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Abstract

Undergraduate students learn economic growth theory through the seminal Solow
model, which takes the growth rate of technology as given. To understand the origin
of technological progress, we need a model of endogenous technological change. The
Romer model fills this important gap in the literature. However, given its complexity,
undergraduate students often find the Romer model difficult. This paper proposes a
simple method of teaching the Romer model. We add three layers of structure (one at
a time) to extend the familiar Solow model into the less familiar Romer model. First,
we incorporate a competitive market structure into the Solow model. Then, we modify
the competitive market structure into a monopolistic market structure. Finally, we
introduce an R&D sector that creates inventions.
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1 Introduction

Economic growth is an important topic in economics. As Acemoglu (2013) argues, "eco-
nomics instructors should spend more time teaching about economic growth and develop-
ment at the undergraduate level because the topic is of interest to students, is less abstract
than other macroeconomic topics, and is the focus of exciting research in economics." Un-
dergraduate students learn the theory of economic growth through the seminal Solow model
originated from Solow (1956). This elegant model provides the following important insight:
in the long run, economic growth must come from technological progress instead of capital
accumulation. However, the Solow model takes the growth rate of technology as given, and
hence, it does not provide insight on the determinants of technological progress. The Romer
model, originated from Romer (1990), fills this important gap in the literature and enhances
economists’ understanding of endogenous technological change. Taylor (2010) writes that
"teaching beginning students the Solow model, augmented with endogenous technology, is
the first step toward teaching them modern macroeconomics."
Unfortunately, the Romer model is relatively complicated, and undergraduate students

often find it difficult. In particular, although it is not difficult to demonstrate the key assump-
tion in the Romer model that technological change is driven by research and development
(R&D), it is much more difficult to demonstrate how the level of R&D is determined in the
market equilibrium within the Romer model. Therefore, macroeconomic textbooks at the
intermediate level, such as Jones (2016) and Barro, Chu and Cozzi (2017), often assume a
given level of R&D when presenting the Romer model.1

This paper proposes a simple method of teaching the Romer model by adding three
layers of structure (one at a time) to extend the familiar Solow model into the less familiar
Romer model. First, we incorporate into the Solow model a competitive market structure in
which final goods are produced by competitive firms that employ labor and rent capital from
households. Then, we modify the competitive market structure into a monopolistic market
structure in which differentiated intermediate goods are produced by monopolistic firms.
Finally, we introduce to the monopolistic Solow model an R&D sector, which develops new
varieties of intermediate goods and gives rise to endogenous technological progress. Once
we derive the endogenous growth rate of technology, we can then perform experiments in
this mathematical laboratory by using comparative statics to explore the determinants of
technological progress. All mathematical derivations are based on simple calculus and algebra
at the level of intermediate microeconomics. We hope that by presenting it as a step-by-step
extension of the Solow model, we have made the Romer model more accessible, at least to
advanced undergraduate students in economics.
The rest of this paper is organized as follows. Section 2 presents the step-by-step trans-

formation of the Solow model into the Romer model. Section 3 offers concluding thoughts.

1See Aghion and Howitt (2009) and Jones and Vollrath (2013) for an excellent and complete treatment
of the Romer model at the advanced undergraduate level.

2



2 From Solow to Romer

Section 2.1 reviews a basic version of the Solow model with exogenous technological progress.
Section 2.2 incorporates a competitive market structure into the Solow model.2 Section 2.3
modifies the competitive market structure into a monopolistic market structure. Section
2.4 introduces an R&D sector to the monopolistic Solow model, which becomes the Romer
model with endogenous technological progress.

2.1 The Solow model

In this subsection, we consider a basic version of the Solow model with exogenous technolog-
ical progress. Output Y is produced by an aggregate production function Y = Kα(AL)1−α,
where A is the level of technology that grows at an exogenous rate g > 0, K is the stock
of capital, and L is the size of a constant labor force. The parameter α ∈ (0, 1) determines
capital intensity α and labor intensity 1 − α in the production process. The key equation
in the Solow model is the capital-accumulation equation given by ∆K = I − δK, where
the parameter δ > 0 is the depreciation rate of capital. Investment I is assumed to be a
constant share s ∈ (0, 1) of output Y . Substituting the investment function I = sY and the
production function Y = Kα(AL)1−α into the capital-accumulation equation yields

∆K

K
=
sY

K
− δ = s

(
AL

K

)
1−α

− δ. (1)

Equation (1) can then be used to explore the transition dynamics of an economy from an
initial state to the steady state, which is a common analysis in macroeconomic textbooks at
the intermediate level. In the long run, the economy is on a balanced growth path, along
which capital K grows at a constant rate implying that Y/K and A/K are constant in the
long run. This in turn implies that in the long run, output Y and capital K grow at the
same rate as technology A; i.e.,

∆Y

Y
=
∆K

K
=
∆A

A
≡ g.

This is an important insight of the Solow model, which shows that in the long run, economic
growth comes from technological progress (i.e., g > 0), without which the growth rate of the
economy would converge to zero due to decreasing returns to scale of capital in production.

