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1 Introduction

Modeling realized covariance (RCOV) matrices constructed from high-frequency data offers

considerable improvements over conventional multivariate GARCH and stochastic volatility

models.1 Besides providing an accurate measure of ex post covariation that is observable,

time-series methods can be applied directly to RCOV data to capture their conditional

distribution. However, RCOV matricies are positive definite and present unique challenges

to time-series modeling. This paper introduces a new factor structure that can be used in

parametric (inverse-) Wishart models as well as infinite mixtures models for RCOV matrices.

The initial literature on modeling RCOV focused on capturing the time-series structure

through different parametric distributions such as the Wishart, non-central Wishart and

inverse-Wishart distributions (Gourieroux et al. 2009, Golosnoy et al. 2012, Asai & So 2013,

Jin & Maheu 2013, Yu et al. 2017). Decompositions of the RCOV matrix so that standard

time-series methods can be applied are pursued in Bauer & Vorkink (2011), Chiriac &

Voev (2011) and Cech & Barunik (2017). Another branch of the literature links RCOV to

multivariate GARCH models in Noureldin et al. (2012) and Hansen et al. (2014). The strong

persistence patterns in RCOV matrix elements are recognized in Bauwens et al. (2016, 2017)

while the importance of fatter tails is shown in Jin & Maheu (2016) and Opschoor et al.

(2017).

Applications of factors methods which should be natural for the large dimensions involved

are complicated by the positive definite matrix restriction. The approach by Tao et al. (2011)

and extensions in Shen et al. (2015) and Asai & McAleer (2015) decompose the RCOV matrix

in a similar fashion to Engle et al. (1990). Asai & McAleer (2015) model the decomposed

factor in a number of ways including time-series models with long-memory, asymmetric effects

and as a conditional autoregressive Wishart model. Shen et al. (2015) focus on a diagonal

model of the latter Wishart specification. Sheppard & Xu (2014) propose a GARCH type

factor model that incorporates RCOV information.

Our approach differs in several respects. First, we work with a factor structure inside

an dynamic inverse-Wishart model and extend it to infinite mixture models. As such, the

predictive distributions of both RCOV and returns are fully specified given parameter values.

This leads us to move beyond model assessment that focuses on point forecasts (predictive

mean) and to comparisons that evaluate the relative accuracy of the whole distribution

1RCOV models are easier to estimate than stochastic volatility specifications since volatility is observable.
For instance, econometric forecasting gains are demonstrated in Golosnoy et al. (2012), Asai & McAleer
(2015) and Jin & Maheu (2013, 2016) while improvements in portfolio choice are found in Fleming et al.
(2003), Jin & Maheu (2013) and Callot et al. (2017).
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through density forecasts of RCOV. Due to the analytic convenience of our model this

extends to a known predictive density for returns as well and allows for model assessment

based on returns.

The nonparametric approach of Jin & Maheu (2016) is based on time-varying mixtures

of inverse-Wishart distributions. This likelihood approach is very flexible and the empirical

applications show large improvements in forecast precision of daily RCOV matrices and daily

returns for five assets. Due to the multivariate nature of the data, parametric distributions

are unlikely to provide a good fit for RCOV data. Mixture models offer a tractable ap-

proach to leverage our knowledge from parametric approaches to span the complex unknown

distributions of RCOV matrices. Jin & Maheu (2016) was the first paper to introduce mix-

ture modeling to RCOV data. Although feasible for small dimensions this approach is not

immediately applicable to larger systems.

The purpose of this paper is to extend the nonparametric methods of Jin & Maheu (2016)

to a factor setting capable of modeling larger RCOVmatrices. We begin by proposing a factor

structure for an inverse-Wishart distribution which we extend to a mixture setting. To this

end we design a Dirichlet process mixture (DPM) model and an infinite hidden Markov model

(IHMM) that operate on a smaller factor dimension than the data dimension. Both of these

approaches are based on countably infinite mixtures. The former has fixed weights while

the latter has time-varying weights in the mixture. There are several computational benefits

to this approach. First, computation of the data density is significantly reduced using the

factor structure. Second, mixture models from a Bayesian posterior sampling perspective

can easily take advantage of parallel computing. Conditional on the state variable that

assigns observations to a component in the discrete mixture, sampling parameters of each

component can be done independently. Finally, the factor approach could be applied to the

other inverse-Wishart and Wishart based models in the literature.

Using inverse-Wishart or Wishart distributions as building blocks in a mixture is con-

venient. These distributions are closed under linear transformation. As a result, predictive

inference is independent of asset order in the RCOV matrix. That is, we obtain the same

predictive distribution subject to a permutation matrix for different asset orderings in RCOV

matrices. This applies to predictive distributions of RCOV and returns. Moreover, assuming

a multivariate normal distribution for returns given RCOV results in a marginal distribution

of returns that is a mixture of Student-t distributions.

The trade-off of using a factor structure against more highly parameterized models is

measured first in a 10 asset application. Generally, the full DPM and IHMM versions of the
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model perform best but the nonparametric factor models are not far behind. Moving to a

larger 60 asset application the full DPM and IHMM specification are not feasible.

The IHMM factor model is the dominant specification when we consider density forecasts

of RCOV matrices and return vectors, point forecasts of RCOV and the global minimum

variance portfolio selection for 60 assets. A 5 to 10 factor dimension results in large im-

provements in forecast accuracy compared to a number of benchmarks. By keeping the

factor dimension small we can exploit the benefits of infinite mixture models for model-

ing the conditional distribution of RCOV matrices and maintain reasonable computational

times. For instance, all of the models have computing time less that 13 minutes for one full

sample estimation using conventional desktop Intel Xeon hardware. The data processed are

just over 4 million individual observations. The number of active clusters in the mixture is

around 15 for most factor models. Thus, a time-varying mixture model with 15 components

is sufficient to provide large gains in forecast precision.

This paper is organized as follows. The next section reviews the models introduced in

Jin & Maheu (2016). Parametric factor models are discussed in Section 3 followed by their

nonparametric extensions in Section 4. Benchmark models used for comparison are briefly

reviewed in Section 5. Application to 10 asset RCOV data and 60 asset RCOV data are in

Section 6 followed by the conclusion. An appendix collects additional posterior simulation

details for estimation.

2 Review of Inverse Wishart models for RCOV

This section briefly reviews the parametric and semiparametric models for RCOV from Jin

& Maheu (2016). In the following section we extend this to the factor setting.

Let Σt, t = 1, 2, . . . , T denote a time-series of k × k realized covariance matrices and

define Σ1:t = {Σ1, . . . ,Σt}. The additive component model based on the inverse-Wishart
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(IW) distribution defines the conditional distribution of Σt as:
2

f(Σt|Σ1:t−1, ν,Θ) = Wishart−1
k (Σt|ν, (ν − k − 1)Vt), (1)

Vt = B0 +
M∑

j=1

Bj ⊙ Γt−1,ℓj , (2)

Γt−1,ℓj =
1

ℓj

ℓj∑

i=1

Σt−i, (3)

Bj = bjb
′
j, j = 1, . . . ,M, (4)

1 = ℓ1 < . . . < ℓM . (5)

Wishart−1
k (.|ν, (ν − k − 1)Vt) denotes the density of an inverse-Wishart distribution over

k × k symmetric positive-definite matrices with ν > k + 1 degrees of freedom and scale

matrix equal to (ν−k−1)Vt.
3 The operator ⊙ denotes the element-by-element (Hadamard)

product of two matrices and Θ represents all parameters concerning the dynamics of Vt and

includes B0, b1, . . . , bM , ℓ2, . . . , ℓM . B0 is a k× k symmetric positive-definite matrix, and bj’s

are k× 1 vectors making each Bj rank 1. Γt−1,ℓj is the j
th component defined as the average

of past Σt over ℓj observations and captures persistence in Vt. The first component is equal

to Σt−1 while for j ≥ 2, each ℓj is a free parameter to be estimated. In this paper we restrict

attention to three components, M = 3. The conditional mean of Σt is

E(Σt|Σ1:t−1, ν,Θ) = Vt = B0 +
M∑

j=1

Bj ⊙ Γt−1,ℓj . (6)

It is straightforward to define an analogous model replacing the inverse-Wishart with a

Wishart distribution. Since Jin & Maheu (2016) find the inverse-Wishart versions empirically

superior we focus on building models with that density. Nevertheless, all the forgoing analysis

could be done with a Wishart distribution instead.

We implement RCOV targeting by setting B0 = (ιι′ − B1 − · · · − BM) ⊙ Σ, where Σ is

the sample mean of Σt and ι is a k vector of ones. This ensures that the long-run mean of

Σt is equal to Σ and leads to improved forecasts. In estimation any posterior draw in which

B0 is not positive definite is rejected. In addition, to ensure the mean exists, draws in which

2In Jin & Maheu (2016) this model is labelled as IW-A(M). In the following we drop A(M) since it is
common to all specifications.

3The density function of an inverse-Wishart distribution for a k × k symmetric positive-definite
matrix Σ with ν degrees of freedom and positive-definite scale matrix V is Wishart−1

k (Σ|ν, V ) =

|V |
ν

2 |Σ|−
ν+k+1

2

2
νk

2 Γk(
ν

2
)

e−
1
2
tr(V Σ−1).
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any element of
∑M

j=1 Bj is not less than 1 in modulus are rejected.

The likelihood function for the IW model is

f(Σ1:T |ν,Θ) =
T∏

t=1

f(Σt|Σ1:t−1, ν,Θ),

=
(ν − k − 1)

Tkν
2

∏T
t=1 |Vt|

ν
2

∏T
t=1 |Σt|

− ν+k+1
2

2
Tνk
2 Γk(

ν
2
)T

exp

(
−
1

2
(ν − k − 1)tr

(
T∑

t=1

VtΣ
−1
t

))
.

(7)

Posterior simulation is conducted with a Metropolis-Hastings (MH) step using a joint random

walk proposal for b1, . . . , bM and ν. For each lag length, ℓj is sampled according to a random

walk with Poisson increments that are equally likely to be positive or negative. Additional

details of posterior simulation and model details are found in Jin & Maheu (2013, 2016).

The second class of model we will extend to a factor structure is based on a Dirichlet

process (DPM) mixture. The generic model for the unknown conditional density of Σt takes

the following form:

f(Σt|Σ1:t−1,Θ, G) =

∫
h(Σt|Σ1:t−1,Θ, φ)G(dφ), (8)

G|G0, α ∼ DP(α,G0), (9)

where DP(α,G0) denotes the Dirichlet process (DP) with α > 0 the precision parameter and

base distribution G0. G is the unknown mixing distribution that governs φ and is assumed to

follow a Dirichlet process. G is centered around G0 since E[G] = G0. h(Σt|Σ1:t−1,Θ, φ) is a

kernel density defined over symmetric positive-definite matrices given Σ1:t−1 and parameters

Θ and φ. Θ collects other parameters common to each conditional density h(·|·).

From the constructive definition of the DP (Sethuraman 1994) the model is a countably-

infinite mixture defined as:

f(Σt|Σ1:t−1,Θ,Ω,Φ) =
∞∑

j=1

ωjh(Σt|Σ1:t−1,Θ, φj), (10)

ωj = vj
∏

l<j

(1− vl), vj
iid
∼ Beta(1, α), j = 1, 2, . . . , (11)

φj
iid
∼ G0, j = 1, 2, . . . , (12)

where Ω = {ωj}
∞
j=1, Φ = {φj}

∞
j=1. G =

∑∞
j=1 ωjδφj

, where δφj
is a point mass at φj. The

random atoms φj are i.i.d. draws from the base distribution G0, and the random weights ωj
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are constructed using i.i.d. beta variates vj. In the following we abuse notation somewhat

and let SBP(α) denote the stick-breaking construction of the weights as well as a distribution

with support on the natural numbers, Ω ∼ SBP(α).

