
Munich Personal RePEc Archive

Time-Varying Price Discovery and

Autoregressive Loading Factors:

Evidence from SP 500 Cash and E-Mini

Futures Markets

Hou, Yang and Li, Steven

School of Accounting, Finance and Economics, Waikato
Management School University of Waikato, Graduate School of
Business and Law (GSBL), RMIT University

17 October 2017

Online at https://mpra.ub.uni-muenchen.de/81999/

MPRA Paper No. 81999, posted 19 Oct 2017 07:36 UTC



Time-Varying Price Discovery and Autoregressive 

Loading Factors: Evidence from S&P 500 Cash and E-

Mini Futures Markets 

 

Yang (Greg) Hou 

Department of Finance 

Waikato Management School 

University of Waikato 

Private Bag 3105, Hamilton, 3240, New Zealand  

Email: greg.hou@waikato.ac.nz 

Telephone number: +64-7-8379402 

 

and 

 

Steven Li* 

Graduate School of Business and Law (GSBL) 

RMIT University 

379-405 Russell St, Melbourne VIC3000, Australia 

Email: steven.li@rmit.edu.au  

Telephone number: +61-3-99251445 
 

 

 

 

                                                 
* Corresponding author.  



Time-Varying Price Discovery and Autoregressive 

Loading Factors: Evidence from S&P 500 Cash and E-

Mini Futures Markets* 

 

Abstract 

The error correction coefficients, known as the loading factors, are a key component for price 
discovery measurement. To date, only constant loading factors have been considered for the 
price discovery measurement.  This paper attempts to consider the autoregressive loading 
factors and their implications for the price discovery measurement.  Based on the minute-by-
minute data from the S&P 500 cash and E-mini futures markets, this paper reveals that the 
loading factors are indeed autoregressive. Furthermore, we propose three AR(1) processes for 
the loading factors and assess their performance in price discovery measurement compared to 
the constant loading factor model. Overall, this research provides supporting empirical 
evidence for using autoregressive loading factors for the price discovery measurement.  
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1. Introduction   

Price discovery measurement has been studied in the literature for decades. So far, there have 

been two groups of measures quantifying how security prices in a cointegrated system 

assimilate new information driving their fundamental values. One group focuses on the static 

price discovery measurement (e.g. Hasbrouck 1995, Gonzalo and Granger 1995, Harris et al. 

2002, Yan and Zivot 2010, Lien and Shrestha 2009 & 2014, Wang and Yang 2011 & 2015, 

Gramming and Peter 2013).  The other group focuses on the time-varying price discovery 

measurement (e.g. Ates and Wang 2005, Chen and Gau 2009 & 2010, Xu and Wan 2015, 

Taylor 2011, Avino et al. 2015, Bell et al. 2016).  However, neither of the two groups allows 

the error correction coefficients (i.e. the loading factors) in the vector error correction model 

(VECM) to be autoregressive for the estimation of the price discovery measures.  

According to the literature, the effects of informed trading on prices may change over time 

(Hasbrouck 1991, Easley and O’Hara 1992, Dufour and Engle, 2000). Hence one may expect 

that the error correction coefficients that capture the impacts of informed trading on the 

formation of efficient prices via the arbitraging activities change over time as well. In other 

words, the long-run impacts of new information on price series may well be time-dependent 

and reflects how informed trading behaves at a specific point in time while the cointegration 

relationship is violated. Thus it is important to investigate the behaviour of non-static loading 

factors.  

 To our knowledge, there have been few studies in the literature investigating whether the 

error correction coefficients follow an autoregressive process. Further, the question whether 

taking into account the autoregressive loading factors benefits the analysis of price discovery 

remains open.  

This paper aims to fill these research gaps in the literature. First, this study tests whether the 

error correction coefficients are autoregressive. Specifically, this study considers stationary 

autoregressive processes of order 1 (AR(1)) for the loading factors in the VECM.  Three 

AR(1) processes are proposed: the conventional AR(1), the sine-function-based AR(1) and 

the cosine-function-based AR(1)1. Empirical tests are carried out for these models based on 

the minute-by-minute data of the S&P 500 cash index and the E-mini futures contacts.   

                                                 
1 It should be noted that we only focus on the basic triangular functions to construct AR(1) models for the 
loading factors. Any other combination of these triangular functions will be left to future studies.  
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Second, this paper investigates the benefits of taking into account the autoregressive loading 

factors for price discovery measurement. We computes the Hasbrouck (1995)’s information 

share (IS), Lien and Shrestha (2009)’s modified information share (MIS) and Lien and 

Shrestha (2014)’s generalised information share (GIS) measures by using both the proposed 

AR(1) loading factors and the conditional covariance of innovations of the VECM2. The 

latter is predicted by an asymmetric generalised dynamic-conditional-correlation (AG DCC) 

GARCH model that is estimated under the assumption that returns follow a more generalised 

skewed Student’s t distribution. The same measures calculated by the constant loading factors 

are derived for comparison purpose3.  In particular, we compare the AR(1) loading factors 

with the constant ones in terms of model evaluation, information share measure estimates and 

their standard deviations. Moreover, a comparison across the autoregressive loading factors is 

conducted using the same criteria. The best AR(1) model on the loading factors is then 

identified.  

This paper contributes to the literature as follows. It is the first one in the literature to 

investigate the autoregressive error correction coefficients in the context of price discovery 

measurement. This paper confirms that taking into account the autoregressive loading factors 

in the measurement of price discovery produces better results than using the constant loading 

factors.  In particular, it is found that the S&P 500 E-mini futures market plays a leading role 

in price discovery compared to its cash counterpart. The result aligns with the established 

consensus in the literature on price discovery (e.g. Hasbrouck 2003, Kurov and Lasser 2004, 

Ates and Wang 2005). However, the constant loading factors fail to achieve the above result. 

Overall, our research reveals that the autoregressive loading factors can enhance the 

understanding on impacts of informed trading on prices of the cointegrated financial markets.  

The remainder of the paper is organised as follows. Section 2 briefly reviews the relevant 

literature on price discovery measure. Section 3 develops the methodology adopted for this 

paper. Data and some preliminary analyses are described in Section 4. Section 5 presents the 

empirical results. Concluding remarks are given in Section 6.  

 

                                                 
2  We also calculate the PT/GG measure based on the constant and autoregressive loading factors for the 
comparison purpose.  
3 Price discovery measures generated by the constant loading factors include: (i) the constant IS, MIS, GIS and 
PT/GG measures from estimates of the conditional mean of the VECM-AGDCC GARCH model; (ii) the same 
measures from estimates of both the conditional mean and the conditional covariance matrix of the VECM-
AGDCC GARCH model.  
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2. Price discovery measures   

2.1. Static price discovery measures 

Based on a vector error correction representation proposed by Engle and Granger (1987) for 

cointegrated price series, Hasbrouck (1995) transforms such representation into a vector 

moving average model from which information share measure is derived. The Hasbrouck 

information share calculates the contribution of one market to the total variance of the long-

run impacts of new information on prices, as that market’s contribution to price discovery. 

The information share measure is attractive due to the fact that it incorporates both the error-

correction coefficients and the innovation covariance matrix (Lien and Shrestha 2009). The 

measure has been widely applied to study price discovery in the literature (see, e.g. Tse 1999, 

Hasbrouck 2003, So and Tse 2004, Tse et al. 2006, Tao and Song 2010).  

Another well-known static price discovery measure is the permanent-temporary measure 

(PT/GG) (Gonzalo and Granger 1995) in which the price series is decomposed into a 

permanent component and a transitory component. The permanent component is assumed to 

be a linear function of the original series. In particular, it is considered to be the common 

factor driving the prices in all the markets. The normalised coefficient of the weight is used 

as the measure of price discovery for the market (Booth et al. 1999 & 2002, Chu et al. 1999, 

Harris et al. 2002, Covrig et al. 2004). The advantage of the PT/GG measure is that it delivers 

a unique value for evaluating price discovery performance, which facilitates the hypothesis 

testing on a market’s contribution to price discovery. However, this measure ignores the 

innovation covariance matrix, i.e., information generation process.  

Note that the Hasbrouck information share and the PT/GG measure are closely related to each 

other (De Jong 2002, Ates and Wang 2005). Neither of them is superior to the other 

(Hasbrouck 2002). The major difference between them is that the PT/GG measure takes into 

account the price reaction to new information while the IS incorporates both the long-run 

impacts of news on prices and the nature of information generation process (Lien and 

Shrestha 2014). These two measures deliver different results only when the markets are 

substantively correlated (Baillie et al. 2002). Compared to information share, the efficient 

price defined in the PT/GG measure is more volatile and autocorrelated. Hence, on average, 
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the information share measure provides a more meaningful inference and has more economic 

relevance (Chen and Gau 2009)4.  

However, the information share approach has one drawback, i.e., it is not able to yield a 

unique measure on price discovery. Since this approach depends on the ordering of the series, 

one ends up with upper and lower bounds as indicators for price discovery performance on 

the underlying market. It is not problematic when the two bounds are close to each other. 

However, the difference between the two bounds increases as the correlation between the 

cointegrated markets increases.  As many markets are highly correlated, it is inevitable to 

observe that the bounds are far apart (Lien and Shrestha 2009). A large gap between the two 

bounds of the IS measure makes it hard to draw a conclusion on price discovery performance 

of the underlying market. This problem is not resolved until the modified information share 

(MIS) is proposed by Lien and Shrestha (2009)5.   

One advantage of MIS over IS is that it provides a unique measure for a market’s 

contribution to price discovery. This is achieved by proposing a different factorization 

structure of the covariance matrix of innovations. The way to factorise the correlation matrix 

instead of the covariance matrix of innovations in MIS gets rid of the ordering dependence 

due to the Cholesky factorisation that the IS measure uses. Consequently, the result of MIS 

for one market is unique and independent of the location of the price series of a market in a 

price vector. Alternatively, Gramming and Peter (2013) suggest a method to yield a unique 

market information share which is based on the different correlations of price innovations in 

the tails and in the centre of the distributions6.  

Although the non-uniqueness problem can be resolved, all of the IS, MIS and Gramming and 

Peter’s information share measures require the assumption that the cointegrating vector is 

restricted to (1,-1). Consequently, they are applicable only when the markets are substantially 

correlated. To relax this restriction, Lien and Shrestha (2014) propose a generalised 

information share (GIS) measure which can appropriately deal with the situation where the 

                                                 
4 Yan and Zivot (2010) also compare the IS measure with the PT/GG measure using a structural cointegration 
model.  
5 Baillie et al. (2002) suggest that a mid-point of the upper and lower bounds of the IS approach is a reasonable 
measure of a market’s price discovery performance. It has been used in Hasbrouck (2003), Chakravarty et al. 
(2004), Ates and Wang (2005), and Chen and Gau (2009, 2010), among others. However, Lien and Shrestha 
(2009) point out that the average seems to be arbitrary since it cannot be shown to be related to any particular 
factorization structure. In addition, for the IS averages of more than two markets, the sum of them would not 
necessarily be 100%. 
6 Lien and Wang (2016) conclude that MIS is superior to Gramming and Peter’s information share.  Given that 
MIS is a special case of GIS, GIS may be superior to Gramming and Peter’s information share as well.  Hence 
we focus on MIS and GIS only for analysis in this paper.  
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cointegrating relationship is not one-to-one, that is, the markets correlate loosely with each 

other7.  

