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Abstract. A fixed company of players observes a person selected from a fixed queue. After each observation,
players are asked to bet the dollar secret from others, either on the fact that person is bald, or on what
is not. A definite formula of the gain is suggested, such that every time after bets the gain of each player
from a given company are completely determined by this formula. However, before bets player’s gain
is an uncertain value. Is it possible for a given company of players and a given queue of people before
bets to build a correct mathematical model of uncertaint gain of each player within the framework of
Kolmogorov’s probability theory? If not, what else do you need to add to the foundations of probability
theory so that before bets to be able to use this model for decision making? The paper answers these
questions within the framework of the new theory of experience and of chance (the certainty theory) [1]
that consists of two dual halves: the believability theory and the probability theory, and that is intended for
the mathematical description of experienced-random experiments, the uncertainty in outcomes of which is
generated by the observer.

Keywords. Eventology, event, co∼event, probability, believability, certainty, theory of experience and of
chance, certainty theory, bet on bald.

1 Formulation of the problem

A fixed company of players observes a person selected from a fixed queue.

After each observation, players are asked to bet the dollar secret from others, either on the fact that the
person is bald, or on what is not. If, as a result of the bets made, the player’s choice is in the minority,
the player loses the bet. If, on the other hand, in the majority, the player is returned his bet plus an equal
share of the loser players’ bets. With a draw, the equality of the number of betting on the bald and the
number of betting on the not bald, all players remain at their own: they are returned their bets1. Every
time after the bets, the gain of each player from this company is fully certain. But before the bets, the
gain is an uncertain value.

Is it possible for a given company of players and a given queue of persons before bets to build a correct
mathematical model of uncertain gain of each player within the framework of Kolmogorov’s probability
theory?

If not, what else do you need to add to the foundations of probability theory so that before bets to be able
to use the correct mathematical model for decision making under uncertainty?

c⃝ 2016 O.Yu.Vorobyev

Oleg Vorobyev (ed.), Proc. XV FAMEMS’2016, Krasnoyarsk: SFU

1If, without loss of generality, consider that a company consists of an odd number of players, a draw situation can be ignored.
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The negative answer to the first question and the meaningful answer to the second one follow from the
new theory of experience and of chance, or the certainty theory [1], which is postulated as amathematical
theory for a describing the outcomes of the experienced-random experiment, defined as the Cartesian
product of experienced and random experiments, and is a «product» of the dual halves: the believability
theory and the probability theory. From the point of view of this «product» theories, the problem «the bet
on a bald» describes an experienced-random experiment in which a fixed company of observer-players
conducts observations of a person selected by one from the fixed queue until the queue is exhausted.
What occurs in this experienced-random experiment, the new theory calls co∼event R ⊆ ⟨Ω|Ω⟩, which is
defined as a measurable binary relation on the Cartesian product ⟨Ω|Ω⟩ = ⟨Ω|×|Ω⟩ of the set of elementary
incomes (the bra-set) ⟨Ω| and the set of elementary outcomes (the ket-set) |Ω⟩ within the framework of the
certainty space (the braket-space)⟨Ω,A,B|Ω,A,P⟩ = ⟨Ω,A,B| × |Ω,A,P⟩ =

(

⟨Ω|Ω⟩ , ⟨A|A⟩ ,Φ
)

, where ⟨A|A⟩
is the sigma-algebra of subsets of ⟨Ω|Ω⟩, and Φ is a certainty measure on ⟨A|A⟩. In the certainty theory
each co∼event R generates its own element-set labelling of the set ⟨Ω|Ω⟩ of elementary incomes-outcomes

in the form ⟨XR| S
XR⟩ = ⟨XR| × | SXR⟩, where ⟨XR| ⊆ ⟨A| is the set of bra-events ⟨x| ⊆ ⟨Ω| , x ∈ XR , and

| SXR⟩ ⊆ |A⟩ is the set of terraced ket-events |ter(X//XR)⟩ ⊆ |Ω⟩ , X ∈ SXR ⊆ P(XR). All other theoretical
details of the certainty model of the experienced-random experiment can be found in my work [1]. Here
I will confine myself to an applied interpretation of new for the reader theoretical concepts within the
framework of this experienced-random experiment «the bet on bald», in which the company of observer-
players and the queue of observed persons participate.

2 Answers and solutions

We will assume that both the company of observers-players and the queue of observed persons are
finite sets2. We associate with each of the M observers-players an elementary income ⟨ω∗| ∈ ⟨Ω|, that
is, we assume that the bra-set ⟨Ω| = {⟨ω∗

1
| , . . . , ⟨ω∗

M |} has a power | ⟨Ω| | = M . With each of the N
observed persons, we associate an elementary outcome |ω⟩ ∈ |Ω⟩, reasonably assuming that the ket-set
|Ω⟩ = {|ω1⟩ , . . . , |ωN ⟩} has a power | |Ω⟩ | = N . Then any outcome of bets on a bald in this experienced-
random experiment is defined by the co∼event R ⊆ ⟨Ω|Ω⟩ = {⟨ω∗|ω⟩ : ⟨ω∗| ∈ ⟨Ω| ; |ω⟩ ∈ |Ω⟩, where

