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Universidad de Oviedo

October 2017

Abstract

In various cultural and behavioral respects, emerging market consumers differ
significantly from their counterparts of developed markets. They may thus derive
consumption utility from different aspects of product meaning and functionality.
Based on this premise, we investigate whether the economic rise of emerging markets
may have begun to impact the typical “one-size-fits-all” design of many international
product categories. Focusing on Hollywood films, and exploiting a recent relaxation
of China’s foreign film importation policy, we provide evidence suggesting that these
impacts may exist and be non-negligible. In particular, we show that the Chinese
society’s aesthetic preference for lighter skin can be linked to the more frequent
casting of pale-skinned stars in films targeting the Chinese market. Implications for
the design of international products are drawn.
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1 Introduction

Fast-paced, sustained GDP growth and increasing integration into world trade have made

emerging markets important new players in the global economy. These economies have

rapidly enlarged their middle classes and significantly reduced poverty (Sala-i Martin,

2006; Sudhir et al., 2015; Chandy and Narasimhan, 2015), endowing significant shares of

their populations with purchasing power and access to retail commerce. As a result, this

process has articulated an influx of “newly endowed” consumers into the global demand

for products and services.

In this article we investigate the importance of this phenomenon for the design of

international products. These “newly endowed” consumers are known to significantly

differ from their counterparts of developed markets in cultural and behavioral respects

(Henrich et al., 2010; Sheth, 2011). For example, whereas the former emphasize embed-

dedness and hierarchy, the latter emphasize autonomy and egalitarianism (Burgess and

Steenkamp, 2006). Differences like this suggest that consumers from emerging markets

may place utility value on different aspects of product meaning and functionality. Their

activation into the global demand for products and services may therefore bring along a

shift in aggregate consumer preferences within the total addressable market, prompting

so an impact on (or accommodation of) product design.

Although these design impacts may unfold through additional product variety, they

are likely to be more transparently observed on products which cannot be meaningfully

customized to each international market. That is, on products which, due to the nature

of their development process, are “condemned” to a largely standardized design. These

products are the focus of this study. For ease of reference, we call them “global prod-

ucts.” We associate them to categories such as feature films, TV series, music, video

games, literature and other commercial art forms, as well as alternative kinds of written

and audiovisual media (e.g., blogs, podcasts). We observe that, despite the fact that some

of these may undergo minor forms of international customization, large fixed re-design

costs prevent deep customization. For example, although feature films may be dubbed

and slightly edited when released in a foreign market, the more important determinants

of their appeal to audiences (aesthetics, storyline, central themes, starring actors) are

deeply enmeshed in, and inextricably tied to their core structures, and thus largely un-

customizable. We ask: can the newly acquired importance of emerging markets impact

their “one-size-fits-all” design?

To shed light on this question, we study the design of Hollywood films. Labeled as

“unique and complex artifacts” (Craig et al., 2005), feature films embody “explicit visions

of the world” (Moul, 2005), and are rich in cultural meaning (Craig et al., 2005). They
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thus entail a likely arena for a shift of aggregate cultural preferences to manifest on.1 Our

research design is also informed by the graduality of emerging markets’ rise to prominence

—a process that has unfolded over at least three decades. Because other relevant factors

have also been changing during this period, isolating the referenced preference shift over

such long time span would be difficult. We therefore exploit the variation created by a

single event, which heightened the global relevance of consumer preferences from leading

emerging market. This is, the 2012 relaxation of China’s foreign film importation policy.

Since the Cultural Revolution, China has maintained stringent restrictions on foreign

film importation. These started to be challenged by the US Government when China

joined the World Trade Organization in 2001. During this period, however, there was

a large amount of uncertainty regarding whether, when, and how China would respond.

Fostered by the broader political circumstances, these restrictions were finally loosened

in February of 2012. From the perspective of Hollywood studios, this policy change

effectively constituted a one-time, discontinuous, and large increase in the importance

of Chinese preferences within the total addressable market. Our empirical analysis aims

at deciphering whether, in adapting to the new market environment, Hollywood studios

accommodated core elements of film design to elements of the Chinese culture.

