y):{L(y) if Y>uy ’

and similarly for FY (Y) and MY(Y).

Following Fudenberg and Tirole, a simple strategy for player i € {1,2} in the game starting in
state y is a pair of real-valued functions (GY,a) : [y, 00) X [y, 00) — [0, 1] x [0,1] such that (a) GY
is non-decreasing and right-continuous, (b) o (Y) > 0= G} (Y) =1, (c) o is right-differentiable
and (d) if of (Y)=0and Y =inf{Z > Y,a! (Z) > 0} then o has positive right-derivative at Y.

Let G (V) :=limy_,y— GY (Z) denote the left-hand limit of GY, o} (Y) = GY (Y) - GY™ (Y)
the magnitude of any jump at ¥ and let GY~ (Y) =0, ¢ = 1,2. Let Y, (y) = 0 if &/ (V) =0
for all Y > y and Vi (y) = inf {Z > y,a! (Z) > 0} otherwise, and let Y (y) = min {1 (v),V2 (y)}

denote the first threshold at which an investment is certain to occur. Finally let

1—
u(l =) and pps(u,v) := ue

u,v) (= ——— _ )
’uL( ) U+ v —uv U+ v—uv

Firm payoffs can then be expressed as
Ve ((6Yal), (6YaY)) =
/y " (1) (1 - 639)) d6s) + B (5) (1 - GY9) dGY()) + Z;y(y) al (2)a} (2) MY(2)
+ (1= W) (1- 6 W) W ((6lat), (6hat)).,

i,7 € {1,2}, i # j where

al” (Y 1-GYUY
WY (6t at) (6al)) = e _JG;_ 4 (1= (V) P2 (1) o (V) MY G?j‘( -
if Vi (v) < Vj (v),
_ af” (Y) —o y oY v 1-GY(Y) Y
1—GTGU<O (Y»L(Y%%jOUM(Y» Tf@?@ﬁF()



) (@l (Y),af (V) MY (Y)
(a? () Ly (V)+(a? (V) F¥(Y) y y
/ 7 y . Y f Y :O
a;’(Y)) +(a?(Y)) a; ( ) + aj; ( )

if Vi (y) = Y (v).

For a given y a pair of simple strategies ((GY,aY),(GY,a3)) is a Nash equilibrium of the
game ({1,2},(GY,aY) x (G§,a%),(VY,VY)) if (GY,a?) maximizes VY (-, (GY,aY)), i,7 € {1,2},
i # j. A collection of simple strategies (G (Y),a (Y))), is said to be consistent if for y <
Y<Z G (2)=G!Y)+ (1 -GV (Y))GY (Z) and o (Z) = o (Z). The consistent strategies
(GY(Y),of (Y))),=o and (G (Y), a8 (Y))),=o are a perfect equilibrium if the simple strategies
(GY(Y),af (Y)) and (G (Y),a (Y)) are a Nash equilibrium for every y.

A.5.2 Equilibrium

K < K case In the attrition range firms do not profit from using mixed strategies extensions
(af > 0) to coordinate simultaneous investments in a waiting game. Equilibrium strategies are
therefore essentially derived from the unconditional strategies Go(Y') and G,(Y) depending upon
whether K < K or K < K < K. Therefore, letting GY(Y) := %ﬁ.)(y) and GJ(Y) :=

Sl (GY(Y),af (V) = (G4(Y),0) and (GY(Y),a! (V) = (G(Y),0) are equilibrium

strategies in these two subcases respectively.
K > K case In the preemption range there are two subcases that we consider successively.

K < K < I subcase This is the case represented in Figure 3 whose key features are that the
preemption range (over which LY(Y') > F¥(Y')) is the bounded open interval (Yp,Yp/) C (Yp,Yr),
and that if a threshold beyond this range is reached (off the equilibrium path), firms play a waiting
game as FY(Y) > LY(Y) for Y > Yp/. In a dynamic representation of the game equilibrium

strategies must account explicitly for this possibility.