It is natural to replace the kernel h(Σt|Σ1:t−1,Θ, φj) with that of the IW model discussed

above, resulting in the IW-DPM model

f(Σt|Σ1:t−1,Θ,Ω,Φ) =
∞∑

j=1

ωjWishart−1
k (Σt|νj, (νj − k − 1)V

1/2
t Aj(V

1/2
t )′), (13)

Vt = B0 +
M∑

j=1

Bj ⊙ Γt−1,ℓj . (14)

Ω ∼ SBP(α) and Aj’s are k×k symmetric positive-definite matrices and φj ≡ (νj, Aj) . V
1/2
t

denotes the Cholesky factor of Vt and the definitions of the remaining terms are identical to

the IW parametric model. Each component of the mixture j has a different scale matrix,

(νj − k − 1)V
1/2
t Aj(V

1/2
t )′ , which is positive definite by construction, and a different degree

of freedom νj. This is a rich functional form since any symmetric positive-definite matrix

can be represented by V
1/2
t Aj(V

1/2
t )′ by the appropriate choice of Aj. In addition, the model

nests the parametric version when ωj = 1, ωi = 0, i 6= j and Aj = I. The conditional mean

takes the form,

E[Σt|Σ1:t−1,Θ,Ω,Φ] =
∞∑

j=1

ωjV
1/2
t Aj(V

1/2
t )′ = V

1/2
t

[
∞∑

j=1

ωjAj

]
(V

1/2
t )′. (15)

The second nonparametric specification we will extend to a factor structure is an infinite

hidden Markov (IHMM) model. Unlike the DPM model which assumes the latent features

of the unknown distribution are fixed over time the IHMM allows for change according to a

first order Markov chain. The IHMM is constructed from the hierarchical Dirichlet process

(HDP) prior of Teh et al. (2006). To allow for estimation of self-transitions we focus on the

sticky version of the IHMM introduced by Fox et al. (2011). Jin & Maheu (2016) propose
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the following generic sticky IHMM model for Σt:

π0|α ∼ SBP(α), (16)

πi|π0, β, κ ∼ DP

(
β + κ,

βπ0 + κδi
β + κ

)
, (17)

φj
iid
∼ G0, j = 1, 2, . . . , (18)

st|st−1 = i,Π ∼ πi, i = 1, 2, . . . , (19)

Σt|Σ1:t−1,Θ,Φ, st ∼ H(Σt|φst), (20)

where the latent discrete state variable st follows a Markov chain on an infinite state space

with doubly-infinite transition matrix Π = (π′
1,π

′
2, . . .)

′ where πi = (πi,1, πi,2, . . .) and is the

ith row of Π. The conditional distribution of Σt is governed by the distribution H(Σt|φst)

given st and φst . Each row of the transition matrix πi is generated from an associated stick

breaking process that is centered on βπ0+κδi
β+κ

. The term βπ0 + κδi means that the amount

κ ≥ 0 is added to the ith component of βπ0. β controls how close each row is to the base

distribution π0 while a larger κ increases the prior probability of self-transition and a κ = 0

reverts to the benchmark non-sticky IHMM specification.

This model admits a density very much like (13) with the important difference that the

fixed weights ωj, are replaced by time-varying weights as in

f(Σt|Θ,Π,Φ, st−1) =
∞∑

st=1

πst−1,sth(Σt|Σ1:t−1,Θ, φst), (21)

πi,j = π̂i,j

j−1∏

l=1

(1− π̂i,l) , (22)

π̂i,j
iid
∼ Beta(βπ0j + κδi, β(1−

j∑

l=1

π0l) + κ1(j < i)), (23)

where h(Σt|Σ1:t−1,Θ, φst) is the density associated with the distribution H(Σt|φst). As in

the IW-DPM model h(Σt|Σ1:t−1,Θ, φj) ≡ Wishart−1
k (Σt|νj, (νj − k − 1)V

1/2
t Aj(V

1/2
t )′). Full

details of posterior simulation for these models can be found in Jin & Maheu (2016).

Let rt denote the k × 1 daily return vector. With the assumption of4

rt|Σt ∼ N(0,Σt) (24)

4In our empirical analysis we use demeaned returns but a conditional mean could be included.
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this leads to mixtures of Student-t distributions for returns. For instance, in the case of the

IW-IHMM model, given st−1 and integrating out Σt gives

f(rt|Σ1:t−1, ν,Θ, st−1) =
∞∑

st=1

πst−1,stStk

(
rt|0,

νst − k − 1

νst − k + 1
V

1/2
t Ast(V

1/2
t )′, νst − k + 1

)
, (25)

where Stk(rt|µ, V, ν) denotes a multivariate Student-t density of dimension k with mean

vector µ, scale matrix V and degree of freedom ν.

Jin & Maheu (2016) document huge improvements in density forecasts and point forecasts

for Σt and returns in moving from the parametric IW specifications to the nonparametric

versions IW-DPM and IW-IHMM. Nevertheless, the models are highly parameterized, par-

ticularly the nonparametric models. For instance, the IW model contains 3k+3 parameters

with RCOV targeting which is quite manageable. However, if the nonparametric model uses

an average ofK components, there are a minimum of 3k+2+K(1+1+k(k+1)/2) parameters

for the IW-DPM model and 3k + 2+K(1 +K + k(k + 1)/2) parameters for the IW-IHMM

model. Each of these parameters must be sampled from the posterior density. The second

computational issue is the need to efficiently evaluate the likelihood function of each model.

The main bottleneck is the evaluation of
∏T

t=1 |Vt|
ν
2 which is generally accomplished through

a matrix decomposition such as the Cholesky which is an O(k3) computational cost for each

Vt. For large realized covariance matrices estimation of these models will be infeasible. In

the following sections we introduce factor models that exploit the benefits of these models

but minimize parameters and speed up likelihood evaluation.

3 Parametric Factor Models of RCOV

An important property of the family of (inverse-) Wishart distributions is that they are

closed under linear transformations. That is, linear transformations of (inverse-) Wishart

distributed matrices are themselves (inverse-) Wishart distributed.5

Property 1 Suppose A is l × k with l ≤ k and has full row rank. If Σ ∼ Wishart−1
k (ν, V ),

then AΣA′ ∼ Wishart−1
l (ν − k + l, AV A′).

To carry out our factor approach, instead of modeling the dynamics of the original RCOV

itself, we first apply a linear transformation to Σt, the dynamics of which are then modeled

using an inverse-Wishart distribution with a factor structure. The dynamics of the raw

5See Press (2012).
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RCOV are readily available according to Property 1 by applying the inverse transformation,

and forecasts of future Σt (and returns) can be obtained similarly.

Let V = E(Σt) denote the unconditional mean of Σt. Applying a spectral decomposition

to V gives

V = WDW ′ =
k∑

i=1

diwiw
′
i, (26)

where D = diag{d1 ≥ d2 ≥ . . . ≥ dk > 0} is a diagonal matrix with d1, d2, . . . dk being the

eigenvalues of V , and W = (w1, w2, . . . , wk) is a k × k orthogonal matrix with the column

wi being the corresponding eigenvector of di and satisfying W ′W = WW ′ = I.6 Define the

orthogonally transformed Σt denoted as Σ∗
t by7

Σ∗
t = W ′ΣtW. (27)

The uniqueness of Σ∗
t is determined by the uniqueness of W . In particular, the or-

der/positions of the elements of Σ∗
t are determined by the order of the column vectors

w1, . . . , wk in W , which corresponds to the order of d1, . . . , dk listed in the diagonal of D.

This is easy to see since the (i, j) element of Σ∗
t ≡ (σ∗

t,ij) is σ∗
t,ij = w′

iΣtwj. Note the

unconditional mean of Σ∗
t is the diagonal matrix D by definition:

E(Σ∗
t ) = E(W ′ΣtW ) = W ′E(Σt)W = W ′VW = W ′WDW ′W = D. (28)

So regardless of the order of wi, the off-diagonal elements of Σ∗
t always have zero uncondi-

tional mean E(σ∗
t,ij) = E(w′

iΣtwj) = 0, i 6= j, while the diagonal elements have di as their

unconditional mean E(σ∗
t,ii) = E(w′

iΣtwi) = di.

In this paper we sort di along the diagonal of D from top-left to bottom right( and hence

wi in W from left to right) according to the descending order.8 Under this ordering scheme,

6If the eigenvalues are distinct wi is unique up to sign. If there are repeated eigenvalues then W is not
unique but this causes no issue for inference.

7A similar transformation is used in Noureldin et al. (2014) in the context of multivariate GARCH
modeling.

8An alternative sorting would be according to the variance. Let gi denote the unconditional variance of
the diagonal elements of Σ∗

t ,

gi = Var(σ∗
t,ii) = Var(w′

iΣtwi), (29)

which is like the variance of the realized variance of a portfolio but with weight vector wi and condition w′
iwi =

1. Under this ordering scheme, the resulting diagonal elements of Σ∗
t are decreasing in the unconditional

variance. Our empirical studies indicate sorting D based on di was preferred.
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the resulting diagonal elements of Σ∗
t are decreasing in the unconditional mean, which will

be convenient later when introducing the factor structure as it will operate on a block of Σ∗
t

associated with the largest di values. In addition, our analysis is invariant to the asset order

in the Σt matrix. If the asset order is permuted to the new RCOV matrix Σ̂t = PΣtP
′

, with

E[Σ̂] = Ŵ D̂Ŵ
′

then D̂ = D and Ŵ = PW , where P is the permutation matrix.

Our factor approach will model the dynamics of Σt through Σ∗
t . As in the IW model

for Σt, an inverse-Wishart distribution is assumed for the conditional distribution of Σ∗
t ,

however, the conditional mean of Σ∗
t is restricted to a special form to allow for a factor

structure. Partition Σ∗
t as follows

Σ∗
t =

(
Σ∗

t,11 Σ∗
t,21

′

Σ∗
t,21 Σ∗

t,22

)
, (30)

where Σ∗
t,11 is k1 × k1, Σ

∗
t,22 is k2 × k2, and k1, k2 satisfy k1 > 0, k2 ≥ 0, k1 + k2 = k.

3.1 Block-Diagonal Factor Model (IW-F)

This section introduces a factor model based on the inverse-Wishart distribution. As before,

the factor model applies to the Wishart distribution as well, although we will focus attention

on the inverse-Wishart version. In the IW-F model the conditional distribution of Σ∗
t is

specified as follows:

f(Σ∗
t |Σ

∗
1:t−1, ν, C,Θ) = Wishart−1

k (Σ∗
t |ν, (ν − k − 1)Vt), (31)

Vt =

(
V ∗
t 0

0 C

)
, (32)

V ∗
t = B0 +

M∑

j=1

Bj ⊙ Γ∗
t−1,ℓj

, (33)

Γ∗
t−1,ℓj

=
1

ℓj

ℓj∑

i=1

Σ∗
t−i,11. (34)

In this model the time-varying V ∗
t operates on the lower dimension k1 × k1 matrix with

associated lower dimension parameter matrices B0, B1, . . . , BM , and Bj = bjb
′
j, j = 1, . . . ,M .

In general C = diag{c1, . . . , ck2} is a k2 × k2 matrix.9

V ∗
t can be viewed as the set of dynamic factors, which contains k1(k1+1)/2 unique scalar

9Alternatively C could be specified as a full positive definite matrix.
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elements and satisfy

E(Σ∗
t,11|Σ

∗
1:t−1) = V ∗

t . (35)

Meanwhile, Σ∗
t,11 is the observed counterpart of V ∗

t , and conditionally follows an inverse-

Wishart with dimension k1 × k1,

Σ∗
t,11|Σ

∗
1:t−1, ν,Θ ∼ Wishart−1

k1
(ν − k2, (ν − k − 1)V ∗

t ). (36)

On the other hand, C contains the static scalar factors c1, . . . , ck2 along the diagonal and

has zero everywhere else. As a result, the observed static factors appearing on the diagonal

elements of Σ∗
t,22 all follow time-invariant inverse-Gamma distributions,

σ∗
t,ii|Σ

∗
1:t−1, ν,Θ ∼ Gamma−1

(
ν − k + 1

2
,
ν − k − 1

2
ci−k1

)
, i = k1 + 1, . . . , k. (37)

In particular, they have both conditional and unconditional mean equal to the respective cj,

E(σ∗
t,ii|Σ

∗
1:t−1) = E(σ∗

t,ii) = ci−k1 , i = k1 + 1, . . . , k.