By 2012, Hollywood was already actively pursuing the booming Chinese theatrical

market.2 Anecdotal evidence suggests that this push may have impacted film design

through the inclusion of additional footage (including Chinese actors or Chinese product

placement, or scenes shot in China), and the implementation storylines exalting Chinese

people, values, or institutions.3 While noteworthy, these events were reportedly rare.

More importantly, they may not necessarily evidence accommodation to the culture of

Chinese people. The inclusion of Chinese-targeted additional footage (a mild form of

customization) may have been motivated by the very goal of avoiding to accommodate the

otherwise standard design. In turn, the implementation of storylines that exalt Chinese

themes may have been solely oriented at earning the goodwill of the regulating authority

(and with it, market entry). These themes would thus reflect accommodation to the

preferences of gatekeepers rather than to those of audiences. With these caveats in mind,

we examine a marker of cultural accommodation that is both deeply ingrained in a film’s

design, while at the same time not a suspected object of scrutiny by Chinese gatekeeping

authorities. That marker is the skin color of starring actors.

1Walls and McKenzie (2012) provide evidence that suggests that the Hollywood industry has started
increasingly cater to foreign preferences. However, the foreign markets that they consider do not include
emerging markets.

2After tripling total box office revenues in a 5-year period, China became in 2015 the second largest
market (after the US and ahead of the UK), accounting for 18% of the approximate $40B global box-
office revenues (Motion Picture Association of America, 2015). The market, which already tops the
international list in term of number of screens (Lin, 2016), is projected to displace the US in at the top
of the box-office ranking by the turn of the decade (Kokas, 2017).

3Rosen (2015) cites examples suggesting that Hollywood has begun to progressively avoid negative
representations thereof.
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Evidence from a variety of domains converges on the notion that people in China (and

other Asian societies) exhibit a strong form of coloristic preferences, by which pale skin is

aesthetically preferred to dark skin. These preferences were forged over 2,000 years ago

in the Chinese society. Today, they do not appear to be a purely implicit cultural trait,

nor a matter of public controversy. Our review further suggests that coloristic preferences

in China manifest more as a “light-skin premium” than a “dark-skin penalty,” and that

skin tone corresponds to central axis for perceived beauty, particularly for women. As

such, skin color plays a defining role in the burgeoning Chinese cosmetics market. To this

point, an official of China’s cosmetics trade association stated that “skin whitening has

a long history in Asia (..) this obsession with whiteness has not faded over time” (Xi,

2011).4

In a sample of about 3,300 films, our empirical strategy exploits an important feature

of observed patterns of US film entry into the Chinese market. This is, films that enter

tend to have a rather specific profile, which did not materially change after the new

policy came into place. Based on this observation, and using a rich set of observable

film characteristics, we are able to rank films in terms to their exposure to the policy

shock. For example, because low-budget, 2D, horror or comedy films rarely enter China,

it can be presumed that their castings were less impacted by the policy change than that

of high-budget, 3D, action films, which enter the market much more often. We draw

inference from a differences-in-differences specification, which implements a comparison

between films produced before and after the policy change, across the range of exposure to

the shock. The leading threat to the causal interpretation of our estimates is the possible

endogeneity of observable and unobservable film characteristics. We are able to address

this concern directly, finding no evidence to support it.

According to our preferred specification, the participation of pale-skinned star actors

among films in the top decile of shock exposure increased by about 8% as a result of

the policy change. We take this result as evidence of cultural accommodation, and refer

to it as the light-skin shift (LSS). The result is robust to a series of checks, and its

causal interpretation is supported by falsification tests and an analysis of the effect’s

composition. In particular, consistent with the idea that Chinese coloristic preferences

impose more stringent beauty standards on women, and better resemble a “light-skin

premium” than a “dark-skin penalty,” we find that the LSS mainly operated through the

more frequent inclusion of pale-skin actresses, and that it was not associated with a sharp

decrease in the participation of actors of dark-most skin colors. Further analysis suggests

4It is important to highlight that coloristic preferences are not exclusive to the Chinese culture nor to
Asia in general. In fact, evidence that coloristic preferences shape socio-economic and cultural outcomes
is available from around the globe –including societies with predominantly dark-skinned populations.
Several such cases are described in Hall (2012). The World Health Organization (2011) further notes
that the consumption of potentially hazardous skin whitening cosmetics is prevalent around the world.)
Our focus on China stems from the conflux of factors that make of it an interesting subject of study,
namely, this nation’s economic prowess, the marked presence of coloristic preferences therein, and its
recent foreign film importation policy change.
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that the LSS was neither driven by a shift towards the (mostly light-skinned) Superstars,

nor the preferences of Chinese gatekeeping authorities.