At any y > Ypr the payoff to leading lies below the follower payoff, but it is not monotonic.
In (Ypr, Yr) there exists a unique threshold Ys such that LY (Yg/) = LY (Ys). The leader payoff is
decreasing only over (Ypr, Ys/)U(Ys,00), and it is this range that constitutes the support of mixed
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strategies. The attrition subgame is then solved similarly to the K < K < K case in Section A.3

yielding unconditional distributions

Y [LY(s))
Ge(Y)=1—ex / ds
(¥) P Jy,, F(max{Y,Yr}) — L¥(s)
and
0 if Y <Yy
Ca(Y) = G, (Y) if Yo <Y <Yy
T Gl (ve) if Yo <Y < Ys

G, (YSI) + (1 -G, (YS’)) G, (Y) if Y>Yg

so that the conditional distribution is G¥(Y) := %;(éf)(y).

If y lies in the preemption range the reasoning is standard and results in firms investing

immediately and using the strategy extensions to coordinate simultaneous investment.

To summarize equilibrium strategies in this case are (GY(Y),a?(Y)) with

;

0 if Y <Yp
Gy(Y) - 1 lf YP S Y < YP’ 5
GYY) if Y >Vp

\

0 if Y <Yp
Q) = { BOERO f vo<y <y
0 it Y >Yp

for i € {1,2}.

K > I subcase Here LY(Y) > FY(Y) over (Yp,Yr) so the investment game is a standard
case of preemption over this range. A specificity of the investment game studied here is that for
K > I, MY lies strictly above FY over [Yp, 00). Equilibrium strategies are thus those of a standard
real option game, yielding (GY(Y),a?(Y)) with

)

0 if Y <V
GUY) = : -
1 if Y>Yp
0 if Y <Yp
(V) = { Gy f Y <Y <Y
1 if Y >V

for i € {1,2}.
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A.6 Imitation cost, consumer surplus, and welfare (Proposition 3)

The proof of Proposition 3 involves several steps. First, to establish (iii) by determining the
optimal imitation cost level Kp in the closure of the preemption regime (for K > K ). Next we
prove part (ii) by showing that W (K) is increasing over [0, K). Finally for part (i) we establish
the existence of a local optimum of welfare under attrition (IN( <Ky < K ) and compare optimal

welfare in the attrition and preemption regimes.
Optimal imitation cost Kp

Suppose that K > K so investment thresholds are Yp and Yr. The social welfare function (8)
then has the form

W (K) = <WYP_I> <5P>5+ ((2WD+CSDT)_—(£WM+CSM)YF_K) <§§/F>B
(18)

Noting that Yp and Yp are functions of K with Yp < Y and limK_ﬂA( Yp = Y. Using the

preemption equilibrium condition L (Yp) = F (Yr) and implicit differentiation to obtain a useful
expression for the ratio (Yz/Yp)?, after several steps of calculations (see Section A.9), for K > K

the derivative of welfare can be expressed

CSny [, mm M Y; CSp v\’
o= (S (0 (5 -00) i) - -2) ()
(K) . BWD p . (B-1) Y, _Y» p o Y,
If CSp; =0, the Y7, and Yp terms vanish and it is straightforward to see that W/(K) < 0 so that
K is a maximum in this case. Otherwise CSy; > 0 and the behavior of W(K) for K > K can

be characterized as follows. Since lim Yp = Y, we have lim,. , » W/(K) = 4o00. Moreover

K—K+
both (Yr/ (Y —Yp)) and (y/Yr) are decreasing in K so W is concave over this range. So long
as limg o W/(K) < 0 therefore, there exists a unique root Kp > K that constitutes an interior

optimum, and as limg_,oo Yp = (r — ) I /mpr = ((B — 1) /B) Y1, this occurs if

CSu CS
(/3277?;’45—1)2) #—BTDD—2<0. (19)

If (19) does not hold, set Kp = co. Taken as a function of 5 the left-hand side of (19) is a quadratic
A (), with A (1) = (CSpyr — CSp — 27p) /mp < 0 and lims, A (8) = co. Therefore there exists a
unique By > 1 such that A (5p) = 0.