The unconditional moment condition for Σ∗
t in (28) requires all the off-diagonal elements

to have zero unconditional mean. The IW-F model allows the off-diagonal elements of Σ∗
t,11

to have non-zero conditional means, which depend on their own histories and hence time-

varying. RCOV targeting can be implemented in model estimation to ensure the off-diagonal

elements of Σ∗
t,11 have zero unconditional mean to satisfy (28). Meanwhile, the factor model

still imposes zero conditional mean for off-diagonal blocks, Σ∗
t,21 and Σ∗

t,21
′, and off-diagonal

elements of Σ∗
t,22. This is a stronger restriction than (28) but the trade-off here is that we

can retain the factor structure which at the same time alleviates computation burden in high

dimensional cases.

With these assumptions the total number of parameters is 3k1+3 with RCOV targeting.

Besides reducing the number of parameters a potentially more important aspect of this model

is the reduced computational burden in the likelihood evaluation. As discussed above the

inverse-Wishart density requires a Cholesky decomposition to compute the determinant of

Vt and the computational complexity is O(k3) but the factor structure reduces this to a

Cholesky decomposition on V ∗
t which is of O(k3

1) computations. This makes a significant

difference in large k applications.
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Properties of the inverse-Wishart distribution imply

Σt|Vt, ν,Θ ∼ Wishart−1
k (ν, (ν − k − 1)WVtW

′

). (38)

W can be interpreted as factor loadings and imply

E[Σt|Vt, ν,Θ] = WVtW
′

= W1V
∗
t W

′

1 +W2CW
′

2, (39)

where W = (W1,W2), W1 is k × k1 and W2 is k × k2.

More insight into the factor structure can be shown by linking returns to RCOV. In the

following we set the mean of returns to zero and work with demeaned returns, however, all

the results carry through with more general conditional mean dynamics such as an intercept

or lagged returns. Assume

E(rt|Σt,Ft−1) = 0, Var(rt|Σt,Ft−1) = Σt, (40)

where Ft−1 = {Σ1:t−1, r1:t−1} is the information set up to time t − 1. The unconditional

variance of rt is V ,

Var(rt) = E(rtr
′
t) = E(E(rtr

′
t|Σt)) = E(Σt) = V. (41)

The t− 1 conditional variance of rt is

Var(rt|Ft−1) = E(rtr
′
t|Ft−1) = E(E(rtr

′
t|Ft−1,Σt)|Ft−1) = E(Σt|Ft−1)

= WVtW
′

= W1V
∗
t W

′
1 +W2CW ′

2. (42)

This shows the time t− 1 conditional covariance matrix of rt is exactly determined by a set

of time-varying factors V ∗
t and a constant set {cj} through transformation. To see this more

clearly, define r∗t ≡ W ′rt.
10 Then Var(r∗t |Σt) = W ′ΣtW = Σ∗

t , and Var(r∗t ) = D. And it is

easy to show that the t−1 conditional variance of r∗t is Vt. Further partition r∗t = (r∗t,1
′, r∗t,2

′)′,

where r∗t,1 is k1 × 1 and r∗t,2 is k2 × 1. This model imposes the restrictions

Var(r∗1,t|Ft−1) = V ∗
t , Var(r

∗
2,t|Ft−1) = C, Cov(r∗1,t, r

∗
2,t|Ft−1) = 0[k1×k2]. (43)

10Note this is not the usual portfolio with weights that sum to 1 but instead obey ω′
iωi = 1.
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Therefore, there exists two sets of portfolios with return vectors r∗1,t and r∗2,t that are un-

correlated with each other, the latter portfolio consisting of k2 assets that are uncorrelated

among themselves and homoskedastic. The portfolio r∗1,t consists of assets that are condi-

tionally correlated in general.

3.2 Special Case: Diagonal Factor Model (IW-F-D)

One special case of note is when V ∗
t is a diagonal matrix. In this specification (32) becomes

Vt =

(
V ∗
t 0

0 C

)
(44)

V ∗
t = diag{b0}+

M∑

j=1

diag{bj} ⊙ Γ∗
t−1,ℓj

. (45)

This model (IW-F-D) has the same number of parameters as the block diagonal version but

imposes the strong restriction that E(Σ∗
t,ij|Ft−1) = 0, for i 6= j. The only source of time

variation is from V ∗
t,ii, i = 1, . . . , k1.

Despite the restriction on this model there are two situations in which it could be useful.

The first is for a very large set of assets. This model completely removes the need to compute

a Cholesky decomposition since the scale matrix is diagonal and the determinant and the

trace are trivial to compute in the density function. A second setting in which the model may

be useful is for data that, after the transformation (27), have little to no correlation amongst

themselves representing a sparse diagonal RCOV matrix. In this case the zero restriction on

the off diagonal of V ∗
t conforms to the data.

3.3 Model inference

To implement the transformation in (27) we apply a spectral decomposition to the sample

mean of Σt,

Σ = WDW ′, (46)

where Σ = 1
T

∑T
t=1 Σt. Given W , Σ∗

t is constructed. We sort the diagonal elements of D

and hence column vectors of W according to the descending order. As discussed above asset

order in forming Σt does not matter.

For each of the models we implement RCOV targeting for B0. For IW-F, we set B0 =

14



(ιι′−B1−· · ·−BM)⊙Σ
∗

11 and for IW-F-D, we set b0i = (1−b1i−· · ·−bMi)Σ
∗

11,ii, i = 1, . . . , k1,

where Σ
∗

11 is the sample mean of Σ∗
t,11. In the same spirit, C can be targeted at its sample

counterpart by letting C = Σ
∗

22, where Σ
∗

22 is the sample mean of Σ∗
t,22 and, by construction,

is diagonal. Inference on the other parameters is based on their posterior distribution.

We discuss posterior simulation for IW-F and note that the MCMC methods for IW-F-D

are virtually the same. The joint posterior distribution is proportional to

p(ν)p(Θ)f(Σ∗
1:T |ν, C,Θ). (47)

The likelihood, f(Σ∗
1:T |ν, C,Θ), is identical to the likelihood of f(Σ1:T |ν, C,Θ,W ) which

follows from (38), since Σt and Σ∗
t differ by an orthogonal transformation. The block diagonal

structure of the scale matrix in the Wishart or inverse-Wishart transition density is greatly

beneficial for reducing the computational burden of evaluating the likelihood. Take the

inverse-Wishart case as an example, the conditional density of Σ∗
t is

f(Σ∗
t |Σ

∗
1:t−1, ν, C,Θ) = Wishart−1

k (Σ∗
t |ν, (ν − k − 1)Vt)

=
(ν − k − 1)

kν
2 |Vt|

ν
2 |Σ∗

t |
− ν+k+1

2

2
νk
2 Γk(

ν
2
)

exp

(
−
1

2
tr((ν − k − 1)VtΣ

∗
t
−1)

)

=
(ν − k − 1)

kν
2 |V ∗

t |
ν
2 |C|

ν
2 |Σ∗

t |
− ν+k+1

2

2
νk
2 Γk(

ν
2
)

× exp

(
−
1

2
(ν − k − 1)tr(V ∗

t Yt,11)

)
× exp

(
−
1

2
(ν − k − 1)tr(CYt,22)

)
,

(48)

where Yt =

(
Yt,11 Yt,12

Yt,21 Yt,22

)
= Σ∗

t
−1. The last step of (48) uses the fact that the determinant

of a block diagonal square matrix is equal to the products of the determinants of the diagonal

blocks, and that

VtΣ
∗
t
−1 =

(
V ∗
t 0

0 C

)(
Yt,11 Yt,12

Yt,21 Yt,22

)
=

(
V ∗
t Yt,11 V ∗

t Yt,12

CYt,21 CYt,22

)

hence

tr(VtΣ
∗
t
−1) = tr(V ∗

t Yt,11) + tr(CYt,22).
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As a result, the likelihood function of Σ∗
1:T is

f(Σ∗
1:T |ν, C,Θ) =

T∏

t=1

f(Σ∗
t |Σ

∗
1:t−1, ν, C,Θ)

=
(ν − k − 1)

Tkν
2

∏T
t=1 |V

∗
t |

ν
2

∏T
t=1 |Σ

∗
t |

− ν+k+1
2

2
Tνk
2 Γk(

ν
2
)T

exp

(
−
1

2
(ν − k − 1)tr(

T∑

t=1

V ∗
t Yt,11)

)

×|C|
Tν
2 exp

(
−
1

2
(ν − k − 1)tr(C

T∑

t=1

Yt,22)

)
. (49)

Compared with the likelihood function for the IW model in (7), (49) incurs a lower com-

putation burden mainly due to the fact that the term
∏T

t=1 |Vt|
ν
2 is decomposed into the

product of two terms
∏T

t=1 |V
∗
t |

ν
2 and |C|

Tν
2 . So at each MCMC iteration, instead of com-

puting the determinant of a k×k matrix T times, we only need to compute the determinant

of a k1 × k1 matrix T times, plus once for a k2 × k2 matrix. When k1 is small relative to

k and/or T is large, the difference in computational cost is significant. Even though we

still need to compute
∏T

t=1 |Σ
∗
t |, it only needs to be computed once at the beginning of the

MCMC chain and is re-used at each iteration without incurring further computation burden.

Given the posterior distribution, MH steps are used to sample ν and elements of bj and

ℓj. Even though we can apply RCOV targeting to C and set C = Σ
∗

22, the second part of (49)

suggests that if we place a Wishart prior on C, its posterior also follows a Wishart distribution

and can be easily sampled using a Gibbs step. Indeed, let p(C) = Wishartk2(C|γC ,
1
γC
I),

then the conditional posterior of C is

p(C|Σ∗
1:T , ν,Θ) ∝ p(C)f(Σ∗

1:T |ν, C,Θ)

∝ Wishartk2(C|γC , QC), (50)

where γC = γC + Tν and QC =
[
(ν − k − 1)

∑T
t=1 Yt,22 + γCI

]−1

.

The predictive density for Σ∗
t and Σt given data Σ1:t−1 can be estimated in the usual way

by averaging over the MCMC iterations. For instance, the predictive density for Σt can be

computed following

p(Σt|Σ1:t−1) ≈
1

N

N∑

i=1

Wishart−1
k (Σt|ν

(i), (ν(i) − k − 1)WV
(i)
t W

′

), (51)

where N denotes the total number of posterior draws and V
(i)
t is from (32) using the i-th
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MCMC draw. Note that in this model the predictive distribution for different Σt derived

from different asset orderings is the same subject to a permutation matrix. This is a result

of the spectral decomposition and the orthogonal transformation of Σ∗
t . This also carries

over to the predictive density of returns.

Similarly the predictive density of returns, assuming (24) and integrating Σt out, can be

approximated as

p(rt|Σ1:t−1) ≈
1

N

N∑

i=1

Stk

(
rt|0,

ν(i) − k − 1

ν(i) − k + 1
WV

(i)
t W

′

, ν(i) − k + 1

)
. (52)

In the next section we extend our parametric factor RCOV models to countably-infinite

mixture models. Mixture models with constant weights and time-varying weights are con-

sidered.