R = {⟨ω∗|ω⟩ : the observer-player ⟨ω∗| bets on the bald |ω⟩ } ⊆ ⟨Ω|Ω⟩ , (1)

and any outcome of bets on a non-bald is defined by the complementary co∼event Rc = ⟨Ω|Ω⟩ −R, where

R
c = {⟨ω∗|ω⟩ : the observer-player ⟨ω∗| bets on the non-bald |ω⟩ } ⊆ ⟨Ω|Ω⟩ . (2)

2.1 Probability means of a gain and a believability in a gain of a player

The believability b(X//XR) = B
(

⟨TerX//XR
|
)

of the terraced bra-event ⟨TerX//XR
| ⊆ ⟨Ω| dualistic to the

given terraced ket-event |ter(X//XR)⟩ ⊆ |Ω⟩, is a believability measure of those observers-players form the
labelling subsetX ⊆ XR that «betting on a bald». By the condition of the bet an observer-player gets a gain
when his/her choice is in majority. That is, when b(X//XR) > 1/2 then winning observers-players form
the subset X ⊆ XR; and when b(Xc//XR) > 1/2 then winning observers-players form the complementary
subsetXc = XR−X ; and at last when b(X//XR) = b(Xc//XR) = 1/2 then all observers-players remain at their
own bets. Note that observers-players form the subsetX ⊆ XR with probability p(X//XR) = P(|ter(X//XR)⟩)
that is the probability of terraced ket-event |ter(X//XR)⟩ ⊆ |Ω⟩; and, when b(X//XR) > 1/2 each of them
gets the gain 1+ (1− b(X//XR))/b(X//XR) = 1/b(X//XR). When b(Xc//XR) > 1/2 observers-players who have
formed a complementary subset Xc ⊆ XR receive a gain 1 + (1− b(Xc//XR))/b(X

c//XR) = 1/b(Xc//XR). And
at last when b(X//XR) = b(Xc//XR) = 1/2 the gain of all observers-players is one.

Consider an observer-player ⟨ω| ∈ ⟨x| ⊆ ⟨Ω| that «bets on a bald» on an observed person |ω⟩ ∈ |x⟩ from
ket-event |x⟩ ⊆ |Ω⟩, and «bets on a non-bald» on an observed person |ω⟩ ∈ |x⟩

c from complementary
ket-event |x⟩c = |Ω⟩ − |x⟩. Such observer-player is one-to-one connected with the ket-event |x⟩ ⊆ |Ω⟩.

2This is a weak restriction, which, frankly, I do not use anywhere, and I enter only to avoid intimidating the unprepared readers.
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2.1.1 Probability mean of player’s gain

The observer-player’s gain ⟨ω| ∈ ⟨x| is a random variable (r.v.) G
|x⟩
R

(|ω⟩) that takes on |Ω⟩ the values:

G
|x⟩
R

(|ω⟩) =











1/b(X//XR), if |ω⟩ ∈ |ter(X//XR)⟩ ⊆ |x⟩ и b(X//XR) > 1/2,

1/b(Xc//XR), if |ω⟩ ∈ |ter(X//XR)⟩ ⊆ |x⟩
c
и b(Xc//XR) > 1/2,

1, if |ω⟩ ∈ |ter(X//XR)⟩ и b(X//XR) = b(Xc//XR) = 1/2.

(3)

The probability mean of a gain of observer-player ⟨ω| ∈ ⟨x| for every x ∈ XR is an expectation of this r.v.
by probability measure P:

EP

(

G
|x⟩
R

)

=
∑

x∈X∈ SXR

b(X)>1/2

p(X//XR)/b(X//XR) +
∑

x/∈X∈ SXR

b(Xc)>1/2

p(X//XR)/b(X
c//XR) +

∑

X∈ SXR

b(X)=1/2

p(X//XR). (4)

2.1.2 Probability mean of player’s believability in a gain

A believability of the observer-player ⟨ω| ∈ ⟨x| in a gain is a random variable (r.v.) H
|x⟩
R

that, if b(X//XR) >
1/2, takes on |ω⟩ ∈ |ter(X//XR)⟩ ⊆ |x⟩ the values of believabilities b(X//XR) = B(⟨TerX//XR

|) of terraced
bra-events; and that, if b(X//XR) < 1/2, takes on |ω⟩ ∈ |ter(X//XR)⟩ ⊆ |x⟩

c the values of believabilities
b(Xc//XR) = B(⟨TerXc//XR

|) of terraced bra-events:

H
|x⟩
R

(|ω⟩) =











b(X//XR), if b(X//XR) > 1/2 и x ∈ X,

b(Xc//XR), if b(Xc//XR) > 1/2 и x ∈ X−X,

0, if b(X//XR) = b(Xc//XR) = 1/2.

