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Abstract. This work is the third, but not the last, in the cycle begun by the works [23, 22] about the new
theory of experience and chance as the theory of co~events. Here I introduce the concepts of two co~event
means, which serve as dual co~event characteristics of some co~event. The very idea of dual co~event
means, has become the development of two concepts: mean-measure set [16] and mean-probable event
[20, 24], which were first introduced as two independent characteristics of the set of events, so that then,

within the framework of the theory of experience and of chance, the idea can finally get the opportunity
to appear as two dual faces of the same co~event. I must admit that, precisely, this idea, hopelessly long
and lonely stood at the sources of an indecently long string of guesses and insights, did not tire of looming,
beckoning to the new co~event description of the dual nature of uncertainty, which I called the theory of
experience and chance, or the certainty theory. The constructive final push to the idea of dual co~event
means has become two surprisingly suitable examples, with which I was fortunate to get acquainted
in 2015, each of which is based on the statistics of the experienced-random experiment in the form of a
co~event.

Keywords. Eventology, theory of experience and chance, event, co~event, experience, chance, to happen,
to experience, to occur, probability, believability, mean-believable (mean-experienced) terraced bra-
event, mean-probable (mean-possible) ket-event, mean-believable-probability (mean-experienced-possible)
co~event, experienced-random experiment, dual event means, dual co~event means, bra-menas, ket-means,
Bayesian analysis, approval voting, forest approval voting.

1 Introduction

This work is the third, but not the last, in the cycle begun by the works [23, 22] about the new theory
of experience and chance as the theory of co~events!. Here I introduce the concepts of two co~event
means, which serve as dual event characteristics of some co~event. The very idea of dual co~event
means, has become the development of two concepts: mean-measure set [16]> and mean-probable event
[20, 24], which were first introduced as two independent characteristics of the set of events, so that then,
within the framework of the theory of experience and chance, the idea can finally get the opportunity to
appear as two dual faces of the same co~event. I must admit that, precisely, this idea, hopelessly long and
lonely stood at the sources of an indecently long string of guesses and insights, did not tire of looming,
beckoning to the new co~event description of the dual nature of uncertainty, which I called the theory of
experience and chance, or the certainty theory. The constructive final push to the idea of dual co~event
means has become two surprisingly suitable examples, with which I was fortunate to get acquainted in
2015, each of which gives a statistics of the results of the experienced-random experiment in the form of
a co~event.

2 Mean characteristics of a set of events in eventology

In [16], as well as in [1, p. 644], you can find the definition of the concept of the mean-measure set, which
was first introduced by me in 1973, and published in [21, 1975], and [15, 1977]. The mean-measure set

© 2016 O.Yu.Vorobyev
Oleg Vorobyev (ed.), Proc. XV FAMEMS’2016, Krasnoyarsk: SFU
1A «co~event», a derivative of an «event», is a new English word that corresponds to the Russian term «so~bytie», derived from

«sobytie», that signifies co-being, coexistence (about the Russian term «so-bytie» see also [9, p. 25] and [3].)
2See my primary sources are [15, 21], and also links to «Vorobyev’s expectation» in [14, 11, 8].
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is the mean-set characteristic of a random set whose values are subsets of a measurable space with a
measure. This characteristic plays the same role for a random set as for a random element with values
from a linear space? is the expectation, or mean value. There are two concepts existing in the eventology
[18, 2007]: mean-measure set of events and mean-probable event [20, 24, 2012] is the result of applying
the idea of defining the mean-measure set within two of different measurable spaces with measures:
mean-probable event is the mean-set characteristic of events, as measurable subsets of the space
of elementary outcomes, and mean-measure set of events [16] is the mean-set characteristic of the
measurable subsets of events occurred from a given set of events.

In this section, the old notation is used, which was usually used within the framework of the probabilistic
[10], as well as the eventologic paradigm [18] before postulating the theory of experience and chance as
a theory of co~events [22]:

(Q,A4,P) — the probability space,

Q0 —the space of elementary outcomes w € ©,
A — the sigma-algebra of events = C Q,
P — the probability measure on A,

X c A — the (finite) set of events z € X,

(X,A*,B) — the measurable space with the measure B, normalized to unity, 1)
A* —the sigma-algebra of subsets X C X of events = € X,
2% C A* —asetof some A*-measurable subsets X C X,

B — the measure on A%, normalized to unity®.

AFor the finite set X C .4 the measure B may be, in particular, proportional to the power of subsets:
B(X) = |X|/|X], X € A%, including, for example, B(z) = B({z}) = 1/|X|, = € X.

2.1 Mean-measure set of events

In eventology, each set of events X C A uniquely relates the concept of a random element as a random set
of events
Ky :Q — 2%

defined on the probability space (2, A, P) with values
Kx(w)={reX:weaz}ecd®

from the area 2 C A* C P(X), that is contained in the sigma-algebra of a measurable space (X, A*, B)
with the measure B normalized to unity. The value Kx(w) of the random set of events Ky on the w € Q2 is
interpreted as a subset X (w) = {z € X: w € 2} € 2" consisting only of those events = € X that happens
when the elementary outcome w € Q happens.

The random set of events Kx is defined by the family {p(X /%), X e2* } of probabilities

p(X)X) = P({w: Kx(w) = X}) = P(ter(X/ X))

of terraced events

ter(X/X)= (1= [] 2°CQ,

zeX zxzeX—-X

that form a partition, generated by X, of the space of elementary outcomes Q:

Q= ) ter(X/X).

XeeX

For the random set of events Ky literally the same as in the general case for a random set of arbitrary
points [16, 1] the following concept is defined.

Definition 1 (mean-measure set of events). Let

Calx ={z€X:Plx)>a} C {zcX:Px)>a} =8 ¢ A*,

3For a random variable, a vector, a matrix, a function, etc.
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then the mean-measure set of events for the random set of events Kx is any set of events € Kx € A* that
satisfies two inclusion relations:
Ea Ky C ERx C &Ky

for some level o € [0,1] such that the approximate equality* B(EKx) ~ E,(B(Ky)) is performed with the
smallest error, which will be briefly denoted below: B(EKy) ~ E,(B(Kx)).

min

In other words, one of the two equalities holds:
- {SaKx, E.(B(Kx)) — B(&,Kx) < B(&°Kx) — Ep(B(Kx)),
=
&Ky, Ep(B(Kx)) —B(&Kx) = B(EKx) — Ex(B(Ky)),

or:

o]

EKx:{EaKxa E;(B(Kx)) — B(EaKx) < B(&°Kx) — Ex(B(Kx)),
&Rz, Ep(B(kx)) -~ B(&Kx) > B(&'Kx) — Ep(B(Kx)).

Lemma 1 (extremal properties of mean-measure set of events). The mean-measure set of events EKx
minimizes the mean distance E,p(Kx, X) = E,(B(Kx A X)), mean measure B of symmetrical difference’:
Ewp(Kx,EKx) = min Epp(Kx, X),

X
B(X)HﬁuEp(B(Kx )

between the random element Kx and those subsets of events X € A* for which the approximate equality of
their measure B(X) and the mean measure E,(B(Ky)) is performed with the least error.

Proof of the lemma does not differ from a proof of analogous statements about extremal properties of
Vorobyev’s mean for random finite sets [16], [21] or for random closed sets [14], [11], [8], and others.

2.2 Mean-probable event

Based on the idea of [16, 1] already used in the definition of the mean-measure set (see the
previous paragraph), the eventology defines [20, 24] mean-probable event playing the role of mean-set
characteristic of events x € X as subsets of Q. In the same way as a mean-measure set [16] plays the role
of the mean-set characteristic of the values of the random element Kx as subsets of X.

Definition 2 (mean-weighted probability of events from a set of events). Let (2, A, P) be a probability
space, and (X,.4*,B) be a measurable space with the measure B normalized to unity. For the set of
events X C .4 a mean-weighted by the measure B probability P of events from X is defined by formula:

Py = Z P(z)B(x). (2)
rzeX
Definition 3 (mean-probable event). Let
Br= ) ter(X)X) € ) ter(X)X) =3¢ € AT, (3)
X :B(X)>n X :B(X)>w

then the mean-probable event for the set of events X C A is any event 7, € A* which satisfies two
inclusions:

Iy C 7, C 7%, 4)
for some level g € [0, 1] such that approximate equality P (z,) ~ P holds with the least error which will
be briefly denoted as P () ~ Px. In other words, the mean-probable event happens with a probability

that differs from mean-weighted by B probability Py of events z € X (3) with the smallest error.

4Here Ep(B(Kx)) = Z B(X)p(X /%) is an expectation of r.v. B(Kx ) by the probability measure P that for the finite set X C A
xea*
is defined by this formula, but may be also calculated by the Robbins theorem [12]: Ep (B(Ky)) = Z P(z)B(z).

zeX
SKx AX =Ky NXC+ (Kx)°NX =Ky N(X—X)+ (X — Kg)NX.
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In other words, one of the two equalities holds:

5}\57 f’x—P(Ax)<P(§}\a)—Px

T, = ~ * ~ (5)
2, Px—P(33)>P(2Y) - Px,
or: R
X, = ~ ~
T |@e, Px-P(E)>P(32) —Pa

Definition 4 (probabilistic distance of an event till a set of events). A probabilistic distance of
an event \ € A till a set of events X C A is defined by formaula

p(A,X) =D P(AAz)B(z), (7

reX

as a mean-weighted by B probability of symmetric differences of events z € X and the event A € A.

Lemma 2 (extremal properties of the mean-probable event). The mean-probable event z. for the set of
events X minimizes the probabilistic distance till X:

(T, X) = min p(A,X) ®)
P()\)nﬁnf’x

among such events A € A* that occur with probability P()\) which differs from mean-weighted by B
probability Py of events from X (3) with the smallest error.

Proof of the lemma does not differ from a proof of analogous statements about extremal properties of
Vorobyev’s mean for random finite sets [16], [21] or for random closed sets [14], [11], [8], and others.

Probabilistic-eventological Paradigm of co~event R C (Q2|Q2)
paradigm (co~event paradigm)
Beleivability bra-space (2, A, B| Probability ket-space |2, A, B)
(2, A, P) — probability space |2, A, P) — probability ket-space
2 — space of elementary outcomes w € Q (2| — space of elementary bra-incomes (w| € (2] |©2) — space of elementary ket-outcomes |w) € Q)
A — sigma-algebra of events x C Q (A| — sigma-algebra of bra-events (x| C (| | A) — sigma-algebra of ket-events |z) C Q)
P — probability measure on .A P — probability measure on | A)

(x, A% , B) — measurable space with the (2, A, B| — believability bra-space
measure B

X —setofeventsz € X C A Xq — R-labelling set of labels z € X C .Axy C A,
(Xq | —setof bra-events (x| € (Xg| C (.Ax,R\ C (Al

(X | — R-labelling of bra-quotient-set (22| /R

Ax — sigma-algebra of events « € X C 'Ax’k — sigma-algebra of labels € X, C AX'R cA

Ay C A
<.A35JQ | — sigma-algebra of bra-events (x| € (Xi| C (.ij2 | C
(Al
2% _ set of subsets of events X C X such 2XR _setof R-labelling setlabels X C X5 suchthat X € 2x® C
that X e 2X c a¥ Cc 4 AXR C A
\23592) — set of terraced events |ter(X /X)) € \23552) [«
|ATR) C |A),
\ax.'R ) — R-labelling of ket-quotient-set |2)/ R
Ax sigma-algebra of subsets X C X of AXR sigma-algebra of R-labelling set labels X C X5 such that
eventsz € X C A Xeaxﬂig.AxﬂigA
\Axﬂi) — sigma-algebra of terraced ket-events |ter(X/Xq)) €
|ATR) € J.4)
B — measure on .4% normalized to unity B — believability measure on (.A|

Table 1: Probabilistic-eventological and co~event paradigms.
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3 At the border of paradigms

I led you to the frontier where the probabilistic-eventological paradigm borders on co~event paradigm.
We will be delayed for a short time on the border itself to set forth the previous paragraph this time®
in the language of the theory of experience and chance [22], and to more clearly see the origins of this
new theory in terms of the mean-measure set of events and the mean-probable event. It was these two
notions of the mean-set characteristics of the set of events originated within the probability theory [10]
and the eventology theory [18], and after demonstrating the duality properties to each other, pushed me
to construct the theory of experience and chance as a theory of co~event.

3.1 Random bra-element

The set of bra-events (¥| c (A| and the set of terraced bra-events (2%| = {(Terx//x| : X € af} C (Ax| C (A]
are uniquely associated with the notion of random bra-element

(Kx|: Q) — @7,

defined on the probability space |2, A, P). On the elementary ket-outcome |w) € |ter(X /X)), X e 2% this
random bra-element takes the value

(Kz| (jw)) = (Terx x| € (@%|

from a bra-area (2*| that is contained in the sigma-algebra (Ax| C (A| of believability bra-space (2, A, B
generated by bra-events (z| € (Xz| C (Ax| C (A|. Its value (K| (Jw)) is interpreted as a terraced bra-event
(Terx)x| € (2% that is experienced with believability

b(X/%) = B((Terxx|) = > B((a]) = Y ba, 9
zeX xeX

when the terraced ket-event |ter(X /X)) happens, i.e. the elementary outcome |w) € |ter(X /X)) happens
with probability
p(X/)X) = P(|ter(X/ X))). (10)

The random bra-element (K x| is defined by
1) a family {p(X//ae), X e ax} of probabilities p(X/X) = P(|ter(X/X%))) of terraced ket-events
ter(X /X)) ﬂ|x ﬂ |z) C |),
rzeX rzeX—X

that form partition, generated by |X), of the space of elementary ket-outcomes |2):

= 3 er(x/%));

Xee*
2) a family (27| = {(Terx//gd X et } of its values, terraced bra-events
(Terxyx| = > ([ € (O,
zeX

that is experienced with belieavbility (X /X) = B((Terx/x|) and defined as sums of bra-events (z| € (X|
forming a partition of the space of elementary bra-incomes (Q|:

Q=) (al.

zeX

6I'm afraid I will have to repeat this exposition for the third time already within the framework of the co~event paradigm (see
paragraph 6.1 on page 166) to make the necessary improvements to the means definitions.
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3.2 Mean-believable terraced bra-event

For the random bra-element (K «| literally the same as for a random set of arbitrary elements [16, 1], and
for a random set of events [19, 24] I define the mean-believable terraced bra-event as the terraced bra-event,
which is denoted by

&Kx| € (Ax|,
is experienced with believability B (& Kx|) that differs of mean-probable believability
E,(B((Kx|)) = ) B((Terx)x|)P({ter(X/X))) = D b(X/X)p(X/%) 1D
Xea* Xee*

of terraced bra-events (Tery,x| € (2%| with the least error, and plays the role of its mean-set
characteristics as bra-subsets (Terx ;x| C (Q|.