4 Nonparametric Factor Models

4.1 Dirichlet process mixture factor model (IW-DPM-F)

Now we extend our parametric factor RCOV model to a DPM version. Again we model the

dynamics of Σt by modeling the conditional density of Σ∗
t as

f(Σ∗
t |Σ

∗
1:t−1,Θ,Ω,Φ) =

∞∑

j=1

ωjWishart−1
k (Σ∗

t |νj, (νj − k − 1)Vt,j), (53)

Vt,j =

(
V ∗
t
1/2Aj(V

∗
t
1/2)′ 0

0 Cj

)
, (54)

Ω ∼ SBP(α), (55)

(νj, Aj, Cj)
iid
∼ G0, j = 1, 2, . . . , (56)

where Φ = {φj}
∞
j=1 = {(νj, Aj, Cj)}

∞
j=1, and V ∗

t is defined the same as in the parametric factor

model. We call this model IW-DPM-F. In this specification cluster dependence operates

through Vt,j and the positive definite matrices Aj and Cj each of which is of lower dimension

than k. Similar to the parametric case, an immediate implication is that the conditional

marginal distribution of Σ∗
t,11, the observed dynamic factor, follows an infinite mixture of
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time-varying inverse-Wishart distributions with constant weights

Σ∗
t,11|Σ

∗
1:t−1,Θ,Ω,Φ ∼

∞∑

j=1

ωjWishart−1
k1
(νj − k2, (νj − k − 1)V ∗

t
1/2Aj(V

∗
t
1/2)′), (57)

while the conditional distribution of the observed static part Σ∗
t,22 follows an infinite mixture

of time-invariant inverse-Wishart distributions

Σ∗
t,22|Σ

∗
1:t−1,Θ,Ω,Φ ∼

∞∑

j=1

ωjWishart−1
k2
(νj − k1, (νj − k − 1)Cj). (58)

As in the parametric model, the conditional distribution of Σ∗
t,11 only depends on its own

history, even though it admits a much richer functional form. For example, according to

(57), the conditional expectation of Σ∗
t,11 is

E(Σ∗
t,11|Σ

∗
1:t−1,Θ,Ω,Φ) = E(Σ∗

t,11|Σ
∗
1:t−1,11,Θ,Ω,Φ) =

∞∑

j=1

ωjV
∗
t
1/2Aj(V

∗
t
1/2)′, (59)

which is a function of past Σ∗
t,11 (through V ∗

t ) only. On the other hand, the conditional

distribution of Σ∗
t,22 is not a function of past data as in the IW-F model, with its conditional

(and also unconditional) expectation being

E(Σ∗
t,22|Σ

∗
1:t−1,Θ,Ω,Φ) = E(Σ∗

t,22|Ω,Φ) =
∞∑

j=1

ωjCj. (60)

The conditional expectation of Σ∗
t,11 and Σ∗

t,22 can also be derived by taking conditional

expectation of Σ∗
t as a whole. According to (53),

E[Σ∗
t |Σ

∗
1:t−1,Θ,Ω,Φ] =

∞∑

j=1

ωjVt,j

=

( ∑∞
j=1 ωjV

∗
t
1/2Aj(V

∗
t
1/2)′ 0

0
∑∞

j=1 ωjCj

)
. (61)

As before, the conditional expectation of Σ∗
t,12 are all zero, albeit with a much more complex

distribution.

Some special cases of the DPM are worth noting. First, if ωj = 1, ωi = 0 for i 6= j and

Aj = I we have the parametric model. Second, if Cj is equal to a constant matrix C for all
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j, the model becomes

f(Σ∗
t |Σ

∗
1:t−1,Θ, C,Ω,Φ) =

∞∑

j=1

ωjWishart−1
k (Σ∗

t |νj, (νj − k − 1)Vt,j), (62)

Vt,j =

(
V ∗
t
1/2Aj(V

∗
t
1/2)′ 0

0 C

)
, (63)

Ω ∼ SBP(α), (64)

(νj, Aj)
iid
∼ G0, j = 1, 2, . . . , (65)

where Φ = {(νj, Aj)}
∞
j=1. Under this specification, the conditional distribution of Σ∗

t,11 still

follows (57). On the other hand, even though the conditional distribution of Σ∗
t,22 is also an

infinite mixture,

Σ∗
t,22|Σ

∗
1:t−1,Θ, C,Ω,Φ ∼

∞∑

j=1

ωjWishart−1
k2
(νj − k1, (νj − k − 1)C), (66)

with different νj for each component j, all the component distributions now have the same

mean C. As a result, both the conditional and unconditional mean of Σ∗
t,22 are equal to

C, which can be targeted at Σ
∗

22 in model inference instead of being estimated. We call

this special case IW-DPM-F-C. The larger the dimension of C (k2) the greater reduction in

computational costs for inference from applying RCOV targeting to C.

The conditional distribution of Σt under IW-DPM-F model is also an infinite mixture,

f(Σt|Σ1:t−1,Θ,Ω,Φ,W ) =
∞∑

j=1

ωjWishart−1
k (Σt|νj, (νj − k − 1)WVt,jW

′). (67)

The conditional mean is

E(Σt|Σ1:t−1,Θ,Ω,Φ,W ) = W1

[
∞∑

j=1

ωjV
∗
t
1/2Aj(V

∗
t
1/2)′

]
W ′

1 +W2

[
∞∑

j=1

ωjCj

]
W ′

2. (68)

Under (24) and (67), the conditional distribution of rt, after integrating out Σt, is an

infinite mixture of multivariate Student-t,

f(rt|Ft−1,Θ,Ω,Φ,W ) =
∞∑

j=1

ωjStk

(
rt

∣∣∣∣0,
νj − k − 1

νj − k + 1
WVt,jW

′, νj − k + 1

)
, (69)

with each component distribution having a different scale matrix and a different degree
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of freedom. This provides a very rich specification which naturally accommodates fat-tails.

Similarly, r∗t , hence r
∗
t,1 and r∗t,2, each conditionally follows a mixture Student-t distribution,11

f(r∗t |Ft−1,Θ,Ω,Φ,W ) =
∞∑

j=1

ωjStk

(
r∗t

∣∣∣∣0,
νj − k − 1

νj − k + 1
Vt,j, νj − k + 1

)
, (70)

f(r∗t,1|Ft−1,Θ,Ω,Φ,W ) =
∞∑

j=1

ωjStk1

(
r∗t,1

∣∣∣∣0,
νj − k − 1

νj − k + 1
V ∗
t
1/2Aj(V

∗
t
1/2)′, νj − k + 1

)
,(71)

f(r∗t,2|Ft−1,Θ,Ω,Φ,W ) =
∞∑

j=1

ωjStk2

(
r∗t,2

∣∣∣∣0,
νj − k − 1

νj − k + 1
Cj, νj − k + 1

)
. (72)

Under IW-DPM-F-C, (72) becomes

f(r∗t,2|Ft−1,Θ, C,Ω,Φ,W ) =
∞∑

j=1

ωjStk2

(
r∗t,2

∣∣∣∣0,
νj − k − 1

νj − k + 1
C, νj − k + 1

)
. (73)

In this case, even though the mixture has the same mean C for each component distribution,

the scale matrix itself
νj−k−1

νj−k+1
C is different across components.

To complete the DPM models, the prior distribution G0 for the random atoms φj is

defined for IW-DPM-F as:

G0(νj, Aj, Cj) ≡ Expν>k+1(λ)×Wishartk1

(
γA,

1

γA
I

)
×Wishartk2

(
γC ,

1

γC
I

)
, (74)

where γA ≥ k1, γC ≥ k2; and for the Wishart version (W-DPM-F) as:

G0(νj, Aj, Cj) ≡ Expν>k(λ)×Wishart−1
k1
(γA, (γA − k − 1)I)

×Wishart−1
k2
(γC , (γC − k − 1)I), (75)

where γA ≥ k1 + 1, γC ≥ k2 + 1. Under G0, νj, Aj and Cj are independently drawn from a

truncated exponential distribution and two Wishart (inverse-Wishart) distributions, respec-

tively. Note that the mean of Aj satisfies E(Aj) = I. In other words, the nonparametric

model has a prior that centers the conditional mean of Σ∗
t,11 to that of the parametric model.

The precision parameter α controls the distribution of the mixture weights ωj. We include

α in the posterior inference with the following prior,

α ∼ Gamma(a0, c0). (76)

11As in the parametric factor model r∗t,1 and r∗t,2 are conditionally uncorrelated.
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4.1.1 Posterior inference

To sample from the posterior for the IW-DPM-F model we use slice sampling techniques in-

troduced by Walker (2007) and extended by Kalli et al. (2011) and Papaspiliopoulos (2008).12

This samples from the stick-breaking representation of the infinite mixture model by intro-

ducing a slice variable that randomly truncates the model to a finite mixture model. This

is done in such a way that integrating out the slice variable gives the correct marginal

distribution.

Recall that φj = (νj, Aj, Cj) and in the following conditioning on Σ∗
1:t−1 is suppressed

where the context is clear. The general model is

f(Σ∗
t |Θ,Ω,Φ) =

∞∑

j=1

ωjh(Σ
∗
t |Θ, νj, Aj, Cj), (77)

where h(Σ∗
t |Θ, νj, Aj, Cj) corresponds to either the inverse-Wishart in (53) or its Wishart

analogue. Introducing an auxiliary latent variable 0 < ut < 1, we define the joint conditional

density of Σ∗
t and ut as

f(Σ∗
t , ut|Θ,Ω,Φ) =

∞∑

j=1

1(ut < ωj)h(Σ
∗
t |Θ, νj, Aj, Cj). (78)

Note that integrating out ut returns the original model (77). The parameter space is aug-

mented with u1:T = {u1, . . . , uT}. Let st = j assign observation Σ∗
t to component j with

data density h(Σ∗
t |Θ, νj, Aj, Cj). The target likelihood is now

f(Σ∗
1:T , u1:T , s1:T |Θ,Ω,Φ) =

T∏

t=1

f(Σ∗
t , ut, st|Θ,Ω,Φ)

=
T∏

t=1

1(ut < ωst)h(Σ
∗
t |Θ, νst , Ast , Cst), (79)

where s1:T = {st}
T
t=1. The joint posterior is proportional to

p(Θ)p(ΩK)




K∏

i=1

p(νj, Aj, Cj)




T∏

t=1

1(ut < ωst)h(Σ
∗
t |Θ, νst , Ast , Cst), (80)

where ΩK = {ωj}
K
j=1 and K is the smallest natural number such that

∑K
j=1 ωj > 1−min{ut}.

12Sampling methods for the Wishart version only require minor modifications.
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The posterior sampling steps are as follows.

1. p(φj|Σ
∗
1:T , s1:T ,Θ) ∝ p(φj)

∏
{t:st=j} h(Σ

∗
t |Θ, νj, Aj, Cj), j = 1, . . . , K.

2. p(vj|s1:T , α) ∝ Beta(vj|a1,j, a2,j), j = 1, . . . , K, with a1,j = 1 +
∑T

t=1 1(st = j) and

a2,j = α+
∑T

t=1 1(st > j), where Beta(.|., .) denotes the density of a Beta distribution.

3. p(ut|ΩK , s1:T ) ∝ 1(0 < ut < ωst), t = 1, . . . , T .

4. Find the smallest K such that
∑K

j=1 ωj > 1−min{ut}.

5. P (st = j|Σ∗
1:T ,Φ,ΩK ,Θ, u1:T ) ∝ 1(ut < ωj)h(Σ

∗
t |Θ, νj, Aj, Cj).

6. p(α|K) ∝ p(α)p(K|α), where K is the number of active clusters in s1:T .

7. p(Θ|Σ∗
1:T , s1:T ,Φ) ∝ p(Θ)

∏T
t=1 h(Σ

∗
t |Θ, νst , Ast , Cst)

One sweep of the sampler delivers {{(νj, Aj, Cj, vj)}
K
j=1, K, u1:T , s1:T , α,Θ}. In Step 1,

the conditional posterior of Aj is

p(Aj|νj, Cj,Σ
∗
1:T , s1:T ,Θ) ∝ p(Aj)

∏

{t:st=j}

h(Σ∗
t |Θ, νj, Aj, Cj). (81)

By conjugacy, we have for IW-DPM-F model

Aj ∼ Wishartk1(γA,j, QA,j), (82)

where γA,j = γA + njνj and QA,j =
[
(νj − k − 1)

∑
{t:st=j}

[
(V ∗

t
1/2)Yt,11((V

∗
t
1/2))′

]
+ γAI

]−1

,

with nj = #{t : st = j}. The conditional posterior of Cj is

p(Cj|νj, Aj,Σ
∗
1:T , s1:T ,Θ) ∝ p(Cj)

∏

{t:st=j}

h(Σ∗
t |Θ, νj, Aj, Cj). (83)

Again by conjugacy, we have for IW-DPM-F model

Cj ∼ Wishartk2(γC,j, QC,j), (84)

where γC,j = γC + njνj and QC,j =
[
(νj − k − 1)

∑
{t:st=j} Yt,22 + γCI

]−1

, The conditional

posterior of νj is

p(νj|Aj, Cj,Σ
∗
1:T , s1:T ,Θ) ∝ p(νj)

∏

{t:st=j}

h(Σ∗
t |Θ, νj, Aj, Cj). (85)
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Metropolis-Hastings (MH) steps are used to sample νj with Gaussian random walk proposals.