(5)

The probability mean of believability in gain of observer-player ⟨ω| ∈ ⟨x| for each x ∈ XR is an expectation

of r.v. H
|x⟩
R

by the probability measure P:

EP

(

H
|x⟩
R

)

=
∑

x∈X∈ SXR

b(X)>1/2

p(X//XR)b(X//XR) +
∑

x/∈X∈ SXR

b(Xc)>1/2

p(X//XR)(1− b(X//XR)). (6)

2.2 Believability means of a gain and a probability of a gain of players in a bet

Consider the next observed person |ω⟩ ∈ |ter(X//XR)⟩ on which observers-players ⟨ω| ∈ ⟨TerX//XR
| ⊆ ⟨Ω|

«bet on a bald», and observers-players ⟨ω| ∈ ⟨TerXc//XR
|
c
= ⟨Ω| − ⟨TerXc//XR

| «bet on a non-bald». Such
observed person is one-to-one connected with the terraced bra-event ⟨TerX//XR

|.

2.2.1 Believability mean of player’s gain in a bet

A gain of observers-players ⟨ω| ∈ ⟨Ω| in a bet on an observed person |ω⟩ ∈ |ter(X//XR)⟩ is an experienced

value (e.v.) G∗⟨TerX//X
R
|

R
(⟨ω|) that takes on ⟨Ω| for every X ∈ SXR the values:

G∗⟨TerX//X
R
|

R
(⟨ω|) =











1/b(X//XR), if ⟨ω| ∈ ⟨TerX//XR
| и b(X//XR) > 1/2,

1/b(Xc//XR), if ⟨ω| ∈ ⟨TerX//XR
|
c
и b(Xc//XR) > 1/2,

1, if b(X//XR) = b(Xc//XR) = 1/2.

(7)

A believability mean of a gain of observers-players ⟨ω| ∈ ⟨Ω| in a bet on an observed person |ω⟩ ∈

|ter(X//XR)⟩ for every X ∈ SXR is an expectation of this e.v. by believability measure B:

EB

(

G∗⟨TerX//X
R
|

R

)

= 1 =











b(X//XR)/b(X//XR), b(X//XR) > 1/2,

b(Xc//XR)/b(X
c//XR), b(Xc//XR) > 1/2,

1, b(X//XR) = 1/2.

(8)
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2.2.2 Believability mean of a probability of a player’s gain in a bet

A believability of an observer-player ⟨ω| ∈ ⟨Ω| in a gain in a bet on an observed person |ω⟩ ∈ |ter(X//XR)⟩ is

an experienced value (e.v.) H∗⟨TerX//X
R
|

R
that for each X ∈ SXR takes on ⟨Ω| the values:

H∗⟨TerX//X
R
|

R
(⟨ω|) =































px, if ⟨ω| ∈ ⟨x| ⊆ ⟨TerX//XR
| и b(X//XR) > 1/2,

0, if ⟨ω| ∈ ⟨x| ⊆ ⟨TerXc//XR
| и b(X//XR) > 1/2,

0, if ⟨ω| ∈ ⟨x| ⊆ ⟨TerX//XR
| и b(X//XR) < 1/2,

1− px, if ⟨ω| ∈ ⟨x| ⊆ ⟨TerXc//XR
| и b(X//XR) 6 1/2.

(9)

A believability mean of a probability of a gain of observers-players ⟨ω| ∈ ⟨TerX//XR
| in a bet on an observed

person |ω⟩ ∈ |ter(X//XR)⟩ for eachX ∈ SXR is an expectation of e.v.H∗⟨TerX//X
R
|

R
by the believabilitymeasure

B:

EB

(

H∗⟨TerX//X
R
|

R

)

=
∑

x∈X
b(X//X

R
)>1/2

bxpx +
∑

x∈X−X
b(X//X

R
)61/2

bx(1− px)

=







































∑

x∈X

bxpx, b(X//XR) > 1/2,

∑

x∈X−X

bx(1− px), b(X//XR) < 1/2,

∑

x∈X

bxpx +
∑

x∈X−X

bx(1− px), b(X//XR) = 1/2.

(10)

3 Instead of the results: a bald versus a basketball match

I dare say, at the risk of being considered rash: to make a «bet on winning a basketball match» is the
same as making a «bet on a bald». You can, of course, continue to argue as usual: «a bald can not change
his baldness, and the basketball players-participants can change its outcome», reasonably believing
that the statement I made is unfounded. However, from the point of view of the theory of experience
and of chance, the analogy between the bald and the players-participants in the match on which this
conclusion is based is a common and frustrating misconception. In accordance with this new theory and
the players-participants in thematch, and the audience should be likened to players who bet on thematch
bookmaker. So analogy to bald here is more correct to consider not the players-participants of the match,
but thematch, as such: its course and outcome. Participants in the match, basketball players, significantly
affect its outcome by its game. But their game contribution is just «their bets» for the match. Spectator-
players also influence, perhaps to a lesser extent, the outcome of the game with their support. But their
support is also just «their bet» for the match3. Players making bets on the match, of course, influence
its outcome with their monetized betting odds, which are commonly known to everyone, including
basketball players and spectator-players, until the end of the match. By the way, the bookmaker also
influences the outcome of the match, setting his own odds, which serve as «his bets» for the match. So
the bookmaker should also be likened to the player betting on the match.
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