2.2. Time-varying price discovery measures 

The measurements on price discovery illustrated so far assume that the contribution to the 

formation of efficient prices by a market is time-invariant. However, the validity of this 

assumption is in doubt according to some recent studies which find that price discovery may 

vary over time. The underpinning theoretical models suggest that the variation in price 

discovery can be traced back to the fundamental variables such as the number of agents 

collecting information and the intensity with which agents trade on information, assuming 

private information is long-lived (Admati and Pfleiderer 1988, Back and Pedersen 1998). The 

drivers for the time dependence of price discovery include volatility, trading activities 

variables such as trading volume and the number of trades, and other market microstructure 

variables such as investor structure, bid-ask spread and market share (Chakravarty et al. 2004, 

Capelle-Blancard 2001, Ates and Wang 2005, Chen and Gau 2009 & 2010, Xu and Wan 

2015). In addition, Taylor (2011) finds that price discovery co-varies with a set of 

information asymmetry and liquidity variables in the market given that the parameters used 

for calculating information share co-move with those variables over time. More recently, 

Avino et al. (2015) propose a multivariate generalised autoregressive conditional 

heteroscedasticity (MGARCH) model to estimate the conditional covariance matrix of 

innovations, allowing the information share measure to be time-varying.  

Note that the derivation of the time-varying price discovery measures is so far limited to four 

methods. The first method uses high-frequency tick data to calculate information share that 

varies at low frequencies. This method is adopted in Ates and Wang (2005), Chen and Gau 

(2009, 2010), Xu and Wan (2015), among others. The second one employs a rolling window 

approach  to obtain the time-varying parameters in the vector error correction model (VECM) 

that ultimately leads to the time-varying price discovery measures (Bell et al. 2016). With 

respect to the third method, Taylor (2011) attaches several scaling factors that are based on 

the dynamic measures of information asymmetry and liquidity to the parameters in the 

VECM8. The time-varying price discovery is thus achieved. The last method of computing 

                                                 
7 The weighted price contribution (WPC) to measure price discovery of non-overlapping financial markets is 
well documented by Wang and Yang (2011, 2015).  
8 The dynamic measures include intraday periodicity, time to maturity of futures contracts, liquidity variables, 
and the time period before and after the announcement of key macroeconomic data.  
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the time-varying price discovery measures is motivated by Avino et al. (2015).  As mentioned 

above, they employ a MGARCH model to gauge the conditional covariance matrix of 

innovations that is a key component of the information share measure. Then the time-varying 

lower and upper bounds of IS are obtained.  

3. Methodology  

3.1. Price Discovery Measurement 

Let Yt be an n × 1 vector of price series integrated of order 1.  There are at most n - 1 

cointegrating vectors that are stationary such that Yt contains one single common stochastic 

trend (Stock and Watson 1988)9. Thus Yt can be specified in the following vector error 

correction model (VECM) (Engle and Granger, 1987):  

                                                Δ𝑌𝑡 = Π𝑌𝑡−1 + ∑ 𝐴𝑖Δ𝑌𝑡−𝑖𝑘𝑖=1 + 𝜀𝑡.                                          (1) 

where Π = α𝛽𝑇. α and 𝛽 are 𝑛 × (𝑛 − 1) matrices where α𝛽𝑇 has n-1 non-zero eigenvalues.  𝛽𝑇𝑌𝑡−1  consists of (n – 1) cointegrating equations. Each column of α  is comprised of 

adjustment coefficients which are known as the loading factors. The covariance matrix of the 

error term is given by Ω = E[𝜀𝑡𝜀𝑡𝑇] where E[. ]is the expectation operator.  

According to Stock and Watson (1988) and Hasbrouck (1995), the VECM can be rearranged 

as the following vector moving average (VMA) model: 

                                                                     Δ𝑌𝑡 = Ψ(𝐿)𝜀𝑡,                                                      (2) 

or, 

                                                 𝑌𝑡 = 𝑌0 + Ψ(1) ∑ 𝜀𝑠𝑡𝑠=1 + Ψ∗(𝐿)𝜀𝑡.                                        (3) 

The Engle-Granger representation theorem (Engle and Granger, 1987) suggests Ψ(1) has the 

following important properties due to the cointegration (De Jong, 2002; Lehmann, 2002): 

                                                     𝛽𝑇Ψ(1) = 0 and Ψ(1)𝛼 = 0.                                             (4) Ψ(1)𝜀𝑡  in Equation (3) represents the long run impact of innovations on the price series 

(Hasbrouck, 1995). This term is the major focus of information share measure. According to 

Baillie et al. (2002), Ψ(1) can be represented by  

                                                              Ψ(1) = 𝛽⊥𝒦𝛼⊥𝑇.                                                         (5) 

                                                 
9 n equals to 2 in this paper.  
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where 𝛼⊥  and 𝛽⊥ are orthogonal matrices to 𝛼 and 𝛽, respectively.  𝒦 is a scalar since there 

is only one common stochastic trend in the system. The common efficient price is represented 

by 𝛼⊥𝑇 ∑ 𝜀𝑠𝑡𝑠=1 .  

3.1.1. Hasbrouck Information Share  

Assuming each of the pairwise cointegrating coefficients in 𝛽 is (1, -1), Equation (4) implies 

that Ψ(1) has identical rows. Let  𝜓 = (𝜓1, 𝜓2, …, 𝜓𝑛) be each row of Ψ(1). 𝜓𝜀𝑡  represents 

the long-run impacts of innovations on each price series. Assuming that the covariance matrix Ω is diagonal, that is, the innovations are independent, the IS of market j is defined as  

                                                          𝑆𝑗 = 𝜓𝑗2Ω𝑗𝑗𝜓Ω𝜓𝑇                                                                      (6) 

where 𝜓𝑗  is the jth element of the vector 𝜓. 𝜓Ω𝜓𝑇 is the variance of 𝜓𝜀𝑡.  

Note that since 𝜓𝜀𝑡 represents the long-run impacts of innovations on unit-root series, the IS 

of market j is the proportion of the variance of the long-run impacts that is attributable to the 

innovations of market j (Baillie et al. 2002). In other words, the IS of market j is the 

contribution of market j to the total variance of the common efficient price or permanent 

impact (Lien and Shrestha 2014). Thus, IS measures each market’s capacity to assimilate new 

information.  

When Ω is not diagonal, the IS of market j is given by (Hasbrouck 1995) 

                                                        𝑆𝑗 = ([𝜓𝐹]𝑗)2𝜓Ω𝜓𝑇                                                                       (7) 

where 𝐹 is the Cholesky factorization of Ω such that Ω = 𝐹𝐹𝑇. [𝜓𝐹]𝑗 is the jth element of the 

vector 𝜓𝐹 . Due to the Cholesky factorization, the upper (lower) bound of series j’s 

information share arises if series j is the first (last) variable in 𝑌𝑡 . This is known as the 

ordering problem where the calculation of IS of a particular series depends on its ordering in 

the price vector 𝑌𝑡. Hence the IS measure of one market is not unique.  

Let 𝑓𝑖𝑗  ( 𝑖 = 1, … , 𝑛, 𝑗 = 1, … , 𝑛 ) be an element of the triangular matrix 𝐹  and 𝛾𝑖  be an 

element of the row vector of 𝛼⊥𝑇 . According to Baillie et al. (2002), the upper and lower 

bounds of the IS of market j with 1 ≤ 𝑗 ≤ 𝑛 are given by 

                                     𝐼𝑆(𝑈𝐵)𝑗 = [∑ 𝛾𝑖𝑓𝑖1𝑛𝑖=1 ]2[∑ 𝛾𝑖𝑓𝑖1𝑛𝑖=1 ]2+[∑ 𝛾𝑖𝑓𝑖2𝑛𝑖=2 ]2+⋯+[𝛾𝑛𝑓𝑛𝑛]2 ,                                  (8) 
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                                      𝐼𝑆(𝐿𝐵)𝑗 = [𝛾𝑛𝑓𝑛𝑛]2[∑ 𝛾𝑖𝑓𝑖1𝑛𝑖=1 ]2+[∑ 𝛾𝑖𝑓𝑖2𝑛𝑖=2 ]2+⋯+[𝛾𝑛𝑓𝑛𝑛]2 .                                 (9) 

Note that the upper bound incorporates the market’s own contribution represented by 𝑓11 and 

its correlation with the other series as indicated by 𝑓𝑖1(𝑖 = 2, … , 𝑛). The lower bound only 

takes the series’ ‘pure’ contribution into account and it does not correlate with the other series 

as represented by 𝑓𝑛𝑛. It is observed that the higher the correlation, the greater (smaller) the 

upper (lower) bound (Baillie et al. 2002).  

3.1.2. Modified Information Share  

A solution to resolve the ordering problem of Hasbrouck information share is proposed by 

Lien and Shrestha (2009). The new measurement without the ordering problem is called 

modified information share (MIS). The MIS employs a different factor structure that is based 

upon the correlation matrix of innovations instead of the covariance matrix. Let Φ represent 

the innovation correlation matrix and  Λ be the diagonal matrix consisting of the eigenvalues 

of the correlation matrix. The corresponding eigenvectors are the column vectors of matrix G. 

Further, let V be a matrix containing the standard deviations of innovations on the diagonal. 

Then we have the following relationship: 

                                                                  𝜀𝑡 = 𝐹̂𝑧𝑡.                                                              (10) 

where 𝐹̂ = [𝐺Λ−1/2𝐺𝑇𝑉−1]−1  and Ω = 𝐹̂𝐹̂𝑇 . 𝑧𝑡  are the innovations with mean zero and 

identity covariance matrix; i.e., 𝐸[𝑧𝑡] = 0 and 𝐸[𝑧𝑡𝑧𝑡𝑇] = 𝐼. The MIS of market j is given by 

                                                                𝑆𝑗𝑀 = [𝜓𝑗𝑀]2𝜓Ω𝜓𝑇.                                                            (11) 

where 𝜓𝑀 = 𝜓𝐹̂ and 𝜓𝑗𝑀 is the jth element of 𝜓𝑀. It is noteworthy that the factor structure 𝐹̂ 

leads to the IS measure being independent of ordering10. Thus the upper and lower bounds of 

the IS are waived11.  

3.1.3. Generalised Information Share  

Both IS and MIS measures are under the assumption that each pair of the cointegrating 

coefficients in 𝛽  is (1,-1).  This restriction implies that each row of Ψ(1)  is the same. 