In Step 4, additional ωj and φj will need to be simulated from the prior if K is incremented.

Step 6 follows Escobar & West (1995) and consists of first sampling an auxiliary variable

η from Beta(α + 1, T ), and then sampling α from a two-component mixture of Gamma

distributions,

α ∼ pηGamma(a0 +K, c0 − logη) + (1− pη)Gamma(a0 +K − 1, c0 − logη), (86)

where pη/(1 − pη) = (a0 + K − 1)/(T (c0 − logη)). In Step 7, MH steps are used to

sample elements of bj’s and ℓj. As in the parametric models, we impose the same re-

striction associated with RCOV targeting in the nonparametric models. That is, we set

B0 = (ιι′ − B1 − · · · − BM) ⊙ Σ
∗

11 in estimation and reject any draws in which B0 is not

positive definite or any element of
∑M

j=1 Bj is not less than 1 in modulus.13

After dropping a suitable number of draws as burn-in we collect the next N draws to be

used for posterior inference. Each iteration of the posterior sampler delivers a draw of the

unknown distribution G where

G(i) =
K

(i)∑

j=1

ω
(i)
j δ

φ
(i)
j

+


1−

K
(i)∑

j=1

ω
(i)
j


G0. (87)

This can be used to form the predictive density of ΣT+1 which is discussed next.

Note that several of these sampling steps can exploit parallel programming. Steps 1-

3, and 5 can employ parallel programming directly since the computations can be done

independently. For example, in Step 1 the sampling of each φj, j = 1, . . . , K can be done

simultaneously on separate CPU cores. For a large number of active clusters this can result

in a significant reduction in computational time.

13In special cases IW-DPM-F-C and W-DPM-F-C where Cj = C for all j, RCOV targeting is applied by

setting C = Σ
∗

22. So no sampling of Cj is needed in Step 1, and other steps remain the same.
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4.1.2 Predictive density

In Bayesian nonparametrics interest focuses on the predictive density. It can be computed

as follows. Given a draw G(i) from the posterior then

p(ΣT+1|Σ1:T , G
(i),W )

=
K

(i)∑

j=1

ω
(i)
j h(ΣT+1|Θ

(i), φ
(i)
j ,W ) +


1−

K
(i)∑

j=1

ω
(i)
j



∫

h(ΣT+1|Θ
(i), φ,W )G0(dφ) (88)

≈
K

(i)∑

j=1

ω
(i)
j h(ΣT+1|Θ

(i), φ
(i)
j ,W ) +


1−

K
(i)∑

j=1

ω
(i)
j


 1

R

R∑

l=1

h(ΣT+1|Θ
(i), φ[l],W ), (89)

where φ[l] iid
∼ G0, l = 1, . . . , R. 14 For IW-DPM-F,

h(ΣT+1|Θ, φj,W ) = Wishart−1
k (ΣT+1|νj, (νj − k − 1)WVT+1,jW

′)

= Wishart−1
k (Σ∗

T+1|νj, (νj − k − 1)VT+1,j)

= h(Σ∗
T+1|Θ, φj). (90)

The second equality holds because the (inverse) Wishart distribution is closed under linear

transformation and W is an orthogonal matrix. And similar results hold for W-DPM-F. In

general in this framework (using Wishart families for the kernels),

p(ΣT+1|Σ1:T , G
(i),W ) = p(Σ∗

T+1|Σ
∗
1:T , G

(i)). (91)

Finally, the predictive density with all parameter and distributional uncertainty inte-

grated out is estimated as

p(ΣT+1|Σ1:T ) ≈
1

N

N∑

i=1

p(Σ∗
T+1|Σ

∗
1:T , G

(i)). (92)

The predictive density of rT+1 can be computed in a similar way. For example under

14In the empirical work R = 10 but smaller values gave similar accuracy.
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IW-DPM-F specification

p(rT+1|FT , G
(i),W )

=
K

(i)∑

j=1

ω
(i)
j hr(rT+1|Θ

(i), φ
(i)
j ,W ) +


1−

K
(i)∑

j=1

ω
(i)
j



∫

hr(rT+1|Θ
(i), φ,W )G0(dφ), (93)

where

hr(rT+1|Θ, φj,W ) = Stk

(
rT+1

∣∣∣∣0,
νj − k − 1

νj − k + 1
WVT+1,jW

′, νj − k + 1

)

= Stk

(
r∗T+1

∣∣∣∣0,
νj − k − 1

νj − k + 1
VT+1,j, νj − k + 1

)
. (94)

4.2 Infinite Hidden Markov Factor Model (IW-IHMM-F)

In the DPM model all time dependence occurs through the evolution of the observable

V ∗
t . The infinite hidden Markov model discussed in this section allows the unobserved state

variable st to contribute to changes in the conditional distribution through time. This model

is like a DPM specification with time-varying weights.

The construction of the IHMM factor model with an inverse-Wishart distribution closely

follows the DPM version. Given the framework described by (16) – (20), we let Σ∗
t follow

Σ∗
t |Σ

∗
1:t−1,Θ,Π,Φ, st ∼ Wishart−1

k (νst , (νst − k − 1)Vt,st), (95)

Vt,st =

(
V ∗
t
1/2Ast(V

∗
t
1/2)′ 0

0 Cst

)
, (96)

where Φ = {φj}
∞
j=1 = {(νj, Aj, Cj)}

∞
j=1, and V ∗

t the same as before. We refer to this model

as IW-IHMM-F. The parameters α β and κ play an important role in the number of unique

clusters in the mixture as well as state persistence. Rather than setting the parameters we

impose the following priors,

α ∼ Gamma(a3, c3), β + κ ∼ Gamma(a4, c4), ρ =
κ

β + κ
∼ Beta(a5, c5), (97)

which allow for learning from the data. This prior formulation is more convenient for poste-

rior sampling.

Under this specification, given st−1, the conditional distribution of Σ∗
t is an infinite mix-
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ture with time-varying weights

f(Σ∗
t |Σ

∗
1:t−1,Θ,Π,Φ, st−1) =

∞∑

st=1

πst−1,stWishart−1
k (Σ∗

t |νst , (νst − k − 1)Vt,st). (98)

Some key features of IW-IHMM-F are the following. Firstly, the conditional marginal

distribution of Σ∗
t,11 follows an infinite mixture of time-varying inverse-Wishart with time-

varying weights

Σ∗
t,11|Σ

∗
1:t−1,Θ,Π,Φ, st−1 ∼

∞∑

st=1

πst−1,stWishart−1
k1
(νst − k2, (νst − k − 1)V ∗

t
1/2Ast(V

∗
t
1/2)′).(99)

So Σ∗
t,11 only depends on its own history, which is the same case as in IW-F and IW-DPM-F,

but now the dependence can change over time according to the latent Markov state. In

particular, the conditional mean of Σ∗
t,11 is

E(Σ∗
t,11|Σ

∗
1:t−1,Θ,Π,Φ, st−1) =

∞∑

st=1

πst−1,stV
∗
t
1/2Ast(V

∗
t
1/2)′, (100)

which is clearly time-varying.

Secondly, the conditional distribution of Σ∗
t,22 follows an infinite mixture of time-invariant

inverse-Wishart with time-varying weights

Σ∗
t,22|Σ

∗
1:t−1,Θ,Π,Φ, st−1 ∼

∞∑

st=1

πst−1,stWishart−1
k2
(νst − k1, (νst − k − 1)Cst). (101)

Thus, the conditional distribution of Σ∗
t,22 is actually time-varying in contrast to the para-

metric case and the DPM case discussed earlier. The conditional mean of Σ∗
t,22 is

E(Σ∗
t,22|Σ

∗
1:t−1,Θ,Π,Φ, st−1) =

∞∑

st=1

πst−1,stCst . (102)

In the parametric factor model we interpreted the conditional mean of Σ∗
t,22 as the static

part of the realized covariance. This extension removes that restriction.

An interesting special case is enforcing a constant conditional (also unconditional) mean
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for Σ∗
t,22. Specifically, let Cj = C for all j and Φ = {(νj, Aj)}

∞
j=1, then

Σ∗
t,22|Σ

∗
1:t−1, C,Θ,Π,Φ, st−1 ∼

∞∑

st=1

πst−1,stWishart−1
k2
(νst − k1, (νst − k − 1)C), (103)

which results in a constant conditional mean equal to C. Note that due to the mixing in

νst , the conditional distribution is still time-varying. We refer to this version with constant

C as IW-IHMM-F-C. With this restriction, C can be targeted at Σ
∗

22 in model inference

instead of being estimated. This again greatly reduces computational cost, especially for

large dimension where the dimension of C will be large.

Thirdly, Σ∗
t,12 conditionally also follows an infinite mixture of unknown form with time-

varying weights, while retains an all-zero mean, both conditionally and unconditionally.

The conditional distribution of Σt under IW-IHMM-F is also an infinite mixture of

inverse-Wishart with time-varying weights,

f(Σt|Σ1:t−1,Θ,Π,Φ,W, st−1) =
∞∑

st=1

πst−1,stWishart−1
k (Σt|νst , (νst − k − 1)WVt,stW

′). (104)

The conditional mean becomes

E(Σt|Σ1:t−1,Θ,Π,Φ,W, st−1) = W1

[
∞∑

st=1

πst−1,stV
∗
t
1/2Ast(V

∗
t
1/2)′

]
W ′

1

+W2

[
∞∑

st=1

πst−1,stCst

]
W ′

2. (105)

If W = I and k1 = k, which means there is no factor structure and no transformation of

RCOV, the IW-IHMM-F model becomes the IW-IHMM introduced by Jin & Maheu (2016).

Under (24) and (104), the conditional distribution of rt, after integrating out Σt, is an

infinite mixture of multivariate Student-t with time-varying weights,

f(rt|Ft−1,Θ,Π,Φ,W, st−1) =
∞∑

st=1

πst−1,stStk

(
rt

∣∣∣∣0,
νst − k − 1

νst − k + 1
WVt,stW

′, νst − k + 1

)
.(106)

4.2.1 Posterior inference

Similar to the posterior sampling methods for the DPM model of Section 4.1 the idea of slice

sampling can be extended to the infinite hidden Markov model. Beam sampling introduced

by Van Gael et al. (2008) combines slice sampling and dynamic programming. Slice sampling
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introduces on an auxiliary variable that stochastically truncates the infinite dimension state

space into a finite one. With a finite state space, traditional posterior sampling methods can

be applied such as the forward filtering backward sampling (FFBS) of Chib (1996). This

allows for the efficient sampling of the state variables as one block.

The auxiliary latent variable 0 < ut < 1 is introduced such that its conditional density is

p(ut|st, st−1,Π) =
1(ut < πst−1,st)

πst−1,st

(107)

and is sampled with the other model parameters. With this slice variable, Van Gael et al.

(2008) show that the filtering step of the sampler becomes

p(st|u1:t,Σ
∗
1:t) ∝ h(Σ∗

t |φst)
∞∑

st−1=1

p(ut|st, st−1)p(st|st−1)p(st−1|Σ
∗
1:t−1, u1:t−1) (108)

∝ h(Σ∗
t |φst)

∞∑

st−1=1

1(ut < πst−1,st)p(st−1|u1:t−1,Σ
∗
1:t−1) (109)

∝ h(Σ∗
t |φst)

∑

st−1:ut<πst−1,st

p(st−1|u1:t−1,Σ
∗
1:t−1). (110)

Thus the infinite summation in this filter is reduced to a finite summation since the set

{st−1 : ut < πst−1,st} is finite. The backward sampling step follows

p(st|st+1,Σ
∗
1:T , u1:T ) ∝ p(st|u1:t,Σ

∗
1:t)1(ut+1 < πst,st+1). (111)

sT is sampled from the last step of the filter p(sT |u1:T ,Σ
∗
1:T ) after which st, t = T − 1, . . . , 1

is sampled from (111).

It is convenient to find a finite set that includes all possible states that satisfy the con-

dition ut < πst−1,st . This must hold for each t and each row of the transition matrix.

States that do not satisfy this condition can be ignored. We require K states to be kept

track of such that the remaining states do not satisfy the condition, that is, the K such

that
∑∞

j=K+1 πi,j < ut holds for each i and each t. This gives the following condition,

maxi∈{1,...,K}{1−
∑K

j=1 πi,j} < mint∈{1,...,T}{ut}, to select K.

