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Abstract

We consider robust inference for an autoregressive parameter in a station-

ary autoregressive model with GARCH innovations when estimation is based

on least squares estimation. As the innovations exhibit GARCH, they are by

construction heavy-tailed with some tail index κ. The rate of consistency as

well as the limiting distribution of the least squares estimator depend on κ. In

the spirit of Ibragimov and Müller (“t-statistic based correlation and hetero-

geneity robust inference”, Journal of Business & Economic Statistics, 2010,

vol. 28, pp. 453-468), we consider testing a hypothesis about a parameter

based on a Student’s t-statistic for a fixed number of subsamples of the origi-

nal sample. The merit of this approach is that no knowledge about the value

of κ nor about the rate of consistency and the limiting distribution of the least

squares estimator is required. We verify that the one-sided t-test is asymp-

totically a level α test whenever α ≤ 5% uniformly over κ ≥ 2, which includes

cases where the innovations have infinite variance. A simulation experiment

suggests that the finite-sample properties of the test are quite good.

Keywords: t-test, AR-GARCH, regular variation, least squares estimation.

JEL Classification: C12, C22, C46, C51.

1 Introduction

We consider, as in Zhang and Ling (2015) (ZL hereafter), the AR(p) model,

yt =
p
∑

i=1

φiyt−i + εt, (1.1)

∗Address: University of Copenhagen, Department of Economics, Oester Farimagsgade 5, Build-
ing 26, 1353 Copenhagen K, Denmark. Phone: (+45)35323074. Fax: (+45)35323000. E-mail:
rsp@econ.ku.dk
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where εt follows a general GARCH (GGARCH) process,

εt = ηtht, hδ
t = b(ηt−1) + c(ηt−1)h

δ
t−1, (1.2)

with (ηt : t ∈ Z) an I.I.D. process, δ > 0, and b, c : R → R+ such that P (hδ
t > 0) = 1

and c(0) < 1. The objective of this paper is to propose a robust method for testing a

hypothesis about an element of the vector φ := (φ1, ..., φp)′ ∈ R
p when φ is estimated

with the OLS estimator,

φ̂ =





n
∑

t=p+1

Yt−1Y
′

t−1





−1



n
∑

t=p+1

Yt−1yt



 , (1.3)

where Yt = (yt, ..., yt−p+1)
′ and n is the length of the sample. Specifically, suppose

that we want to test H0 : φi = φi,0 for some i = 1, ..., p against the alternative φi 6=
φi,0. What complicates inference in the model is that (under suitable conditions) the

distribution of εt will be regularly varying with some tail index κ > 0. As recently

demonstrated by ZL, the value of κ will determine the rate of consistency as well

as the limiting distribution of the (suitably scaled) OLS estimator. The limiting

distribution is given by the distribution of some function of a stable random vector

with index κ/2 ∧ 2. We note that the tail index may be estimated, by e.g. a Hill

estimator, but even for a known κ ∈ (0, 4) the limiting distribution of the OLS

estimator is only partly known, in the sense that the parameters of the limiting

stable distributions are stated in terms of limiting point processes, see e.g. Davis

and Hsing (1995) and Davis and Mikosch (1998). As pointed out by Lange (2011,

Remark 3), we do not have an expression for the dispersion parameter or for the

dependence structure of the stable vector.

Under suitable conditions in line with the assumptions by ZL, we show that each

element of the OLS estimator has a mixed Gaussian distribution. This property

will show up to be very useful, as it allows us to apply a two-sided t-statistic based

on a fixed number of subsamples, as recently considered by Ibragimov and Müller

(2010, 2016) and Ibragimov et al. (2015, Chapter 3.3). Specifically, we split our

original sample into q ≥ 2 (without loss of generality) equi-sized subsamples (yt :

t = 1 + (i − 1)⌊n/q⌋, ..., i⌊n/q⌋), i = 1, ..., q, where ⌊x⌋ denotes the integer part of

x ∈ R. For each subsample we obtain the OLS estimator for φ,

φ̂(j) =





j⌊n/q⌋
∑

t=p+1+(j−1)⌊n/q⌋

Yt−1Y
′

t−1





−1



j⌊n/q⌋
∑

t=p+1+(j−1)⌊n/q⌋

Yt−1yt



 , j = 1, ..., q. (1.4)
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Let

Xj := (φ̂i

(j) − φi,0), j = 1, ..., q, (1.5)