Definition 5 (mean-believable terraced bra-event). Let
ElKx| = {{z| : P(lz)) > a} C {(z|:P(]z)) > a} = EYKx| € (Axl,

then the mean-believable terraced bra-event of the random bra-element (K| is any terraced bra-event
&K x| € (Ax| that holds two inclusions:

EnlKx| C Kx| C EKxl,
for some level « € [0, 1] such that approximate equality
B(&Kx|) ~ Ex(B({Kx|)) (12)
is satisfied with the smallest error. This will be briefly denoted below
B(E(Kx) ~ Ba(B((Kx). (13)
As aresult, we get the medium-tied terraced bra-event that is experienced with believability differing from
the mean-probable believability E,(B({K«|)) of the random bra-element (K| with the least error.
In other words, one of the two equalities holds:
&y | = {8a<Kx| » Ex(B((Kzl)) — B(&(Kx|) < B(EX(Kx|) — Ex(B((Kx])),
E(Kx|, Ep(B((Kx|)) — B(&(Kx|) > B(EXKx|) — Ex(B({Kx|)),

or:
el — {€a<K9€|, E,(B((Kx|)) — B(&(Kx|) < B(&(Kx|) — Ex(B((Kx])),
(Kzx| =

EKx|, EpB((Kx|)) — B(EKx]) > B(EXKx|) — Epx(B({Kx])).

Definition 6 (believability distance). The believability distance of the terraced bra-event
(Terw x| € (2%| till the random bra-element (K x| is a value

By (B((Kx| A (Teryx|)) = > B({Terxx| A (Teryx|)P(lter(X/X))),
Xea*

mean-probable believability of its symmetrical difference.

Theorem 1 (extremal properties of mean-believable terraced bra-event). The mean-believable terraced
bra-event & Kx| of the random bra-element (Kx| minimizes its believability distance (mean-probable
believability of symmetrical difference)

Ex(B({(Kx| A &Kx[) = min Ep(B((Kx| A (Terxx))

X b(X//x)nﬁnEp(B((Kx\))

till the random bra-element (Kx| among those terraced bra-events (Terx,x| € (Ax| for which the
approximate equality (13) holds with smallest error.

Proof differs from the proof of Lemma 1 only by denotations.
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3.3 Experienced ket-element

The measure is uniquely connected with the concept

The set of ket-events |X) C |.A) is uniquely connected with the notion of experienced ket-element
[Kx) - (Q = %),

defined on the believability bra-space (Q, A,P|. On the elementary bra-income (w| € (z|,z € X this
experienced ket-element takes a value

[Kx) (w]) = |z} € [X)

from the ket-area |X) that is contained in the sigma-algebra |A*) C |A) of the probability space |2, A, B)
geberated by terraced ket-events [ter(X /X)) € |A%) C |A). Its value |Kx) ((w]) is interpreted as the ket-
event |z) € |X) that happens with probability

e =P(lz)) = Y P(ter(X/%))) = > p(X/%), (14)

rzeX zeX

and causes the bra-event (z| to be experienced, i.e., causes all elementary bra-incomes (w| € (x| to be
experienced with believability
b, = B({(z]). (15)

The experienced ket-element |Kx) is defined by

1) a family {b,, z € X} of believabilities b, = B((x|) of bra-events (z| C (2| that form a partition, generated
by (x|, of the space of elementary bra-incomes (Q]:

Q=3 (al;

reX
2) afamily |X) = {|z) : € X} of its values, ket-events

@) = > ter(X /X)) € |,

zeX

that happens with probability p, = P(|z)) and is defined as sums of terraced ket-events |ter(X /X)) € |Q)
forming a partition of space of elementary ket-outcomes |Q):

Q) =) Jter(X/X)).

reX

3.4 Mean-probable ket-event

On the basis of the same idea [16, 1] and the eventological definition of the mean-probable event [20, 24]
I define the mean-probable event
E|Kx) € |AY),

as a ket-event that happens with probability P (| Kx)) which differs of mean-believability probability

Ey(P(IKx)) = Y P(la)B((z]) = ) psbe

rzeX zeX

of ket-events |z) € |X) with the least error, and plays a role of its mean-set characteristic as ket-subsets
|z) C |Q). In the same way as mean-believability terraced bra-events & K« | plays the role of the mean-set
characteristic of the values of the random bra-element (Kx| as bra-subsets (Terx x| C (Q|.

Definition 7 (mean-probable ket-event). Let

€al Kx) = {Iter(X//X)) : B((Terxz|) > o} C {|ter(X/X)) : B((Terxx|) > h} = &|Kx) € |A%),
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then the mean-probable ket-event of the experienced ket-element |Kx) is any ket-events &|Kx) € |A*) that
holds two inclusions:
& Kx) C E|Kx) C &Y|Kx)

for some level « € [0, 1] such that the approximate equality
P(E[Kx)) ~ Es(P(|Kx))) (16)
holds with the smallest error. This will be briefly denoted below

P(&|Kx)) ~ Ey(P(|Kx)))- a7

As a result, we get the mean-probable event that happens with probability that differs from the mean-
believability probability E;(P(|Kx))) of the experienced ket-element | K») with the least error.

In other words, one of the two equalities holds:

E|Kx) = {€a|K3€>7 Ex(P(|Kx))) — P(&|Kx)) < P(8%|Kx)) — Ex(P(|Kx%))),
& Kx) Eg(P(|Kx))) —P(&|Kx)) = P(E¥Kx)) — Es(P(|Kx))),

or:
¢ B {gale% Ex(P(|Kx))) — P(&|Kx)) < P(E|Kx)) — Ex(P(|Kx))),
|Kx) =

& Kz) Ex(P(|Kx))) — P(&|Kx)) > P(&|Kx)) — Es(P(|Kx))).

Definition 8 (probabilistic distance). The probabilistic distance of the ket-event |w) € X till the
experienced ket-element |Kx) is a mean-believability probability of its symmetrical difference:

Ea(P(|Kx) A w))) = 3 P(l) A |w))B((x]).

reX

Theorem 2 (extremal properties of mean-probable ket-events). The mean-probable ket-event &|Kyx) of
the experienced ket-element | K ) minimizes its probabilistic distance

By (P(IKx) ALKx))) = min  Ea(P(|Kx) A )

z: PznﬁnEB(P(\Kxﬂ)

till the experienced ket-element |Kx) among those ket-events |x) € | A%) for which the approximate equality
(17) holds with the least error.

Proof differs of the proof of the lemma 2 only by denotations.

4 Beyond the probabilistic-eventological paradigm

If the new paradigm is an extension of the old one, follows from it, then all the old concepts can be
translated into a new language without going beyond the boundary of the old paradigm, but not vice
versa. In my opinion, the border of old and new paradigms contains those concepts of a new paradigm
that can still be defined and interpreted within the old paradigm. However, new concepts emerging
beyond its boundaries, outside the old paradigm, can no longer be defined and interpreted in the old way.
The concepts of the mean-measure set of events and the mean-probable event, defined in the paragraph
2 within the probabilistic-eventological paradigm (see the first column of the Table 1), and also on the
boundary of this paradigm in the paragraph 3 literally translated into the language of the theory of
experience and chance as a mean-believability terraced bra-event and mean-probable ket-event (see the
second and third columns of the Table 1), — this is what you can first rely on to go beyond it to define
there within the framework of the new co~event paradigm such generalizations of these concepts, which
can no longer be defined or interpreted within the framework of the old probabilistic-eventological one.

In order to achieve the goal and determine the dual co~event means, I need to develop in this work
the theory of ordered co~event, as well as with co~event ordered by believability and probability
measures. Then I need to introduce the notion of N-tuple ordered co~event and for the third time
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refine the definitions of mean-believable and mean-probable event means for the ordered co~event, to
define, finally, for each co~event dual co~event means as double-tuple ordered co~event whose certainty
coincides with the certainty of the given co~event.

In conclusion, I intend to discuss in advance the prospects of a rather unexpected idea of the
interpretation of believability as a conditional probability, and probability as conditional believability,
which naturally arises in the definition of dual co~event means, which, in my opinion, serves by
co~event justification of Bayesian analysis in statistics, and which will be discussed in detail in my next
papers on the theory of co~event.

4.1 Ordered and strictly ordered co~events

Definition 9 (ordered co~event). The co~event R C (Q|Q) is called an ordered co~event whenever all its
cross-sections by bra-points (w*| € (©2| as subsets R|,-| C |©2) of the ket-space |(2) are ordered by inclusion:

for any pair of different bra-incomes (w*| # (w*|, (w*|, (w*| € (9.

Property 1. If the co~event R C (Q|Q) is ordered than its cross-sections by all ket-points |w) € |Q)
as subsets R| |,y € (| of the bra-set (| are also ordered by inclusion:

Rljw) € Rljwry € (9] 0r Rljwry € Ry S (9 (19)

for any pair of different bra-incomes |w) # '), |w), |w’) € |Q).

Proof. By the definition 9 the ordered co~event R C (Q|Q) defines on the bra-set (Q2| the order «=<» by
rule
(w*\ = (w*/\ — fR|<w*‘ - :Rl(w*/\

for each pair of bra-points (w*|, (w*’| € (Q2|. Therefore for each ket-point |w) € |Q2) the cross-section by this
ket-point
Rljwy = {w]: (@w'|w) € R}

is representable in the form

Ry = {{w"l+ (@l (@) = (@1},

where (w*[ o (Jw)) is the smallest bra-point in section R||,, on the order «=» on the ((2|. Hence we obtain
the required result: for any two ket-points |w), [w) € |Q) and cross-sections R|., R,y by them either
Rljwy € Rljwny I (w1 (Iw)) = (w1 (10)), OF Rfjury € Ry 1 (w7 ([w7)) = (W[ (|w)) s satisfied.

Lemma 3 (about the strict order of ket-events and terraced bra-events on the labelling the bra-ket
space by an ordered co~event). Let the ordered co~event R C (Q|Q) generates the labelling (X« |2™*), then

1) ket-events |z) C |Q),x € Xx are strictly ordered by inclusion:
) C |a') C19) or [2') C [z) C |9) (20)
for any pair of different labels x # ', x,z’ € Xx;
2) terraced bra-events (Terx x| C (Q|, X € 2%, are strictly ordered by inclusion:
(Terx x| C (Terx: yx, | € (] or (Terx: x| C (Terx x,| € (| 21)

for any pair of different set labels X # X', X, X' € 2%*,

Proof. Ket-events |z) C |©2),z € X are classes of equivalent cross-sections X[, by bra-incomes (w*| €
(Q, and terraced bra-events (Tery;x,| € (2], X € 2™ are classes of equivalent cross-sections R||wy by ket-
outcomes |w) € |2). Both can not coincide when = # =’ and X # X’ by its definitions [22] and therefore
they are strictly ordered by virtue of the ordering of the co~event R C (Q|Q).
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Definition 10 (a strictly ordered labelling the bra-ket space). If both labelling sets Xi and 2x=x
of the labelling (Xz|2™*) generated by co~event R C (Q|Q) are strictly ordered by inclusions «Cq» and
«Cx, » correspondingly, then (¥|2**) is called the strictly ordered labelling the bra-ket-space (|<2).

Corollary 1 (strict orders on the labelling generated by the ordered co~event). The ordered
co~event R C (Q|Q) generates the strict ordered labelling (Xx|2™) of bra-ket-space (Q|Q2). In other
words, the ordered co~event R generates on the first labelling set X the strict order for inclusion:

rxCcaxora’ Ccx 22)

for any pair of different labels = # z/,z,2’ € Xx; and on the second labelling set 2** generates the strict
order for inclusion:
XcXorX cX (23)

for any pair of different set labels X # X', X, X’ € 2=,

Proof follows follows from the definitions 9 and 10, the property 1 on page 154, the lemma 3 on page 154
and an additivity of probability P and believability B.

4.2 N-tuple ordered co~event

Property 2 (ordered co~event generated a finite’ labelling). Let R C (Q|Q) be the ordered co~event
generated the finite labelling (%z|2**), N = |Xx|_., be the number of nonempty labels in Xz, " = ‘235*

#0
be the number of nonempty labels in . Then N = 2"

Proof. Let (2, A) be the labelling measurable space, z1,...,zy, ... be nonempty labels z; € A, numbered
in descending order for strict inclusion:

QADx1DaxeD...0xN DI, (24)
and X,..., Xy,... be nonempty set labels X; C A, numbered in ascending order for strict inclusion:
@CX1CX2C...CXNQ.%@. (25)

Prove, that there is such N = 0,1,2,... that a labelling the ordered co~event R has one of the following
forms:

<{$17~-~,$N}|{XNa-~-7X1}>
(1, .. an H{XN, ..., X1, 01 R 40 C (0
e — 4 (oo 2} X xay (007 < im, N>0, 26)
<{£E17...,mN,@}|{XN,...,X17®}>
({2}{0}), R=0C(QQ), N=0.

This follows from the corollary 1 on strict orders by inclusion «Cgo» and «Cgx,» correspondingly on
labelling sets Xz and 2™ generated by the ordered co~event R C (Q|Q2). The property 2 follows from
7).

Definition 11 (N-tuple ordered co~event). 1) The ordered co~event R C (Q|Q2) with the finite
labelling (Xx|2%*) is called N-tuple ordered co~event if N = |Xx| 20 2) the set

Ry = {fR C (Q9) : R — ordered co~event, |:*::R|7ég = N} C (AJA) @27
for N =0,1,2,... is called the set of N-tuple ordered co~events®; 3) the set
Rev= Y. R, (28)
1<nEN

7For a defining dual co~event means a definition of co~event with finite labelling is enough. The infinite labelling co~events has
their own useful features and will be considered in the following works.

8where ( Az, | is the sigma-algebra of bra-events (z| € (¥z| C (Ax,| C (Al; and |4%x) is the sigma-algebra of terraced ket-events
lter(X/Xz)) € |A™®) C | A).



54 THE XV FAMEMS’2016 AND G6P SEMINAR

is called the set of n-tuple nonempty ordered co~events for alln =1,...,N.