Although emerging markets have received growing amounts of interest from marketing

scholars, the vast majority of this work has treated them as “testing grounds” for theories

coined in the context of developed markets, or focused on understanding the nature and

local implications of their institutional, cultural, and behavioral differences with developed

markets (Burgess and Steenkamp, 2013; Narasimhan et al., 2015; Sudhir et al., 2015;

Chandy and Narasimhan, 2015). We contribute to this agenda by highlighting that these

differences may also have first-order implications at a global scale. The culturally sensitive

nature of our dependent variable further reinforces this point, by suggesting that the

emerging markets’ newly acquired economic prowess may be propelling their preferences

to “swim against the current” in the global stage. Our work also contributes to the

literature on product design, where large-scale empirical studies are scant (Bloch, 1995;

Luchs and Swan, 2011).

Our results have an obvious implication for the design of international products and

services. Whereas analyzing the cultural and behavioral landscape of developed economies

may have been sufficient to inform design in earlier days, the irruption of emerging mar-

kets renders it likely insufficient now. Moreover, in several ways, the irruption of emerging

markets has added preference heterogeneity to the global addressable market, possibly in-

creasing the difficulting of achieving satisfactory “one-size-fits-all” designs. This challenge

stands out in the context of feature films, where consumption value is assessed through the

lens of culture, and where wide cultural divides may force studios to reconcile somewhat

opposing views. Such difficulties resonate, for example, with the case of “The Great Wall”

(2016), whose lackluster commercial performance was rationalized on the basis that “the

film pulled itself in two directions to please the ‘other’ audience, which in the end pleased

neither side of the world” (Mendelson, 2017a).5 Although we here focus on coloristic pref-

erences, such cultural divides may also manifest with respect to other culturally sensitive

issues, such as women’s rights, the scope of personal liberties, and the respect for au-

thority. Storylines and themes that shy away from such polarizing topics, or which avoid

stinging representations thereof, may help studios to avoid these unwanted trade-offs.

Although our results connect with the recent controversy about racism in Hollywood

(Kang et al., 2014) at a high level, such connection is tenuous at best. We thus ask the

reader to interpret this connection with extreme care. Colorism does not equate to racism,

and our data do not report actors’ races. Moreover, there may be significant variation in

skin tones within races, and colorism may manifest within individuals of the same race.

More importantly, racism in the US is usually perceived as a systematic prejudice or

discrimination against black individuals. Our results do not evidence this effect. Instead

they show a favoritism effect for individuals of light-most skin tones. This effect seems to

5Mendelson (2017a) also references “Warcraft” (2016) as an example to the same point.
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have been sustained by the lower participation of actors of all darker skin tones. Although

these darker tones include African-American actors, they also include actors that appear

to have Latino, Indian, and Asian ethnicities, as well as many relatively darker-skinned

Caucasians (e.g., Adam Sandler, Al Pacino).

2 Coloristic Preferences

Coloristic preferences operate over the skin color of people, such that lighter skin is pre-

ferred to darker (Hunter, 2013).6 The manifestation of these preferences —Colorism—

does not equate to racism. Colorism is a matter of skin tone, which means that it can

manifest within or across races (Hunter, 2013). Furthermore, unlike racism, colorism is

not strongly linked to manifestations of violence or repression.

Colorism is also present in the Western World, including the US (Hunter, 2007). For

these societies, however, factors such as the more pervasive racial heterogeneity among the

population and in the media, and the vigorous affirmative action against racial disparity

issues, suggest that overt coloristic manifestations may be met with social disapproval,

and that coloristic preferences may not shape beauty standards as strongly as in China.

According to Dikötter (1992), the Chinese society developed a white-black polarity

over 2,000 years ago, before the Qin dynasty. As in Europe before the industrial revolution,

light skin became a signaling device for class status, differentiating a leisure class elite

from lower-class groups. Mostly comprised by the agricultural peasantry, these tended to

have darker skin tone because of their more intense exposure to sunlight due to outdoor

labor.