and obtain the t-statistic based on q “observations”,

τφi=φi,0
=

√
q

X̄

sX

, (1.6)

where X̄ := q−1∑q
j=1 Xj and s2

X := (q − 1)−1∑q
j=1(Xj − X̄)2. With Tq−1 a random

variable with a Student’s t-distribution with q − 1 degrees of freedom, and with

cvq(α) satisfying P (|Tq−1| > cvq(α)) = α for α ≤ 5%, we show that whenever κ ≥ 2

(which is the region of the tail index for which the OLS estimator is consistent for φ),

P (|τφi=φi,0
| > cvq(α)) ≤ α as n → ∞ under H0. Hence the two-sided t-test is asymp-

totically a level α test, and is robust in the sense that we are able to make inference

about φi without requiring any knowledge about the rate of consistency of the OLS

estimator as well as any knowledge about its limiting distribution. This property

relies on showing that the suitably scaled Xj is asymptotically mixed Gaussian and

that Xj and Xk are asymptotically independent for j 6= k.

It is by now well-known that many time series exhibit heavy-tail behavior, as

investigated in e.g. Loretan and Phillips (1994) in terms of financial time series.

Least squares estimation of the autoregressive parameters in stationary AR mod-

els driven by heavy-tailed independent innovations has been studied by Davis and

Resnick (1986) and bootstrap-based inference has been considered by Davis and

Wu (1997) and Cavaliere et al. (2016a). In terms of dependent heavy-tailed innova-

tions, Mikosch and Stărică (2000), Lange (2011), and Zhang and Ling (2015) have

investigated the properties of the least squares estimator. More recently, Cavaliere

et al. (2016b) have considered bootstrap inference in non-stationary linear time se-

ries with innovations driven by a heavy-tailed linear process. We are not aware of

any other papers on robust inference in stationary autoregressions with heavy-tailed

GARCH-type innovations.

The remainder of the paper is organized as follows. In Section 2 we present the

asymptotic properties of the OLS estimator. In Section 3 we show that the two-

sided t-test is asymptotically a level α test. Section 4 contains a short simulation

experiment where we investigate the finite-sample properties of the t-test when

testing for a zero-valued autoregressive coefficient in an AR(1)-ARCH(1) model

with potential infinite variance. Section 5 states sufficient conditions for β-mixing

for the process (1.1)-(1.2). This property is used for showing that the subsample

estimators are asymptotically independent.

Notation: We say that a random variable has a mixed Gaussian distribution with
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median µ ∈ R, if it has pdf of the form,
∫∞

0 φ ((x − µ)/σ) dF (σ) , where φ(·) is the

standard normal pdf, and F (·) is an arbitrary cdf on R+ := {x ∈ R : x ≥ 0}. Unless

stated otherwise, all limits are taken as the sample size n tends to infinity, and “
w→”

denotes convergence in distribution. For two functions f, g : R → R+, f(x) ∼ g(x)

if limx→∞ f(x)/g(x) = 1.

2 Properties of the OLS estimator

In this section we present the properties of the OLS estimator for φ in (1.3). We

make the following assumptions about the model in (1.1)-(1.2), in line with ZL.1

Assumption 2.1.

1. E[log(c(ηt))] < 0.

2. There exists a k0 > 0 such that E[(c(ηt))
k0 ] ≥ 1, E[(c(ηt))

k0 log+(c(ηt))] < ∞,

where log+(x) = max{0, log(x)}. Moreover, P (b(ηt) = 0) < 1, E[b(ηt)
k0 ] < ∞,

and E[|ηt|δk0 ] < ∞.

3. The distribution of ηt is symmetric and has a Lebesgue density that is strictly

positive on a neighborhood of zero, such that the conditional distribution of

log c(ηt) given {c(ηt) > 0} is non-arithmetic.

4. 1 −∑p
i=1 φiz

i 6= 0 for |z| ≤ 1.