2.2 The Solow model with a competitive market structure

The basic Solow model above does not feature any market structure. Here we embed a
market economy into the model in which competitive firms produce goods Y by employing
labor L and renting capital K from households, which devote a constant share s of income
to accumulate capital. The capital-accumulation equation is given by

∆K = s(WL+RK)− δK, (2)

2Solow (1956) also discusses the implications of his model in a competitive market.
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where W is the real wage rate and R is the real rental price of capital. Competitive firms
produce goods Y to maximize real profit Π. The production function Y = Kα(AL)1−α

is the same as before, whereas the profit function is given by Π = Y −WL − RK. From
profit maximization, the first-order conditions that equate the real wage rate to the marginal
product of labor and the real rental price to the marginal product of capital are given by

W = (1− α)
Y

L
, (3)

R = α
Y

K
. (4)

Substituting (3) and (4) into (2) yields the same capital-accumulation equation as in (1)
because wage income and capital income add up to the level of output. Therefore, dynamics
and long-run growth in the two versions of the Solow model are the same.

2.3 The Solow model with a monopolistic market structure

In this subsection, we further introduce a monopolistic sector of differentiated intermediate
goods into the Solow model. The production function of final goods Y is now given by

Y = L1−α
N∑

i=1

Xα
i , (5)

where Xi denotes intermediate goods i ∈ [1, N ] and the number of intermediate goods N
increases at the rate g. The profit function of competitive firms that produce final goods is

Π = Y −WL−
N∑

i=1

PiXi.

From profit maximization, the first-order conditions are given by (3) and

Pi = αL
1−αXα−1

i , (6)

for i ∈ [1, N ].
The monopolistic firm in industry i produces Xi units of intermediate goods by renting

Xi units of capital from households. The profit function of the firm in industry i is

πi = PiXi −RXi. (7)

The monopolistic firm chooses Xi to maximize πi subject to the conditional demand function
in (6). The profit-maximizing price of Xi is Pi = R/α. For a more general treatment,
we assume that firms may not be able to charge this profit-maximizing price due to price
regulation as in Evans et al. (2003). In this case, the price of Xi is given by Pi = µR,
where µ ∈ (1, 1/α). Substituting Pi = µR into (6) shows that Xi = X for i ∈ [1, N ]. Then
the resource constraint on capital requires that NX = K; i.e., the usage of capital by all
intermediate goods firms equals the total supply of capital.
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Imposing symmetry Xi = X and then substituting X = K/N into (5) yield

Y = L1−αNXα = Kα(NL)1−α, (8)

which is the same production function as in the basic Solow model when A = N . Therefore,
the level of technology A in the basic Solow model is interpreted as the number of differenti-
ated intermediate goods N in this monopolistic Solow model. The growth rate of technology
is determined by the growth rate of N , which is also g. As before, households devote a
constant share s of income to accumulate capital. The capital-accumulation equation is3

∆K = s(WL+RK +Nπ)− δK. (9)

From (3), we haveWL = (1−α)Y whereas we can derive Nπ = (µ−1)RK from (7). Finally,
using (6), one can show that RK = αY/µ. Therefore, WL+RK +Nπ = Y , which together
with (8) implies that (9) is the same capital-accumulation equation as in (1). Intuitively,
wage income, capital income and monopolistic profit add up to the level of output, whereas
investment is assumed to be a constant share of output. Once again, dynamics and long-run
growth in the three versions of the Solow model are the same.

2.4 The Romer model

In the above models, the technology growth rate g is assumed to be exogenous. To endogenize
technological progress, we introduce an R&D sector to the monopolistic Solow model, which
then becomes a version of the Romer model with an exogenous saving rate s. Aside from the
R&D sector, the Romer model is the same as the monopolistic Solow model except that labor
is now allocated between R&D and the production of final goods. Equation (5) becomes

Y = L1−αY

N∑

i=1

Xα
i ,

where LY denotes production labor. From the profit maximization of competitive firms that
produce final goods, the first-order conditions are given by (6) and

W = (1− α)
Y

LY
. (10)

We follow Romer (1990) to specify the following innovation equation for the creation of
new differentiated intermediate goods:

∆N = θNLR, (11)

where the parameter θ > 0 captures R&D productivity. LR is R&D labor, and the resource
constraint on labor is LR + LY = L. Given that the R&D sector is perfectly competitive,
zero profit implies that R&D revenue ∆Nv equals R&D cost WLR; i.e.,

∆Nv = WLR ⇔ θNv = W , (12)

3Alternatively, one can assume that monopolistic profit does not contribute to capital investment; i.e.,
I = s(WL+RK) = s(1−α+α/µ)Y , where µ > 1 captures the monopolistic distortion that leads to a lower
level of investment and capital. In this case, output and capital would still grow at g in the long run.
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where v is the value of an invention. The value of an invention is the present value of future
monopolistic profits. Let’s use r to denote the exogenous real interest rate.4 In the steady
state, the value v of an invention is given by

v =
π

r
=
1

r

(
µ− 1

µ

)
αY

N
, (13)

where the second equality uses Nπ = (µ − 1)RK and RK = αY/µ from the previous
subsection. Rewriting (10) yields W/Y = (1− α)/LY whereas rewriting (12) yields W/Y =

θNv/Y = θ
r

(
µ−1

µ

)
α. Equating these two equations yields the steady-state equilibrium level

of production labor L∗Y as shown in Figure 1.