However, the one-to-one cointegrating relationship does not necessarily hold in reality. Lien 

                                                 
10 See Lien and Shrestha (2009, p. 392) for the proof.  
11 Although the MIS computes a single measure instead of the upper and lower bounds by the IS, the calculation 
process cannot guarantee that the measure can get rid of uniqueness due to the use of square-root matrix (Lien 
and Shrestha 2009).  
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and Shrestha (2014) propose a new measure that is independent of the restriction on 𝛽 . 

Therefore, such measure can apply to series that do not have the one-to-one cointegrating 

relationships.    

Suppose that the cointegrating matrix 𝛽  contains a diagonal matrix Γ(𝑛−1)  and an (n-1) 

column vector 𝜄(𝑛−1) . Γ(𝑛−1) = 𝐷𝑖𝑎𝑔(𝛽1, 𝛽2, … , 𝛽(𝑛−1))  and 𝜄(𝑛−1) = [1, … ,1]𝑇 . Then 𝛽  can 

be represented by  

                                                        𝛽𝑇(𝑛−1)×𝑛 = [𝜄(𝑛−1): −Γ(𝑛−1)]                                            (12) 

Equation (12) shows that the cointegrating matrix 𝛽  is less restrictive than the one used to 

obtain the IS and MIS in terms of values on cointegrating coefficients. Further, it implies that 

the rows of Ψ(1)  are not identical. Let 𝜓𝑖𝑔  be the ith row of Ψ(1) . Then the following 

relationship holds: 

                                                          𝜓1𝑔 = 𝛽𝑖−1𝜓𝑖𝑔,    𝑖 = 2, … , 𝑛                                        (13) 

Thus the long-run impact of innovations on the ith series is 

                                                         𝜓𝑖𝑔𝜀𝑡 = 𝜓1𝑔𝛽𝑖−1−1 𝜀𝑡, 𝑖 = 1, … , 𝑛.                                   (14) 

where 𝜃0 = 1 and 𝜓1𝑔 is the first row of Ψ(1).  

When the innovations are independent, the variance of long-run impact on the ith series is  

                        𝑉𝑎𝑟(𝜓𝑖𝑔𝜀𝑡) = 𝜓𝑖𝑔Ω𝜓𝑖𝑔𝑇 = ∑ 𝜓𝑖𝑗2 Ω𝑗𝑗𝑛𝑗=1 = 𝛽𝑖−1−2 ∑ 𝜓1𝑗2 Ω𝑗𝑗𝑛𝑗=1 .                      (15) 

where 𝜓𝑖𝑗  is the jth element of the row vector 𝜓𝑖𝑔 and 𝜓1𝑗 is the jth element of the row vector 𝜓1𝑔. The contribution of series j to the total variance of the common factor corresponding to 

series i is then represented by 

                                                                  𝑆𝑗,𝑖𝐺 = 𝜓1𝑗2 Ω𝑗𝑗𝜓1𝑔Ω𝜓1𝑔𝑇 .                                                     (16) 

and 

                                                𝑆𝑗,1𝐺 = 𝑆𝑗,2𝐺 = ⋯ = 𝑆𝑗,𝑛𝐺 , 𝑗 = 1,2, … , 𝑛.                                    (17)           𝑆𝑗,𝑖𝐺  is generalised information share (GIS) of series j which is independent of row order i. 

When the innovations are not independent, the GIS of series j can be calculated as  

                                                                 𝑆𝑗𝐺 = (𝜓𝑗𝐺)2𝜓1𝑔Ω𝜓1𝑔𝑇.                                                        (18) 
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where 𝜓𝐺 = 𝜓1𝑔𝐹𝑔, 𝐹𝑔 = 𝐹̂ = [𝐺Λ−1/2𝐺𝑇𝑉−1]−1.  𝜓𝑗𝐺  is the jth element of 𝜓𝐺 . The GIS 

measure uses the same factor structure as the MIS; thus it is also independent of the ordering 

problem12.  

3.1.4. Gonzalo-Granger Permanent-Temporary (PT/GG) Measure  

We employ the permanent-temporary decomposition proposed by Gonzalo and Granger 

(1995) for comparison purposes. According to Gonzalo and Granger (1995), the vector of 

unit-root series 𝑌𝑡  is decomposed into permanent (common factor) component 𝑓𝑡  and 

transitory component 𝑌̃𝑡.  𝑓𝑡 is an I(1) series while 𝑌̃𝑡 is stationary. 𝑓𝑡 has a dimension of 1 

when 𝑌𝑡  has one common stochastic trend. The following two assumptions are made to 

achieve the identification of the two components: (i) 𝑓𝑡 is a linear function of 𝑌𝑡; (ii) 𝑌̃𝑡 does 

not Granger cause 𝑓𝑡 in the long run. Then under the linear condition 𝑓𝑡 can be represented by 

                                                                   𝑓𝑡 = 𝜔𝑇𝑌𝑡.                                                           (19) 

where 𝜔  is the n×1 permanent component coefficient vector and 𝜔 is orthogonal to the 

adjustment coefficient matrix α in Equation (1), i.e., 𝜔 = 𝛼⊥. Equation (19) implies that the 

original unit-root series potentially contribute to the common factor (Lien and Shrestha, 

2009). Gonzalo and Granger (1995) propose the ith element of 𝜔, i.e. 𝜔𝑖, as the contribution 

of market i to the price discovery process. This approach is discussed in Booth et al. (1999, 

2002) and Harris et al. (2002). Harris et al. (2002) normalise elements of 𝜔 to measure price 

discovery where the sum of the elements equals to 1. When 𝑌𝑡 has two unit-root series, the 

normalised 𝜔 is given by 

                                                      𝜔 = (𝜔1, 𝜔2)𝑇 = ( 𝛼2𝛼2−𝛼1 , 𝛼1𝛼1−𝛼2)𝑇.                                  (20) 

where 𝛼1 and 𝛼2 are the elements of α.  

The difference between the PT/GG measure and the IS type measure is that the PT/GG 

approach uses information on Ψ(1) whereas the IS type method uses information on both Ψ(1) and innovation covariance matrix Ω. Hence, the PT/GG measure only considers the 

error correction process that prices respond to new information whereas the IS type method 

takes both such process and the nature of information generation process into account (Lien 

and Shrestha, 2014).  

                                                 
12 Lien and Shrestha (2014) suggest that the Hasbrouck IS measure can be computed by replacing 𝜓 with  𝜓1𝑔 in 

Equation (7) where the cointegrating relationship is not one-to-one.  
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3.2. Asymmetric Generalised DCC GARCH Model 

We employ a bivariate asymmetric generalised (AG) DCC GARCH model proposed by 

Cappiello et al. (2006) to specify the time-varying covariance matrix of the error terms of 

Equation (1). Typically, the AG-DCC GARCH model estimates both the individual 

heteroscedastic processes and the conditional correlations between innovations 

simultaneously. The error term of Equation (1) is specified as  

                                                           𝜀𝑡|Ξ𝑡−1~𝐹(0, 𝐻𝑡)                                                         (21) 

where 𝜀𝑡 = [𝜀1,𝑡, 𝜀2,𝑡]𝑇 is a 2×1 vector. Ξ𝑡−1 represents all the available information at time t-

1. 𝐹  denotes a bivariate distribution. 𝐻𝑡  is a conditional covariance matrix, which is 

decomposed as 

 

                                                                     𝐻𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡,                                                     (22) 

with 

                                                     𝐷𝑡 = 𝑑𝑖𝑎𝑔{ℎ11,𝑡12 , ℎ22,𝑡12 },                                                     (23) 

and 

                                                  𝑅𝑡 = 𝑑𝑖𝑎𝑔{𝑄𝑡}−1/2𝑄𝑡𝑑𝑖𝑎𝑔{𝑄𝑡}−1/2.                                    (24) 

where 𝐷𝑡 is a 2×2 diagonal matrix containing the square roots of the individual conditional 

variances ℎ𝑖𝑖,𝑡 (𝑖 = 1,2) on the diagonal; 𝑅𝑡 is a conditional correlation matrix of innovations 

comprised of the conditional covariance matrix of standardized innovations (𝑄𝑡 ) where 

standardized innovations 𝜖𝑖,𝑡 = 𝜀𝑖,𝑡√ℎ𝑖𝑖,𝑡 (𝑖 = 1,2).  

Adopting exponential GARCH (EGARCH) model (Nelson, 1991) to specify  ℎ𝑖𝑖,𝑡,  we have 

log (ℎ𝑖𝑖,𝑡) = 𝜆1𝑖 + 𝜆2𝑖 | 𝜀𝑖,𝑡−1ℎ𝑖𝑖,𝑡−1| + 𝜆3𝑖 𝜀𝑖,𝑡−1ℎ𝑖𝑖,𝑡−1 + 𝜆4𝑖 log(ℎ𝑖𝑖,𝑡−1).                                               (25) 

where i =1,2. In Equation (25), the positivity of the conditional variance ℎ𝑖𝑖,𝑡 is warranted in 

the estimation process. Parameter 𝜆2𝑖  measures the size effect and should be positive 

theoretically, as a shock with a higher absolute value should have a stronger effect on 

volatility. Moreover, the model estimates the asymmetric effects of positive and negative 

lagged values of 𝜀𝑖,𝑡 on the conditional variances simultaneously. The effects are captured by 

the parameter 𝜆3𝑖. 𝜆3𝑖 is expected to be negative since a negative shock has a stronger effect 
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on volatility than an equally positive shock. Note that for ℎ𝑖𝑖,𝑡 to be stationary, 𝜆4𝑖 should be 

less than 1.   

A diagonal version of the AG DCC model is adopted to specify 𝑄𝑡. Then we have 𝑄𝑡 = (𝑅̅ − 𝐴𝑇𝑅̅𝐴 − 𝐵𝑇𝑅̅𝐵 − 𝐺𝑇𝑆̅𝐺) + 𝐴𝑇𝜖𝑡−1𝜖𝑡−1𝑇 𝐴 + 𝐵𝑇𝑄𝑡−1𝐵 + 𝐺𝑇𝑠𝑡−1𝑠𝑡−1𝑇 𝐺.            (26) 

where 𝐴, 𝐵 and 𝐺 are 2×2 diagonal matrices with coefficients 𝑎𝑖𝑖, 𝑏𝑖𝑖 and 𝑔𝑖𝑖 (i = 1,2) on the 

diagonal. 𝜖𝑡 is a 2×1 vector of standardized innovations where 𝜖𝑡 = [𝜖1,𝑡, 𝜖2,𝑡]𝑇.  𝑠𝑡 = 𝐼𝑡⨀𝜖𝑡 

where 𝐼𝑡 is a 2×1 indicator function which equals to 1 if 𝜖𝑡 < 0 and 0 otherwise. ⨀ is the 

element-by-element multiplication operator.  𝑅̅ = 𝐸[ 𝜖𝑡 𝜖𝑡𝑇]  represents the unconditional 

covariance of 𝜖𝑡. 𝑆̅ = 𝐸[𝑠𝑡 𝑠𝑡𝑇] is the unconditional covariance of 𝑠𝑡.  