Note that Assumptions 2.1.1-2 imply that there exists an almost surely unique,

strictly stationary, and ergodic solution to hδ
t = b(ηt−1) + c(ηt−1)h

δ
t−1, see e.g. Bu-

raczewski et al. (2016, Theorem 2.1.3). Due to the Kesten-Goldie theorem, see e.g.

Kesten (1973, Theorem 4), Assumptions 2.1.1-3 imply that there exists a unique

κ ∈ (0, δk0] such that E[(c(ηt))
κ/δ] = 1 and P (|ht| > x) ∼ c0x

−κ for some constant

c0 > 0 as x → ∞. Breiman’s lemma then ensures that P (|εt| > x) ∼ c0E[|ηt|κ]x−κ,

see also Lemma 2.1 in ZL. By the symmetry of ηt, the distribution of εt is symmetric

and satisfies

P (εt > x) ∼ (c0/2)E[|ηt|κ]x−κ and P (−εt > x) ∼ (c0/2)E[|ηt|κ]x−κ.

1Compared to assumptions H1-H3 in ZL, we have included some slightly stronger conditions.
We have added that P (b(ηt) = 0) < 1 and that the conditional distribution of log c(ηt) given
{c(ηt) > 0} is non-arithmetic, which appears to be required in order to apply Theorem 4 of Kesten
(1973) in the proof of Lemma 2.1 in the supplementary material to ZL.
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Likewise (under Assumptions 2.1), yt has a symmetric distribution, and by argu-

ments given in Lange (2011), yt has the same tail index as εt. In particular, As-

sumption 2.1 implies that the process in (1.1)-(1.2) has a strictly stationary and

ergodic solution satisfying

yt =
∞
∑

i=0

ϕiεt−i.

We will assume throughout that Assumptions 2.1 is satisfied such that the process

(yt) is stationary and ergodic. Moreover, as in ZL, we will assume that E[η2
t ] = 1 if

κ ≥ 2. Lastly, note that if κ > 2,

Σ := E[YtY
′

t ] exists and is positive definite, (2.1)

such that (n−p)−1∑n
t=p+1 Yt−1Y

′
t−1 = Σ+o(1) almost surely. Assumption 2.1 implies

the following result, due to Theorem 2.1 of ZL.

Theorem 2.2. Under Assumption 2.1, let κ > 0 satisfy E[(c(ηt))
κ/δ] = 1. Moreover,

define

a(κ)
n :=































log(n) if κ = 2,

n1−2/κ if κ ∈ (2, 4),

(n/ log(n))1/2 if κ = 4,

n1/2 if κ > 4.

With φ̂ defined in (1.3) and φ0 the true value of φ,

1. if κ ∈ (0, 2),

(φ̂ − φ0)
w→ Σ−1

κ/2Z̃κ/2,

where Z̃κ/2 is a p-dimensional stable vector with index κ/2 and Σκ/2 is a p × p

matrix with elements containing stable variables with index κ/2,

2. if κ = 2,

a(κ)
n (φ̂ − φ0)

w→
(

∞
∑

l=0

ϕlϕl+|i−j|

)−1

i,j=1,...,p

Z1,

where
(

∑∞
l=0 ϕlϕl+|i−j|

)

i,j=1,...,p
is a p × p matrix and Z1 is a stable vector with

index one;

3. if κ ∈ (2, 4),

a(κ)
n (φ̂ − φ0)

w→ Σ−1Zκ/2,

where Zκ/2 is a p-dimensional stable vector with index κ/2 and Σ is given by

(2.1);
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4. if κ = 4,

a(κ)
n (φ̂ − φ0)

w→ Σ−1N(0, A),

where A is some positive definite constant p × p matrix;

5. if κ > 4,

a(κ)
n (φ̂ − φ0)

w→ Σ−1N(0, Ã),

where Ã is some positive definite constant p × p matrix.

Remark 2.3. The limiting distribution for the case κ > 4 in the above theorem is not

stated in ZL, but is immediate by noting that (φ̂−φ0) = (
∑n

t=p+1 Yt−1Y
′

t−1)
−1(

∑n
t=p+1 Yt−1εt)

and by an application of a CLT for martingales to the quantity n−1/2∑n
t=p+1 Yt−1εt.