Figure 1: Equilibrium production labor

Substituting L∗Y into the resource constraint on labor yields the steady-state equilibrium
level of R&D labor L∗R given by

5

L∗R = L− L
∗

Y = L−
1− α

α

(
µ

µ− 1

)
r

θ
.

Therefore, the long-run growth rate of technology in the Romer model is

g∗ ≡
∆N

N
= θL∗R = θL−

1− α

α

(
µ

µ− 1

)
r. (14)

This endogenous technology growth rate g∗ is also the long-run growth rate of output and
capital. To see this, we use the following capital-accumulation equation:6

∆K

K
=
sY

K
− δ = s

(
NLY
K

)
1−α

− δ,

4In the original Romer model, the interest rate is endogenous and determined by the household’s optimal
consumption path. To avoid using dynamic optimization, we assume an exogenous interest rate. Under this
assumption, the no-arbitrage condition r = R−δ may not hold given the investment rate s is also exogenous.

5Labor force L is assumed to be sufficiently large such that L∗R > 0.
6To derive this equation, we assume households devote s(WLY + RK + Nπ) to capital investment I,

and R&D wage income WLR is invested in intangible capital (i.e., the value of new inventions ∆Nv). As in
footnote 4, one could assume I = s(WLY +RK) = s(1−α+α/µ)Y to allow for monopolistic distortion on
capital accumulation, in which case the long-run growth rate of output and capital is still g∗ in (14).
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where production labor LY is stationary in the long run. Therefore, a constant growth rate
of capital K on the balanced growth path implies that Y/K and N/K are stationary in the
long run.
Given the expression for the endogenous growth rate in (14), we can now perform exper-

iments in this mathematical laboratory by using comparative statics to explore the determi-
nants of economic growth in the Romer model. Equation (14) shows that the equilibrium
growth rate g∗ is increasing in {θ, α, µ, L} and decreasing in r. The intuition of these com-
parative statics results can be explained as follows.

2.4.1 Experiment 1: changing R&D productivity

An improvement in R&D productivity θ increases the growth rate of technology for a given
level of R&D labor and also makes R&D more attractive, which in turn increases R&D labor
in the economy. Therefore, g∗ is increasing in θ. This parameter θ captures the importance
of human capital on the innovation capacity of an economy.

2.4.2 Experiment 2: changing capital and labor intensity in production

An increase in α increases capital intensity and reduces labor intensity in the production
process, allowing more labor to be devoted to R&D. Therefore, g∗ is increasing in α. This
parameter α captures the effects of structural transformation of an economy from a labor-
intensive production process to a capital-intensive production process.

2.4.3 Experiment 3: changing the monopolistic price

A larger µ enables monopolistic firms to raise their price and earn more profits, which in
turn provide more incentives for R&D. Therefore, g∗ is increasing in µ. This parameter µ
captures the effects of the underlying economic institutions, such as antitrust policies, on
R&D and economic growth.

2.4.4 Experiment 4: changing the interest rate

A higher interest rate r reduces the present value of future monopolistic profits and the value
of inventions, which in turn decreases R&D in the economy. Therefore, g∗ is decreasing in
r. This parameter r captures the effects of financial frictions on innovation.

2.4.5 Experiment 5: changing the size of the labor force

Finally, a larger labor force L increases the supply of labor in the economy, which in turn
increases R&D labor and the growth rate. Therefore, g∗ is increasing in L. This is known
as the scale effect in the literature.7

7This scale effect is often viewed as a counterfactual implication of the Romer model. To remove this
scale effect, one can follow Jones (1995) to modify (11) into ∆N = θNφLR, where the parameter φ < 1
captures the degree of intertemporal knowledge spillovers.

7



3 Conclusion

Since the seminal work of Solow (1956), there has been much progress in the research of eco-
nomic growth. However, the teaching of economic growth in undergraduate macroeconomic
courses is still mostly based on the Solow model. Although this seminal model provides
important insights, it takes the growth rate of technology as given. To understand the origin
of technological progress, we need a model of endogenous technological change. The Romer
model provides a useful framework for this purpose. However, given its complexity, under-
graduate students often find the Romer model difficult. In this paper, we have proposed
a method that serves as a bridge between the Solow model and the Romer model in three
simple steps. Furthermore, the mathematical derivations involve only basic calculus and al-
gebra. We hope that by providing a bridge with the Solow model, we have made the Romer
model more accessible to undergraduate students in economics.
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