In Equation (26), asymmetry in correlation of innovations is captured by the term 𝐺𝑇𝑠𝑡−1𝑠𝑡−1𝑇 𝐺. For 𝑄𝑡 to be positive definite, a sufficient condition requires that the intercept, 𝑅̅ − 𝐴𝑇𝑅̅𝐴 − 𝐵𝑇𝑅̅𝐵 − 𝐺𝑇𝑆̅𝐺, is positive semi-definite and the initial covariance matrix 𝑄0 is 

positive definite. Note that the asymmetric DCC (A-DCC) is a special case of the AG-DCC 

where 𝐴 , 𝐵  and 𝐺  are scalars. A diagonal version of the AG-DCC is used since it can 

sufficiently reduce the number of parameters that convey little information and thus alleviate 

the computation burden of estimation process. In addition, the diagonal model is preferred by 

applications to a small number of assets (Cappiello et al., 2006).  

3.3. Autoregressive Loading Factors   

The regular VECM model as in Equation (1) specifies the error correction coefficients of 

price series to be constant over time. However, the error correction coefficients may not be 

constant since the long run impacts of news on prices can change with time (Dufour and 

Engle 2000). Thus an autoregressive loading factor may better reflect a market’s ability to 

assimilate new information.  

To this end, α in Π of Eq.(1) is specified to follow an AR(1) process13 as 

                                                             𝛼𝑡 = 𝛿 + 𝜃⨀𝛼𝑡−1.                                                     (27) 

where 𝛿  and 𝜃  are both n × (n-1) matrices. ⨀  is the element-by-element multiplication 

operator. In a bivariate model system, Equation (27) can be alternatively represented as 

                                                 
13 The Ljung-Box test shows that the loading factors in α are significantly autocorrelated at order 1.  Note that a 
rolling window method is used to generate the series of loading factors for the test. In addition, the unit root 
tests suggest the loading factor series are stationary. These results support the proposed stationary AR(1)  
process.  
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                                                               𝛼𝑖,𝑡 = 𝛿𝑖 + 𝜃𝑖𝛼𝑖,𝑡−1.                                                 (28) 

where i =1, 2.  𝛼𝑖,𝑡  is the element of 𝛼𝑡  where 𝛼1,𝑡  corresponds to the error correction 

coefficient of the first series in Δ𝑌𝑡 and 𝛼2,𝑡 corresponds to the error correction coefficient of 

the second series in Δ𝑌𝑡. 𝛿𝑖 and 𝜃𝑖 are the elements of matrix 𝛿 and 𝜃, respectively. For 𝛼𝑖,𝑡 to 

be stationary, a sufficient condition is −1 < 𝜃𝑖 < 1. Thus, a restriction is imposed on the 

estimation of 𝜃𝑖 . We henceforth refer to the VECM incorporating Equation (28) as 

Specification (II) for 𝛼𝑖,𝑡 in this study.  

Furthermore, two alternative specifications are proposed to relax the restriction on parameter 𝜃𝑖. To this end, two trigonometric functions, sine and cosine, are used.  The reason why these 

two functions are employed is that using them can reduce the constraints on the 

autoregressive coefficient 𝜃𝑖  in the estimation process that ensure the stationarity of 𝛼𝑖,𝑡 . 

Superior results from the sine and cosine functions are thus expected compared to Equation 

(28) given that the estimation efficiency is improved. The model using the sine function is 

                                                              𝛼𝑖,𝑡 = 𝛿𝑖 + 𝑠𝑖𝑛𝑒(𝜃𝑖)𝛼𝑖,𝑡−1.                                       (29) 

where 𝑠𝑖𝑛𝑒(. ) denotes the sine function. When 𝜃𝑖 ≠ 𝜏(𝜋2) where 𝜏 is any non-zero integer, −1 < 𝑠𝑖𝑛𝑒(𝜃𝑖) < 1 . Therefore 𝛼𝑖,𝑡  is a stationary process. It is clear that there are less 

restrictions on values of 𝜃𝑖 to secure stationarity of 𝛼𝑖,𝑡 in Equation (29) than Specification 

(II). The VECM incorporating Equation (29) is henceforth referred to as Specification (III) 

for 𝛼𝑖,𝑡.  

The model using the cosine function is represented as  

                                                              𝛼𝑖,𝑡 = 𝛿𝑖 + 𝑐𝑜𝑠𝑖𝑛𝑒(𝜃𝑖)𝛼𝑖,𝑡−1.                                   (30)          

 where  𝑐𝑜𝑠𝑖𝑛𝑒(. )  denotes the cosine function. When 𝜃𝑖 ≠ 𝜏𝜋  where 𝜏  is any integer 

including zero, −1 < 𝑐𝑜𝑠𝑖𝑛𝑒(𝜃𝑖) < 1 ; then 𝛼𝑖,𝑡  is stationary. Equation (30) has less 

restrictions on parameter  𝜃𝑖  than Specification (II) for the stationarity of 𝛼𝑖,𝑡 . It has the 

similar restrictions as Specification (III). The VECM incorporating such equation is referred 

to as Specification (IV) for 𝛼𝑖,𝑡.  

In this study, we refer to the regular VECM as in Equation (1) as Specification (I) that 

estimates the constant loading factors. The AG-DCC GARCH model is employed to estimate 

the conditional covariance matrix of the error terms for each specification. In doing this, we 

derive the conditional IS, MIS, and GIS measures with both constant loading factors and 
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conditional covariance matrix and those with both autoregressive loading factors and 

conditional covariance matrix14. The Specifications (II), (III), and (IV) are then compared 

with Specification (I)15.  

3.4. Model Estimation  

Parameter estimates are obtained through maximum likelihood estimation (MLE) based upon 

the probability density function (PDF) of innovations 𝜀𝑡. 𝜀𝑡 is assumed to follow a bivariate 

skewed Student’s t distribution where both excess kurtosis and large skewness are taken into 

account. Excess kurtosis, which is reflected by fat tails of distribution, is widely observed in 

financial time series (Bollerslev 1987, Baillie and Bollerslev 1989). In addition, financial 

returns are often skewed, thus capturing the skewness for the conditional distribution is 

necessary (Park and Jei 2010). Relying on the conditional normality may lose efficiency in 

the estimation process of the multivariate GARCH models (Engle and Gonzalez-Rivera 1991, 

Park and Jei 2010). Thus a more generalised conditional distribution that captures both excess 

kurtosis and large skewness can yield more reliable results than the normality (Susmel and 

Engle 1994, Tse 1999, Bauwens and Laurents 2005).  

We employ Bauwens and Laurents (2005)’s multivariate skewed-t density for the 

standardized innovations 𝜖𝑡 , which applies Fernandez and Steel (1998)’s skew filter to a 

multivariate Student’s t distribution. The contribution of each observation at time t to the log-

likelihood of a standardized bivariate skewed-t distribution can be expressed in general term 

as 𝑙𝑡(Θ) = log(4𝜋) + ∑ log ( 𝜉𝑖𝑠𝑖1+ξ𝑖2)2𝑖=1 + log {Γ (𝑣+22 ) (Γ (𝑣2) (𝑣 − 2))⁄ } − (1 2)⁄ (𝑣 +2) log[1 + (𝜅𝑡𝑇𝜅𝑡) (𝑣 − 2)⁄ ].                                                                                                  (31) 

where  𝜅𝑡 = (𝜅1𝑡, 𝜅2𝑡)𝑇 𝜅𝑖𝑡 = (𝑠𝑖𝜖𝑖𝑡∗ + 𝑚𝑖)𝜉𝑖−𝐼𝑖 
𝑚𝑖 = Γ (𝑣 − 12 ) √𝑣 − 2√𝜋Γ (𝑣2) (𝜉𝑖 − 1𝜉𝑖) 

                                                 
14 We also compute PT/GG measure with the constant and dynamic loading factors.  
15 It should be noted that we focus only on an AR(1) process of loading factors in this study. Besides, only sine 
and cosine functions are used to transform the regular AR(1) process for the ease of  estimation.  
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𝑠𝑖2 = (𝜉𝑖2 + 1𝜉𝑖2 − 1) − 𝑚𝑖2 

𝐼𝑖 = {1      if 𝜖𝑖𝑡∗ ≥ − 𝑚𝑖𝑠𝑖−1   if 𝜖𝑖𝑡∗ < − 𝑚𝑖𝑠𝑖  . 

Note that Γ(. )  is the gamma function and v is the degree of freedom for the bivariate 

Student’s t distribution. Note that v is restricted to be more than 2 to ensure the covariance 

matrix exists. v governs the thickness of tails of the distribution, that is, the kurtosis. The 

covariance matrix of 𝜖∗𝑖𝑡 (𝑖 = 1,2)  is an identity matrix.   𝑚𝑖(𝜉𝑖, 𝑣)  and 𝑠𝑖(𝜉𝑖 , 𝑣)  are the 

mean and standard deviation of the non-standardized marginal skewed-t of Fernandez and 

Steel (1998). 𝜉𝑖 is the skewness parameter where the sign of the logarithmic 𝜉𝑖 indicates the 

sign of the skewness. When 𝑙𝑛𝜉𝑖 > 0 (< 0), the skewness is positive (negative) and density 

is skewed to the right (left).  Θ is a parameter vector with all of the coefficients of the model specifications.  Estimates of 

the parameter vector Θ can be obtained by the following equation 

                                                         𝐿(Θ) = ∑ 𝑙𝑡(Θ)𝑇𝑡=1 .                                                        (32) 

where 𝑇 is the sample size.  

4. Data and Descriptive Statistics 

In this study, transaction prices recorded at 1-minute intervals of the Standard & Poor’s (S&P) 

500 index and the S&P 500 E-mini futures contracts are collected for our analysis. The 1-

minute time frequency is chosen since it is perceived to be a better choice than other 

frequencies given the trade-off between staleness of data and loss of information (Wu et al. 

2005, Taylor 2011). The sample period is from October 1st, 2015 to December 31st, 2015. All 

data are obtained from Thomson Reuters Tick History (TRTH).  

The E-mini S&P 500 futures contracts trade around the clock on the electronic GLOBEX 

trading system which was introduced by Chicago Mercantile Exchange (CME) in 1997. The 

size of S&P 500 E-mini contracts is one-fifth of the regular S&P 500 futures contracts and it 

has a notional value of $50 times the index. This makes E-mini index futures trading 

affordable to traders with small margin accounts and capital constraints (Kurov and Lasser 

2004). In addition, the E-mini index futures contracts are traded electronically, in contrast to 

the floor-traded regular index futures. That is, for E-mini index futures trading, customer 
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orders are placed, routed, and executed without human intermediation through the GLOBEX 

electronic trading system (Hasbrouck 2003, Kurov and Lasser 2004, Ates and Wang 2005).  