The above theorem states the rate of consistency of the OLS estimator as well

as its limiting distribution. Notice that the estimator is inconsistent for κ ∈ (0, 2),

and we will throughout focus on the case κ ≥ 2, which includes the possibility that

εt has infinite variance (κ = 2). Due to the symmetry of εt and yt, we have that

the skewness and location parameters of the elements of Zκ/2 are equal to zero, and

hence that each element of Zκ/2 has a symmetric stable distribution with index κ/2.

This is stated in the following lemma that will be essential for making inference

based on the two-sided t-test.

Lemma 2.4. Suppose that the assumptions of Theorem 2.2 hold. For κ ≥ 2, each

marginal of the limiting distribution of a(κ)
n (φ̂ − φ0), stated in Theorem 2.2, is mixed

Gaussian with zero median.

Proof. Note that (φ̂ − φ0) = (
∑n

t=p+1 Yt−1Y
′

t−1)
−1(

∑n
t=p+1 Yt−1εt). For κ ∈ [2, 4) is

Zκ/2 is the weak limit of the suitably scaled
∑n

t=p+1 Yt−1εt. The symmetry of εt

implies that Yt−1εt is symmetric, and hence that Zκ/2 has a symmetric stable distri-

bution. By Samorodnitsky and Taqqu (1994, Theorem 2.1.2),
(

∑∞
l=0 ϕlϕl+|i−j|

)−1
Z1

and Σ−1Zκ/2 have symmetric marginals. The result then follows by noting that any

univariate symmetric stable distribution is mixed Gaussian (Samorodnitsky and

Taqqu, 1994, Proposition 1.3.1) with zero median. For κ ≥ 4 the result is immedi-

ate.

3 Inference based on the t-statistic

We seek to test the hypothesis

H0 : φi = φi,0,
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against φi 6= φi,0 for some i = 1, ..., p. This will be done by relying on a t-statistic

based on q ≥ 2 subsamples of the original sample. Specifically, let Xj and τφi=φi,0
be

defined as in (1.5) and (1.6), respectively. By Lemma 2.4, we have that a
(κ)
⌊n/q⌋Xj is

asymptotically mixed Gaussian, and, as will be shown below, a
(κ)
⌊n/q⌋Xj and a

(κ)
⌊n/q⌋Xk

are asymptotically independent for j 6= k. This motivates an application of the

following lemma due to Ibragimov and Müller (2010, Theorem 1 and comments in

Section 2.2).

Lemma 3.1. Let (Zj : j = 1, ..., q) be a sequence of q ≥ 2 independent mixed

Gaussian variables with zero median. Let

τ =
√

q
Z̄

sZ

,

where Z̄ := q−1∑q
j=1 Zj and s2

Z := (q − 1)−1∑q
j=1(Zj − Z̄)2 > 0. With Tq−1 a

Student’s t-distributed random variable with degrees of freedom q − 1, let cvq(α)

satisfy P (|Tq−1| > cvq(α)) = α. Then if α ≤ 5%,

P (|τ | > cvq(α)) ≤ P (|Tq−1| > cvq(α)) = α.

As pointed out by Ibragimov and Müller (2010), the result holds for α ≤
2Φ(−

√
3) = 0.08326... where Φ is the cdf of the standard normal distribution.

Moreover, the result does also hold for q ∈ {2, ..., 14} if α ≤ 10% and q ∈ {2, 3} if

α ≤ 20%. We will throughout focus on the case α ≤ 5%.

The following lemma contains sufficient conditions for asymptotic independence

between the normalized subsample estimators, a
(κ)
⌊n/q⌋Xj and a

(κ)
⌊n/q⌋Xk for j 6= k.

Lemma 3.2. Suppose that Assumption 2.1 holds and that the process (yt) is β-

mixing. With Xj defined in (1.5) and a(κ)
n defined in Theorem 2.2, for κ ≥ 2,

a
(κ)
⌊n/q⌋Xj and a

(κ)
⌊n/q⌋Xk are asymptotically independent for j, k = 1, .., q, with j 6= k.

Remark 3.3. The lemma relies on assuming that (yt) is β-mixing. In Section 5

we give sufficient conditions for this property to hold. These conditions impose

additional smoothness restrictions on the functions b and c driving ht in (1.2). We

emphasize that the conditions are sufficient, and we conjecture that they can be

relaxed. Moreover, it might be possible to relax the assumption about β-mixing.