Property 3 (partition of a set of N-tuple nonempty ordered co~event). From (27) it follows that
forN=1,2,...
Ry =RY + RN + %Y + Ry, 29)

i.e. the set of N-tuple nonempty® ordered co~events is partitioned on 4 subsets that correspond to 4 types
of N-tuple nonempty ordered co~events:

RN = {fR C (Q|Q) : R — ordered co~event, | Xx| = N, [2%*| = N},
9%}\? = {3{ C {QQ) : R — ordered co~event, | Xz| = N, |33€IR| =N+ 1}7
(30)
9%(])\} = {R C (Q|€2) : R —ordered co~event, |Xz| = N + 1, |83€9<| = N},
RN = {fR C (Q|Q) : R— ordered co~event, | Xx| = N + 1, [2%| = N + 1}.
Property 4 (about the connection of labels and set labels of ordered co~event). Between labels
z1,...,zy numbered in descending order for strict inclusion and set labels Xi,..., Xy numbered
in ascending order for strict inclusion of N-tuple ordered co~event R C (Q|Q):
QA Dxy Do T2 Da ... Do TN Do 9, 31)
0 Cxq X1 Cxq Xo Cxy --- Cxy XN Cxq Xx,
the following relations hold:
Xl - {]"1}3
Xo = {z1, 22},
. (32)
Xy ={z1,..., N1},
XN = {xl,...,xN},
Or, what’s the same,
Xn =) {:} (33)
=1

forn=1,...,N.

Proof immediately follows from the fact that set labels X C X4 are defined as sets of labels = € Xx.

Property 5 (on the strict order of terraced bra-events and ket-events for ordered co~event). Terraced
bra-events (Tery, x,| and ket-events |z) ,z € Xx are strictly ordered by inclusion in accordance with
the strict order for the inclusion of labels and set labels in the labelling the N-tuple ordered co-event
R C(QQ):

) D |z1) D|z2) D ... D |zN) D D,

(34)
0c <TerX1//f{:R| C <TerX2//fJ<| c...C <TerXN//f*5:R| - <Q|
Proof follows from defining relations (see [22]) for ket-events and terraced bra-events:
IZ‘>: Z |ter(X//x:R)>7 HAS {xlw"?xN}
zeX (35)
<TerX//xiR‘:Z<$|7 Xg{x17"'7$N}-
reX

IR £ 0, ie. N #0.
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Table 2: Venn diagrams of 4 types of monoplet ordered co

4.3 Monoplet and doublet ordered co~events

Let us consider in more detail monoplet and doublet ordered co~events R C (Q|Q2) with the finite labelling
(Xz|2*), i.e. ordered co~events that form labelling sets 9, or Rs.

4.3.1 Monoplet ordered co~event

From (27) it is clear that a labelling the monoplet ordered co~events may be one of 4 types:

)l )).
o) e X, 01),
R Py (36)
(s, (X0 0))
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(22
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Table 3: Venn diagrams of 4 types of doublet ordered co~events _ C (Q|Q) .

in accordance with which, the set 3, is divided into 4 subsets:

R = {RC(QI0): X = {21}, 2% = (x1}},
R0 = {R C(QQ) : X = {a1},8™ = {@,Xl}}v 37)
o = {RC Q) : X = (2.11).2% = (X1},

R = (R C () : %n = {&,m},2% = (0,X1}},

consisting from monoplet ordered co~events of corresponding 4 types (see Table 2).

4.3.2 Doublet ordered co~events
From (27) it is clear that a labelling the doublet ordered co~events may be one of 4 types:

({1, 22} { X2, X1})

xny _ ) Honm}{X0, Xo,00)
=Y e, 21, X0
<{m17x2’®}|{X27X170}>7

(38)



OLEG YU VOROBYEV. THE THEORY OF DUAL CO~EVENT MEANS 57

in accordance with which, the set 9, is divided into 4 subsets:

A = {RC(QI0) : Xn = i, 22},2% = (X, X1},

M0 = {ﬂ% C(QIQ) : Xx = {z1,22},8™ = {X27X17®}}a (39)
R = {33 C(QIQ) : X = {21, 22,0}, 8™ = {X27X1}}=

R = [RC (Q10) : Xx = {21,202, 2},8% = (X5, X1,0} )

consisting from doublet ordered co~events of corresponding 4 types (see Table 3).

5 Orders and equivalences in a certainty space, controlled by believability and
probability

Definition 12 (believability bra-space, probability ket space and certainty (believability-
probability) bra-ket space). The measurable space (2, 4,B| = ((Q], (A|,B) with believability measure
B, normalized to unity, is called a believability bra-space. The measurable space |Q, A, P) = (|]Q),|A),P)
with probability measure P, normalized to unity, is called a probability ket-space. The Cartesian product
of these measurable spaces (2, A, B|Q2, A, P) = ((Q|Q) , (A|A) , ®) with certainty (believability-probability)
measure ® = B x P, which is defined as a product of believability B and probability P, is called a
certainty (believability-probability) bra-ket-space.

Definition 13 (B-order, strict B-order, and B-equivalence). The believability measure B defines
on 2** C P(xx) for each pair (X, X') € 2**x 2% a relation of B-order:

X 3 X = b(X)%x) < b(X///:f:R)7
a relation of strict B-order:
X <3 X = b(X//sz) < b(X///.'sz),
and a relation of B-equivalence:
X 2 X = b(X)Xr) = b(X')X).
where
b(X/)Xz) =B((Terx x,|)

is a value of believability B on the terrced bra-event (Terx /x| C (Q?| of the believability bra-space (2, A, B|.

Definition 14 (P-order, strict P-order, and P-equivalence). The probability measure P defines
on Xy foe each pair (z,z') € Xx x X a relation of P-order:

T Zp & = Pajrg < Do jxas
a relation of strict P-order:

z <p 2’ = Puoyxsn <Dz’ fxx
and a relation of P-equivalence:

z Xal = Dajxyr = Da’'ffX -
where

Payxn = P(l2))

is a value of probability P on ket-event |z) C |Q) of the probability ket-space |2, A, P).



58 THE XV FAMEMS’2016 AND G6P SEMINAR

5.1 B-quotient-labelling, generated by co~event

Definition 15 (B-quotient-labelling). Denote %/ X = {[X;],...,[Xxy],0} a quotient-set of the finite set
2™ by relation of B-equivalence. Then by definition the quotient-set 2%/ X the set labels X,, € 2%, by
which its elements are «labelled» as classes of B-equivalence [X,,] € 83597 ~, are strict B-ordered, like so:

Xl >BX2 >B~'~>BXN PB@.

We uniquely associate this strictly B-ordered set labels with other strictly B-ordered set labels X}, n =
1,..., N, which are defined as

XP={at,... 2%} C X3},
nonempty strict B-ordered subsets of nonempty labels z; # @o C Q from the set

x%:{x]iv-'wx}]l\/a@Q}g-Aa

that together with the empty set label 0,3 C X5 form the set
a}:?y = {X]fv cee 7X]BV7®%£} c T(:{;{)

The B-quotient-labelling of the labelling (¥z|2™*) is the labelling (X3 |2,*) of bra-ket-set (2|Q2) by labelling
sets X% C A and 2,* C P(X%), which define the set of terraced B-quotient-ket-events

%) = {Jter(X"/x)) . X" € 2+ } (40)
and the set of B-quotient-bra-events

(X| = {(«"], 2" € X3} (41)

by the following way. Terraced B-quotient-ket-events in (41) are defined for each X* e 2}* through
terraced ket-events in the initial labelling from |2%*) by formulas:

ter(X®)X%)) = > [ter(W/Xx)),
xB R weeaxr

and B-quotient-bra-events in (42), and terraced B-quotient-bra-events (Ter ys /x® |,n=1,..., N satisfy the

constraints, which are defined by values of believability measure B on terraced bra-events in the initial
labelling (xz|2*):

b(XfL//x_%)_b(X’g—&-l//%%)v J:B:x]:w n= 1a"'7N_17

be = B((2%]) = ¢ b(X% /X3), z® =2, (42)
1—b(X? /28, 2* = @,
where
b(X, [ XR) = B((Ter s yxn|) = B({ter(W/Xx)|) = b(W/Xz). X ~ W, n=1,...,N. (43)

Property 6 (B-quotient-partition of a ket-set and a bra-set). Terraced B-quotient-ket-events in
(41) and B-quotient-bra-events in (42) form a B-quotient-partition of the ket-set |Q?) and bra-set (Q]
correspondingly:

=D lter(X*/x})) = [ter(Dxn /XR)) + ) _ Iter(X3 /%R)) ,

XBegy® n=1

Q= > (@l=(2al+)_ (@l

zBGXJ‘%

(44)
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Property 7 (probabilities of terraced B-quotient-ket-events and B-quotient-ket-events).

p(X)XR) = > p(W)%z), X*=XE, n=1,..,N,
p(X*)Xy) = P(|ter(X”/X3))) = X8 B weatx
(B [ %) XP =0z, (45)
P =P(2") = Y P(ter(X*)X})) = > p(X*)xp).
rBe XBe 2%R rBe XBe 2%®

5.2 P-quotient-labelling, generated by co~event

Definition 16 (P-quotient-labelling). Denote Xx/~ = {[z1],...,[zn],0} a quotient-set of the finite set
Xz by relation of P-equivalence. Then by definition of the quotient-set Xz / ~ labels z,, € ¥z, by which its
elements are «labelled» as classes of P-equivalence [z,,] € Xx/ ~, are strict P-ordered, like as:

X1 >p Ly >p ... p TN »p DQ.

We uniquely associate this nonempty strictly P-ordered labels with other nonempty strictly P-ordered
labels 2%, n = 1,..., N, which together with the empty label @, C Q from the set

Xy ={a1,..., 2N, @a} C A
and form from them N nonempty set labels
X5 = {ah,. 2t} C X

forn =1,..., N, which together with the empty set label #,z C X» form the set

2 = {X}, ..., X, Dz } C P(XR).

The P-quotient-labelling of the labelling (¥x|2**) is a labelling (x%|2;*) of bra-ket-set (Q|2) by labelling
sets ¥, C A and 2}* C P(X%), which define the set of P-bra-events

(Xr| = {(2"], 2" € Xz} (46)

and the set of terraced P-ket-events
25) = {Iter(X* /xh)), X" € & | 47)
by the following way. The P-bra-events in (47) are defined for each 2* € X}, through bra-events in the

initial labelling from (Xx| by formulas:
@l= 3 (ul,

P
P ~weXy

and terraced P-ket-events in (48) satisfy the constraints, which are defined by values of believability
measure P on ket-events in the initial labelling (¥ |2**):

pazl;,’_pwfl_*_lv X=X

p(X*) %) = P(jter(X"/XR))) = Pz, X' = X%, (48)
1 —pzllr, X? = @:{%

where

pr = P(|2%) = P(|w)) = puw, 2°~ w e Xx. (49)
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Property 8 (P-partition of a ket-set and a bra-set). Terraced P-ket-events in (48) and P-bra-events in
(47) form a partition of the ket-set |2) and the bra-set (Q| correspondingly:

N
=D [ter(X")xR)) = [ter(Dx JX5)) + D lter(X] /XR)),

XPe 83692 n=1

Q= > "I—®9|+Z (@ -

zPex?

(50)

Property 9 (believabilities of terraced B-quotient-bra-events and B-quotient-bra-events).
Believabilities terraced B-quotient-bra-events and B-quotient-bra-events are defined by values of
believability measure B on bra-events in the initial labelling (¥x|2™*):

b(X*)%%) = B((ter(X*Jx%))) = Y B(@*) = > by,
zPe XP zPe XP
(51)
be=B((*)= > Buw)= D bu
222 wexy PR wexy

5.3 Quotient-projections of co~event

Definition 17 (B-quotient-projection and P-quotient-projection co~event). The co~event R, C (Q|Q)
is called a B-quotient-projection, and co~event R, C (Q|Q) is called a P-quotient-projection of co~event
R C (Q|Q), if R, generates the B-quotient-labelling (x%|2,*), and R, generates the P-quotient-labelling
(x%]2;%) of the bra-ket-space (2|Q).

Property 10 (strict order quotient-projections co~event). By the definitions B-quotient-labelling
and P-quotient-labelling (see Definitions 15 and 16) the B-quotient-projection ®; C (Q2|Q2) and P-quotient-
projection R, C (Q|Q2) of the arbitrary co~event R C (Q|Q) are always the ordered co~event which

generate the strictly ordered quotient-labelling (x%(2;*) and (X2 |2;*) bra-ket-space (Q|S).

Property 11 (certainty quotient-projections co~event). The certainty of B-quotient-projection®; C (Q2|Q2)
and P-quotient-projection R, C (Q|Q) of any co~event R C (Q|Q) coincide with the certainty of this
co~event:

B(Ry) = B(R) = B(R). (52)

Proof. Let us use the fact (see Property 11 in [23]) that for each co~event R, Ry, R, C (Q[Q) the
corresponding partitions are valid, which in their own element-set labellings (¥x|2**), (x3/2;*) and
(x%]2;%) are written as follows:

Ro= > lala)= D (Terxyxlter(X/xz)) = > > (alter(X/%z)), (53)
r€XR XeaXr TEXR reX € 3¥r

Ry = D (@)= Y (Terxmlter(X*/X})) = > (aPfter(X")xR)), (54)
zBexB XBe a;e zBexB aBeXxBee, X

R = Y (@)= Y (Teryeypfter(X*)X) = > Y  (2[ter(X"/XR)). (55)

IPE}:}% XP¢c a:'f zpex}? zPecXPc anR



OLEG YU VOROBYEV. THE THEORY OF DUAL CO~EVENT MEANS 61

Hence, since the measure & is additive, we have

R)=> @((xlz))= D B(Teryx,lter(X/Xx))=>_ Y ®((zlter(X/Xz))), (56)
rE€XR XeaXr TEXR xeX€3*r
=) B("")= ) ®( ((Ter xn yxn [ter (X® /X3)) )= > B((a"fter(X*)XR))), (57)
aPexy XBeag® dPEXR gBeXBe 2R
Re)= > B((2*a")= > ®((Terye pelter(X*JX5))=> > ®((="|ter(X*/X}))). (58)
zPex? XPe axﬁ TPEXP sPexPe 3131

By Axiom 13 of the theory of experience and chance (see [22]) for every R C (Q|Q) to each R-labelled
co~event (M| ) € (A|A) a nonnegative real number is associated with its certainty, which is equal to
®((M; | M) = B((M)P(JMr)). Using the standard notation of the theory of experience and chance:

by = B((z]), p==P(|2)),

59
(X %x) = B((Ter x|}, p(X /%) = P(lter(X /%)) 9
we get
BR) = > bape= > WXJX)p(X)Er)= > D bep(X)Xx), (60)
T€XR Xea*r TEXR zeX e aXr

B(Ry) = > bapns= Z D(X® )X )p(XP)XR) = > > bap(XP)ER), (61)

zBexB XBEZ zBexB wBeXBee, XR
B(R,) = Y bppe= Z DX )X P(XTJXR) = > Y bap(XT)ER). (62)

IPEXP XPGZ mPEBEjP; PeXPc e, X

Taking into account (61), (62) and (63) and applying the set-summation technique [17], we get what is
required:

BR) = D bpa= Y, Y, bubu= D P D, bu= Y Db =3R),  (63)

PP PcxP Pexy
TEXR wPeXy R g T eXy P2 wexy =€ Xy

BR) = > bX)Xp)p(X)Xx)= > > (W) Xr)p(W) Xr)

Xe ¥R XBe2 ® xBB yreaxn
= D bXME) Y p(W)xR) = Y b(XPXR)p(XJXR) = B(Re). (64)
XBe a;fR xBE weaxx XBe a;EIR

5.4 Quotient-indicator of the co~event on the quotient-space

Definition 18 (quotient-space). The P-B-quotient-labelling

< p
of the space (Q|Q2) generated by co~event R C (Q|Q) is called a quotient-space'® of the space (2|Q2) with
respect to R, i.e. by relations of P-equivalence «~» on (Q| and of B-equivalence «~» on |().