After the states are sampled we keep track of the number of alive states in which at least

one observation is allocated to the state. These are ordered as the first K states. Each sweep

of the sampler updates the value of K.

The parameter set consists of {u1:T , s1:T ,π0,Π,Φ,Θ, α, β, κ}. In posterior sampling we

keep track of K + 1 rows for Π and K + 1 elements of π0. The first K rows of Π represent
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the alive states while the K + 1 row is the residual probability. For other parameters such

as Φ we sample only the K values associated with alive states.

The sampling procedure sequentially simulates from the following conditional posterior

densities:

1. p(u1:T |s1:T ,Π),

2. p(s1:T |Π, u1:T ,Φ,Θ,Σ∗
1:T ),

3. p(π0|s1:T , α, β, κ),

4. p(Π|π0, s1:T , β, κ),

5. p(Φ|s1:T ,Θ,Σ∗
1:T ),

6. p(α, β, κ|s1:T ,π0),

7. p(Θ|s1:T ,Φ,Σ
∗
1:T ).

The Appendix provides full details on each of the steps.

4.2.2 Predictive density

The predictive density is computed in the following way. Given a draw from the posterior,

p(ΣT+1|Σ1:T ,Π
(i),Φ(i), s

(i)
1:T ,Θ

(i),W )

=
K(i)∑

j=1

π
(i)

s
(i)
T

,j
h(ΣT+1|Θ

(i), φ
(i)
j ,W ) +


1−

K(i)∑

j=1

π
(i)

s
(i)
T

,j



∫

h(ΣT+1|Θ
(i), φ,W )G0(dφ)(112)

=
K(i)∑

j=1

π
(i)

s
(i)
T

,j
h(Σ∗

T+1|Θ
(i), φ

(i)
j ) +


1−

K(i)∑

j=1

π
(i)

s
(i)
T

,j



∫

h(Σ∗
T+1|Θ

(i), φ)G0(dφ) (113)

≈

K(i)∑

j=1

π
(i)

s
(i)
T

,j
h(Σ∗

T+1|Θ
(i), φ

(i)
j ) +


1−

K(i)∑

j=1

π
(i)

s
(i)
T

,j


 1

R

R∑

l=1

h(Σ∗
T+1|Θ

(i), φ[l]), (114)

where φ[l] iid
∼ G0, l = 1, . . . , R. Finally, the predictive density is estimated as

p(ΣT+1|Σ1:T ) ≈
1

N

N∑

i=1

p(ΣT+1|Σ1:T ,Π
(i),Φ(i), s

(i)
1:T ,Θ

(i),W ), (115)
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where the right hand side terms are from (114) which integrates out all uncertainty. Similarly,

the predictive density for returns is computed as in the IW-DPM-F model with the constant

weights ωj replaced by πsT ,j.

5 Benchmark Models

A multivariate vector diagonal GARCH (VDGARCH) model of Ding & Engle (2001) based

on daily returns is used for comparison. The model has Student-t innovations and is

rt ∼ Stk(0, Ht, ν), (116)

Ht = CC
′

+ aa
′

⊙ rt−1r
′

t−1 + bb
′

⊙Ht−1, (117)

where a and b are k × 1 vectors, ν > 2 is the degree of freedom and covariance targeting is

implemented with C = Cov(rt) ⊙ (ιι
′

(ν − 2)/ν − aa
′

− bb
′

(ν − 2)/ν) where Cov(rt) is the

sample covariance of daily returns. The total number of parameters is 2k + 1.

The covariance matrix discounting model in (West & Harrison 1997, chap 16) is parsimo-

nious and suitable for forecasting large covariance matrices of returns. The following version

is used,15

Ht+1|r1:t ∼ Wishart−1
k (βnt + k − 1, βntSt), (118)

nt = βnt−1 + 1 (119)

St =
1

nt

(βnt−1St−1 + rtr
′
t). (120)

Ht+1 is the latent covariance matrix of rt+1 and its predictive distribution follows an inverse-

Wishart distribution given data r1:t. St can be regarded as the posterior estimate of the

“true” covariance matrix at time t, given information r1:t. Equation (118) reflects the “prior”

or prediction of Σt+1 given r1:t. β = 0.95 and is the discounting factor reflecting information

decay moving from time t to t+1. Sequential updating/re-enforcement of belief is governed

by (119) through the degree of freedom parameter of the inverse-Wishart distribution. A

larger value for the degree of freedom results in a tighter distribution and hence stronger

belief. Sequential updating of St as a new observation rt becomes available follows (120).

15West & Harrison (1997) use a different parameterization of the inverse-Wishart distribution (see chap.
16.4 ). Our notation reflects this difference.
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Assuming rt|Ht ∼ N(0, Ht), the predictive density of returns is:

rt+1|r1:t ∼ Stk(0, St, βnt). (121)

We also modify the covariance matrix discounting model to what we call a RCOV dis-

counting model. The key steps are summarized in the following equations

Σt+1|Ft ∼ Wishart−1
k (βnt + k − 1, βntSt) (122)

nt = βnt−1 + 1 (123)

St =
1

nt

(βnt−1St−1 + Σt) (124)

The model has the same interpretation as the covariance matrix discounting model except rtr
′
t

is replaced with Σt and the predictive density in (122) is for the observed RCOV. Assuming

rt|Σt ∼ N(0,Σt) the predictive density of returns give past data is

rt+1|F1:t ∼ Stk(0, St, βnt). (125)

Finally, a random walk (RW) that uses last period’s value for all future forecasts and

an exponentially weighted moving average (EWMA) with smoothing parameter 0.95 are

included.

6 Empirical Applicatons

6.1 10 Asset Application

In this section we discuss the results for the 10 asset application. The benefit of this smaller

dimension is that we can feasibly estimate all models including the highly parameterized

non-factor nonparametric models. Factor models represent a compromise in that we can

capture most of the significant structure in the data but maintain a tractable model and

estimation cost. This application will allow us to measure the trade-offs.

The 10-asset RCOV daily data from Noureldin et al. (2012) are used and range from

2001/02/01 to 2009/12/31 (2092 observations).16 The stock symbols used are: Alcoa (AA),

American Express (AXP), Bank of America (BAC), Coca Cola (KO), Du Pont (DD), Gen-

eral Electric (GE), International Business Machines (IBM), JP Morgan (JPM), Microsoft

16The data were downloaded from http://realized.oxford-man.ox.ac.uk/data/download and we are grateful
for the authors making them available.
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(MSFT), and Exxon Mobil (XOM). The original RCOV is open-to-close, we add the outer-

product of the overnight return to the original RCOV to form close-to-close RCOV in order

to match daily close-to-close returns. The last 500 observations are used for out-of-sample

forecast evaluation. Each model is re-estimated at each day in the out-of-sample period.

The diagonal elements of Σ∗
t are displayed in Figure 1.

To evaluate model density forecasts Table 1 displays the log-predictive likelihoods for

a variety of models for forecasts horizons of h = 1, 5, 10, 20, 60. This is computed as
∑T−h

t=T0−h log(p(Σt+h|Ft,A)) for model A where T0 is the start of the out-of-sample period.

Included in the table are a Wishart (W)17 and an inverse-Wishart (IW) specifications along

with nonparametric versions with no factor structure. Following this are parametric and

nonparametric factor models assuming a factor dimension from 1 to 9. Below this are two

benchmark specifications discussed in Section 5.

In terms of predictive accuracy the IW-IHMM performs the best. This model strongly

dominates the parametric W and IW alternatives as well as the benchmark models. For

instance, the log-Bayes factor for the IW-IHMM against the IW model is 5181. The factor

models all fall short of the forecast performance of the IHMM but as the dimension of the

factor increases they improve.

In general for a given factor dimension the best model is the IHMM followed by the DPM

and the parametric factor version. In each case, moving from the parametric factor structure

to a nonparametric version results in considerable improvement. For example, the log-Bayes

factor for the IW-IHMM-F with 5 factors versus the IW-F is 8070.

Finally, the Wishart version (W) is dominated by the inverse-Wishart model. This is

consistent with the results in Jin & Maheu (2016).

Turning to point forecasts shown in Table 2 the IHMM factors models with 5 or more

factors achieve the lowest root-mean-squared errors. None of the benchmark models are

particularly competitive although the RCOV discount model and the EWMA are better as

they use RCOV directly while the others use daily returns. The IHMM version is generally

much better than the DPM version or parametric versions.

Capturing the complex dynamics in RCOV contributes to better density forecasts for

returns as shown in Table 3. Except at h = 1 the IW-DPM model performs better than the

IW-IHMM. However, for a given factor dimension the IHMM variant always beats the DPM

factor model.

We note the following observations. The nonparametric models, particularly the IHMM

17Labelled as W-A(3) in Jin & Maheu (2016).
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version offer large improvements in all measures of forecast accuracy. Factor models represent

a compromise and diminished forecast accuracy compared to the full nonparametric models.

However, a 5 factor IW-IHMM-F dominates all benchmark models with the exception of

some longer horizon density forecasts for returns from the RCOV discount and VDGARCH-

t models. The benefit of the factor models is reduced computation time. For instance,

the approximate computing time for IW is 6m20s, for IW-IHMM is 8m23s while it is only

4m3s for IW-IHMM-F with 5 factors.18 In larger dimensions the IW-F and IW-DPM and

IW-IHMM are not practically feasible while the factors models are. We turn to a more

challenging application next.

6.2 60 Asset Application

For the second dataset, we use high-frequency transaction prices of 60 liquid stocks19 among

the S&P 500 that are continuously traded over a sample period of 2265 days spanning from

2006/01/03 to 2014/12/31. The high-frequency data are obtained from the TAQ database.

After cleaning the raw data20, we follow Noureldin et al. (2012) and use 5-minute returns

with subsampling to compute daily open-to-close RCOV matrices. To match the close-to-

close daily return, the outer-product of the overnight return is added to the corresponding

open-to-close RCOV to form close-to-close RCOV. The last 500 observations (2013/01/08

to 2014/12/31) are used for out-of-sample forecasts and model comparison.

At 60 dimensions several of the previous models, IW, IW-DPM and IW-IHMM are no

longer feasible to estimate and forecast with. Instead we confine our comparison to the factor

models and the benchmark specifications. Based on the results from previous applications

we focus on the IHMM factor models since they generally dominated the DPM versions.

Table 4 records the log-predictive likelihood values for various out-of-sample forecasts

horizons. The IW-IHMM-F is the dominant model at each forecast horizon with log-Bayes

factors against alternatives in the thousands. For instance, the log-Bayes factor for the 10

factor IHMM model against the parametric (IW-F) version for h = 1 is 266405 while it is

213896 against the RCOV discount model. The RCOV discount model is often better than

the parametric IW-F models for h = 1, 5 and 10.

The performance of point forecasts is found in Table 5. Here the 10 factor IW-IHMM-F

18The next application discusses computation time in more detail.
19The stock symbols are: AA, AAPL, ABT, AIG, AMGN, AMZN, APC, AXP,BA, BAC, BAX, BMY, C,

CAT, CL, COF, COST, CSCO, CVS, CVX, DD, DIS, DOW, EBAY, EMR, EXC, F, GD, GE, GS, HAL,
HD, HON, IBM, INTC, JNJ, JPM, KO, KR, LLY, LOW, MCD, MMM, MO, MRK, MSFT, NKE, PEP,
PFE, PG, SO, UNH, UNP, UPS, USB, UTX, VZ, WFC, WMT, XOM.

20We follow steps in Barndorff-Nielsen et al. (2011) to clean the raw data.
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model has the lowest root-mean squared forecast error at each h although the loss in accuracy

in reducing the factor dimension to 5 or even 3 is minor. The most competitive benchmark

models are the RCOV discount model and the EWMA. The parametric factor models with

factor dimension 7 or more are generally as good or better than the RCOV discount model.

Density forecasts for daily returns are reported in Table 6. For each forecast horizon the

IW-IHMM-F specification is the most accurate. As the forecast horizon h increases there is

a reduction in the number of factors needed. This is consistent with the need for a more

flexible model to capture the stronger short-term time-series dynamics of RCOV that are

important to returns. However, there is not much loss in reducing the factor from 10 to 7 or

5 for h = 1.