This assumption is used for making a coupling argument in the proof of Lemma 3.2

below, which might be adapted to e.g. strongly mixing process. We refer to Chapter

5 of Rio (2017) for more details on mixing processes and coupling.

Proof. Without loss of generality we may assume that p = 1 and q = 2 such that

φ = φ1 and Yt−1 = yt−1. In light of the proof of Theorem 2.1 in ZL, it suffices to show

7



that ã−1
⌊n/2⌋

∑⌊n/2⌋
t=2 yt−1εt and ã−1

⌊n/2⌋

∑2⌊n/2⌋
t=2+⌊n/2⌋ yt−1εt are asymptotically independent,

where ãn = n2/κ if κ ∈ [2, 4), ãn =
√

n log(n) if κ = 4, and ãn =
√

n for κ > 4. Due

to the Cramér-Wold device, the asymptotic independence holds, if we show that for

any (k1, k2) ∈ R
2, k1ã

−1
⌊n/2⌋

∑⌊n/2⌋
t=2 yt−1εt+k2ã

−1
⌊n/2⌋

∑2⌊n/2⌋
t=2+⌊n/2⌋ yt−1εt

w→ k1Z
(1)
2/κ+k2Z

(2)
2/κ

where Z
(1)
2/κ and Z

(2)
2/κ are independent and identically distributed stable random

variables with index κ/2 ∧ 2. Let ñ := ñ(n) be an increasing sequence of positive

integers satisfying ñ = o(n) as n → ∞. It holds that

ã−1
⌊n/2⌋

2⌊n/2⌋
∑

t=2+⌊n/2⌋

yt−1εt = ã−1
⌊n/2⌋

2+⌊n/2⌋+ñ
∑

t=2+⌊n/2⌋

yt−1εt + ã−1
⌊n/2⌋

2⌊n/2⌋
∑

t=3+⌊n/2⌋+ñ

yt−1εt

=: S(1)
n + S(2)

n .

Note that

S(1)
n =

ã⌊ñ⌋

ã⌊n/2⌋

ã−1
⌊ñ⌋

2+⌊n/2⌋+ñ
∑

t=2+⌊n/2⌋

yt−1εt.

By Lemmas 3.2 and 3.3 of ZL, ã−1
⌊ñ⌋

∑2+⌊n/2⌋+ñ
t=2+⌊n/2⌋ yt−1εt = Op(1) for κ ∈ [2, 4]. By

a CLT for martingales the same property holds for κ > 4. Since ã⌊ñ⌋/ã⌊n/2⌋ =

o(1), we conclude that S(1)
n = op(1). Since (yt) is β-mixing it follows by a result

for exact coupling, see e.g. Theorem 5.1 of Rio (2017), that as ñ → ∞, S(2)
n =

ã−1
⌊n/2⌋

∑2⌊n/2⌋
t=3+⌊n/2⌋+ñ y⋆

t−1ε
⋆
t + op(1), where (y⋆

t : t ∈ Z) is a copy of (yt : t ∈ Z) and

independent of F⌊n/2⌋ := σ(yt : t ≤ ⌊n/2⌋). By Lemmas 3.2 and 3.3 of Zhang and

Ling (2015) (for the case κ ∈ [2, 4]) and a CLT for martingales (for the case κ > 4),

k1ã
−1
⌊n/2⌋

⌊n/2⌋
∑

t=2

yt−1εt + k2ã
−1
⌊n/2⌋

2⌊n/2⌋
∑

t=2+⌊n/2⌋

yt−1εt

= k1ã
−1
⌊n/2⌋

⌊n/2⌋
∑

t=2

yt−1εt + k2ã
−1
⌊n/2⌋

2⌊n/2⌋
∑

t=3+⌊n/2⌋+ñ

y⋆
t−1ε

⋆
t + op(1)

w→ k1Z
(1)
2/κ + k2Z

(2)
2/κ.

Since (ε⋆
t : t ∈ Z) and

∑⌊n/2⌋
t=2 yt−1εt are independent, we conclude that Z

(1)
2/κ and Z

(2)
2/κ

are independent.

The following theorem is immediate from Lemmas 2.4, 3.1, 3.2, and an applica-

tion of the continuous mapping theorem.