Symbolized by the use of “white jade” as a metaphor for a light complexion (Dikötter,

1992),7 fair skin became idealized and associated with intellectual endeavor, beauty, el-

egance, and virtue (Sautman, 1994). This symbolism permeated into beauty standards,

as is reflected by one point in the “Ten Commandments of Classical Beauty of Ancient

China” —a woman’s beauty follows from “a skinny waist and snow-white skin”—, and

the proverb “One whiteness covers up one hundred ugliness.”

While the mechanics of skin color-differentiation were disrupted in Europe by the In-

dustrial Revolution, they remained largely intact in China, which continued to rely on

an agricultural economy until the economic reforms of 1978 gave way to industrialization

6Evidence has linked coloristic preferences with outcomes such as years schooling (Loury, 2009) and
overall educational attainment (Ryabov, 2016), assortment in the marriage market (Hamilton et al.,
2009), access to financing (Jenq et al., 2015), and lengths of prison sentences (Viglione et al., 2011; King
and Johnson, 2016). Kreisman and Rangel (2015) provide consistent evidence from the labor market by
examining earning gaps and tenure.

7In Chinese culture, jade symbolizes nobility, perfection and immortality, among other virtues, and it
is considered the most valuable of all precious stones.
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(Yao, 2000). In Europe, the Industrial Revolution caused the migration of outdoor to

indoor labor (Azoulay et al., 2009), and the massification of steam-based transportation

technology prompted elites to vacation in warm and sunny locations. Furthermore, rel-

ative to the Western world, China has maintained a high degree of ethnic and cultural

homogeneity, even throughout its recent process of economic development and global

integration (The Economist, 2016).8

Observers of the Chinese society rely on this history to explain how skin color, iden-

tity, and social status connect in today’s China. Referencing Hong Kong as a proxy for

Chinese society, Leong (2006) states that “skin color operates as a visual agent in defining

the boundaries of cultural identity, and in identifying a person’s place in a local social

hierarchy,” and suggests that white skin is the most important element of personal beauty,

as well as a marker for good health. Sautman (1994) reaffirms the role of pale skin as a

defining trait of beauty standards in today’s China: “fair skin continues to be a standard

of female beauty. Many urban Chinese women take pains to avoid the sun and some use

whitening creams.”

These marked coloristic preferences can be linked to a defining feature of the cosmetics

market in China and other Asian countries. For example, the China director of the

cosmetics multinational L’Oreal Paris has stated that “(Asian) women at every age want

to bleach their skin (..) Since fairness is the specific requirement of Asian women, these

kinds of products are only available in this area. But we do believe skin whitening will

retain its very important position here” (Xi, 2011). Correspondingly, Asia has been the

fastest-growing region in the global skin-lightening market since the 1970s (Tan, 2012),

exhibiting rates of growth in excess of 70% in recent years (Xi, 2011). Skin-whitening

products now account for about 30% of the over US$5 billion-a-year skin care Chinese

market, making it its largest category (Xi, 2011). By comparison, this share is less than

3% in the US (Statista, 2017). The strength of the phenomenon is also reflected by

intense competition and innovation in the category (Tan, 2012), as well as by graphic

advertisement campaigns which overtly associate departures of pale skin with ugliness

and awkwardness (Xi, 2011).

A common thread across these references is the idealization of white skin as opposed

to the denigration of black skin. This aspect may be rooted on the mechanics of so-

cial differentiation, as they apply to the Chinese context. In particular, because the

genetically-determined skin colors of Chinese people are generally light within the broad

spectrum of skin colors in humans (Wei et al., 2007), black skin is a virtually irrelevant

point of reference, and thus an ineffective anchor to base differentiation on. This suggests

that coloristic differentiation in China is likely to be driven by the degree of proximity to

8The Economist (2016) reports that “China today is extraordinarily homogeneous. It sustains that by
remaining almost entirely closed to new entrants except by birth.” This statement is in part supported by
recent statistics for naturalized citizens: while the US, Britain, France, and Russia naturalized between
0.1% and 0.4% of their respective populations, China has naturalized 0.0001% in total (i.e., across years).
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the “snow-white” ideal, rather than by the degree of separation from black skin extreme,

as most Chinese people would be roughly equally apart from it.9 The common practice

of avoiding sun exposure (Levin, 2012) supports this view, as it suggests that even minor

distortions to a pale skin tone can jeopardize this ideal. We conceptualize this idea by

saying that coloristic preferences in China manifest more like a “light skin premium” than

a “dark skin penalty.”