We choose the E-mini S&P 500 index futures contracts for this study over the floor-traded 

counterparts for two reasons. First, previous studies utilise the static price discovery measures 

and reach a consensus that E-mini S&P 500 index futures makes a dominant contribution to 

the price discovery process over the cash index (see, e.g. Hasbrouck 2003, Kurov and Lasser 

2004, Ates and Wang 2005, Taylor 2011). This finding aligns with the advantages of E-mini 

trading such as increased speed of execution, timely and accurate reporting of fills, improved 

pricing transparency, high liquidity and trader anonymity (Kurov and Lasser 2004). Hence, 

using the data of E-mini futures and S&P 500 cash index allows the comparison with the 

findings of price discovery measures in the literature. Second, the S&P 500 E-mini futures 

market is one of the most actively traded index futures markets in the world. Thus it is 

important to understand the S&P 500 E-mini futures market and the results on this market 

can also have important implications for others. 

The E-mini S&P 500 index futures contracts are cash settled at 8.30 am on the third Friday of 

March, June, September, and December. The futures contracts are traded daily for almost 24 

hours on GLOBEX, with two trading halts from 3.15 pm to 3.30 pm and from 4.30 pm to 

5.00 pm Central Standard Time (CST). As trading hours of the underlying stock market 

extend from 8.30 am to 3.00 pm CST, our sample of observations consists of index cash and 

futures prices matched at time points between 8.40 am and 3.00 pm CST. Any observations 

outside of this time period are eliminated. Transaction data in the first 10 minutes of each 

trading day are also omitted following Stoll and Whaley (1990). Exclusion of such data can 

also help to get rid of the staleness of the reported index levels at the beginning of the day 

(Ates and Wang 2005). For our analysis, we use the futures contracts with the highest 

liquidity on each trading day. To this end, the most nearby contracts are selected since they 

are the most active ones in terms of trading volume. Furthermore, a most nearby contract is 

switched to the next available one during the second week in its maturity month.  

[Insert Table 1 about here] 

Table 1 gives descriptive statistics for intraday minute-by-minute data from October to 

December 2015 for the S&P 500 cash index and E-mini futures contracts. Original price 

series are taken in the form of natural logarithm. Returns are calculated by taking the first-

order difference of the log prices. Note that the statistical properties of the logarithmic prices 
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and returns are similar for both the index cash and futures contracts. This indicates that the 

two markets may be cointegrated. The JB test statistics strongly reject the normality of return 

series where large skewness and excess kurtosis are detected. The non-normality will be 

addressed in the model estimation process.  

[Insert Tables 2 & 3 about here] 

Table 2 suggests that prices of the S&P 500 cash index and E-mini futures contracts are both 

integrated at order 1. Cointegration between these two price series with the same integration 

order is tested in Table 316. The Johansen (1991) trace and max-eigenvalue test statistics 

indicate that prices of the cash index and E-mini futures are cointegrated. There is a long-run 

equilibrium relationship between the two time series. Moreover, the likelihood ratio test 

statistic strongly rejects the null that the cointegrating vector equals to (1,-1). Thus it is 

reasonable to take into account the unrestricted cointegrating vector when calculating 

information share measures.  

5. Empirical Results  

5.1. Model estimates 

The estimation results on the constant and autoregressive error correction coefficients 

corresponding to the VEC models with four specifications are presented in Table 4. Residual 

diagnoses of the estimated models are provided. As can be seen from Panel B of the table, the 

Ljung-Box test suggests that the residuals of all the specifications have no autocorrelations. 

The heteroscedasticity exists in the residuals across the four specifications and will be 

addressed later by the AG-DCC GARCH model.  

[Insert Table 4 about here] 

In Panel A of Table 4,   𝛼1 and 𝛼2 in Specification (I) are significant. This implies that both 

the S&P 500 cash index and the E-mini futures respond to the past deviations from the long-

run equilibrium. There may be a bidirectional lead-lag relationship between the cash and 

futures markets in the long term.  The fact that  𝛼1 is positive suggests that the short-term 

momentum may exist in the cash market (Zhong et al. 2004).  

                                                 
16 In this test, the cointegrating equation has mean zero and the underlying VAR has no intercept. AIC is used to 
choose the optimal lags of the VAR. The null hypothesis that an intercept in the cointegrating equation equals to 
zero is not rejected.  
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With respect to the dynamic loading factors,  𝜃1 in Specification (II) is significant at the 1% 

level. This indicates that 𝛼1,𝑡  follows an autoregressive process of order 1. The null 

hypothesis that |𝜃1| = 1 is rejected at the 1% level17. Thus the autoregressive process of 𝛼1,𝑡 

is stationary. The   𝜃2  estimate is insignificant and it thus suggests that 𝛼2,𝑡 does not follow 

an AR(1) process as defined in Specification (II).  The conditional 𝛼1,𝑡 series confirms the 

autoregressive nature of the long-run response of the cash market to the deviations in the past 

from its cointegrating relationship with the E-mini futures.  Overall, the result suggests that 

the long-run impacts of news on cointegrated prices can be dependent on the past.  

The autoregressive behaviour of the loading factors is confirmed by the significant estimates 

of 𝜃𝑖(𝑖 = 1,2) in Specifications (III) and (IV). Thus both the sine and cosine functions can be 

used to describe the AR(1) processes of the loading factors 𝛼1,𝑡 and 𝛼2,𝑡. Significance of 𝜃1 

and 𝜃2 may be attributed to less parameter constraints on 𝜃𝑖 than Specification (II). Moreover, 

the null hypotheses |𝑠𝑖𝑛𝑒(𝜃𝑖)| = 1 (𝑖 = 1,2) and |𝑐𝑜𝑠𝑖𝑛𝑒(𝜃𝑖)| = 1 (𝑖 = 1,2) are all rejected 

at the 1% level18. Hence, the AR(1) processes of the derived loading factor series 𝛼1,𝑡 and 𝛼2,𝑡 by Specifications (III) and (IV) are all stationary. Overall, the conditional 𝛼1,𝑡 and 𝛼2,𝑡 

estimated by the triangular specifications for the AR(1) process reconfirms that loading 

factors are affected by its past as in Specification (I). 

In Panel B of Table 4, Specifications (II), (III), and (IV) are compared with Specification (I) 

in terms of penalized model fit. The log-likelihood values for Specifications (II)-(IV) are 

higher than that of Specification (I). Meanwhile, AIC, SIC, and HQIC for Specifications (II)-

(IV) are lower than for Specification (I). Thus, the proposed specifications of the VECM that 

account for the autoregressive error correction coefficients provide better representativeness 

of data than the regular VECM. The results obtained by Specifications (II)-(IV) should be 

more accurate and reliable.   

[Insert Table 5 about here] 

Panel A of Table 5 presents the descriptive statistics of the estimated loading factor series.  

Both the means of 𝛼1,𝑡 and 𝛼2,𝑡  are positive for Specifications (II) and (III) whereas they are 

negative for Specification (IV). A positive mean of 𝛼1,𝑡 aligns with the constant estimates of 

loading factors where the short-term momentum may exist in the cash market. A negative 

mean of 𝛼2,𝑡 suggests that the short-term momentum may exist in the futures market. That is, 

                                                 
17 Test statistic is available upon request. 
18 Test statistics are available upon request.  
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when the E-mini futures contracts are under-priced (over-priced), investors sell (buy) the 

contracts. It makes prices of the futures contracts deviate more from the efficient ones in the 

short run. The scale of the mean for  𝛼1,𝑡 ( 𝛼2,𝑡) increases from Specifications (II) to (IV). 

The same results hold for the medians. Table 5 reveals that Specification (IV) may capture 

more effects of news impacts on prices than the other two. The volatilities of  𝛼1,𝑡 and 𝛼2,𝑡 for 

rise Specification (IV) are much higher than those for Specifications (II) and (III). Thus the 

cosine specification yields more volatile loading factors than the other two. It is interesting to 

note that the higher the variability of the error correction coefficients is, the higher are the 

effects of news.  

We test whether the means of dynamic loading factors statistically equal to zero in Panel B of 

Table 5. This is equivalent to testing the weak exogeneity of either markets. The zero means 

of 𝛼1,𝑡 and 𝛼2,𝑡 are rejected at the 1% level for all the specifications. The result suggests that 

the proposed specifications that yield the autoregressive error correction coefficients agree 

with a bidirectional lead-lag relationship between cash and futures markets in the long term. 

Neither market can completely dominate the other.  

[Insert Table 6 about here] 

The estimation results of the AG-DCC GARCH model for the four specifications for the 

conditional mean are presented in Table 6. The model fits the data well across all 

specifications as suggested by the Ljung-Box test as there are no autocorrelation and 

heteroscedasticity in the standardised residuals. In addition, the excess kurtosis and large 

skewness are accounted for given significant estimates of v and 𝜉𝑖 (𝑖 = 1,2). Note that given 

estimates of 𝜉𝑖,  ln(𝜉𝑖) > 0 , which is evident for all  specifications. This confirms positive 

skewness of both return series, consistent with the result of Table 1.  

The GARCH effects are captured for all specifications where volatility is not only affected by 

new shocks but old news in cash and futures markets. Asymmetry of volatility is evident in 

cash and futures markets according to Specifications (I), (II) and (III) given significant 

estimates of 𝜆3𝑖(𝑖 = 1,2). The exception is Specification (IV) for which such result does not 

hold. Moreover, the correlation between cash and futures market is conditioned on its past for 

all the specifications. Further, asymmetry of correlation where correlation gets higher when 

both cash and futures markets face price downturns is found for all specifications. Overall, 

Table 6 suggests that accounting for the autoregressive loading factors in the conditional 

mean of return series has little effect on the result of the conditional covariance matrix.  
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5.2. Time varying price discovery 

The estimates of constant and time-varying price discovery measures are shown in Table 7. 

According to Panel A, the static information share and PT/GG measures indicate the cash 

market is superior to the E-mini future market in terms of price discovery performance. Price 

discovery is more likely to occur in the underlying stock market. The result apparently 

contradicts with the transaction cost hypothesis, proposed by Garbade and Silber (1983) and 

Flemming et al. (1996), that price discovery should take place in the futures market due to its 

lower trading costs. It is also inconsistent with the empirical work on the hypothesis 

suggesting it is the E-mini futures that leads the cash index in the long run (e.g. Hasbrouck 

2003, Kurov and Lasser 2004, Ates and Wang 2005)19.  