The log-Bayes factor for the 10 factor IHMMmodel against the parametric (IW-F) version

for h = 1 is 1533 while it is 492 against the VDGARCH-t model that only uses daily return

data. The GARCH model is very competitive and beats each of the benchmark models as

well as all the parametric factor models. Only the nonparametric IHMM factor model is

better. However, set against this is a very large computational cost for the GARCH model

which we discuss later.

To consider the value of these models for portfolio choice, Table 7 reports the realized

variance of the global minimum variance portfolio (GMVP). The GMVP solves the following

problem,

minω
′

t+h|tΣt+h|tωt+h|t, s.t. ωt+h|tι = 1, (126)

where ω is the portfolio weight and Σt+h|t ≡ E[Σt+h|Ft,A] is the predictive mean of Σt+h

given time t information for model A. The optimal solution to this is

ω̂t+h|t =
Σ−1

t+h|tι

ι′Σ−1
t+h|tι

. (127)

The ex post realized variance for model A’s portfolio is 1
T−T0+1

∑T−h
t=T0−h ω̂

′

t+h|tΣt+h|tω̂t+h|t.

Better models will produce lower ex post portfolio variances.

The 10 factor IW-IHMM-F consistently produces the smallest portfolio variance in the

out-of-sample period. The difference in using the same model with less factors is fairly minor

so that a 3 or 5 factor model is a good alternative. The parametric factor models are quite

competitive. Most of the benchmark models produce a higher portfolio variance with the

exception of the EWMA.
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Full sample estimates of ℓ2, ℓ3 and the number of alive clusters in the mixture are in

Table 8. The number of active components in the mixtures range from 14 to 16 on average.

The lag length of ℓ3 is substantially larger than ℓ2 in all cases except for the 1 and 3 factor

models.

Finally we have discussed the computational advantages of the factor model earlier. The

factor model allows for a faster evaluation of the data density when the factor dimension

is significantly less than the data dimension. In addition, for the infinite mixture models

parallel programming is very efficient when sampling data density parameters conditional

on the state indicator. These benefits are seen in Table 9. The run time for 20000 MCMC

draws are all in the range of a matter of minutes. The IHMM are more expensive but no

where near as prohibitive as the time to estimate the VDGARCH-t model.

In summary, the factor models provide feasible estimation times for large realized covari-

ances. The IHMM version is not only computationally feasible but overall produces the best

out-of-sample forecasts and portfolio selection.

The greatest gains are found in density forecasts of RCOV and daily returns in which the

rich mixture structure captures the unknown features of RCOV. The gains in point forecasts

and portfolio choice are smaller in general compared to benchmark models.

7 Conclusion

This paper introduces a new factor structure that can be used in parametric (inverse-)

Wishart models as well as finite and infinite mixtures models for RCOV matrices. Mixtures

models offer a tractable approach to leverage our knowledge from parametric approaches

to span the complex unknown distributions of RCOV matrices. There are several com-

putational benefits to this approach that make estimation in high dimension applications

feasible. Across a range of forecast metrics and portfolio choice the infinite hidden Markov

factor model performs well.

8 Appendix: Sampling details for IW-IHMM-F model

Let K denote the number of active states in the state sequence s1:T . Let njl denote the

number of transitions from state j to state l in s1:T , that is, njl = #{t : st−1 = j, st = l}.

Also let nj. =
∑

l njl, n.l =
∑

j njl. A set of auxiliary variables, m = {mjl}, m̃ = {m̃j},

m = {mjl}, are introduced to facilitate the sampling. We use the notation mj. =
∑

l mjl,
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m.l =
∑

j mjl, m.. =
∑

j

∑
l mjl. Similar notations are used for m̃ and m.

1. Initializing: Choose a starting value for K and a starting state sequence s1:T consisting

of K active states which are labelled 1, . . . , K; The infinite many inactive states are

merged into one state. Initialize π0 and πj for j = 1, . . . , K, all of which have K + 1

elements; Initialize φj for j = 1, . . . , K; Initialize α, β, κ,Θ.

2. Sampling u1:T : For t = 1, . . . , T , sample ut from U(0, πst−1,st), a uniform distribution

on (0, πst−1,st).

3. Sampling s1:T :

(a) Set the initial value of K equal to K and if max{πj,K+1}
K
j=1 > min{ut}

T
t=1, repeat

the following steps:

i. Draw πK+1 ∼ Dirichlet(βπ0).

ii. Break the last probability weight of π0, π0K+1:

A. Draw ζ ∼ Beta(1, α).

B. Add new probability weight π0K+2 = (1− ζ)π0K+1.

C. Update π0K+1 = ζπ0K+1.

iii. Break the last probability weight of πj for j = 1, . . . , K + 1:

A. Draw ζj ∼ Beta(βπ0K+1, βπ0K+2).

B. Add new probability weight πj,K+2 = (1− ζj)πj,K+1.

C. Update πj,K+1 = ζjπj,K+1.

iv. Draw AK+1 ∼ Wishartk1(γA,
1
γA
I), CK+1 ∼ Wishartk2(γC ,

1
γC
I), νK+1 ∼

Expν>k+1(λ).

v. Increment K.

(b) Sample s1:T from p(s1:T |Π, u1:T ,Φ,Θ,Σ∗
1:T ) using the forward filtering and back-

ward smoothing method based on Chib (1996):

i. Working sequentially forwards in time for t = 1, . . . , T , repeat the following

steps:

Prediction step: for j = 1, . . . , K, calculate

p(st = j|u1:T ,Π,Φ,Θ,Σ∗
1:t−1) ∝

K∑

i=1

1(ut < πi,j)p(st−1 = i|u1:T ,Π,Φ,Θ,Σ∗
1:t−1).(128)
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Update step: for j = 1, . . . , K, calculate

p(st = j|u1:T ,Π,Φ,Θ,Σ∗
1:t) ∝ p(st = j|u1:T ,Π,Φ,Θ,Σ∗

1:t−1)h(Σ
∗
t |Σ

∗
1:t−1,Θ, φj).(129)

ii. Working sequentially backwards in time, sample s1:T :

A. Sample sT from p(sT |u1:T ,Π,Φ,Θ,Σ∗
1:T ).

B. Sample st from p(st|u1:T ,Π,Φ,Θ,Σ∗
1:t)1(ut+1 < πst,st+1) for t = T −

1, . . . , 1.

(c) Cleaning up: Update K given s1:T , re-label all the active states in s1:T in the

order of 1, . . . , K and remove the inactive states; Adapt π0, Π, A, C, ν according

to the new labelling; Collapse π0K+1 and πj,K+1 for j = 1, . . . , K.

4. Sampling auxiliary variables m, m̃, m:

(a) Samplem: For j = 1, . . . , K and l = 1, . . . , K, samplemjl as follows: Setmjl = 0.

For i = 1, . . . , njl, draw xi ∼ Bernoulli( βπ0l+κδ(j,l)
i−1+βπ0l+κδ(j,l)

), where δ(., .) denotes the

discrete Kronecker delta. If xi = 1, increment mjl.

(b) Sampling m̃: For j = 1, . . . , K, sample m̃j ∼ Binomial(mjj,
ρ

ρ+π0j(1−ρ)
), where

ρ = κ
β+κ

.

(c) Update m: For j = 1, . . . , K and l = 1, . . . , K, set mjl = mjl if j 6= l; set

mjj = mjj − m̃j.

5. Sampling π0: Draw

π0 ∼ Dirichlet(m.1, . . . ,m.K , α). (130)

6. Sampling Π: For j = 1, . . . , K, sample

πj ∼ Dirichlet(βπ01 + nj1, . . . , βπ0j + κ+ njj, . . . , βπ0K + njK , βπ0K+1). (131)

7. Sampling Φ: for j = 1, . . . , K,

(a) draw

Aj ∼ Wishartk1(γA,j, QA,j), (132)

where γA,j = γA+n.jνj, andQA,j =
[
(νj − k − 1)

∑
{t:st=j}

[
(V

1/2
t )Yt,11((V

1/2
t ))′

]
+ γAI

]−1

;
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(b) draw

Cj ∼ Wishartk2(γC,j, QC,j), (133)

where γC,j = γC + n.jνj, and QC,j =
[
(νj − k − 1)

∑
{t:st=j} Yt,22 + γCI

]−1

;

(c) sample

νj ∼ p(νj|Σ
∗
1:T , s1:T , Aj, Cj,Θ)

∝ p(νj)
∏

{t:st=j}

h(Σ∗
t |Θ, νj, Aj, Cj). (134)

An MH step with Gaussian random walk proposal is used.

8. Sampling hyperparameters α, β and κ:

(a) Sample β + κ:

i. For j = 1, . . . , K, draw ηj ∼ Bernoulli(
nj.

nj.+β+κ
).

ii. For j = 1, . . . , K, draw η̃j ∼ Beta(β + κ+ 1, nj.).

iii. Sample β + κ ∼ Gamma(a4 +m.. −
∑K

j=1 ηj, c4 −
∑K

l=1 logη̃l).

(b) Sample ρ: Sample ρ ∼ Beta(a5 + m̃., c5 +m.. − m̃.).

(c) Sample α:

i. Draw ω̃ ∼ Bernoulli( m..

m..+α
).

ii. Draw ω ∼ Beta(α + 1,m..).

iii. Sample α ∼ Gamma(a3 + K̃ − ω̃, c3 − log(ω)), where K̃ =
∑K

l=1 1(m.l > 0).

9. Sample Θ: Note p(Θ|s1:T ,Φ,Σ
∗
1:T ) ∝

∏T
t=1 h(Σ

∗
t |Θ, φst)p(Θ). MH steps are used to

sample elements of bj’s and ℓj as discussed in the benchmark models.

10. Repeat 2-9.
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Table 1: Cumulative log-predictive likelihoods for RCOV: 10 assets

Model Factors h = 1 h = 5 h = 10 h = 20 h = 60
W −39587.22 −40777.67 −43263.63 −47009.30 −55978.90
IW −32220.45 −34437.87 −36233.11 −39232.62 −46941.53
IW-DPM −27451.69 −28012.17 −28572.06 −29680.07 −32418.61
IW-IHMM −27039.28 −28023.37 −28550.82 −29319.11 −31061.45

IW-F 1 −46251.77 −46376.24 −46502.25 −46768.92 −47529.14
IW-DPM-F 1 −30652.93 −31039.37 −31359.83 −31859.05 −33403.69
IW-IHMM-F 1 −29395.15 −30141.83 −30668.12 −31434.20 −33418.10

IW-F 3 −40447.39 −40909.48 −41317.97 −41982.70 −43654.05
IW-DPM-F 3 −30170.77 −30601.00 −30880.66 −31530.97 −33097.95
IW-IHMM-F 3 −28987.33 −29794.05 −30262.32 −30921.79 −32651.90

IW-A-F 5 −36694.25 −37543.93 −38252.74 −39504.19 −42588.04
IW-DPM-F 5 −29713.09 −30177.69 −30482.99 −31206.87 −32989.21
IW-IHMM-F 5 −28624.16 −29589.16 −30011.87 −30726.58 −32371.98

IW-A-F 7 −34385.79 −35686.38 −36732.01 −38367.80 −42880.34
IW-DPM-F 7 −29105.27 −29706.59 −30040.01 −30652.80 −32027.02
IW-IHMM-F 7 −28455.72 −29414.00 −29900.35 −30511.38 −31664.46

IW-A-F 9 −32276.83 −34042.08 −35446.49 −37816.35 −43786.33
IW-DPM-F 9 −28104.46 −28918.04 −29411.33 −30253.61 −32261.74
IW-IHMM-F 9 −27604.53 −28664.36 −29252.26 −29929.01 −31541.95

RCOV discount −53684.46 −51750.10 −51128.38 −52244.12 −66905.64
COV discount −60581.88 −58634.20 −57858.83 −58412.99 −72091.22

The table reports the cumulative log-predictive likelihoods for RCOV at different fore-
cast horizon h. Bold entries denote the maximum value in each column.
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Table 2: Root mean squared error for predictive mean of RCOV: 10 assets