We conclude with two examples suggesting that Chinese colorism may influence con-

sumption decisions in areas beyond beauty products. In the early days of the modern

Chinese Photography market, Fuji outperformed Kodak. Smith (1996) suggested that

the cause was partly rooted on the former’s products’ skin-lightening effect. Kodak later

replicated this feature. The popularity of recent “selfie-enhancing” cameras and apps

—known to produce the same effect— atests to the same point.10 Chinese coloristic pref-

erences could also be linked to the recent controversy sparked by the poster of “Star Wars:

The Force Awakens” (2015). The controversy arose because, relative to the poster’s US

version, the Chinese version visibly minimized the character played by the black actor

Jon Boyega, while at the same time highlighted those played by the white actress Carrie

Fisher and Harrison Ford (Child, 2015).

3 Regulatory Framework

3.1 China’s Foreign Film Importation Policy

After a long ban established during the Cultural Revolution, the importation of foreign

films was reinstated in China in 1994, although with strict regulations. The purpose

of these regulations was two-fold. The first was to support the domestic film industry

by protecting it from international competition (O’Connor and Armstrong, 2015). The

second, to control the flow of information and content that may undermine the values

espoused by the Chinese Communist Party (CCP), or which portrayed the country or its

people in a negative light (O’Connor and Armstrong, 2015).11 To this day, all films that

enter China may be censored, or required to alter some of its content.

Since 1994, there have been two main modes for foreign films to enter the Chinese

market. These are, “revenue share” and “flat-fee entry.” Revenue sharing has been

9In contrast, coloristic differentiation in African societies is portrayed as operating through lighter
shades of black (Lewis et al., 2013).

10Forbes (Sin, 2016) reports that, due to its initial popularity, the price of the “selfie-enhancing” Exilim
TR Casio Camera rose from an initial US$249 to US$800-1000 shortly after its release. Quartz (2016)
reports that “selfie-enhancing” Meitu app had over 900 million users by March 2016.

11To this effect, Lynch (2016) states that: “in China, films have long been an important propaganda
tool to promote socialist values and the hegemony of the CCP (..) Nothing says ‘Western Values’ quite
like a Hollywood movie.”
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the predominant choice for large-budget Hollywood blockbusters, as it allows studios to

participate in the box-office upside. In particular, studios retain about 13% of box-office

revenues (Cieply, 2012). Distribution is managed by a Chinese state-owned distributor

(O’Connor and Armstrong, 2015). Between 1994 and 2001, 10 films were allowed to enter

with this mode. When China joined the World Trade Organization (WTO) in 2001, this

quota increased to 20. On the other hand, under the flat-fee model, studios receive a fixed

upfront payment, but do not participate in box-office receipts. For this reason, flat-fee

entry has traditionally been preferred by independent films or smaller productions.12

Although different State organisms may influence importation and censorship out-

comes, the primary gatekeeping authority is the State Administration of Press, Publica-

tion, Radio, Film and Television (SAPPRFT). Because state-owned enterprises directly

benefit from the importation of popular films, importation and content control decisions

balance economic and ideological factors (Squire, 2004),13 suggesting that a film’s pop-

ularity among audiences may be a precondition for entry into the market. If satisfied,

censorship and editing may be used to veto/modify those films that conflict with the

gatekeeper’s ideological mandate. Alternatively, films with weaker popular appeal may

be favored if they align with it.

Content that exalts the Chinese culture, institutions, people, or values is expected to

earn the SAPPRFT’s goodwill.14 However, it is not always clear what kind of content will

achieve this goal or, in contrast, estrange the authority. For instance, when the animated

film “Despicable Me 2” (2013) was denied entry, many suggested the reason was an alleged

similarity between the animated characters (“minions”) and the former CCP’s Secretary

General Jiang Zemin, despite the authority’s official position that the result was due to

low profitability expectations (Child, 2017). Qin (2011) and Grimm (2015) describe the

convoluted organizational structure that is responsible for importation and censorship

decisions (which includes a number of other organisms besides SAPPRFT), suggesting

that the resulting lack of transparency may be a deliberate feature, aimed at providing

authorities “with the maximum level of flexibility and efficacy desired” in controlling

informational flows (Qin, 2011).