[Insert Table 7 about here] 

The result of the conditional price discovery performance presented in Panel B of Table 7 

reveals a different scenario. The means and medians of the IS, MIS, GIS and PT/GG 

measures on the cash index decrease from Specifications (I) to (IV). Meanwhile, the means 

and medians of those measures on the E-mini futures increase from Specifications (I) to 

(IV)20. Moreover, for Specification (IV), the means and medians of the IS, MIS, and GIS of 

the E-mini futures are higher than those of the cash index while the contrary holds for the 

PT/GG measure. Overall, the result supports the transaction cost hypothesis and agrees with 

the finding in the literature that the E-mini futures market plays a leading role in price 

discovery with the cash market. It is in sharp contrast to the result suggested by Specification 

(I). The result implies that specifying an AR(1) process of the loading factors when the price 

discovery measures are calculated can help to unveil more about the information content of 

the E-mini futures prices than using the constant loading factors. It is revealed that taking into 

account the autoregressive error correction coefficients can improve the results obtained by 

using the constant coefficients. This may be attributed to the variability of loading factors that 

reflects the impacts of informed trading that may change across time. Utilising a cosine 

function to model the AR(1) process may have more benefits than a pure AR specification 

and a sine function for capturing such behaviour. The reason is that the cosine function may 

                                                 
19 Note that the static price discovery measures in Table 7 are all derived from estimates of the conditional mean 
of Specification (I), that is, the regular VECM AGDCC GARCH model. We do not calculate the same measures 
that consider autoregressive loading factors and unconditional covariance matrix of innovations since 
heteroscedasticity exists in the innovations of all proposed specifications as revealed in Table 4.  
20 The changes of the IS for the spot (futures) market across all specifications are the total changes of the means 
and medians of the upper and lower bounds of the IS.  
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estimate more variability of the loading factors. A detailed comparison between the pure AR, 

sine and cosine specifications will be discussed later in this paper.  

[Insert Figure 1 about here] 

In addition, from Specifications (I) to (IV), the volatilities of MIS and GIS decrease while 

MIS and GIS of the E-mini futures increase21. The result can be visualised in Figure 122. Thus, 

the cosine specification provides the highest and most stable MIS and GIS measures on the 

futures market. It can be also observed from Figure 1 that the estimated series of IS, MIS, and 

GIS of the cash and futures markets by the four specifications follow a mean-reverting 

process. The stationarity tests suggest that all the series are stationary23. Besides, it is evident 

that both GIS and MIS lie between the upper and lower bounds of IS for all specifications.  

5.3. A comparison across autoregressive loading factors 

 The three specifications on VECM proposed in this paper that generate autoregressive 

loading factors are compared with each other in terms of log-likelihood of model estimation, 

penalised model-fit, and volatility of estimated conditional GIS series24.  The log-likelihood 

and information criteria that measure model fit for each specification are shown in Table 4. 

From Specifications (II) to (IV), the log-likelihood values increases and values of the 

information criteria (AIC, SIC and HQIC) decrease. The VECM with a cosine-autoregressive 

process for loading factors possesses the highest log-likelihood and the lowest AIC, SIC and 

HQIC among the three specifications that yield dynamic loading factors. Thus Specifications 

(IV) fits the data the best. 

[Insert Table 8 about here] 

The standard deviations of the conditional GIS of the cash index and the E-mini futures with 

respect to each specification are reported in Table 825. As can be seen from the table,  the 

standard deviations of the futures’ GIS decrease from Specifications (II) to (IV) and 

Specification (IV) yields the least volatile conditional GIS measure Hence, the AR(1) process 

                                                 
21 Standard deviations of the IS lower and upper bounds are not monotonic across all specifications. This paper 
relies on changes of standard deviations of MIS and GIS since these two measures are more advanced than the 
other two.  
22 Note that MIS equals to GIS in magnitude. Thus MIS is not shown in Figure 1.  
23 Test results are available upon request.  
24 It should be noted that we rely on the standard deviations of GIS as a benchmark for comparison in this 
subsection. We do not use those of IS since the estimates of IS convey relatively inferior information given that 
the lower and upper bounds are far apart. The standard deviations of MIS are not used since they are equivalent 
to GIS.  
25 The standard deviation of the conditional GIS of the cash index with respect to each specification is equal to 
that of the E-mini futures and thus not reported in the table.  



22 
 

of loading factors specified by a cosine function in Specification (IV) outperforms the other 

two specifications in terms of stability of estimated GIS series.   

The performance of Specification (IV) may be due to its capability to capture the variability 

of loading factors. The standard deviations of loading factors estimated by Specification (IV) 

are highest in Table 8. This implies that Specification (IV) can better capture the 

autoregressive nature of the error correction coefficients than either Specification (II) or (III). 

That is, Specification (IV) is superior in capturing dynamics of the impacts of informed 

trading. The more the dynamics is reflected, the higher is the accuracy in estimating its 

impacts on information content on prices. This is supported by an observation that an 

increase in the standard deviations of dynamic loading factors from Specifications (II) to (IV), 

especially for the loading factors of the E-mini futures market, is followed by a decrease in 

the information criteria for model fit, a decrease in the volatility of GIS and an increase in 

estimation log-likelihood value.  

Furthermore, it is observed from Table 8 that the average GIS of the E-mini futures steadily 

increases with changes in the standard deviations of loading factors from Specifications (I) to 

(IV). This observation promotes one to consider the question whether changes in variability 

of loading factors relate to the improved price discovery performance of the futures market. 

To this end, the following regression equations are considered: 

{ln (𝐺𝐼𝑆𝑓,𝑡𝑠𝑝𝑒𝑐(𝐼𝐼)𝐺𝐼𝑆𝑠,𝑡𝑠𝑝𝑒𝑐(𝐼𝐼)) − ln (𝐺𝐼𝑆𝑓,𝑡𝑠𝑝𝑒𝑐(𝐼)𝐺𝐼𝑆𝑠,𝑡𝑠𝑝𝑒𝑐(𝐼))} = 𝛬0𝑠𝑝𝑒𝑐(𝐼𝐼) + 𝛬1𝑠𝑝𝑒𝑐(𝐼𝐼)(𝛼1,𝑡𝑠𝑝𝑒𝑐(𝐼𝐼))2 + 𝛬2𝑠𝑝𝑒𝑐(𝐼𝐼)(𝛼2,𝑡𝑠𝑝𝑒𝑐(𝐼𝐼))2 +𝜔𝑡𝑠𝑝𝑒𝑐(𝐼𝐼)
,                                                                                                                                 (33) 

{ln (𝐺𝐼𝑆𝑓,𝑡𝑠𝑝𝑒𝑐(𝐼𝐼𝐼)𝐺𝐼𝑆𝑠,𝑡𝑠𝑝𝑒𝑐(𝐼𝐼𝐼)) − ln (𝐺𝐼𝑆𝑓,𝑡𝑠𝑝𝑒𝑐(𝐼𝐼)𝐺𝐼𝑆𝑠,𝑡𝑠𝑝𝑒𝑐(𝐼𝐼))} = 𝛬0𝑠𝑝𝑒𝑐(𝐼𝐼𝐼) + 𝛬1𝑠𝑝𝑒𝑐(𝐼𝐼𝐼){(𝛼1,𝑡𝑠𝑝𝑒𝑐(𝐼𝐼𝐼))2 − (𝛼1,𝑡𝑠𝑝𝑒𝑐(𝐼𝐼))2} +
𝛬2𝑠𝑝𝑒𝑐(𝐼𝐼𝐼){(𝛼2,𝑡𝑠𝑝𝑒𝑐(𝐼𝐼𝐼))2 − (𝛼2,𝑡𝑠𝑝𝑒𝑐(𝐼𝐼))2} + 𝜔𝑡𝑠𝑝𝑒𝑐(𝐼𝐼𝐼)

,                                                             (34) 

{ln (𝐺𝐼𝑆𝑓,𝑡𝑠𝑝𝑒𝑐(𝐼𝑉)𝐺𝐼𝑆𝑠,𝑡𝑠𝑝𝑒𝑐(𝐼𝑉)) − ln (𝐺𝐼𝑆𝑓,𝑡𝑠𝑝𝑒𝑐(𝐼𝐼𝐼)𝐺𝐼𝑆𝑠,𝑡𝑠𝑝𝑒𝑐(𝐼𝐼𝐼))} = 𝛬0𝑠𝑝𝑒𝑐(𝐼𝑉) + 𝛬1𝑠𝑝𝑒𝑐(𝐼𝑉){(𝛼1,𝑡𝑠𝑝𝑒𝑐(𝐼𝑉))2 − (𝛼1,𝑡𝑠𝑝𝑒𝑐(𝐼𝐼𝐼))2} +
𝛬2𝑠𝑝𝑒𝑐(𝐼𝑉){(𝛼2,𝑡𝑠𝑝𝑒𝑐(𝐼𝑉))2 − (𝛼2,𝑡𝑠𝑝𝑒𝑐(𝐼𝐼𝐼))2} + 𝜔𝑡𝑠𝑝𝑒𝑐(𝐼𝑉)

.                                                             (35)     
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where 𝑠𝑝𝑒𝑐(𝐼𝐼) , 𝑠𝑝𝑒𝑐(𝐼𝐼𝐼) , and 𝑠𝑝𝑒𝑐(𝐼𝑉)  denote Specifications (II), (III) and (IV), 

respectively. We use the squared loading factors as a proxy for variability in the series26. In 

the equations above, the difference in the relative GIS of futures prices across specifications 

is specified as a function of the difference in variability of loading factors27. Positive 𝛬1𝑠𝑝𝑒𝑐(𝑖)
 

and 𝛬2𝑠𝑝𝑒𝑐(𝑖)
 (i = II, III, IV) indicate that an increase in the variability of the loading factors 

leads to a better price discovery performance of the E-mini futures market.  

[Insert Table 9 about here] 

The estimation results for   Equations (33), (34), and (35) are shown in Table 9. All the 

estimates of 𝛬1𝑠𝑝𝑒𝑐(𝑖)
 and 𝛬2𝑠𝑝𝑒𝑐(𝑖)

 (i = II, III, IV) are positive and statistically significant at the 

1% level. Therefore, volatility of loading factors contributes to price discovery performance 

of the E-mini futures market. The more volatile the loading factor that a specification 

produces, the higher is the GIS of the futures market. The reason why Specification (IV) has 

the highest GIS of the futures market is that it generates the most volatile dynamic loading 

factors. The result confirms that more volatile loading factors capture more impacts of 

informed trading and thus gauge information content of futures prices more accurately. 

Hence, utilising a cosine function to specify an autoregressive process of loading factors in 

VECM benefits the calculation of GIS since such specification significantly improves the 

estimation results by the constant loading factors. The result for Specification (IV) also 

supports the fact that the E-mini futures market is a focal pit for information.  

6. Concluding Remarks  

Although price discovery of cointegrated markets has been extensively explored in the 

literature, the question whether the autoregressive error correction coefficients of the VECM 

should be taken into account remains open. This paper shed lights on this issue. Three new 

specifications on the VECM are proposed to estimate autoregressive loading factors where 

the loading factors are specified to follow a pure AR(1), a sine-function AR(1) and a cosine-

function AR(1). The conditional covariance matrix of the error structure of each specification 

is specified by a bivariate AG-DCC GARCH model. The models are estimated with the 

assumption that security prices follow a skewed Student’s t distribution.  