To summarize, we have so far characterized solutions to the constrained optimization problem

max W (K') and shown that there is a unique optimum K p in the extended real line and there

K>K
exists a unique Sy > 1 such that Kp is finite if and only if 5 < By.
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Next, several steps of calculation (again see Section A.9 for details) establish that if the imita-
tion cost is set at Kp, the corresponding (optimum) preemption threshold has the form Y7 = ¢Y,

where

CSp—CSy | 2

B
w_ csiDZEjlcsM 275<B0

We have ¢ € [% 1] with ¢ = 1if CSy; = 0 and ¢ = (8—1) /B if B > fo, establishing part
(id).
Note that the optimal preemption threshold Y} satisfies Y5 € [Yxpv,Yz] where Ynpy =

(r —a) I/mps is the myopic Marshallian investment trigger. The optimal level of welfare under

preemption can be shown to be

T i A (Y
Yy,

W (Kp) =
(Ke) T 11—y p-1
and this latter expression is useful later in the proof of Proposition 4.

Lower bound on socially optimal imitation cost

IfK < K , firms randomize investment triggers over [Yg,00) according to the distribution
G, (Y) and imitator entry is immediate. Observe first that by Proposition 2 industry value is lower
at any K than at K , S0 it is sufficient to show that the expected consumer surplus for K < K
is bounded above by its value at K as well. The lower bound of the entry threshold distribution
under attrition in this case is Yg = (8(r —a)I)/((8 —1)7p), whereas at K innovator and
imitator entry both occur earlier, at the thresholds Yz, and Vi = (5 (r—a) IA() /((B—1)mp).
Therefore, both investments occur later under this type of attrition regime resulting in lower

consumer surplus and K < K cannot be a social optimum.
Ezistence of local optimum under attrition and comparison

Finally consider the behavior of W (K) just to the left of K. Since EV (171, }72) is maximized

at K , the value of lim W'(K) depends only on the left derivatives of the consumer surplus

K—K-
terms at K. Consider first the derivative of the third term, consumer surplus from imitation.

Developing it yields

Ve BV [ Ga (Yo K)  + /M(Yp/s)ﬁ_ldGA(s;K)
N———

Ys

CSp — CSu

r—«

lagged imitator entry
immediate imitator entry
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To determine the value of the left derivative at K of this expression recall that the distribution of
entry thresholds is by G (V;K) = 1 — (1 — Gy (Y))2. Since G, (YS/;IA() =1, G (Yo K) =1
and moreover 0GA/0Y = 2 (1 — Gy) (0Gp/0Y), OGA (YS/;IA() /8K) = 0. Only the direct effect
of K on Yr therefore remains at K , and Similar reasoning holds for the consumer surplus from

innovation term in (8) (except that the is no direct effect since Y7, is independent of K'). Therefore,

. CSp —CSn -3 oYr
lim W/(K)=-————""21Y 2L <.
Kok ( ) B D FY oK =

As W is continuous we conclude that if CSp > CS)s there exists a local optimum imitation cost
level K4 in (I?,I?)

Aslim,_ p dW (K)/dK <0 for CSp > CSys and lim ., dW (K) /dK > 0 for CSpr > 0
we conclude that for (CSp — CSyr) CSpr > 0 welfare has local maxima in both the (upper) attrition
and preemption ranges. Either type of local maximum can be a global maximum depending on

the relative magnitude of the consumer surplus resulting from innovation and imitation, which

establishes part (7). O

A.7 Sufficient condition for preemption to be optimal (Proposition 4)

The result is established by first deriving an upper bound for the level of welfare realized in the
attrition regime, which is then compared with the lower bound of the welfare obtained under

preemption so as to obtain a tractable sufficient condition.
Upper bound for welfare under attrition

Under attrition, innovation and imitation occur at thresholds ?A and §7F = min {}7,4, YF} S0

the expected social welfare (8) is

N 8 _ . 8
W(K):E(CSA{+WMYA—I> <~y> +E<(CSD+27TD) (CSMHTM)YF—K) (§> .
r—« s r—« Yr

The term in the first summand is quasiconcave in the investment threshold with a maximum at
(B(r—a)I)/((B—1)(CSy + mar)) < YL whereas given the support of the attrition distribution
?A > Y. Therefore