Theorem 3.4. Under the assumptions of Theorem 2.2, suppose that κ ≥ 2, that

(yt) is β-mixing, and that H0 is true. With Tq−1 a Student’s t-distributed random

variable with degrees of freedom q − 1, let cvq(α) satisfy P (|Tq−1| > cvq(α)) = α.
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With τφi=φi,0
defined in (1.6), if α ≤ 5%,

P (|τφi=φi,0
| > cvq(α)) ≤ α,

as n → ∞.

The theorem states that the usual two-sided t-test, based on a fixed number of

q ≥ 2 subsamples, is asymptotically a level α test for α ≤ 5%. The property holds

uniformly over the tail index κ ≥ 2. We emphasize that the test is straightforward

to carry out in practice, it does not rely on any data-driven choices of number of

subsamples, and it does not require any knowledge about κ (in addition to the

assumption that it is not less than two). Notice that the theorem does not contain

any information about the finite-sample properties of the test. These are investigated

in a simulation experiment in the next section.

4 Simulation experiment

In this section we consider the finite-sample properties of the t-test in a simulation

experiment. As a data-generating process (DGP), we rely on the following AR(1)-

ARCH(1),

yt = φyt−1 + εt, (4.1)

εt = ηtht, ηt ∼ I.I.D.N(0, 1), (4.2)

h2
t = 1 + αη2

t−1h
2
t−1, α ≥ 0. (4.3)

The tail properties of εt have been studied in Embrechts et al. (2012, Chapters 8.4.2-

8.4.3). Specifically, whenever α > 0 and E[log(αη2
t )] < 0, εt is regularly varying with

index κ > 0 satisfying E[(αη2
t )κ/2] = 1. If in addition |φ| < 1, the DGP in (4.1)-

(4.3) satisfies Assumption 2.1. Moreover, it can be shown that the DGP satisfies

Assumption 5.1 in the next section, which ensures that the stationary version of the

DGP is β-mixing, and hence that Theorem 3.4 applies. We investigate the properties

of the t-test for testing the hypothesis H0 : φ = 0 for various cases of tail heaviness

for the 5% significance level. Specifically, we consider the tail indices κ = 2, 3, 4,

corresponding to α = 1, (π1/3/2), 3−1/2, respectively. We compute the empirical

rejection frequencies under the null hypothesis as well as under the alternative for

φ = 0.01, 0.02, ..., 0.5. Similar to the simulation experiments in Ibragimov et al.

(2015, Chapter 3.3) we choose q = 2, 4, 8, 16.

Table 1 contains the empirical rejection frequencies under H0. Overall the rejec-
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tion frequencies seem very reasonable uniformly over κ. The only situations with

remarkable overrejection are for the cases with 100 observations and 16 subsamples.

Figures 4.1-4.6 contain the non-size-corrected as well as size-corrected empirical

power curves under the alternatives φ = 0.01, 0.02, ..., 0.5. Unsurprisingly, the rejec-

tion frequency is increasing in φ and n. Moreover, the empirical power is increasing

in q, and we see that the test based on two subsamples performs quite poorly, even

for a large sample length. On the other hand, the tests based on 8 and 16 subsam-

ples seem to have quite good finite-sample power properties. Lastly, the empirical

power seems to be slightly increasing in the tail heaviness, κ.

κ = 2
n/q 2 4 8 16
100 0.0499 0.0575 0.0631 0.0839
500 0.0461 0.0443 0.0473 0.0543
1000 0.0446 0.0436 0.0467 0.0493

10,000 0.0403 0.0379 0.0416 0.0450

κ = 3
n/q 2 4 8 16
100 0.0474 0.0565 0.0636 0.0832
500 0.0475 0.0461 0.0501 0.0554
1000 0.0475 0.0450 0.0466 0.0479

10,000 0.0480 0.0442 0.0444 0.0507

κ = 4
n/q 2 4 8 16
100 0.0505 0.0585 0.0656 0.0848
500 0.0510 0.0463 0.0508 0.0553
1000 0.0481 0.0462 0.0461 0.0506