                                                 
26 We also calculate time series of standard deviations of loading factors as a proxy by using a rolling window 
method. The window size is set to 100 observations and step size is 1 observation.  The estimation results are 
similar to Table 9.  
27 Note that variability of loading factors in Specification (I) is zero.  
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Using  minute-by-minute data of the S&P 500 cash index and the E-mini futures markets in a 

3-month period, static and conditional Hasbrouck information share (IS), modified 

information share (MIS), generalised information share (GIS) and Gonzalo-Granger 

permanent-temporary (PT/GG) measure are  estimated. The regular VECM and new 

specifications are compared in terms of model fit, estimates of price discovery measures and 

their standard deviations. The best specification is determined and its benefits on price 

discovery measurement are assessed.  

This paper reveals that the loading factors of the cointegrated cash and futures markets are 

dependent on their past. They follow a stationary AR(1) process, which is evidenced by all of 

the three new specifications. The result implies that the long-term impacts of news on 

cointegrated price series are conditioned on their past.   

It is also found that the AR(1) loading factors benefit price discovery measurement. Moving 

from constant to autoregressive loading factors, a significant improvement in the price 

discovery performance of the E-mini futures is confirmed.  The IS, MIS, and GIS measures 

suggest that price discovery primarily takes place in the S&P 500 cash market under the 

regular, pure AR(1), and sine AR(1) specifications on the loading factors of the VECM. In 

stark contrast, the same information share measures derived from the specification with 

cosine AR(1) loading factors strongly suggest that it is the E-mini futures market that leads 

the cash counterpart in the long run. Such finding aligns with the established consensus on 

price discovery of the E-mini futures market in the literature. The result from the cosine 

specification is the most reliable because that specification has the best fit with the data. .  It 

is concluded that a cosine-function-based AR(1) process of the loading factors improves the 

results of information share measures on the E-mini futures market compared to the ones 

obtained by the constant loading factors.  

Moreover, we find that the volatility of the dynamic loading factors increases with GIS of the 

E-mini futures market. The more volatile are the loading factors, the higher is the GIS of the 

futures market. This result implies that the highest GIS of the futures market that the cosine 

AR(1) specification generates can be attributed to the most volatile loading factors that 

specification yields. The result suggests a critical role the variability of the loading factors 

plays in the modelling price discovery of futures prices. That is, the autoregressive loading 

factors can yield a better price discovery measure and reveal more insight on the impacts of 

informed trading than the constant loading factors.  
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Finally, some future research directions can be briefly mentioned. A future study can be 

devoted to exploring a variety of specifications for the loading factors that may capture more 

time-series behaviour. The benefits of these specifications can be evaluated in terms of to 

what extent they help to explain information content of asset prices. In addition, the three 

specifications that estimate the autoregressive loading factors proposed in this paper may 

apply to other price discovery measures. One may wish to examine if the benefits of the 

specifications revealed in this study still are still valid with those measures. 
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Table 1. Descriptive Statistics of the S&P 500 cash index and E-mini index futures 

 Nobs Mean Median Std Skew Kurt JB statistics 

S&P 500 cash index 

Prices 24054 7.626 7.630 0.020 -1.257 4.946 1.013×104*** 

Returns 24053 2.647×10-6 0.000 3.960×10-4 0.255 206.122 4.135×107*** 

S&P 500 E-mini index futures  

Prices 24054 7.623 7.628 0.021 -1.233 4.802 9.351×103*** 

Returns 24053 2.617×10-6 0.000 4.440×10-4 0.350 146.783 2.072×107*** 

Notes: This table reports the descriptive statistics of the S&P 500 cash index and E-mini index futures. Prices are taken in 
the form of natural logarithms. Returns are calculated as the first differences of the logarithmic price series. Nobs denotes the 
number of observations; Mean denotes mean of sample; Median denotes median of sample; Std denotes standard deviation; 
Skew denotes skewness; Kurt denotes kurtosis; JB statistics denotes statistics of the Jarque-Bera test for normality. ***, **, 
and * indicate significance at the 1%, 5% and 10% level, respectively.  
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Table 2. Unit-root tests 

 Logarithms of Prices  

 Level  First Difference  

 ADF PP ADF PP 

S&P 500 Cash Index     
 -3.348 -3.312 -37.759*** -149.105*** 

S&P 500 E-Mini Futures     
 -3.313 -3.259 -38.146*** -163.178*** 

Notes: This table shows the results of the Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) unit-root Tests on the 
natural logarithm of prices of the S&P 500 cash index and E-mini index futures. The results on the original level and the first 
difference of price series are reported. The first difference equals to the price at time t minus the price at time t-1. ADF 
denotes the Augmented Dickey-Fuller test statistic and PP denotes the Phillips-Perron test statistic. ***, **, and * indicate 
significance at the 1, 5, and 10% levels, respectively. 
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Table 3. Johansen cointegration tests 

Cointegrating Vector Zero Cointegrating 
Vector (r = 0) 

One Cointegrating 
Vector (r = 1) 

Restrictions on 
Cointegrating Vector 

Coeff. of St Coeff. of Ft 𝜆𝑚𝑎𝑥  Trace 𝜆𝑚𝑎𝑥  Trace Likelihood –ratio test 
statistic 

1 -1.0004 12.390** 12.988** 0.598 0.598 7.758*** 

Notes: This table shows the results of the Johansen cointegration tests on prices of the S&P 500 cash index and E-mini index 
futures. Coeff. stands for cointegrating coefficient. St denotes cash index prices while Ft denotes E-mini futures prices. 𝜆𝑚𝑎𝑥 
is the max-eigenvalue test statistic. Trace denotes the trace test statistic. r refers to the number of cointegrating vector. The 
likelihood ratio test is conducted on restricting the cointegrating vector to be (1,-1). ***, **, and * indicate significance at 
the 1, 5, and 10% levels, respectively. 
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Table 4. Constant and autoregressive loading factors 

Panel A: Model estimates 

 Specification (I) Specification (II) Specification (III) Specification (IV) 𝛼1 0.004** 

(1.79×10-3) 
- - - 𝛼2 0.006*** 

(2.01×10-3) 
- - - 𝛿1 - 0.022*** 

(1.25×10-3) 
0.024 

(2.76×10-2) 
-5.858*** 

(9.32×10-3) 𝛿2 - 0.025* 

(1.34×10-2) 
0.045*** 

(1.05×10-2) 
-6.913*** 

(2.83×10-3) 𝜃1 - -0.995*** 

(1.14×10-3) 
-2.982** 

(1.37) 
3.181*** 

(1.06×10-3) 𝜃2 - -0.632 
(0.88) 

-2.327*** 

(0.59) 
3.102*** 

(1.06×10-3) 
Panel B: Residual Diagnosis 

 Specification (I) Specification (II) Specification (III) Specification (IV) 

Log-likelihood -37274.438 41996.490 43239.912 76991.051 

AIC 3.102 -3.491 -3.594 -6.401 

SIC 3.110 -3.482 -3.585 -6.392 

HQIC 3.104 -3.488 -3.591 -6.398 

LB(k) 12.824 0.070 0.539 1.021 

 7.721 0.080 0.485 0.985 

LB2(k) 44.524*** 9.950 45.429*** 60.433*** 

 62.804*** 21.572*** 68.187*** 87.185*** 

Notes: This table reports the estimation results of the constant and dynamic error correction coefficients of the VECM. 
Specification (I) refers to the VECM with the constant error correction coefficients as in Equation (1); Specification (II) 
refers to the VECM with the dynamic error correction coefficients defined by Equation (28); Specification (III) refers to the 
VECM with the dynamic error correction coefficients defined by Equation (29); Specification (IV) refers to the VECM with 
the dynamic error correction coefficients defined by Equation (30). AIC, SIC, and HQIC refer to Akaike information criteria, 
Schwarz information criteria, Hannan-Quinn information criteria, respectively. The lag orders of the underlying VAR are 
chosen by AIC. LB(k) and LB2(k) are Ljung-Box Q statistics for residuals and its squares up to k lags. k equals to 8. Figures 
in parenthesis are standard errors. ***, **, and * denotes significance at the 1%, 5%, and 10% levels, respectively.  
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Table 5. Descriptive statistics and hypothesis testing on autoregressive loading factors 

 

Panel A: Descriptive statistics  
 Mean Median Std 

Specification (II)    𝛼1,𝑡 0.011 0.011 7.206×10-4 𝛼2,𝑡 0.015 0.015 1.253×10-4 

Specification (III)    𝛼1,𝑡 0.020 0.020 1.338×10-4 𝛼2,𝑡 0.026 0.026 2.432×10-4 

Specification (IV)    𝛼1,𝑡 -2.930 -2.930 0.483 𝛼2,𝑡 -3.458 -3.458 0.570 

Panel B : Hypothesis testing  
Specification (II)    

H0: u1 = 0 2.406×103*** 

H0: u2 = 0 1.863×104*** 

Specification (III)    

H0: u1 = 0 2.374×104*** 

H0: u2 = 0 1.650×104*** 

Specification (IV)    

H0: u1 = 0 -940.356*** 

H0: u2 = 0 -940.732*** 

Notes: This table reports the descriptive statistics of the estimated loading factor series. Test results on the hypotheses that 
the series’ means equal to zero are reported. Specification (II) refers to the VECM with the dynamic error correction 
coefficients defined by Equation (28); Specification (III) refers to the VECM with the dynamic error correction coefficients 
defined by Equation (29); Specification (IV) refers to the VECM with the dynamic error correction coefficients defined by 
Equation (30). Std denotes standard deviation. u1 denotes the mean of 𝛼1,𝑡; u2 denotes the mean of  𝛼2,𝑡 . t-statistics for 

hypothesis testing are reported. *** denotes significance at the 1% level.  
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Table 6. AG-DCC GARCH model 

 Specification (I) Specification (II) Specification (III) Specification (IV)  
Coeff. (i = 1) (i = 2) (i = 1) (i = 2) (i = 1) (i = 2) (i = 1) (i = 2) 𝜆1𝑖 -0.150*** 

(4.99×10-7) 
-0.154*** 

(1.54×10-6) 
-0.163*** 

(3.05×10-4) 
-0.174*** 

(1.88×10-5) 
-0.226 *** 

(2.73×10-4) 
-0.226*** 

(1.34×10-5) 
-0.171*** 

(2.20×10-3) 
-0.159*** 

(1.65×10-3) 𝜆2𝑖 0.118*** 
(9.18×10-6) 

0.120*** 
(2.23×10-5) 

0.076*** 
(7.81×10-4) 

0.077*** 
(1.22×10-3) 

0.084*** 

(9.54×10-4) 
0.086*** 

(1.13×10-3) 
0.142*** 

(3.21×10-3) 
0.137*** 

(3.99×10-3) 𝜆3𝑖 -0.123*** 
(4.02×10-4) 

-0.106*** 
(9.67×10-4) 

-0.022*** 
(1.28×10-3) 