2"} = (W] x 18 = {Wher(x*yx) o € 2, X0 e ) o

Definition 19 (certainty quotient-distribution of measure on a quotient-space). For each co~event
R C (Q]Q) the certainty quotient-distribution (quotient-c.d.) of measure'® ® on the quotient-space (36;|8§R>
of the space (Q|Q) is a family

{Par(X)38): (a"lter(X™ X)) € (XR&™) (66)

10gee illustrations of notions introduced in this paragraph in figurees 3 — 18.
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of certainties ¢ (X?/X}) = ®((«*|ter(X®/X}))) of elementary quotient-incomes-outcomes

(a¥|ter(X®/X3)) € (X}]85").

Theorem 3 (formula of certainty quotient-distribution of measure). The certainty quotient-distribution of
the measure ® on the quotient-space (X% |2;*) of the space (2|Q2) is calculated for (z*|ter(X®JX2)) € (X% |23%)
by the following formulas:

P (X)) = Y Yo ew(W)Xa), (67)

P2 wEXg XBE weaxx

where (wlter(W /X)) € (¥z|2™*) is an elementary income-outcome, and ¢,,(W /[ %x) = ®((w[ter(W/Xx))) is
its certainty.

Proof follows from the partition of elementary quotient-income-outcomes into elementary income-
outcomes:

(a"lter(X*J23)) = Y (wlter(W/xg)), (68)

a2 wEXy xBE weaxr

and from the additivity of the certainty measure .

Definition 20 (certainty quotient-distribution of co~event). The certainty quotient-distribution
(quotient-c.d.) of co~event'! ® C (Q|Q) on the quotient-space (X% |2;*) of the space (2|Q2) is a family

{28 (" lter(X"/x8) € (KRl | (69)

consisting from certainties % (X®/x%) = ®(R N («*|ter(X*/X%))) of intersections of co~event R with
elementary quotient-incomes-outcomes (z*|ter(X*® /X)) € (X%[27*).

Theorem 4 (formula of certainty quotient-distribution of co~event). The certainty quotient-distribution
of co~event R C (Q|) on the quotient-space (X%|2:*) of the space (Q|) is calculated for each elementary
quotient-income-outcome (z*|ter(X® /x3)) € (X%]21*) by the formula:

PHRXTIER) = Y S pu(W)xa), (70)

P x we
PPN WERR (uB y p¥n

where ,,(W/)Xx) = ®((w|ter(W/Xz))) is a certainty of elementary income-outcome (wlter(W/Xz)) €
(Xx[2%).

Proof follows from the obvious partition:
RN (2"lter(XPJXR)) = Y S (R0 (wlter(W)Xx)) ), (71)
PR wexy XBE We 2%

the additivity of certainty measure ®, and the fact that the relation of membership (w*|w) € R is
performed whenever (w*|w) € (w|ter(W/Xx)) and w € W (see the proofin [22]).

Definition 21 (indicator of co~event on bra-ket-space). The indicator of co~event R C (Q|Q) on
the bra-ket-space (©2|Q) is a Boolean!! function

1x: (QQ) — {0,1}, (72)
such that
1, (w*|w) € R,
Iy ((w|w)) = , (73)
0, otherwise.

HHere Boolean function is a function that takes values 0 or 1.
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Definition 22 (quotient-indicator co~event on the quotient-space). The  quotient-indicator  of
co~event'! ® C (2|Q) on the quotient-space (x%|2;*) of the bra-ket space (Q|() is a real function
1 (Xh| &) - 0,1, (74)
that on each elementary quotient-income-outcome (z*|ter(X®/X%)) € (X |2*) takes a value
R B B
Por (X*) Xp)
LR ((a*[ter(X*/X%))) = —— =573y € [0,1], (75)
’ W= oo <Y

where % (X?/X%) = ®(RN (2*|ter(X®/X%))) and ¢,»(X®/XE) = ®((2|ter(X®/X%))) is a value of the
certainty quotient-distribution of co~event R and a value of the certainty quotient-distribution of & on
the elemenatry quotient-income-outcome (z*|ter(X®/X%)) correspondingly.

Property 12 (quotient-chracteristics of a complement co~event). We give without proof the formulas
for calculating quotient-characteristics of the complement co~event R¢ = (Q|Q) — R, which are related to
the corresponding quotient-characteristics of the co~event R by the obvious relations:

Pl (XP)XR) = ®(R°N (2" [ter (X" /XR)))
= oo (XP)XR) — R (X" J2XR) = Y Yo eu(W/Xg) (76)
wg W

P2 weXy XBE we 2%
are certainties of intersections of R¢ with elementary quotient-incomes-outcomes
(z|ter(X® JX2)) € (X%]2;*), form the certainty quotient-distribution of the complement co~event'!;

1, (w*|w) € R,
Lpe((Ww)) =1 = 1x((w*lw)) = , (77)
0, otherwise,

is an indicator of the complement co~event on bra-ket-space;

PB P B B _ PB P B B _ 90351: (XB//x’B)
re (2" |ter(X*/X%))) = 1 — 1R((2"|ter(X* /X)) = W"//%g) € [0,1], (78)

is a quotient-indicator of the complement co~event!' on quotient-space.

6 Dual co~event means

Let (0, A, B|Q, A, P) = ((Q|Q), (A|A), ®) be the certainty bra-ket-space with the sigma-algebra'? (A4|A4)
and the certainty measure ®; R C (Q|Q) be the co~event that is defined as a measurable binary relation
R € (AJA) on (Q|Q) (see [22]); and ®(R) be the value of its certainty measure. The co~event R is a proposed
by the theory of experience and chance [22] mathematical model of dual uncertainty that arises between
the observer and the observation in the process of an experienced-random experiment. Therefore, the
problem of the mean description of such uncertainty seems quite natural. What is the mean description
of the dual uncertainty of the results of the experienced-random experiment? What new and relevant
ideas can this mean description offer, if any? I will try to answer these questions, noting at once that in
this paper only the mean description of the only one co~event is considered, and the mean description
of the set of co~events remains outside of the paper and it will be considered in my next papers.

Any co~event as a measurable binary relation on (Q2|Q2), i.e. some its measurable subset R C (Q|Q),
generates the element-set labelling (¥z|2™*) = (Xz| x |2™*) of the bra-ket-space (Q|Q2) (see [23]), where
(Xr| = {(z|, = € Xz} = (QI/R,

2% = {|ter(X/Xg)), X € %} = |Q)/R "

12In order not to complicate the definitions of dual co~event means by excessive technical details, it will always be assumed that
the sigma-algebras (A| and |.A) are quite «rich», so that for each pair of nested elements, for example, A\; C A2 € (A|, contain an
intermediate third element \; C XA C A, of arbitrary measure B(\) such that B(A1) < B(A) < B(\2).
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are the corresponding quotient-sets by co~event R. Elements of these quotient-sets serve bra-events (x| C
(Q,z € Xz, and terraced ket-events |ter(X /X)) C |Q), X € 8**.

Besides bra-events and terraced ket-events the element-set labelling also defines for each set label X
2™ C P(%x) and for each label = € X» C A the terraced bra-events and ket-events correspondingly:

(Terxyx,| = > (z]<(Ql, (80)
reXe€e*r

) = > ter(X/Xx)) € |Q). (81)
rEXE2*R

The mean description of the co~event R, interesting to me in this work, is the dual co~event means with
definitions which are based on concepts of dual event means:

e mean terraced bra-event among terraced bra-events (81) and
e mean ket-event among ket-events (82),

that will be considered for the third time in paragraphs 6.1.2 and 6.1.4, as co~event improvements
of mean-believable terraced bra-event and mean-probable ket-event correspondingly (see also initial
definitions in the paragraphs 2.1 and 2.2 on pages 146 and 148) discussed in paragraphs 3.2 and 3.4
on pages 150 and 152.

Difference from the former3. In defining of dual event means for the co~event R I will need not only
bra-events (z| € (Xz| and terraced bra-events (Terx x| € (2**|, or ket-events |z) € |¥z) and terraced
bra-events |ter(X/Xz)) € |2**), i.e. elements of the sigma-subalgebra (Ax,| C (A| and sigma-subalgebra
|A¥%) C (A, but elements of more wide sigma-algebras (4| and |.A), which are supposed to be quite
rich, in order to contain all possible value of defined concepts. Elements of quite rich sigma-algebras
(A] and (A| I will continue to be called bra-events and ket-events correspondingly. And in order to better
distinguish these bra-events and ket-events from bra-events and ket-events from sigma-subalgebras (Ax, |
and | A**) I will use for their designation other labels (more often w € A for bra-events (w| € (A| and ket-
events |w) € |.A)) avoiding previous labels = € X» and set labels X € 2**. The fee for extending the range
of values of dual event means is not so much their nonuniqueness, which is quite natural, how much is
the impossibility of their labelling in the framework of the sigma-algebra generated by the labelling sets
Xz and 2. Of course, this is not an acceptable property. However, I will show how to «partially return»
the possibility of convenient labelling, defining even broader concepts of dual co~ event means.

6.1 Event means for an ordered co~event

Let R C (Q|Q) (see Definition 9 on page 153) be an ordered co~event on the certainty bra-ket-space
(Q, A, B|Q, A, P), which generates the labelling set of labels Xz C A and the labelling set of set labels
2™ C P(xy) forming the element-set labelling (X»|2**) of the space.

By properties 2, 4 and 5 on page 155-156 wherein the numbers of nonempty labels in two labelling sets
of the ordered co~event R coincide: |Xz| ., = ‘836“ " N, the labelling sets themselves have the form:

$1,...,$N‘XN,...,X1>

x17~-'7$N‘XN""’X17®> 5 R#@Q<Q|Q>7N>O7
$17...,IN,®|XN3-~WX1> (82)

$17"'7:ENa®|XNa"'aX17®>

(Xz|2™) =

o~ o~~~

ket-events and terraced bra-events are strict ordered by inclusion:

|0 D |z1) D |z2) D ... D |zN) D D),

(83)
D) € (Terx, yx,| C (Terx, yx,| C ... C (Terx, yx,| € (.

13See definitions of means for a random set of arbitrary elements [16, 1] and for a random set of events [19, 24]
14 About the quite rich sigma-algebra see Footnote 13 on page 165.
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and forn =1,..., N the formulas are valid:

N
[ea) = Y ter(Xi/Xz))

n

(Terx, yxq| = > (wil.

i=1

6.1.1 Random bra-element generated by an ordered co~event

The ordered event R generating the set of bra-events (Xx| = {{(z|: z € ¥z} C (A| and the set of terraced
bra-events (2%*| = {(TerX//x\ X € 836} C (Ax| C (A] defines on the probability ket-space |2, A, P) the
random bra-element

(R] ) = (@7,

which in the case of elementary ket-outcome |w) € |ter(X, /Xz)), X, € % takes a value
(Rlw) = (R] (jw)) = (Terx, yx,| € (@

from the bra-area (2%*| that is contained in the sigma-subalgebra (Ax,| C (A| believability bra-space
(Q2, A, B| generated by bra-events (z| € (Xz| C (Ax,| C (A|. Its value (R|w) is interpreted as the terraced
bra-event (Tery, ;x| € (2% | which is experienced with believability

b(Xn/Xx) = B((Terx, jx,|) ZB zil) = ba,, (85)
=1

when the terraced ket-event |ter(X,, /Xx)) happens, i.e. elementary ket-income |w) € |ter(X,, /X)) happens
with probability

P(Xn ) Xz) = P(|ter(X, [ Xx)))- (86)
The random bra-element (R| is defined by
1) a family (%% | = {(Terx, yx,| : n = 1,..., N} of its values, terraced bra-events

n

(Terx, yxel = D (@il S0,

i=1

which are experienced with believability b(X,, /Xz) = B((Terx, yx,|) and are defined as sums of bra-
events (z| € (¥x| forming the partition of the space of elementary bra-incomes (Q|:

2) a family {p(Xn//.'sz), X, € 83&"} of probabilities

P(X0 /%) = P({ I} : (Rlw) = (Terx, j,| }) = P( fter(X, /%) )

of terraced ket-events

|ter(X, [/ Xx)) ﬂ |) ﬂ |z)° C |9,

zeX,, zEXR — X,

on which the random bra-element takes corresponding values (Terx, ,x,| € (€| and which forms a
partition of the space of elementary ket-incomes |Q2) generated by the set of ket-events |Xx):

Q)= > Jter(X,/Xr)).

X, € 3*R
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6.1.2 Mean-believable bra-event for an ordered co~event

Definition 23 (mean-believable bra-event). Let for the ordered co~event R C (Q|Q) with the element-set
labelling (%z|23 ) (83) the designations are entered:

<Tean//3€:R‘> n:L...,N,
(&R =

(Terx, jxq | = (Terpyx,| = i), n=0, (87)

b(Xo/Xx) = B((Terx, yx, ) = B((Teryyx, |) = B(d(q)) =0,

then the mean-believable bra-event of its random bra-element (| is defined as any bra-event (&R| € (A|
with believability B((&R|) = ®(R) which satisfies the inclusions:

(EnR| C (ER| C (&nta1R], (88)
for somen =0,1,..., N — 1 such that ®(R) satisfies the inequalities:
b(Xn/Xr) < ®(R) < b(Xpi1/XR). (89)

Property 13 (mean-believable bra-event). From Definition 23 it follows that the mean-believable
bra-event (ER| € (A|

1) is concluded between bra-events from sigma-algebras (Ax,|;

2) is unlabellable, if (ER| € (A] — (Ax,|;

3) is representable in the form:

(ER] = (&R + (w], (90)

for somen =0,1,..., N — 1 such that ®(R) satisfies the inequalities (91), where
(w = (&R] = (&R| C (zntal, 91
B((w]) = @(R) = b(Xn/Xx). (92)

4) is experienced with believability coinciding with mean-probable believability of the random bra-
element (R|: B((&R|) = Ex( B(R]) );

5) plays the role of the mean-set characteristic of values of the random bra-element (R|, terraced
bra-events (Terx, |, X € 2**, as bra-subsets of the bra-set (Q|.