- B B
() (2) = (Se)(2)
r— o« Y4 r—« Y;,

AN
N
ey
2|4
<z
N———

ey
| ™~

—_
N
IS
N—
™

=
S
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The second summand can be bounded using the assumption that the static entry incentive is

excessive,

8 B 8
s n) (1) <= (2 (7))
T —« YF r—o YF

The term on the right-hand side is the expected follower payoff in equilibrium, EF (?F> More-

over in equilibrium payoffs are constant over the support of mixed strategies so EF (?F) =

max {L (Y1), L (Ys)}, and this latter term is maximized for K = K by Proposition 2. Therefore

~

E<(CSD+27TD) (CSM+7TM)Y K><y>ﬁg K (Ay>6
r—a Yr B—=1\Yp

where Vi := (5 (r —a) ff) /(B — 1)mp)) = (f{/f) (mar/7p) Yr. Using (12) to substitute for
(I/(\'/I>_(B_1) gives

[ SR 1) S

Combining (20) and (21) yields

CSyy 1 I (yY
W (K oM
(K) < BWM%1+1+BUM—Q 5_1(n)

for K < K.
Comparison of attrition and preemption welfare

The optimal value of expected welfare under preemption is

CSyr 1 I Y A
W) = T P B 1 <YL>

(see Section A.9). Preemption is therefore socially optimal if

CSr 1 1
— 1 .
Y <¢f“wﬁ 'B> = +1+B(”M‘1)

(22)

This condition is difficult to interpret however since 1) is itself a function of parameters including
CSp and mp. We therefore derive a conservative (it is only tight in the limit as 8 — 1) but more
tractable bound.
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Taken as a function of ¢ over (0,1), 1/ (1/13_1 — wﬁ) is a strictly convex function that is
minimized at ¢y := (8 — 1) /8. Substituting this value into the left-hand side of (22) and using
1/ (14 B ((mpm/7p) — 1)) < 1 yields after rearranging the stronger sufficient condition

CSy _ 2 1

> = =:Q) . 23
v Rt (23)
() -
The right-hand side of (23) can be characterized, first by observing that by I"'Hopital’s rule,
-1 81
limg_, (%) =1 and limg_, (%) = e s0 limg_,; 2 (1) = oo and limg_,» Q2 (B) = 0.

Moreover, 2/# s decreasing and d [ (8/ (8 = 1))° "] /dB = |(8/ (8= 1))"™"| (= (1/8) +m (8/ (8 — 1))
which is positive since In (8/ (8 — 1)) > 1/ by the logarithm inequality. Therefore ' (8) < 0. O

A.8 Buyout and licensing

Buyouts and attrition

To verify the claim that attrition does not occur if mp;/mp > B + 1 suppose that K = 0
(the imitation cost most favorable for attrition). The leader payoff Ly (Y') is maximized at the
threshold Yp = (B (r — a)I) /((B — 1)(wp — wp)). The investment game is (weakly) preemptive
if Lp (Yg) > F (Yp), that is if

B B
TM — TD ) TD Yy
—— " Yn-—-1 - > Y| =
(T—a B )(YB) _r—aB<YB)

which yields the desired condition.

Proposition 6

We first verify that a buyout is the preferred instrument. The condition Ly (Y) > L, (Y)

works out to

B B
M — TD Y TD Y
_— Y.Yrl - K —_— > [ ——— Y.Yrl! - Ky— K _—
( r—a max {Y, Vr} I) (max{Y,YF}) - (r_amax{ Y} 0 I) (maX{Y,YF}>

which holds because of the efficiency effect mps > 27p.

That buyouts increase firm profit for K < K follows from Lg (Y) > L(Y) and the rent

dissipation property of attrition and preemption.