-0.024*** 
(1.47×10-3) 

-0.017*** 
(1.41×10-3) 

-0.019*** 
(1.61×10-3) 

0.001 
(1.08×10-3) 

0.001 
(1.71×10-3) 𝜆4𝑖 0.984*** 

(1.14×10-6) 
0.986*** 

(1.69×10-6) 
0.992*** 

(8.97×10-6) 
0.991*** 

(3.57×10-5) 
0.988*** 

(2.31×10-5) 
0.988*** 

(3.63×10-5) 
0.993*** 

(1.29×10-4) 
0.993*** 

(1.46×10-4) 𝑎𝑖𝑖 0.100*** 
(7.67×10-7) 

0.074*** 
(1.19×10-5) 

0.100*** 
(6.91×10-4) 

0.023*** 
(8.25×10-3) 

0.100*** 
(1.58×10-4) 

0.056* 
(2.88×10-2) 

0.060*** 
(1.67×10-3) 

0.199*** 
(4.38×10-2) 𝑏𝑖𝑖 0.930*** 

(2.36×10-6) 
0.274*** 

(8.47×10-5) 
0.990*** 

(6.20×10-6) 
0.072*** 

(1.34×10-2) 
0.991*** 

(2.66×10-5) 
0.311*** 

(6.63×10-2) 
0.991*** 

(4.23×10-5) 
-0.162*** 

(6.04×10-2) 𝑔𝑖𝑖 0.104*** 
(1.68×10-6) 

0.016*** 
(1.26×10-5) 

0.085*** 
(1.74×10-3) 

0.034 
(2.99×10-2) 

0.076*** 
(1.35×10-3) 

0.024 
(3.92×10-2) 

0.107*** 
(5.02×10-3) 

-0.268*** 
(9.92×10-2) 𝜉𝑖 1.910*** 

(3.83×10-2) 
1.914*** 

(3.85×10-2) 
1.849*** 

(7.06×10-3) 
1.897*** 

(7.71×10-3) 
1.736*** 

(7.04×10-3) 
1.768*** 

(7.38×10-3) 
2.593*** 

(3.20×10-2) 
2.513*** 

(4.41×10-2) 
v 4.613*** 

(2.48×10-2) 
2.567*** 

(5.14×10-3) 
2.585*** 

(6.12×10-3) 
2.733*** 

(1.98×10-2) 

LB(k) 12.743 7.732 0.003 0.002 0.539 0.485 0.876 0.831 

LB2(k) 3.345 4.669 0.318 0.795 1.784 5.800 1.464 5.624 

Notes: This table reports the estimation results of the bivariate AG-DCC GARCH model. Specifically, the coefficients of Equations (25), (26) & (31) are reported. Specification (I) refers to the 
VECM with the constant error correction coefficients as in Equation (1); Specification (II) refers to the VECM with the dynamic error correction coefficients defined by Equation (28); 
Specification (III) refers to the VECM with the dynamic error correction coefficients defined by Equation (29); Specification (IV) refers to the VECM with the dynamic error correction 
coefficients defined by Equation (30).  LB(k) and LB2(k) are the Ljung-Box Q statistics at order k for the standardized residuals and their squares, respectively. k equals to 8. Coeff. stands for 
coefficients. Figures in the parentheses are standard errors. ***, **, and * indicate significance at the 1, 5, and 10%, respectively.   
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Table 7. Static and conditional price discovery measures 

Panel A : Static price discovery measure 

 IS  MIS  GIS  PT/GG  
 Upper 

Bound 

Lower 
Bound 

Upper 
Bound 

Lower 
Bound 

      

 Cash Index E-mini Futures Cash Index E-mini Futures Cash Index E-mini Futures Cash Index E-mini Futures 

Estimates  0.985 0.025 0.975 0.015 0.518 0.482 0.518 0.482 0.593 0.407 

Panel B: Conditional price discovery measure  
Specification (I)           

Mean 0.997 0.030 0.970 0.003 0.558 0.442 0.558 0.442 0.593 0.407 

Median 0.999 0.015 0.985 0.001 0.551 0.449 0.551 0.449 0.593 0.407 

Std 7.396×10-3 0.060 0.060 7.396×10-3 0.039 0.039 0.039 0.039 0 0 

Specification (II)           

Mean 0.935 0.080 0.920 0.065 0.513 0.487 0.513 0.487 0.574 0.426 

Median 0.949 0.059 0.941 0.051 0.510 0.490 0.510 0.490 0.574 0.426 

Std 0.051 0.070 0.070 0.051 0.018 0.018 0.018 0.018 0.018 0.018 

Specification (III)           

Mean 0.930 0.078 0.922 0.070 0.507 0.493 0.507 0.493 0.558 0.442 

Median 0.945 0.059 0.941 0.055 0.505 0.495 0.505 0.495 0.558 0.442 

Std 0.049 0.062 0.062 0.049 0.011 0.011 0.011 0.011 1.564×10-3 1.564×10-3 

Specification (IV)           

Mean 0.923 0.074 0.926 0.077 0.497 0.503 0.497 0.503 0.541 0.459 

Median 0.957 0.041 0.959 0.043 0.497 0.503 0.497 0.503 0.541 0.459 

Std 0.052 0.051 0.051 0.052 0.005 0.005 0.005 0.005 3.317×10-5 3.317×10-5 

Notes: This table reports the estimation result of the static and conditional IS, MIS, GIS, and PT/GG measures. Mean, median and standard deviation of the conditional measures are reported. IS, MIS, GIS and 

PTGG refer to information share, modified information share, generalised information share Gonzalo-Granger permanent-temporary measure, respectively. Cash Index denotes the S&P 500 cash index; E-mini 

Futures denotes the S&P 500 E-mini index futures. The AG-DCC GARCH model is used to predict the conditional covariance matrix of innovations for IS, MIS and GIS measures.  Specification (I) refers to the 
VECM with the constant error correction coefficients as in Equation (1); Specification (II) refers to the VECM with the dynamic error correction coefficients defined by Equation (28); Specification (III) refers to 
the VECM with the dynamic error correction coefficients defined by Equation (29); Specification (IV) refers to the VECM with the dynamic error correction coefficients defined by Equation (30). Std denotes 
standard deviation.  
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Figure 1. Time-varying IS and GIS 

 

    
 

    
Notes: Specification (I) is the VECM with the constant error correction coefficients as in Equation (1); Specification (II) is the VECM with the dynamic error correction coefficients defined by Equation (28); 
Specification (III) is the VECM with the dynamic error correction coefficients defined by Equation (29); Specification (IV) is the VECM with the dynamic error correction coefficients defined by Equation (30). 
The AG-DCC GARCH model is used to compute the conditional covariance matrix of innovations for IS, MIS and GIS measures. IS, information share; GIS, generalised information share. The estimates of MIS 
equal to GIS and thus are not showed in the figure.  
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Table 8. Volatility of autoregressive loading factors and GIS  

 Specification(I) Specification(II) Specification(III) Specification(IV) 

Panel A: Variability of dynamic loading factors 

Std. of 𝛼1,𝑡 0 7.206×10-4 1.338×10-4 0.483 

Std. of 𝛼2,𝑡 0 1.253×10-4 2.432×10-4 0.570  

Panel B: Mean of conditional GIS   𝐺𝐼𝑆𝑠,𝑡 0.558 0.513 0.507 0.497 𝐺𝐼𝑆𝑓,𝑡 0.442 0.487 0.493 0.503 

Panel C: Volatility of conditional GIS 

Std. of 𝐺𝐼𝑆𝑓,𝑡 0.039 0.018 0.011 0.005 

Notes: This table reports the variability of estimated dynamic loading factors as well as the mean and volatility of estimated 
conditional GIS series. Note that the standard deviation of the conditional GIS of the cash index with respect to each specification is 
equal to that of the E-mini futures and thus not reported in this table.  𝛼1,𝑡 refers to the conditional error correction coefficients for the 

S&P 500 cash index while 𝛼2,𝑡 refers to the conditional error correction coefficients for the S&P E-mini futures. 𝐺𝐼𝑆𝑠,𝑡 denotes the 

conditional GIS of the S&P 500 cash index; 𝐺𝐼𝑆𝑓,𝑡 denotes the conditional GIS of the S&P E-mini futures.  Specification (I) refers to 

the VECM with the constant error correction coefficients as in Equation (1); Specification (II) refers to the VECM with the dynamic 
error correction coefficients defined by Equation (28); Specification (III) refers to the VECM with the dynamic error correction 
coefficients defined by Equation (29); Specification (IV) refers to the VECM with the dynamic error correction coefficients defined by 
Equation (30). Std., standard deviation; GIS, generalised information share.  
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Table 9. Model estimation of variability of autoregressive loading factors and GIS   

 

 Eq.(33)  Eq.(34)  Eq.(35) 𝛬0𝑠𝑝𝑒𝑐(𝐼𝐼)
 0.177*** 

(5.66×10-2) 

𝛬0𝑠𝑝𝑒𝑐(𝐼𝐼𝐼)
 0.025*** 

(9.32×10-4) 

𝛬0𝑠𝑝𝑒𝑐(𝐼𝑉)
 0.039*** 

(9.84×10-4) 𝛬1𝑠𝑝𝑒𝑐(𝐼𝐼)
 913.091*** 

(126.58) 

𝛬1𝑠𝑝𝑒𝑐(𝐼𝐼𝐼)
 93.468*** 

(3.33) 

𝛬1𝑠𝑝𝑒𝑐(𝐼𝑉)
 0.004*** 

(9.21×10-5) 𝛬2𝑠𝑝𝑒𝑐(𝐼𝐼)
 274.192*** 

(71.35) 

𝛬2𝑠𝑝𝑒𝑐(𝐼𝐼𝐼)
 57.060*** 

(2.24) 

𝛬2𝑠𝑝𝑒𝑐(𝐼𝑉)
 0.003*** 

(6.61×10-5) 

AIC -1.146  -1.503  -2.988 

SIC -1.145  -1.503  -2.988 

HQIC -1.146  -1.503  -2.988 

Notes: This table reports the estimation results of Equations (33), (34), and (35). 𝑠𝑝𝑒𝑐(𝐼𝐼) denotes specification (II) that refers to the 
VECM with the dynamic error correction coefficients defined by Equation (28); 𝑠𝑝𝑒𝑐(𝐼𝐼𝐼) denotes specification (III) that refers to the 
VECM with the dynamic error correction coefficients defined by Equation (29); 𝑠𝑝𝑒𝑐(𝐼𝑉) denotes specification (IV) that refers to the 
VECM with the dynamic error correction coefficients defined by Equation (30). AIC, SIC, and HQIC refer to Akaike information 
criteria, Schwarz information criteria, Hannan-Quinn information criteria, respectively. Figures in parentheses are the Newey-West 
(1987) standard errors. ***, **, and * denotes significance at the 1%, 5% and 10% levels, respectively.  

 

 

 

 