10,000 0.0498 0.0466 0.0488 0.0520

Table 1: Empirical rejection frequencies for the t-test for φ = 0 in the AR(1)-
ARCH(1) model in (4.1)-(4.3). The size properties is for the 5% nominal level with
sample length n ∈ {100, 500, 1000, 10000}, number of subsamples q = {2, 4, 8, 16},
and for tail indices κ ∈ {2, 3, 4}. Based on 10,000 Monte Carlo replications and
burn-in periods of 1000 observations.
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Figure 4.1: Empirical rejection frequencies for the t-test for φ = 0 in the AR(1)-
ARCH(1) model in (4.1)-(4.3) under the alternatives φ ∈ {0.01, 0.02, ..., 0.5}.
The power properties is for the 5% nominal level with sample length n ∈
{100, 500, 1000, 10000}, number of subsamples q = {2, 4, 8, 16}, and for tail index
κ = 2. Based on 10,000 Monte Carlo replications and burn-in periods of 1000
observations.
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Figure 4.2: Size-corrected empirical rejection frequencies for the t-test for φ =
0 in the AR(1)-ARCH(1) model in (4.1)-(4.3) under the alternatives φ ∈
{0.01, 0.02, ..., 0.5}. The power properties is for the 5% nominal level with sam-
ple length n ∈ {100, 500, 1000, 10000}, number of subsamples q = {2, 4, 8, 16}, and
for tail index κ = 2. Based on 10,000 Monte Carlo replications and burn-in periods
of 1000 observations.
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Figure 4.3: Empirical rejection frequencies for the t-test for φ = 0 in the AR(1)-
ARCH(1) model in (4.1)-(4.3) under the alternatives φ ∈ {0.01, 0.02, ..., 0.5}.
The power properties is for the 5% nominal level with sample length n ∈
{100, 500, 1000, 10000}, number of subsamples q = {2, 4, 8, 16}, and for tail index
κ = 3. Based on 10,000 Monte Carlo replications and burn-in periods of 1000
observations.
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Figure 4.4: Size-corrected empirical rejection frequencies for the t-test for φ =
0 in the AR(1)-ARCH(1) model in (4.1)-(4.3) under the alternatives φ ∈
{0.01, 0.02, ..., 0.5}. The power properties is for the 5% nominal level with sam-
ple length n ∈ {100, 500, 1000, 10000}, number of subsamples q = {2, 4, 8, 16}, and
for tail index κ = 3. Based on 10,000 Monte Carlo replications and burn-in periods
of 1000 observations.
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Figure 4.5: Empirical rejection frequencies for the t-test for φ = 0 in the AR(1)-
ARCH(1) model in (4.1)-(4.3) under the alternatives φ ∈ {0.01, 0.02, ..., 0.5}.
The power properties is for the 5% nominal level with sample length n ∈
{100, 500, 1000, 10000}, number of subsamples q = {2, 4, 8, 16}, and for tail index
κ = 4. Based on 10,000 Monte Carlo replications and burn-in periods of 1000
observations.
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Figure 4.6: Size-corrected empirical rejection frequencies for the t-test for φ =
0 in the AR(1)-ARCH(1) model in (4.1)-(4.3) under the alternatives φ ∈
{0.01, 0.02, ..., 0.5}. The power properties is for the 5% nominal level with sam-
ple length n ∈ {100, 500, 1000, 10000}, number of subsamples q = {2, 4, 8, 16}, and
for tail index κ = 4. Based on 10,000 Monte Carlo replications and burn-in periods
of 1000 observations.
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5 Sufficient conditions for β-mixing

We now state sufficient conditions for the process (yt) being β-mixing. This relies

on applying results for Markov chains, due to Meitz and Saikkonen (2008) (MS

hereafter). Define

Zt := (yt, .., yt−p, ht)
′ ∈ Z := R

p+1 × R++,

where R++ := {x ∈ R : x > 0}, and let g : R × R++ → R++ satisfy

g(ε, h) = [b(ε/h1/2) + c(ε/h1/2)hδ/2]2/δ. (5.1)

Noting that εt = yt − ∑p
i=1 φiyt−i, we have that ht = g(εt−1, ht−1). We define the

function h : Z → R++ such that ht = h(Zt−1) = g(yt−1 −∑p
i=1 φiyt−1−i, ht−1). Then

define the function F : Z × R → Z such that

Zt =























yt

yt−1

...

yt−p

ht























=























∑p
i=1 φiyt−i

yt−1

...

yt−p

h(Zt−1)























+























h1/2(Zt−1)ηt

0
...