12An alternative route of entry entails side-stepping the “foreign film” label by engaging in coproduc-
tions with Chinese firms. Although there are no known restrictions for this entry mode, there neither is
a clear definition of what constitutes a legitimate coproduction in the eyes of the regulator, nor reassur-
ance that all coproduced films will be allowed in. In fact, in our data, about 45% of coproductions with
Chinese firms do not enter the market.

13An additional economic incentive for the importation of popular films stems from the reconfiguration
of Chinese retail commerce around shopping malls, whose operators have favored theater chains as tenants
in order to foster footfall (Financial Times, 2016).

14Perhaps the most salient example of studios’ strive to earn the SAPPRFT’s goodwill corresponds to
the “The Martian” (2015), where a mission of the Chinese National Space Administration saves the day
for the lead character and NASA (Hoad, 2015).
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3.2 2012 Policy Change

Although the revenue share quota was increased from 10 to 20 when China joined the

WTO in 2001, the stringent restrictions continued to stand in contradiction with a WTO’s

central mandate. Namely, they breached the equal right of all enterprises and individuals

—local and foreign— to import and distribute goods.

China was then called to altogether eliminate these restrictions. In open contradiction

with its plans, China ignored the request, prompting the US government to bring a case

against it at the WTO (Voon, 2009). Lacking response, the case proceeded. In 2009 a

WTO panel officially determined that China remained in violation of its obligations as a

member of the organization (Voon, 2009). The panel later rejected a Chinese appeal, and

a formal call to comply was issued in March of 2011 (O’Connor and Armstrong, 2015).

Despite this sustained pressure, China’s strong views on safeguarding its tight control

over informational flows and protecting the domestic industry introduced a large amount

of uncertainty regarding whether, when, and under what terms restrictions would be

relaxed.

The new policy was forged during a February 2012 visit of then president-in-waiting

Xi Jinping to the US. Optimism for progress in film trade policy was weak at the time

as, in an essay published earlier in 2012, then-president Hu Jintao had laid out hostile

views towards the cultural influence of the West, and its attempts to interfere with China’s

path (Wong, 2012). Furthermore, although Hollywood’s interests were not absent from the

agenda, the focus was placed on bigger-picture issues, such as Human Rights violations,

the Syrian crisis, the protection of intellectual rights, and “fair play” in technological

trade (Lander and Wong, 2012).

A policy reform was nevertheless agreed upon during the visit. It was struck before

dinner on the last day of the visit, after Chinese agencies had signed off to the conditions

earlier the same day (Waxman, 2012). The new policy was implemented later in 2012,

and conceived as a 5-year transitory framework until a more definitive set of rules were

worked out.

This deal —known as the Memorandum of Understanding or Xi-Biden agreement—

changed the conditions for the most sought-after entry mode by large Hollywood studios,

revenue-sharing. Importation restrictions were relaxed in two main ways (Cieply, 2012).

The first was an increase in the percentage of box office receipts retained by foreign

studios, which rose from 13% to 25%. The second was an increase of the importion quota,

which rose from 20 to 34. Although the policy reserved the 14 additional slots for 3D or

IMAX films, there were no stated limits on 2D films among the remaining slots. Thus,

to the extent that the supply of 3D/IMAX films would not meet Chinese demand, the

policy change also improved entry prospects for 2D films. Both these changes point to an
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increased relevance of Chinese audiences’ preferences from the perspective of Hollywood

studios.

Despite not receiving much coverage by the Chinese media, some interpreted the Mem-

orandum as skillful political maneuvering by the impending President Xi: relative to the

other issues at stake during the visit, the agreement constituted a relatively minor con-

cession (Page, 2012). Moreover, the larger number of US films entering China would

help to fill the rapidly-expanding number of screens in China, and enable the transfer of

technology to the domestic industry. For the White House, the agreement was perceived

as “well-timed victory,” at a time it verged on the “embarrassing collapse of legislation

aimed at protecting intellectual property” (Waxman, 2012). Finally, reflecting the reign-

ing uncertainty and importance of the Chinese market for Hollywood studios, MPAA’s

Chris Dodd and Ron Kirk called the new agreement a “big deal” (Waxman, 2012) and a

“breakthrough” (Abrams, 2012), respectively, while an analyst commented “the unthink-

able happened” (Landreth, 2012).