Proof. I will prove only the third and fourth properties assuming that the rest do not need proof.
3) From defining definitions (89) we have (92):
(w] = (ER| = (&uR[ € (€n 1 R] = (EaR| = (Terx, ., yxe | — (Terx, y | = (Tnpal.- (93)

And from the fact that by Definition 23 & ((&R|) = ®(R) (93) follows.
4) Firstly, the mean-probable believability of the random bra-element (R|, i.e. an expectation of
believability of the random bra-element (| by probability measure, has the form:

E(B(R)) = > B((Terx)x,|)P(lter(X/%x)))

Xe€ 2*»

= 3 b(X/ZR)P(X)Xn).

Xe 2*xr

(94)

Secondly, by the Robbins-Fubini theorem (see in [22]) a certainty of the co~event R coincides with (95):

R= ) (Terxx,|ter(X/Xz)),
Xe 2%

BR) = Y B((Terxx, [ter(X/Xz))),

Xe€ 2*»
Z B((Terxx, |)P(|ter(X/xz))),

Xe 2%

= Y b(X)XR)p(X/Xr) = Eo( B(R])),

Xe 2%

(95)
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as required.

Definition 24 (believability distance). The believability distance of an arbitrary bra-event (w| € (A]
till the random bra-element (| is the value

p((R], (w]) = Ee(B(®R A (w])) = > B((Terxya,| & (w] )P(Jter(X/%)) ).
Xe2*r

the mean-probable believability of their symmetrical difference.

Theorem 5 (extremal properties of a mean-believable bra-event). Mean-believability bra-event (ER| of
the random bra-element (R| minimizes its believability distance

p((R(ER]) = min  p((R],(w])
B((w[)=Ep(B((R]))

till the random bra-element (R| among bra-events (w| € (A| a believability of which is equal to the mean-
probable believability of the bra-element.

Proof differs from the proof of the lemma 1 only in notation.

6.1.3 Experienced ket-element generated by an ordered co~event

The set of ket-events |Xz) C |.A) uniquely associated with the notion of the experienced ket-element
R) = (Qf = [X) ,

defined on the believability bra-space (2, A, P|, which on the elementary bra-income («*| € (z|,2 € X
takes a value

(WR) = [R) ((W']) = [x) € [Xx)
from the ket-area |Xz) that is contained in the sigma-subalgebra |A*:) C |A) of the probability ket-space
|2, A, B) generated by terraced ket-events [ter(X; /X)) € [A**) C |A). Its value (w*|R) is interpreted as the
ket-event |z,,) € |Xx) which happens with probability

N N
P, = P(lra)) = DO P(ter(X/xn))) = > p(Xi /%), (96)

and forces the bra-event (z,,| to be experienced, i.e., forces all elementary bra-incomes («*| € (x,| to be
experienced with believability

bo, = B({ (] ([R) = [2n) }) = B({an)- 97)

The experienced ket-element |R) is defined by

1) a family |Xz) = {|z) : = € X} of its values, ket-events

|n) = Z [ter (X / Xz)) € |€)

that happens with probability p,, = P(]z,)) and is defined as sums of terraced ket-events |ter(X;/Xz)) €
|2) forming a partition of the space of elementary ket-outcomes |Q2):

) = ) Iter(X/Xz)) .-

rEXR
2) a family {b,,z € X} of believabilities
be, = B({ (] (& |R) = |2a) }) = B((wn])

of bra-events (z,| C (Q], on which the experienced ket-element takes values |z,,) C |Q2) and which form a
partition, generated by (Xx|, of the space of elementary bra-incomes (|
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6.1.4 Mean-probable ket-event for an ordered co~event

Definition 25 (mean-probable ket-event). Let for the ordered co~event R C (Q|Q2) with the element-set
labelling (%z|23 ) (83) the denotations are introduced:

|zn) n=1,...,N,
& R) =
‘$N+1> = Q\Q% n= N+ 17 (98)

Prnir = P(‘xN+1>) = P(®|Q)) = 07

then the mean-probable ket-event of its experienced ket-element |R) is defined as any ket-event |ER) € |.A)
with probability P(|&R)) = ®(R) that satisfies the inclusions:

Ein1R) C [ER) C [E.R), (99)
for some n = 1,..., N such that ®(R) satisfies the inequalities:
P < B(R) < Pa,- (100)

Property 14 (mean-probable ket-event). From Definition 25 it follows that the mean-probable ket-
event |ER) € |A)

1) is concluded between ket-events from the sigma-algebra |A%*);

2) is unlabellable if |ER) € |A) — | A¥*);

3) is presentable in the form

|ER) = |€141R) + |w) (101)

for some n =1,..., N such that ®(R) satisfies the inequalities (101), where
|w> = |&R> - |87L+1:R> g ter(Xn//%R)7 (102)
P(|U}>) = ¢(R) - pzn+1 ’ (103)

4) happens with probability coinciding with mean-believable probability of the experienced ket-element
R): P(|ER)) = Ey(P(|R)));

5) plays the role of mean-set characteristic of values of the experienced ket-element |R), ket-events |z) ,z €
Xg, as ket-subsets of the ket-set |Q2).

Proof. I will prove only the third and fourth properties, leaving the reader to reflect on others.
3) From defining inclusions (100) we have (103):

[w) = [ER) = [€n11R) € [EnR) — [€0 1 R) = [2n) — |0 y1) = ter(X, /X w). (104)

And from the fact that by Definition 25 ®(|&R)) = ®(R) (104) follows;
4) Firstly, the mean-probable believability of the experienced ket-element |R), i.e. an expectation of
probability of the experienced ket-element |R) by believability measure, has the form:

Ey(P(IR)) = > B((x|)P(jx)

rEXR

TEXR

(105)

Secondly, by the Robbons-Fubini theorem (see in [22]) a certainty of co~event R coincides with (106):

R= ) (afz),

rEXR

B(R) = Y B((afa)),

rEXR

= > B({a))P(z)),

TEXR

= Z brpx - EB(P(IR>))’

reEXR

(106)
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as required.

Definition 26 (probability distance). The probability distance of the ket-event |w) € |A) till the
experienced ket-element |R) is the mean-believable probability of their symmetrical difference:

p(IR),lw)) =By (P(IR) A [w))) = > P(la) A u))B((al).

rEXy

Theorem 6 (extremal properties of the mean-probable ket-event). The mean-probable ket-event &(|Kx,))
of the experienced ket-element |R) minimizes its probability distance
p(IR),1ER)) = min  p(IR),w))
P(|w))=Eg(P(|R)))
till the experienced ket-element |R) among ket-events |w) € |A), probability of which is equal to the mean-
believable probability of the experienced ket-element.

Proof differs from the proof of Lemma 2 only in denotations.

6.2 Dual co~event means of ordered co~event

Let

o ((Q[Q),(A|A), ®) is the certainty bra-ket-space with certainty measure ®,

e R C (Q|) is the co~event generating the element-set labelling (xz|2**),

o (Ax,|A*®) C (A|A) is the sigma-subalgebra of bra-events (x| € (Xx| € (Ax,| € (A] and terraced
ket-events |ter(X /X)) € | A*=) C |A),

e Ry C (Q|Q) is the B-quotient-projection of co~event R generating the element-set labelling (X5 |2;*),
o |AX*) C |A%®) C | A) is the sigma-subalgebra terraced ket-events |ter(X®/X2)) € |2:%),

e R, C (Q|Q) is the P-quotient-projection of co~event R generating the element-set labelling (X% |2, ),
o (A% | C (Ax,| C (Al is the sigma-subalgebra of bra-events (z*| € (X3,

* [Ry), C (AJAF®) C (A A) is the set of ket-monoplet and ket-doublet ordered co~events from the

sigma-subalgebra (A|A;*),

o (M|, C (A%, [A) C (AA) is the set of bra-monoplet and bra-doublet ordered co~events from the
sigma-subalgebra (A% |A).

Dual co~events means are defined within the framework of the certainty space (Q2, A, B|Q2, A, P) firstly
for the ordered co~event R C (Q2|Q2) to define them for an arbitrary co~event as event means of two its
quotient-projections R; C (Q|Q) and R, C (Q|Q) (see Definition 17 on page 162).

Note 1 (on «labellability» and «unlabellability» of events and co~events). In the theory of experience
and chance studying co~events as (4|.4)-measurable binary relations R € (4|.4) one of the central roles
the element-set labelling (%x|2™*) of the space (|Q) plays which is generated by every co~event R such
that R € (Ax,|A**). In other words, every co~event R is (Ax, |A¥*)-measurable, i.e. measurable with
respect to the sigma-algebra ( Ay, | A**), or bra-ket-measurable. For the description of quotient-projections
of co~events it needs also the (Ax,|A)-measurable co~events, or bra-measurable, and the (A|A*x)-
measurable co~events, or ket-measurable. However, to emphasize the importance of the element-set
labelling for the theory of experience and chance along with standard terms «measurable events»
and «measurable co~events» I will use their synonyms «labelled events» and «labelled co~events»,
Understanding by them events and co~events, labelled within the framework of corresponding sigma-
algebras. For example, (Ax, |-labelled bra-event, | Az, )-labelled ket-event, (Ax, |A)-labelled, or bra-labelled
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co~event is a co~event, bra-events of which are (A, |-labelled, and ket-events are |.4*x)-unlabelled,
(A|A**)-labelled, or ket-labelled co~event is a co~event, bra-events of which are (Ax, |-unlabelled, and
ket-events are |A**)-labelled etc.

Note 2 (on «labellability» and «unlabellability» of event and co~event means). You can define the
dual co~event means as a experienced-certainty co~event (ER|Q2) C (Q2) and a full-believability-
random co~event (Q|ER) C (Q2|Q2) relying on definitions of event means (¢R| € (A| and |&R) € |A) and,
without philosophizing slyly, stop at this. However, due to the fact that event means are so defined,
they can remain without «convenient» labelling, i.e. without the labelling within the framework of the
sigma-algebras (Ax,| C (A| and |A¥) C |A) then the co~event means defined on their basis, of course,
inherit the property of «unlabellability»'°. Here I define the dual co~event means slightly differently,
returning the «labellability» of co~event bra-means in the sigma-algebra (Ax, |.A) and the «labellability»
of co~event ket-means in the sigma-algebra (A|A%*).

6.2.1 Bra-mean and ket-mean of an ordered co~event

I'm going to give the definitions of the bra-mean and ket-mean of an ordered co~event, picking on their
roles such a bra-labellable bra-mean and ket-labellable ket-mean that would have all the characteristic
properties of the corresponding event means, with the exception of the undesirable unlabellability
property. By charactristic properties,  understand the properties of event means, including their extreme
properties, formulated in the form of lemmas 1 and 2 on page 147 and 148 and theorems 1, 2, 5, and 6 on
page 151, 153, 169, and 171.

Definition 27 (3-bra-event and =-ket-event). The B-bra-event is the (A|-measurable bra-event (\?| C (Q|
which is experienced with believability 3 = B((\?|); the r-ket-event is the |.A)-measurable ket-event
X7y C |©2) which happens with probability = = P(|X7)).

Definition 28 (bra-family and ket-family of monoplet and doublet co~events). The (A|A)-measurable
co~event R C (Q|Q) defines the following bra-family and ket-family of monoplet and doublet co~events:

RIZ, = {L(X,7) €Reo: X C Xy, € Xn — X} C (Az, |A), (107)
92, = {T(2,X) € Rep: 2 C % X e @™ 2} C (AlA™), (108)
where
L(X,x) = (Terx;x, ) + (z|A) € (Axe|A4), (109)
T, X) = <Q Z ter(Y//3€9g)> + (Alter(X/Xz)) € (AlA™). (110)
Yee

Property 15 (bra-family and ket-family of monoplet and doublet co~events). Bra-labellable co~events
L(X,z) and ket-labellable co~events 7(2,X) from (108) and (109) are either monolet or doublet
co~events depending on whether the subsets X c ¥z and 2 c 2" are empty or not, and which are
representable in the form:

{<TerX//xy|ﬂ>+<m>, X #0,
L(X,z) = (111)
(z|A), X =90,
<Q Zter(Y//xaz)>+<A|ter<X//aesz>>, 240,
J@,X) = vee (112)
(Ater(X/xz)), 2 =0,

becuase (Terg x, | = g and  »  [ter(Y/Xz)) = 2.
Ye @axﬂ{

151n Appendix on page 257 the representatives of the «unlabelled» co~event means are shown in dotted lines.
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Reminder 1 (denotations in element-set labellings of N-tuple ordered co~events). For the (A|A)-
measurable N-tuple ordered co~event R C (Q|Q2) with the labelling (¥z|2%*) we introduce one new (114)
and remind three old denotations:

2, = {Xn, Xni1,..., Xy}t C2%, (113)
o) = Y Jter(X /X)) = XN: ter(X;/Xx)) € |Azz) (114)
X, = ?xela,n T} C Xg, - (115)
(Terx, yz,| = Y (a|= Zn: (m;] € (A**], (116)
reX, =1
where n = 1,..., N. These denotations will be used in the following definition.

Definition 29 (bra-mean and ket-mean of an ordered co~event). For the ordered co~event R C (Q|Q)
(see Definition 9 on page 153) with certainty ®(R) = B({(&R|) = P(|&R))

1) the bra-mean is defined as bra-labellable monoplet or doublet co~event (ER|™) = £L(X,,, 2p11) € <9f{|§2
like that
(ER|™) = (Terx, jx; |2) + (n1|X7) (117)

for somen =0,1,...,N —1and = € (0,1) with which ®(R) satisfies the inequalities:
b(Xn/Xr) < ®(R) < b(XnfXr) + 7ba, (118)

where the value ?

bl’n+1

is called the residual probability of the bra-mean;

2) the ket-mean is defined as ket-labellable monoplet or doublet co~event (?|ER) = T(2,,11, X,,) € \%)22
like that
(P€R) = ( Q1) + (X [ter(Xn /X)) (120)

for somen =1,...,N and 8 € (0,1) with which ®(R) satisfies inequalities:
Pz qq < (I>(:R) < Pxpiq + Bp(Xn//fo)y (121)

where the value
ﬂ _ (ﬁ(:R) — Pn+1
p(Xn//xiR) ’

is called the residual believability of the ket-mean.