0

0























= F (Zt−1, ηt). (5.2)

Clearly, (Zt) is a Markov chain on Z. In the following we show that the chain is

geometrically ergodic in the sense of Liebscher (2005, Definition 1). This ensures

that the stationary version of the chain is β-mixing. In addition to Assumption 2.1,

we make the following assumptions.

Assumption 5.1.

1. The distribution of ηt has a Lebesgue density which is positive and lower semi-

continuous on R.

2. The functions b, c ∈ C∞, i.e. all their derivatives are continuous on R. The

function b satisfies infx∈R b(x) > 0 and supx∈R
b(x) < ∞. The function c

satisfies limx→∞ c(x) = ∞.

3. If δ < 2, with ϕ̃ : R → R+ given by ϕ(x) = 22/δ−1c(x)2/δ, it holds that

ϕ(0) < 1. Moreover, there exists r > 0 such that E[ϕ̃(ηt)
r] < 1.

4. There exists x1 ∈ R such that b′(x1) = c′(x1) = 0. For any x2 ∈ R+ there

exists x3 ∈ R such that b′(x3) + c′(x3)x2 6= 0.

The above assumptions together with Assumption 2.1 yield the following result.
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Theorem 5.2. Let Zt satisfy (5.2) for t = 1, 2, ... with some initial Z0 ∈ Z. Under

Assumptions 2.1 and 5.1, the Markov chain {Zt : t ∈ N0} is Q-geometrically ergodic.

If the chain is initiated from the invariant distribution, then it is β-mixing with

geometric decay.

Proof. The Q-geometric ergodicity follows by Theorem 1 of MS, provided that As-

sumptions 1-6 of MS hold. Assumption 1 of MS holds by Assumptions 2.1.2 and

5.1.1. Noting that the function f : Rp → R, introduced on p.455 in MS, corresponds

to f(x) = φ′x, we have that Assumption 2 of MS is satisfied. Moreover, Assump-

tion 3 of MS holds by Assumption 2.1.4 and Lemma 1 of MS. With g defined in

(5.1), we have by Assumption 5.1.2 that g is smooth (i.e. it belongs to C∞) and

that inf(ε,h)∈R×R++
g(ε, h) > 0. Hence, Assumption 4(a) of MZ is satisfied. More-

over, by Assumption 5.1.2, for any h ∈ R++, limε→∞ g(ε, h) = ∞, which ensures

that Assumption 4(b) of MS is satisfied. With b := b(0) > 0 and c := c(0) < 1,

we have, in light of Assumption 5.1.2, that the sequence (hk : k = 1, 2, ...) defined

by hk = g(0, hk−1) converges to [a/(1 − b)]2/δ for any h0 ∈ R++. This gives that

Assumption 4(c) of MS is satisfied. For δ ≥ 2, g(h1/2ηt, h) ≤ b̄ + ϕ(ηt)h where

b̄ := supx∈R
b(x)2/δ < ∞ and ϕ(x) = c(x)2/δ with ϕ(0) < 1, since c(0) < 1. Like-

wise, for δ < 2, g(h1/2ηt, h) ≤ b̃ + ϕ̃(ηt)h where b̃ := 22/δ−1 supx∈R
b(x)2/δ < ∞ and

ϕ̃(x) = 22/δ−1c(x)2/δ with ϕ̃(0) < 1, by Assumption 5.1.3. Hence Assumption 4(d)

of MS is satisfied. Turning to Assumption 5 of MS, for the case δ ≥ 2, we have that

Assumption 2.2.1 and the fact that there exists κ > 0 such that E[(c(ηt))
κ/δ] = 1

imply that there exists r > 0 such that E[(c(ηt))
r2/δ] < 1. Hence Assumption 5 of

MS is satisfied if δ ≥ 2. If δ < 2, Assumption 5 of MS holds by Assumption 5.1.3.

Assumption 6 of MS holds by Assumption 5.1.4 and the comments on p. 460 of MS.

The β-mixing holds by Proposition 2 of Liebscher (2005).
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