Similarly, licensing (provided K > 0) increases firm profit while leaving the timing of imitation

unchanged. It therefore remains to verify that licensing results in earlier innovation. Let K L < K

47



denote the critical threshold that separates attrition and preemption in the presence of licensing,
which solves Ly, (Yz) = F(YF) (as licensing only has a level effect on the leader payoff for Y < Yp
the payoff Ly, is maximized at Y7). For K > Ky, as Ly, (Y) > L(Y) allowing licensing results
in innovation at a threshold that is either lower than the preemption threshold without licensing
or weakly lower than the previous possible innovation thresholds. Otherwise if K < K L, the
industry is in an attrition regime both with and without licensing and the distribution of innovation
thresholds shifts left with licensing. [J

A.9 Additional derivations

This section details some of the lengthier derivations necessary to determine Kp and Yp (the
optimal imitation cost and preemption threshold within the extended preemption range) and

W (Kp) (the optimal welfare under extended preemption).
Characterization of Yp and dYp/dK

The condition L (Yp) = F (Y) implicitly defines the preemption threshold Yp as a C! function
of K over (I? , oo) (see Section A.2). Dividing by 3° and grouping Y yields the more compact

form of this condition,

(TWMQYP - I> Y;P = <T7TMQYF - K) Y,
_ B T -1 mp g —(B-1)
- GEn ) () e e

This condition has the form f (Yp) = g (K), so that dYp/dK = ¢'(K)/f'(Yp) where

1 (Yp) = (— B-1) My, 4 BI) v, P!

r—«

and

Any preemption threshold Yp satisfies Yp < Y7, so f/(Yp) > 0. Finally, using the identity
g(K) = f (Yp) and developing yields

dYp _ Yp—Yxpv (Yp
dK Y. —Yp \K )

Interior preemption optimum Kp
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Suppose that condition (19) holds so that the preemption optimum is known to be an interior

solution. To derive its explicit form, first substitute Y in the social welfare function (18) to get

8
W (K) = (Csﬁ”faw Yp — I) (;’P)
N ( B (CSp+2mp) — (CSm +7mm) 1> <5— L 7p >6y5K(61).
B—1 D B r—a«

(K). We have

Consider then the problem max, . = W

, CS f 1 ay
W (K) = <— (ﬂ—l)WprI) (;’P) S

- <B(CSD+27TD)(CSM+7TM) _(ﬂ_1)> (57«@)/3%}(@

™D B—-1 mp

At an interior optimum the socially optimal imitation cost K p satisfies the condition Wj, (Kp) = 0

but it is convenient to obtain an expression for the socially optimal preemption threshold Y3

instead.
Substituting for dYp/dK and normalizing the first-order condition yields

<(ﬁ _qy By, m) YEZ Iy py
L—1p

D - D

and substituting the preemption condition (24) gives a condition in Y5 only,

CSamr+7ar s Y7 — Ynpv
(- Vi 1)

B <,B(CSD+27TD)7T_D(CSM+7TM) _ (B— 1))

TM V¥
r—a” P I

B
pimp 1

Noting that Y5 — Yxpy = TW_MO‘ (fj”a Y7 — I) and rearranging then gives

(CSM+7TMY;—YL> ( I} 7TM_1>

M B—1mp
B (CSD+27TD)—(CSM+7TM)_1>'

— - v8) (52 =

There is a unique solution to this condition which can be expressed as Y5 = 1Y}, where
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CSp—CSum +

Y= =
= TSp B 1CSM

D B v

+3
Note that the condition Y3 > Yypy is equivalent to ¢ > (8 — 1) /8 which yields condition (19) in
the text.

Value of optimal welfare under preemption W (Kp)

The optimal social welfare can now be evaluated as follows. Using (24) to substitute in the

expression for W (Kp) above yields

Wp (Kp) =
<CS£/I_+07MYI§ _ I) (%% _ 1) + <Bﬁ1 (CSD+2WD3F;(CSAI+WA{) _ 1) (;TM;Y* —I) <y>/5
ﬂim 1 Yi)
Substituting for Y7 = (8 (r —a)¢I) /(8 — 1) mar) (= Y1) and factoring I,
Wp (Kp) =
B8 CSpy+m ™\ CSp+2np)—(CSp+m
(o) (g 1) o (St ) (o)
BLM 1 Yr)

Then after substituting the expression for 1 and some algebra,

CSar ¢ I (y)ﬁ

Wr (Kp) = ™ 1—@0 B—1
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