(122)

Remark 1 (interpretation of bra-mean of an ordered co~event). The certainty distribution of the ordered
co~event R, occurring with certainty ®(R), defines its bra-mean for some n = 0,1,..., N — 1 with which
(X, /XR) < ®(R) < b(X,41/%x), as the monoplet or the doublet co~event

(ER|™) = (Terx,, jxg |0 + (Tny1|N), (123)

which occurs with the same certainty ®((&R|™)) = ®(R) then, when the experienced-certainty co~event
(Terx, yx,|Q?) occurs with certainty ®((Terx, x,|Q)) = b(X,/Xx) (is experienced with believability
b(X, /%) = B((Tery, x,|) and happens with probability P(|Q2)) = 1), and the co~event (x,1|X") occurs
with certainty ®((z,41|X")) = bs,,, x 7 (is experienced with believability b = B({z,+1]) and happens
with the residual probability = = P(|X))).

Tn41

Remark 2 (interpretation of the ket-mean of an ordered co~event). The certainty distribution of the



72 THE XV FAMEMS’2016 AND G6P SEMINAR

ordered co~event R, occurring with certainty ®(R), defines its ket-mean for some n = 1,..., N with
which p,, ., < ®(R) < p.,, as the monoplet or the doublet co~event

(P1&R) = (Qzns1) + (X |ter(X, JXz)) , (124)

which occurs with the same certainty ®((°|&R)) = ®(R) then, when the full-believable-random co~event
(Qxy,11) occurs with certainty ®((Q|z,41)) = pa,,, (is experienced with believability B((2]) =1 and
happens with probability p,,., = P(|z,+1)) ), and the co~event (¥|ter(X, /X)) occurs with certainty
D ((Nlter(X,, /Xx))) = B x p(X,/%z) (is experienced with the residual believability 5= B((X’|) and
happens with probability p(X,, /Xz) = P(|ter(X,, /Xz))) ).

Theorem 7 (residual probability and residual believability of co~event means of an ordered co~event).
1) The residual probability = of the bra-mean (ER|™) has a sense of conditional believability of mean-
believable bra-events (ER| under the condition that the bra-event (x1| C (Q] or (x,11] C (| is experienced
correspondingly. 2) The residual believability 3 of the ket-mean (°|ER) has a sense of conditional probability
of mean-probable ket-events |ER) under the condition that the terraced ket-event |ter(X,/Xx)) C (Q| or
|ter(X,,/Xx)) happens correspondingly.

Proof. By the Robbins-Fubini theorem!® (see Footnote® on page 147) and by the definitions of mean-
believable bra-events (88) and mean-probable ket-events (99) we have

B(R) = Es (B(R))) = B((ER),

(125)
B(R) = Ey(P(1R))) = P(ER)).

From the definitions of mean-believable bra-events (88) and mean-probable ket-events (99), and also
from the additivity of measures B and P we get

®(R)<b,, = 0<B((&R]) < by, (126)

b(X,)%%) < B(R) < b(Xns1/Xr) =  b(X,/Xz) <B((ER]) < b(Xpt1/Xx), 127
P(R) <p(XnfXz) = 0<P(|&R))<p(Xn/Xx), (128)

Proiy <PR) <po, = Doy, <P(|ER)) < pa,- (129)

From here it follows that the residual probability of the bra-mean is interpreted as the conditional
believability:

B((&R]) B((ER|N (z1])

(127) = 7=, —F= ) = B((&R]/ (a1]),
B((ER]) — b(Xa /%) _ B((ERIN (zea]) %0
(128) = 7= T b =B/ (),
and the residual believability of the ket-mean is interpreted as the conditional probability:
_ P(ler)) _ P([&R) Nter(Xn/Xx))) _ ,
(128) = 7 ) P(Xn /[ X) = FUSR /lerXn/%a))), (131)
_ P(IER)) = po,y _ PIER) Nter(X,/Xx))) _
(180) = = et = S e S = P(|ER)/ ter (X )))

Property 16 (certainty of bra-mean and ket-mean of an ordered co~event). The certainty of the bra-
mean (ER|™) C (Q|Q) and of the ket-mean (?|ER) C (Q|Q2) ordered co~event R C (Q|2) coincides with
certainty of the co~event:

D((ER])) = ®((°|ER)) = (R). (132)

18For details, see [22].
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Proof. 1) The certainty of the bra-mean. If b(X,, /Xx) < ®(R) < b(X,+1/%x) for some n = 0,1,...,N — 1,
then

((ER]7))

®((Terx, yx,|9Q) + (wn1|X) ) =
B((Terx, yx,|) +B((zas1] )P (X))
b(Xn ) XR) + (b(Xnt+1/%r) — b(Xn [ XR)) T (133)

= b(Xn/XR) + (0(Xns1/%r) — b(X0n /X)) b(Xfffz//)%;)(XZ(@%//)xR)

— B(R).

2) The certainty of the ket-mean. If p,, ., < ®(R) < p,, for somen =1,..., N, then

= Po,pn T BX)P(ter (X, /Xz))

= Panys + BP(Xn /%) (134)

=Papir + BWP2, = Prpia)

B(R) ~Poir (
Pz, — Pxyia

D(("ER)) = @((Qzn41) + (X[ter(X, /%))
€
(

pmn - pr’n+1) = (I)(:R)

=Dy T

Property 17 (bra-mean). The bra-mean (ER|™) of the ordered co~event R C (Q|Q2)
1) occurs with certainty ®((&ER|™)) = ®(R);
2) is concluded between bra-events from the sigma-algebra (Ax, |A%):

(E.RIQ) C (ER]) C (&1 RI), (135)
for somen =0,1,...,N —1and = € (0,1) with which ®(R) satisfies the inequalities:
b(Xn[%z) < ®(R) < b(Xn/Xr) + s, (136)

3) is bra-labellable, i.e., (ER|™) € (Ax, |A);
4) is representable in the from:

(ER[™) = (&RID) + (Tnp1]|XT) C (&1 RIQ) , 137)
for some n = 0,1,...,N — 1, with which ®(R) satisfies the inequalities (137), where the co~event

(Tpy1|NT) € (A*%] A) has a certainty @ ((z, 41| X)) = ®(R) — b(X,, /Xz).

Property 18 (ket-mean). The ket-mean (Q|ER) of the ordered co~event R C (Q|Q2)
1) occurs with certainty ®((#|ER)) = ®(R);
2) concluded between the full-believable-random co~events from the sigma-algebra (Ax, | A**):

Q& 1R) C (Pler) € (le,R) (138)
for somen =1,...,N and 3 € (0,1), with which ®(R) satisfies the inequalities:
pwn+1 < ‘}(R) < pInJrl +Bp(X’n//x:R) (139)

3) is ket-labellable, i.e., (?|ER) € (A|A%);
4) is presentable in the form

(°1&R) = (Q€r1R) + (N [ter (X, [ X)) , (140)
where the co~event (\|ter(X,, /Xx)) has a certainty ®((\°|ter(X,,/Xx))) = ®(R) — ps, ;-

Theorem 8 (extremal properties of bra-mean and ket-mean of an ordered co~event). For the ordered
co~event R C (Q|Q) with certainty ¢ = ®(R)
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e the bra-mean (ER|™) C (Q|2) minimizes the certainty distance!” till the co~event R:

B(ERMAR) = min B(LAR), (141)
LE(ER\*<2
P(L)=¢

among bra-labellable monoplet and doublet co~events L € <SR\22 C (Ax, |A) with wich ®(L) = ¢;

o the ket-mean (°|ER) C (Q2|Q) minimizes the certainty distance till the co~event R:

((°|ER)AR) = min B(TAR), (142)
'.TE\ER><2
D (T)=¢

among ket-labellable monoplet and doublet co~events T € |9%)9;2 C (A|AX=) with which ®(T) = .

Proof follows from analogous assertions for mean-believable bra-events and mean-probable ket-events
(see theorems 5 and 6 on page 169 and 171). In fact, the statement of this theorem is actually a
«translation» of the formulation of theorems 5 and 6 from the event to the co~event language. With
this «translation» the mean-believable bra-event (€R| C (Q] and the mean-probable ket-event |&ER) C |Q2)
is replaced correspondingly by co~events (ER|Q) C (Q|Q) and (Q|ER) C (Q|Q) for which, obviously, the
assertions of theorems 5 and 6 remain true. To prove the theorem, we can only note the relationships:

B((ER|™VAR) B((ER|QAR), (143)
B(PIER)AR) = BQER)AR), (144)

which follows directly from Definition 29 of the bra-mean and the ket-mean of an ordered co~event
R C (Q€).

Definition 30 (bra-variance and ket-variance of co~event). The bra-variance and the ket-variance
of the ordered co~event R C (Q|2) are defined as values equal to certainty distances of the co~event R to
its corresponding co~event means:

bra-varR = P((ER|MAR), (145)
ket-var R = ®((°|ER)AR). (146)

6.3 Dual co~event means of an arbitrary co~event

Definition 31 (bra-mean and ket-mean of an arbitrary co~event). For the arbitrary co~event R C (Q|Q)

1) the bra-mean (¢R|™) is defined as the bra-mean of its P-quotient-projections!® ®, C (Q|Q):
(ER]T) = (ER[y) € (Reley (147)
where 7 is the residual probability of co~event ®;
2) the ket-mean (°|€R) is defined as the ket-mean of its B-quotient-projections'® R, C (Q|Q):
(P1ER) = (7|ER), € [PMa)e (148)

where 3 is the residual believability of co~event R.

Definition 32 (bra-variance and ket-variance of an arbitrary co~event). The bra-variance and the
ket-variance of the arbitrary co~event R C (Q|2) are defined as values equal to certainty distances of
quotient-projections of co~event R to its corresponding co~event means:

bra-var R = ®((ER|IIAR,), (149)
ketvar R = ®((°|ER),ARy). (150)

17A certainty of symmetrical difference of two co~events from (€2|Q).
18gee Definition 17 on page 162.
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7 Two examples of an experienced-random experiment

7.1 Approval voting in elections

Approval (soft rating) voting is «one of the most interesting applications of the modern theory of social
choice» — wrote Brahms and Nagel [7, 1991]. «Approval voting is the voting procedure proposed by
independent experts in the 1970s, in which voters can vote or approve as many candidates as they want in
multi-member elections (i.e. with more than two candidates). Each candidate who receives the approval
of one voter receives one vote, and the candidate with the most votes wins». (see Brams and Fishburn [6,
1992], and also [4, 1978],[5, 1983]).

It is clear that in addition to the main application of the approval voting to identify winners in election,
it can also be used to understand the uncertainty in behavior of voters and candidates in elections. The
purpose of this article is to clarify the answers to the questions, some of which have arisen earlier, but
have not been properly articulated!?:

o with what believabilities each voter is experienced an approval of various subsets of candidates?
(the believability distribution of a set of voters),

o with what probabilities each candidate happens to be approved by voters? (probability distribution
of a set of candidates),

e what is the «typical» or «mean» set of candidates which happens to be approved by voters and with
what probability? (the mean-probable set of candidates or the ket-mean co~event «election»),

e what is the «typical» or «mean» set of voters which is experienced an approval for candidates and
with what believability? (the mean-believable set of voters and the bra-mean co~event «election»),

o with what certainty a co~event «election» occurs?,

e how is certainty of the co~event «election» distributed over the space «voters—candidates»? (the
certainty distribution of the co~event «election»);

o with what certainty do the extreme deviations of voters and candidates of its corresponding «typical»
or «mean» co~events and so on occur?

In addition to these questions, the theory of experience and chance [22] allows us to answer questions
that have never been put before, for example,

e with what certainty a co~event «non-election» being a complementary to the co~event «election»,
does occur?

e how is certainty of the co~event «nonelection» distributed over the space «voters—-candidates»? (the
certainty distribution of the co~event «non-election»),

as well as many others questions associated with a co~event «non-selection», the answers to which
expand the understanding of the behavior of the tandem «voters-candidates» and leave a promising
space for co~event imagination.

7.1.1  The first statistics of approval voting

Brams and Fishburn analyzed the 55827x4 statistics (Table 3 in [6]) given in the table 4, the 1988
IEEE elections, which were conducted in accordance with the approval voting. Our main idea is an
experienced-random analysis of this statistic, assuming that each candidate is approved by the subset
X of the voters z € X which collectively form the set X = {z1,...,zx} from N = |X| voters ordered
with respect to the number of candidates approved by them. The subsets X C X of voters that approve
each candidate form a set % = {X;,...,X,v} C P(%) from 2" = |2%|, the set of candidates labels,
ordered with respect to the number of approval voters. The total number of voters and the number
of candidates in statistics were N = 55,827 and 2" = 4, so the labelling sets look like: X = {1, ..., z55827},
2% ={Xi,...,X4} ={C,D,B, A}.
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Numbers of voters for subsets of candidates:

N(0)=1,100
N(A)=10,738 N(B)=6,561 N(C)=17,626 N(D)=38,521
N(AB) = 3,578 N(AC) =659 N(AD)=6,679 N(BC)=1,425 N(BD)=1,824 N(CD) = 608
N(ABC) =148 N(ABD)=5,605 N(ACD) =143 N(BCD)=289
N(@*) =523
Totals:

Ni =28,013 Np=19,753 Ng = 11,221 Np = 23,992

Table 4: Numbers of voters N («) who voted for the 16 different subsets o € P(2%) of candidates from a power set of candidates 2% in the 1988 IEEE
election and AV totals. (Taken from Brams and Fishburn [6, 1992, Table 3], with N (@) is a number of voters with “None votes”, N (ax) is a number of
voters with “All votes”, for example N(ABC) = N({A, B, C}) is a number of voters with the subset { A, B, C} of votes where {A, B,C} C 2%, N,

is a number of voters for the candidate A € 2%, and atlast N = Z N(«) = 55,827 is a total number of voters.)
aeP(eX)
Candidates X4 X3 X5 X, Total | No. of Voters
0-voters 0 0 0 0 0 1,100

1-Voters 10,738 | 8,521 | 6,561 | 7,626 | 33,446 33,446
2-Voters 10,916 | 9,111 | 6,827 | 2,692 | 29,546 14,773
3-Voters 5,896 | 5,837 | 5,842 380 27,955 5,985
4-Voters 523 523 523 523 2,092 523
Total 28,073 | 23,992 | 19,753 | 11,221 | 93,039 55,827

Table 5: Numbers of votes and 55827 voters who voted for the 4 candidates: AV Vote Totals in 1988 IEEE (Calculated from Tab. 4).