Model Factors h = 1 h = 5 h = 10 h = 20 h = 60
W 85.4929 94.7907 99.6165 106.0295 113.7032
IW 85.3840 94.5600 99.0906 108.6184 122.6522
IW-DPM 85.9544 89.9484 93.7687 96.5692 102.2756
IW-IHMM 78.6086 86.1769 91.1179 96.3775 102.3623

IW-F 1 89.7525 94.7418 97.1521 101.5164 106.2680
IW-DPM 1 91.1326 99.5026 101.5357 103.7106 106.8961
IW-IHMM-F 1 85.8326 91.2860 94.5455 98.6635 104.8381

IW-F 3 87.6111 94.6461 99.1480 108.3969 118.5627
IW-DPM-F 3 84.3923 89.3493 93.4872 98.5372 105.5588
IW-IHMM-F 3 80.0110 87.6508 91.8337 97.7670 105.2076

IW-F 5 86.2510 93.3480 97.3201 107.0393 123.0651
IW-DPM-F 5 84.8369 89.5407 92.9232 99.6109 107.7531
IW-IHMM-F 5 78.2897 87.4064 90.9256 98.4061 105.8242

IW-F 7 85.8719 92.9670 96.8803 106.6631 123.8840
IW-DPM-F 7 85.4245 90.2819 93.6968 100.9226 109.3621
IW-IHMM-F 7 78.1382 86.7199 90.3256 96.9410 104.3199

IW-F 9 85.2877 92.5723 96.4360 106.2268 124.6541
IW-DPM-F 9 84.3183 88.6977 91.7675 97.0189 102.9021
IW-IHMM-F 9 78.0443 85.9834 90.5786 95.9625 102.4482

RCOV discount 95.9803 102.6128 109.1086 122.9308 166.6344
EWMA 89.9313 95.3414 99.8233 109.1673 126.9490
RW 104.9093 116.8036 119.6874 132.8902 150.2774
COV discount 112.2610 120.1382 127.8039 142.6002 194.9500
VDGARCH-t 105.6908 108.7505 111.7816 116.6325 128.4878

The table reports the root mean squared error for predictive mean of RCOV at different
forecast horizon h. Bold entries denote the minimum value in each column.
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Table 3: Cumulative log-predictive likelihoods for return: 10 assets

Model Factors h = 1 h = 5 h = 10 h = 20 h = 60
W −9507.10 −9695.59 −9811.81 −9958.57 −10395.33
IW −9493.77 −9590.63 −9644.23 −9758.60 −9983.27
IW-DPM −9512.61 −9551.81 −9588.65 −9644.56 −9905.66
IW-IHMM −9458.91 −9575.71 −9661.51 −9785.24 −10097.68

IW-F 1 −10075.89 −10087.52 −10100.82 −10137.81 −10284.61
IW-DPM-F 1 −10195.24 −10226.87 −10252.75 −10302.68 −10477.34
IW-IHMM-F 1 −9687.93 −9779.76 −9874.48 −10016.97 −10354.25

IW-F 3 −9900.79 −9927.72 −9951.04 −10004.66 −10211.77
IW-DPM-F 3 −9951.60 −10020.96 −10075.63 −10190.52 −10465.70
IW-IHMM-F 3 −9609.40 −9722.48 −9803.60 −9927.11 −10328.85

IW-F 5 −9816.80 −9855.76 −9874.96 −9951.12 −10222.07
IW-DPM-F 5 −9802.46 −9866.94 −9909.53 −10043.91 −10391.41
IW-IHMM-F 5 −9548.87 −9669.23 −9749.29 −9913.57 −10253.53

IW-F 7 −9707.51 −9772.03 −9809.69 −9871.08 −10100.78
IW-DPM-F 7 −9687.82 −9760.15 −9808.84 −9917.68 −10191.76
IW-IHMM-F 7 −9501.41 −9637.25 −9699.16 −9802.82 −10090.62

IW-F 9 −9612.21 −9681.41 −9723.69 −9807.58 −10073.27
IW-DPM-F 9 −9607.70 −9690.33 −9751.33 −9862.03 −10275.72
IW-IHMM-F 9 −9475.08 −9606.33 −9686.33 −9811.01 −10177.86

RCOV discount −9606.93 −9688.38 −9734.20 −9826.47 −10025.77
COV discount −9803.76 −9923.18 −9960.57 −10000.86 −10239.58
VDGARCH-t −9621.82 −9682.01 −9721.86 −9791.10 −10021.33

The table reports the cumulative log-predictive likelihoods for return data at different
forecast horizon h. Bold entries denote the maximum value in each column.
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Table 4: Cumulative log-predictive likelihoods for RCOV:60 assets

Model Factors h = 1 h = 5 h = 10 h = 20 h = 60
IW-F 1 1017209.89 1016664.26 1015373.57 1011318.86 994026.22
IW-IHMM-F 1 1396307.46 1393526.11 1391401.42 1388192.27 1379376.08

IW-F 3 1056464.66 1054908.38 1051632.18 1043723.95 1020536.18
IW-IHMM-F 3 1398145.06 1395433.30 1393253.92 1389954.88 1381750.23

IW-F 5 1094748.58 1093189.46 1091257.50 1085498.59 1062521.66
IW-IHMM-F 5 1397132.83 1393931.81 1391398.69 1387744.92 1378840.02

IW-F 7 1114075.73 1112050.08 1109570.61 1103094.53 1077736.13
IW-IHMM-F 7 1398474.51 1394977.69 1392512.49 1389660.87 1381604.46

IW-F 10 1132220.41 1129380.22 1126290.99 1118661.56 1088156.16
IW-IHMM-F 10 1398625.61 1395204.87 1392819.30 1389955.37 1382475.26

RCOV discount 1184730.03 1155150.48 1128348.22 1077493.40 851783.83
COV discount 359270.91 315493.21 225129.79 7853.87 −945501.06

The table reports the cumulative log-predictive likelihoods for RCOV at different fore-
cast horizon h. Bold entries denote the maximum value in each column.
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Table 5: Root mean squared error for predictive mean of RCOV:60 assets

Model Factors h = 1 h = 5 h = 10 h = 20 h = 60
IW- F 1 51.0828 52.5740 53.3587 54.0758 53.3842
IW-IHMM-F 1 45.5283 45.4724 45.3579 45.4689 46.2941

IW-F 3 47.4160 49.1300 49.9778 50.8249 50.9169
IW-IHMM-F 3 45.2321 45.2645 45.1911 45.2504 45.8372

IW-F 5 46.3333 47.9883 48.6960 49.4046 48.9379
IW-IHMM-F 5 44.9402 45.1712 45.1496 45.2417 45.6632

IW-F 7 45.8625 47.4414 48.1200 48.7621 48.3987
IW-IHMM-F 7 44.9541 45.1784 45.1306 45.1544 45.6527

IW-F 10 45.4325 46.9872 47.6369 48.1953 47.9312
IW-IHMM-F 10 44.9076 45.1489 45.0933 45.1522 45.5994

RCOV discount 46.0742 47.2496 48.1508 49.3480 52.8361
EWMA 47.1797 47.4266 47.5095 47.7065 47.7802
RW 62.0047 65.3585 66.7280 66.9556 64.6790
COV discount 48.4982 50.0729 51.0833 52.3614 57.4294
VDGARCH-t(returns) 87.8707 89.5497 91.5198 95.2122 107.1460

The table reports the root mean squared error for predictive mean of RCOV at different
forecast horizon h. Bold entries denote the minimum value in each column.
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Table 6: Cumulative log-predictive likelihoods for return:60 assets

Model Factors h = 1 h = 5 h = 10 h = 20 h = 60
IW-F 1 −35770.93 −35774.67 −35795.67 −35833.23 −35877.51
IW-IHMM-F 1 −33784.05 −33853.80 −33907.43 −33980.83 −34098.24

IW-F 3 −35644.59 −35640.39 −35675.57 −35734.03 −35819.71
IW-IHMM-F 3 −33758.26 −33832.48 −33907.23 −33982.38 −34092.31

IW-F 5 −35500.49 −35501.91 −35523.82 −35578.79 −35652.32
IW-iHMM-F 5 −33752.66 −33833.63 −33919.43 −34014.91 −34144.16

IW-F 7 −35373.08 −35378.01 −35403.69 −35462.16 −35555.23
IW-IHMM-F 7 −33742.93 −33817.22 −33907.29 −34007.32 −34158.26

IW-F 10 −35266.59 −35280.06 −35307.46 −35368.11 −35479.17
IW-IHMM-F 10 −33733.78 −33824.80 −33921.19 −34033.74 −34175.87

RCOV discount −34387.43 −34635.97 −34648.43 −34701.31 −34861.64
COV discount −49411.45 −49762.37 −50359.85 −51631.38 −59408.23
VDGARCH-t −34225.88 −34307.13 −34359.42 −34474.16 −34811.07

The table reports the cumulative log-predictive likelihoods for return data at different forecast horizon h.
Bold entries denote the maximum value in each column.
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Table 7: Sample mean of RV of global minimum variance portfolios: 60 assets

Model Factors h = 1 h = 5 h = 10 h = 20 h = 60
IW-F 1 0.3364 0.3382 0.3434 0.3532 0.3522
IW-IHMM-F 1 0.3219 0.3221 0.3219 0.3232 0.3266

IW-F 3 0.3335 0.3329 0.3348 0.3423 0.3369
IW-IHMM-F 3 0.3225 0.3211 0.3221 0.3226 0.3241

IW-F 5 0.3312 0.3291 0.3314 0.3411 0.3349
IW-IHMM-F 5 0.3193 0.3218 0.3239 0.3254 0.3271

IW-F 7 0.3288 0.3259 0.3267 0.3377 0.3324
IW-IHMM-F 7 0.3171 0.3202 0.3217 0.3228 0.3248

IW-F 10 0.3255 0.3238 0.3243 0.3366 0.3316
IW-IHMM-F 10 0.3171 0.3196 0.3211 0.3221 0.3230

RCOV discount 0.3475 0.3586 0.3635 0.3746 0.3828
EWMA 0.3290 0.3420 0.3496 0.3590 0.3669
RW 0.3787 0.4513 0.4584 0.4669 0.4561
COV discount 0.7780 0.7617 0.7866 0.7822 0.8516
VDGARCH-t 0.3723 0.3710 0.3697 0.3688 0.3753
The table reports the sample mean of RV of global minimum variance portfolios (GMVP) against
forecast horizon h for various models. Bold entries denote the minimum value in each column.
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Table 8: Estimates of ℓ2, ℓ3 and K, 60-asset data

ℓ2 ℓ3 K

Model Factors Mean 0.95DI Mean 0.95DI Mean

IW-F 1 2.00 (2, 2) 15.88 (15, 16)
IW-IHMM-F 1 2.00 (2, 2) 14.98 (14, 16) 16.00

IW-F 3 2.00 (2, 2) 16.00 (16, 16)
IW-IHMM-F 3 10.00 (10, 10) 80.65 (79, 81) 14.00

IW-F 5 11.00 (11, 11) 83.00 (83, 83)
IW-IHMM-F 5 9.00 (9, 9) 66.22 (66, 68) 15.00

IW-F 7 11.00 (11, 11) 83.00 (83, 83)
IW-IHMM-F 7 9.00 (9, 9) 43.03 (43, 44) 15.00

IW-F 10 11.00 (11, 11) 82.93 (83, 83)
IW-IHMM-F 10 11.00 (11, 11) 92.21 (92, 93) 16.00

K =number of alive clusters in the mixture

Table 9: Model running time: 60-asset data

Parametric models Factors Run time Nonparametric models Factors Run time

IW-F 1 3m49s IW-IHMM-F 1 7m46s
IW-F 3 4m7s IW-IHMM-F 3 7m37s
IW-F 5 4m57s IW-IHMM-F 5 8m25s
IW-F 7 6m49s IW-IHMM-F 7 9m55s
IW-F 10 8m37s IW-IHMM-F 10 12m55s
VDGARCH-t days

The table records the running time of 20000 draws of MCMC simulation for each model. All models
are estimated on a Linux machine with an Intel Xeon E5-2692 v2 CPU with 12 CPU cores. Parallel
computing is implemented whenever possible.
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Figure 1: Diagonal elements of Σ∗
t for 10-asset data
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