Our experienced-random approach supposes that we deal with statistics resulting from the experienced-
random experiment in the form of the co~event «election» («approval voting of voters for candidates»),
the binary relation ® C (Q|Q), generating the element-set labelling (¥z|2™*) = (x|2%). In other words, the
labelling set of labels X is interpreted as the set of voters: X5 = X, and the labelling set of set labels 2™*
is interpreted as the set of candidates: 2% = 2%. The element-set labelling (X|2%) by means of relations
of P-equivalence «~» and B-equivalence «» defines the PB-quotient-labelling (¥*|2; ), which is called
the PB-quotient-space «voters—candidates». The labelling sets of this quotient-space have a form: X* =
{a%,..., 2%}, 85 = {X® ..., X?}, where voters z* € X* are ordered with respect to decreasing the number
of their approving votes for all candidates, 2} = QF are the voters who did not approve candidates, and
candidates X® € 2, are ordered with respect to increasing the number of approval votes, received from
voters. In the statistics X} is the set label of the 28073-candidate (i.e. of candidate with 28073 approval
votes), X3 is the set of the 23992-candidate, X3 is the set label of the 19753-candidate, X? is the set label of
the 11221-candidate.

Bra-mean of the co~event «election». The mean value of voters, voting for each candidate, 20759.750.
The value and the experienced-random statistics of voting lead to the bra-mean co~event (see Figures
13,14 and 17)

(ER|™2%%) = (Terx, x, |2) + (ws|ter(Wa /{W1, W2})), (151

which occurs with certainty ®((&R|%9°)) = &(R) = 0.372 = 20759.750/55827 then, when the co~event
(Tery, x,|Q) occurs with certainty ®((Tery,;x,|Q))=0.117 (is experienced with believability
B((Tery, yx,|) = 0.117 and happens with probability P(|2)) = 1), and the co~event (z;|ter(Ws /{W1, W2}))
occurs with certainty ®((zs|ter(Ws /{W1, W>}))) = 0.255 = 0.265 x 0.965 ( is experienced with believability
B((z3|) = 0.265 and happens with the residual probability P(|ter(W/{W1, W2})) = 0.965 ).

Ket-mean of the co~event «election». The mean value of candidates, for which each voter voted, 1.487.
The value and the experienced-random statistics lead to the ket-mean co~event (see Figures 13, 14 and
17)

(*HTIER) = (Qfa) + (welter(Xa /X)) , (152)

which occurs with certainty ®((%*%7|&R)) = ®(R) = 0.372 = 1.487/4 then, when co~event (Q|z;)
occurs with certainty ®((Qz1)) =0.250 (is experienced with believability B((Q2) =1 and happens

191n the text below, the terms of the theory of experience and chance [22] which opens the way to achieving these goals, are
highlighted in italics.
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with probability P(|z4)) =0.250), and the co~event (wster(X,/Xz)) occurs with certainty
P ((wolter(Xs /X)) = 0.122 = 0.487 x 0.250 (is experienced with residual believability B((w,|) = 0.487 and
happens with probability P(|ter(X,/Xx))) = 0.250).

7.1.2 The second statistics of approval voting

The following 3933x5-statistics which was analyzed by Brams and Fichburn (see Table 2 in [6]) is given
in Table 6. It also describes results of the experienced-random experiment of election with approval
voting. Unfortunately, this Brahms and Fishburn statistics contains only total sample values which are
insufficient for estimating the certainty distribution of co~event R on the space of «candidate-voters», as
well as its event and co~-event means. We took the liberty to «restore»?® a full 3933x5-statistics which,
having the same total sample values as Brams and Fishburn, would allow us to evaluate all the event and
co~event characteristics of the co~event R «election» (see Table 7).

Our main idea is the same. It is an experienced-random analysis of this statistics, assuming that each
candidate is approved by the subset X of the voters = € X which collectively form the set ¥ = {z1,...,zn}
from N = |X%| voters ordered with respect to the number of candidates approved by them. The subsets
X C x of voters that approve each candidate form the set 8* = {X;,..., X~} C P(X) and 8" = |2%| of set
labels of candidates ordered with respect to the number of approval votes, submitted for them by voters.
The total number of voters and the number of candidates in statistics were N = 3933 and 2" = 5 so that
the labelling sets have the form: X = {z1,..., 23033}, @ = {X1,..., X5} = {A,B,D,C, E}.

Candidates A B C D E Total | No. of Voters
0-voters 0 0 0 0 0 0 0
1-Voters 848 618 652 660 | 303 | 3,081 3,081
2-Voters 276 275 264 273 | 132 | 1,220 610
3-Voters 122 127 134 118 87 588 196
4-Voters 21 32 34 31 30 148 37
5-voters 9 9 9 9 9 45 9

Total 1,276 | 1,093 | 1,061 | 1,091 | 561 | 5,082 3,933

Table 6: Numbers of votes and 3933 voters who voted for the 5 candidates: AV Vote Totals in 1987 MAA Election (Taken from Brams and Fishburn [6,
1992, Table 2]).

Numbers of voters for subsets of candidates:

N@)=0
N(A)=2848 N(B)=618 N(C)=652 N(D) =660 N(E) =303
N(AB)=84 N(AC)=T7 N(AD)=82 N(AE)=33 N(BC)="17
N(BD) =81 N(BE)=33 N(DC)="17 N(CE) =33 N(DE) =33
N(ABC)=30 N(BCD)=30 N(ACD) =27 N(ABD) =22 N(BEC)=16
N(ACE)=10 N(ABE)=16 N(DEC) =15 N(DEB)=13 N(ADE)=11
N(BCDE)=16 N(ACDE)=5 N(ABDE)=3 N(ABCE)=6 N(ABCD)=17
N(ABCDE)=9
Totals

Ni=1,256 Ng=1,003 Ng=1,061 Np=1,091 Np =561

Table 7: Numbers of voters N (a) who voted for the 16 different subsets o € P(2%) of candidates from a power set of candidates 2 in 1987 MAA
Election and AV totals. (Taken from Brams and Fishburn [6, 1992, Table 2], with N () is a number of voters with “None votes”, N (ax) is a number of
voters with “All votes”, for example N(ABC) = N({A, B, C}) is a number of voters with the subset { A, B, C'} of votes where {4, B,C} C 2%, N4
is a number of voters for the candidate A € 2%, and atlast N = Z N(«) = 3,933 is a total number of voters.)

acP(3X)

Our experienced-random approach assumed that we deal with a statistics resulting from the experienced-
random experiemnt in the form of the co~event «election» («approval voting of voters for candidates»),
the binary relation ® C (Q|(), generating the element-set labelling (%x|2**) = (x|2%). In other words,
the labelling set of labels Xy is interpreted as the set of voters: Xx = X, and the labelling set of
set labels 2™ is interpreted as the set of candidates: 2% = 2*. The element-set labelling (x|2%) and

200f course, in this example, the results of the «restoration» of the votes «2-voters» and «3-voters» on 2-subsets and 3-subsets of
candidates are not may be unique.
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relations of P-equivalence «~» and B-equivalence «» define the PB-quotient-labelling (X*|2; ), which is
called the PB-quotient-space «voters—candidates». The labelling sets of this quotient-space have a form:
X = {a%,...,2%}, 85 = {X® ... XP}, where voters 2* € X* ordered in descending the number of their
approving votes for all candidates, and candidates X* € 2, ordered in increasing number of approving
votes received by them from voters. In the statistics it turned out that X2 is the set label of 1276-candidate
(i.e. of candidate with 1276 approval votes), X} is the set label of 1093-candidate, X3 is the set label of
1091-candidate, X} is the set label of 1061-candidate, X7} is the set label of 561-candidate.

Bra-mean of the co~event «election». The mean value of voters, which voted for each candidate,
1016.400. The value and the experienced-random statistics lead to the bra-mean of the co~event (see
Figures 15, 16 and 18)

(ER["055) = (Ter, yx, |9) + (xster(Wa {1, W2}) (153)

which occurs with certainty ®((&R|%053)) = ®(R) = 0.258 = 1016.400/3933 then, when the co~event
(Tery, /x,|Q) occurs with certainty ®((Terx,;x,|Q))=0.217 (is experienced with believability
B((Tery, yx,|) = 0.217 and happens with probability P(|2)) = 1), and the co~event (z5|ter(Ws /{W1, W2}))
occurs with certainty ®((zs|ter(Ws /{W1,W>}))) = 0.041 = 0.783 x 0.053 (is experienced with believability
B((z5|) = 0.783 and happens with the residual probability P(|ter(W/{W;, W2})) = 0.053).

Ket-mean of the co~event «election». The mean value of candidates, for which each voter voted, 1.292.
The value and the experienced-random statistics lead to the ket-mean of the co~event (see Figures 15, 16
and 18)

(22]ER) = (Qfa1) + (wolter(Xy/Xx)) , 159

which occurs with certainty ®((°4%7|ER)) = ®(R) = 0.258 = 1.292/5 then, when the co~event
(Q|zy) occurs with certainty @((Q]z1)) =0.200 (is experienced with believability B((Q[) =1 and
happens with probability P(|z4)) =0.200), and the co~event (ws|ter(X,/Xz)) occurs with certainty
® ((wo|ter(Xs/Xr))) = 0.058 = 0.292 x 0.200 ( is experienced with the residual believability B((w,|) = 0.292
and happens with probability P(|ter(X;/Xx))) = 0.200).

7.2 «Approval voting» in forestry

The statistics (see Figures 1) survey trees by foresters to label trees for felling, which was carried out
similarly to the procedure of approval voting, was considered in [13]. The authors of this work came
to the problem of approving voting in the context of the annex to forestry [2], where foresters were
encouraged to classify trees as «good» or «bad» for Kkilling them (to fell). Foresters had to give each
tree a label, following instructions known in advance, which they more or less followed because of
their experience. In terms of the theory of social choice, foresters are voters, and trees are candidates;
«good» can mean «approved». The purpose of this experiment in forestry was to study the psychology of
foresters’ behavior in the procedure for selecting trees. In everyday forestry, one forester walks through
the forest and labels trees that must be cut down based on his professional experience. One of the reasons
for such experiments is the modeling of the forester’s work in modern forest models that describe
the evolution of forests over time, when the human element is an important element of the model.
However, the authors of [13] also see a more general problem of understanding foresters’ psychology,
their interaction with trees and their environment.

Our main idea is in the experienced-random analysis of this statistics under assumption that each tree
is labelled for cutting by the subset X of foresters = € X which all together form the set X = {x1,...,zn}
of N = |X| foresters ordered with respect to the number of trees labelled by them. The subset X C X
of foresters, which label each tree, form the set 8* = {X,,..., X~} C P(X) from 2" = |2%] of set labels
on trees ordered respect to the number of foresters labelled them. The total number of foresters and
the number of trees in statistics were N = 15 and 2" = 387, so that the labelling sets have the form:
X= {.1?1, N 73}15}, 836 = {)(17 N ,X387}.

Our experienced-random approach assumes that we deal with statistics resulting from the experienced-
random experiment in the form of the co~event «choosing by foresters the trees for felling», the binary
relation R C (Q|Q2), generating the element-set labelling (%x|2™*) = (%|2%). In other words, the labelling
set of labels X is interpreted as the set of foresters: Xz = X, and the labelling set of set labels 2% ig
interpreted as the set of trees: 2% = 2%, The element-set labelling (¥|2%) and relations of P-equivalence
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«*» and B-equivalence «2» define the PB-quotient-labelling (¥*|2; ), which is called the PB-quotient-
space «foresters-trees». The labelling sets of this quotient-space have the form: X* = {z®,...,2%;}, 2y =
{X},..., X%}, where foresters z* € X* are ordered in descending order of the number of labels they put
on all trees, and trees X® € 2, are ordered in ascending the number of labels placed on them by foresters.
In the statistics it turned out that X}, is the set label of 13-trees (i.e. of trees labelled by 13 labels), X%, is
the set label of 12-trees, ..., X}, is the set label of 10-trees, ..., X7 is the set label of 1-trees, and (® is the
empty set label of 0-trees, i.e. of trees, which were left without labels.

The new approach is significantly set-theoretical and assumes that terraced bra-events (Tery;x,| € (©|
are realizations of a random set, and ket-events |z) C |Q) are realization of an experienced set (see [22]),
for anlysis of which an experienced-random generalization of some elements of the statistical theory of
compact random sets is suitable [14, 11, 8]. In addition, we describe new forms of analysis of experienced-
random data, based on the theory of experience and chance [22].

m 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N(m) | 2 3 2 4 10 11 20 38 40 57 62 50 58 30
n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
M(n) | 184 134 130 115 112 105 104 101 93 86 84 57 54 46 37

Figure 1: At the top: the statistics of choosing by 15 foresters (rows) from 387 trees (columns) the trees for felling, among which 30 trees were unchosen,
i.e. were left without labels ( green shows even numbers of labels on the trees in the columns of the table). Below: the numbers N (m) of trees with

m labels, m = 13,12,...,1,0. Even lower: the «activity» M (n) of the forester with number n = 1,2,..., 15 (the number of labelled trees in the
rows of the table above).

Bra-mean of the co~event «choosing by foresters the trees for felling». The mean number of
foresters, label each tree, 3.726. The value and the experienced-random statistics of choosing lead to
the bra-mean of the co~event (see Figures 3 — 11, and also 12)

(ER0T20) = (Tery, y, 190 + (xater (Wa / {W1, W2})) (153

which occurs with certainty ®((&R|%7%%)) = ®(R) = 0.248 = 3.726/15 then, when the co~event (Tery, ;x, [)
occurs with certainty ®((Terx, ;x,|Q2)) = 0.200 (is experienced with believability B((Terx, ;x,|) = 0.200
and happens with probability P(|Q2)) = 1), and the co~event (z,|ter(W, /{W;, W})) occurs with certainty
D ((z4lter(Wo J{W1,W>}))) = 0.048 = 0.067 x 0.726 (is experienced with believability B((z4|) = 0.067 and
happens with the residual probability P(|ter(Ws /{W, W5})) = 0.726).

Ket-mean of the co~event «choosing by foresters the trees for felling». The mean number of trees,
labelled by each forester, 96.133. The value and the experienced-random statistics of choosing lead to the
ket-mean of the co~event (see Figures 3 — 11, and also 12)

<0'153|€ﬂ{> — <Q‘x4> —+ <w2|ter(X5//fo)> ’ (156)

which occurs with certainty ®((*1%3|&R)) = ®(R) = 0.248 = 96.133/387 then, when the co~event
(Q|zy) occurs with certainty ®((Q[z4)) =0.233 (is experienced with believability B((Q]) =1 and
happens with probability P(|z4)) =0.233), and the co~event (w,|ter(X,/Xz)) occurs with certainty
P ((wolter(Xs /X)) = 0.015 = 0.153 x 0.103 ( is experienced with the residual believability B((w,|) = 0.153
and happens with probability P(|ter(X;/Xx))) = 0.103).
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8 Appendix

8.1 Results of processing the statistics 55827x4 «voters—candidates» and 15x387 «foresters-trees»
and the transposed statistics 4x55827 «candidates-voters» and 387x15 «trees-foresters»

B B B B B B B B B B B B B
[XT3) 1XT2), IXT1) 1 X10), [Xg) , 1Xg), IX7) ,[XG) |1X5) 1Xq) [1X3) [X3) IX7) |

0,50

Figure 2: Quotient-indicator of the M-complementary co~event on the 14x15 quotient-space for 387x15 statistics (maximum value = 1).
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Figure 4: Quotient-c.d. of the co~event on 14x15 quotient-space for the 387x15 statistics (maximum value = 0,010680448).
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Figure 5: Quotient-c.d. on 14x15 quotient-space for the 387x15 statistics (maximum value ~ 0,010680448).
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Figure 7: Quotient-indicator of the co~event on the 15x14 quotient-space for 15x387 statistics (maximum value = 1).
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Figure 8: Quotient-indicator of the co~event on 15x14 quotient-space for the 15x387 statistics (maximum value = 1).
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Figure 9: Quotient-c.d. of the co~event on 15x14 quotient-space for the 15x387 statistics (maximum value ~ 0,010680448).
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Figure 10: Quotient-c.d. on 15x14 quotient-space for the 15x387 statistics (maximum value ~ 0,010680448).
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Figure 11: Quotient-c.d. of the M-complement co~event on 15x14 quotient-space for the 15x387 statistics (maximum value = 0,010680448).
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Figure 12: Bra-mean and ket-mean: for 15x387-statistics «foresters—trees», left; for 387x15-statistics «trees—foresters», right.
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Figure 13: The scheme of results on the Figure 17 for input 55827x4 statistics on the 5x4 quotient-space: two co~event means, two quotient-indicators
and three distributions of the co~event («voters-candidates 55827x4 statistics»). The color palette shows values from [0, 1] (normalized by the
maximum value to better visualize small values; maximum value visualize as a red) by the following way: red ~ 1, white ~ 1/2, blue ~ 0. For

the quotient-indicators maximum value = 1, for three quotient-c.d. maximum value = 0,14978 ...
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Figure 14: The scheme of results on the Figure 17 for input 4x55827 statistics on the 4x5 quotient-space: two co~event means, two quotient-indicators
and three distributions of the co~event («voters—candidates 4x55827 statistics»). The color palette shows values from [0, 1] (normalized by the
maximum value to better visualize small values; maximum value visualize as a red) by the following way: red ~ 1, white ~ 1/2, blue ~ 0. For

the two quotient-indicators maximum value = 1, for three quotient-c.d. maximum value = 0,14978 ...
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Figure 15: The scheme of results on the Figure 18 for input 3933x5 statistics on the 5x5 quotient-space: two co~event means, two quotient-indicators
and three distributions of the co~event («voters—candidates 3933x5 statistics»). The color palette shows values from [0, 1] (normalized by the
maximum value to better visualize small values; maximum value visualize as a red) by the following way: red ~ 1, white ~ 1/2, blue ~ 0. For
the quotient-indicators maximum value = 1, for three quotient-c.d. maximum value = 0,15667 ...
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Figure 16: The scheme of results on the Figure 18 for input 5x3933 statistics on the 5x5 quotient-space: two co~event means, two quotient-indicators
and three distributions of the co~event («voters-candidates 5x3933 statistics»). The color palette shows values from [0, 1] (normalized by the
maximum value to better visualize small values; maximum value visualize as a red) by the following way: red ~ 1, white ~ 1/2, blue ~ 0. For
the two quotient-indicators maximum value = 1, for three quotient-c.d. maximum value = 0,15667 ...
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Figure 17: Bra-mean and ket-mean: for 55827x4-statistics «voters-candidates», left; for 4x55827-statistics «candidates—voters», right.
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Figure 18: Bra-mean and ket-mean: for 3933x5-statistics «voters—candidates», left; for 5x3933-statistics «candidates-voters», right.
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8.2 Venn diagrams of bra-means and ket-means for some co~events

1X2) |XD) 1X5) 1X3) IXT)
A NN

107 IX7) 1X3) 1X5) IXD) I1X5) [X10) | Xo) |Xs) |X7> IXG |X5> |X4> |X3> |X2> |X1>
- AN N AN AN AN ASNASNAS

Y Yt Vo

—~
8
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—~
8
wr

—~
8
N

~—
[W1) [W2)

Table 8: Venn diagrams of the co~event R C (Q|Q) (-) and of two its quotient-projections: Rp C (Q|Q) (-) and Rg C (Q|Q) (-)
on the bra-ket-space (2|Q) with the labellings (X |2*®), (361;1|813,€92) and (36‘32|a;€31) correspondingly; N = 9,2" = 10, Np = 5, Ng = 5; &(R) =
®(Rp) = ®(Rg) = 0.36; the bra-mean (JED: (€rI™) = (Terp ter(Wa)), p(W1) = 0.1,p(W2) = 0.9; the residual probability = = 0.9; the

ket-mean (-): (PIERY = (w1 |aB) + (wa|aB), by, = 0.47,b,,, = 0.53; the residual believability 3 = 0.53. The representatives of unlabellable
co~event means (ERp|2) and (2|ERp) are shown by dotted line.

2R = {x10,..., x1}, eV =10,
X10 = {=1, 22, 23, 24, @5, 29},
Xg ={=1, 22, w3, 24,25},
Xg ={x1,®3, 25,26},

X7 ={z3, 24, 25,26},

Xe =A{=1, 22, 5,26},

X5 = {x3, x4, 27},

Xyq =A{=zg, 23,24},

Xg ={=1, 23,24},

Xo = {zg, 7,28},

X1 =A{=1},

Xg =A{z1.- -, zg}, N =09,

1) = [X10) +1X9)+[Xg)+1X6) +1X3)+1X1)
|zg) = [X10)+1X9)+|Xe) +1X4)+1X3)+|X2),
|e3) = [X10)+1X9)+|Xg)+1X7)+|X5)+1X4)
lza) = [X10) +1X9)+[X7)+|X5) +1X4)+1X3)
lz5) = [X10)+1Xg)+|Xg)+1X7)+1X6) »

|zg) = [Xg)+IX7)+1X6) »

|lz7) = [X5)+1X2),

leg) = [X2),

lzg) = 1X10)»
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Table 9: Venn diagrams of the co~event R C (Q|Q) (-) and of two its quotient-projections Rp C (Q2|€) (-) and Rg C (Q|Q) (-)

on the bra-ket-space (©2|Q2) with the labellings (X [2*R ), (36‘;1|affﬂl> and (3613’2\2;692) correspondingly; N = 5,2Y = 5,Np = 5, Ng = 5; &(R) =

®(Rp) = ®(Rp) = 0.36; the bra-mean (D (ERI™) = (Terp[ter(W)) + (Terp[ter(W2)), p(W1) = 0.13, p(W2) = 0.87; the residual probability
1

7 = 0.87; the ket-mean (-) (PleR) = <w1|zg> + (w2|zg), bw, = 0.70, by, = 0.30; the residual believability 3 = 0.30. The representatives of
unlabellable co~event means (ERp|2) and (2| ERp) are shown by dotted line.

X = {21, ..., x5, @}, N =5, 2*R = {x5,..., x1,0}, eV =5
|z1) = [X5)+Xa)+|X3)+|X2)+[X1) X5 ={x1,29,23, 24,5},

lzo) = [Xp5)+|X4)+1X3)+[X2), X4 ={w1,22, 23,24},

|z3) = [X5)+[Xq)+1X3), X3 ={=1, 22,23},

leg) = [X5)+1X4) Xg ={=1, 22},

lxs) = [X5), Xy ={=1}.
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Table 10: Venn diagrams of the co~event R C (Q|€) (-) and of two its quotient-projections Rp C (Q|Q) (-) and Rg C (Q|Q) (-)
on the bra-ket-space (2|Q) with the labellings (X |2*®), (36151|813,€93) and <ae‘;|aff33) correspondingly; N = 9,2Y = 10, Np = 6, Ng = 6; B(R) =
®(Rp) = ®(Rg) = 0.36; the bra-mean (D (er1°) = (Terplter(W1)) + (Terep lter(W2)), p(Wi) = 0.4, p(W2) = 0.6; the residual probability

7 = 0.6; the ket-mean (-) ("|ERY = (w1|z8) + (wa|zB), b, = 0.88, by, = 0.12; the residual believability 8 = 0.12. The representatives of
unlabellable co~event means (ERp|2) and (2| ERp) are shown by dotted line.

N — 10,

2R = {x10,..., X1}, 2
X10 = {=1, 24, 25, w6, @7, 28},
X9 = {=1, 22,23, @5, x7, 28},
Xg ={x1,®g, 23,25, 26},
X7 =A{=zg, 23,24},
Xg =A{=1, 22,23},
X5 = {x1, 23,24},
Xyq =A{=1, 22,24},
Xg ={=1, 24,25},
Xo = {=g, =3},
X1 =A{=z10},

Xp ={z1,-- -, rg}, N =9,

|z1) = [X10)+1X9)+|Xg)+[Xe) +|X5)+[Xa)+1X3)
|zg) = [ Xg)+[Xg)+|X7)+1Xg)+1Xq)+|X2),

lzg) = [X9)+[Xg)+1X7)+[X6)+1X5)+1X2),

|zg) = [X10)+IX7)+|X5)+1Xa)+1X3)

lz5) = [X10)+1Xg)+|Xg)+1X3) .

lzg) = [X10)+1X8)

le7) = [X10)+1X9)

lzg) = [X10) -

leg) = [X1),
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1Xg) 1X3) XD 1X3) 1X3) IXT)
NN ——

[xP) (X5 1XD) x5 IXE) [X§) |XD) |Xo) |Xs) |X9) [Xe) |X5) |[Xa) [X3) X2 [X2)
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T EEEEEEE
EEE R (R

—~ ~ /H\ o~~~
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~ A A A S A

W) W)

Table 11: Venn diagrams of the co~event R C (Q|Q) (-) and of two its quotient-projections Rp C (Q|Q2) (-) and Rg C (Q|Q) (-)

on the bra-ket-space (Q|2) with the labellings (X » [2¥®), (xg|a§91) and (x‘;z\a}f%) correspondingly; N = 7,2Y = 9,Np = 7,Ng = 6; ®(R) =

®(Rp) = ®(Rp) = 0.36; the bra-mean (D (erI™) = (Terp[ter(W7)) + (Terp[ter(W2)), p(W1) = 0.4, p(Wa) = 0.6; the residual probability
3

7 = 0.6; the ket-mean (-) (PleR) = (wllac‘s’) + <w2|xﬁ), by, = 0.2,by, = 0.8; the residual believability 5 = 0.8. The representatives of
unlabellable co~event means (ERp|2) and (2|ERg) are shown by dotted line.

2R = {Xg,..., X1}, eV =09
Xp ={z1,-- -, z7}, N =7, Xg = {z1, 22,23, x4, 5, 6, 7},
lz1) = [X10)H Xo)+IXg)+H X7)+ X6 )+ X5)+ Xg)+ X3)+H X2)+1X1), Xg = {=1, 22,3, 25,26},
|zg) = | Xg)+IXg)+ X7)+ Xe)+H X5)+ X2) , X7 =A{=1, 22, 23,25},
|w3) = [Xg)+IXg)+ X7)+ X6)+ X5)+X4a) X¢ = {z1, 22,23, 24},
|wg) = [Xg)+ Xe)H Xq)H X3) X5 = {=1, 22,23},
|zs) = [Xg)+H Xg)+ X7), Xg =A=1, 23,24},
lrg) = [Xg)+H Xg) » X3 =A{z1,24},
lz7) = [Xg), Xo =A{=1, 22},

X1 =A{=1}.
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Table 12: Venn diagrams of the co~event R C (Q|€) (-) and of two its quotient-projections Rp C (Q|Q) (-) and Rg C (Q|Q) (-)

on the bra-ket-space (Q|2) with the labellings (X [2¥®), (361;Z|813,€93) and (36‘9’2\8;692) correspondingly; N = 1,2Y = 1,Np = 1,Ng = 1; ®(R) =

&®(Rp) = ®(Rp) = 0.36; the bra-mean (-) (ER|™) = (Ter,p|ter(W1)), p(@) = 0.1, p(W1) = 0.9; the residual probability = = 0.9; the ket-mean
1

) (PlER) = (w1|2®), by = 0.6, by, = 0.4; the residual believability 8 = 0.4. The representatives of unlabellable co~event means (ERp|<2)
and (©2|&Rp) are shown by dotted line.

Xy ={=1,92}, N=1, 2*R = (xq,0}, &V =1,
|z1) = [X1), X1 ={=1}.
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Above in the tables 10 — 12 some types of dual bra-means (éR|™) and ket-means (?|€R) of co~event R,
its quotient-projections R; and R®,, and also representatives of unlabellable co~event means (&R|Q2) and
(Q|&R) (by dotted line) are shown. Due to lack of space in these tables the abbreviation | X) for the terraced
ket-events |ter(X/Xx)) is used, and also the following standard denotations are used:

B-quotient-labelling P-quotient-labelling
(w1 ]a2), (21 |2,
5 _ {z1,.. . 2 b p _ {=f,... 2, 1
R {oh, ..., 2y, 2%}, R {2f,...,2%,, 2"},
ax;R _ {Xfy-..,X?VB}a axm _ {X{“'"X;Vp}’
B P
(X3, X5, 00, (X2, X%, 000,
%) C 1), 0°C Xz, (@'l c(Ql, 0*Cxyp,
Np Np
28) = XD, i=1,.., N, @) =S IXE), i =1, Ve
=i =i
Np Np
X2=> {23} j=1,.. Ny, XP=>{afh =1, I\,
=1 =1
M= o = [ = 2, N = (o =[], =8
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