4 Data

The construction of our data set entailed two main parts: the retrieval of information for

a sample of films from the IMDb website, and the codification of the skin colors of star

actors included on each of these films. Details for each are provided in turn.

4.1 Films

We employed three criteria to select films. First, we focused on films released in the US

between 2009 and 2015, a time frame which provided us (at the time of data collection)

with the roughly widest symmetric window around the policy change. Given our focus

on the Hollywood industry, the second criterion was to select only those films for which

the US was listed among the origination countries. The large number of titles available

from IMDb includes many small productions with little impact, so we further narrowed

down the sample to the set of more impactful films. We implemented this refinement by

focusing on films with a large enough number of popularity votes in the IMDb website.15

The distribution across release years of the 3,378 films in the resulting sample is described

by the bars of Figure 1. The number of released films is roughly stable across years.

We coded several design characteristics. Descriptive statistics are presented in Table 1.

15The IMDb popularity voting system is designed to minimize the extent of manipulation, for example,
by limiting voting rights to registered users and allowing these to issue a single vote for each film. The
selected threshold was 500 votes. Parsing through titles with fewer votes revealed that many such films
are notoriously less impactful. Moreover, for these, important design characteristics in our analysis below
are often missing.
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From technical specifications and keywords we generated the indicator 3D/IMAX, which

identifies the about 5% of films in our sample with these formats. IMDb data generally

associates each film with more than one genre. Drama, Thriller and Comedy are the more

frequent ones.16 We also generated a set of sensitive content indicators (i.e., sex, nudity,

violence, drug use, and strong language) by mining the keywords on the parental guide.

About 68% of films include at least one such type of content.

Although these variables capture a good amount of variation regarding films’ appeal to

different audiences, their overall appeal may also be determined by other design features

which are not be fully-controllable during production. One of these corresponds to the

ratings awarded by the Motion Picture Association of America (MPAA), which classify

each film based on the suitability of their content to different audiences. These may

add information by capturing higher-level design characteristics, which unfold through

the specific portrayal of each type of content.17 Another non fully-controllable variable

corresponds to awards. Previous research has shown that the number of awards that a film

is nominated to and wins may signal a film’s quality to consumers.18 We thus constructed

the variables AWRDNOM and AWRDWON, which respectively track these.19

We also encoded production budgets. By a rational expectations argument, large

budget films may be designed to have broad appeal, in a way that is not captured by

the above variables. This may occur, for example, through the inclusion of spectacular

special effects or popular (high-earning) actors.20 In turn, Chinese authorities attempting

to make efficient use of the small number of revenue-share slots may favor films that

are both likely to appeal to a larger share of the population, and yield higher box-office

receipts. Because budget information for about 45% of the films in the sample is missing

from IMDb, we devised a coding scheme which primarily relies on identifying films at

the top of the distribution. In particular, assuming that budget figures are more likely

to be missing for films in which these are relatively small, we created the indicators

P75BUDGET and P90BUDGET, which respectively activate for films whose budgets lie

within the top 25% and 10% of the distribution of budgets for films released each year.21

16The “other” category includes genres that are less frequent in the data. These are: Western, Musical,
Biography, History and Sport.

17The system awards the following ratings: PG for films suitable for audiences aged 7 and older; PG-13
for audiences aged 13 and older; and R for restricted audiences. It has been argued that these ratings
can, by themselves, impact overall appeal and commercial performance of a film, even after holding
content constant (Palsson et al., 2013). The system has been criticized based on an alleged inconsistency,
whereby films containing scenes of comparable nature are awarded different ratings (Pomerantz, 2010).
Consequently, they may be subject to a degree of uncertainty from the perspective of producers.

18Although proxying for a film’s quality through awards is problematic in some respects, previous
research has made this connection and provided supporting evidence (e.g. Nelson et al., 2001; Ginsburgh,
2003; Deuchert et al., 2005).

19We consider the following major awards: Oscars (Academy Awards), Golden Globes, BAFTA Awards,
Golden Lion (Venice Film Festival), Palme d’Or (Cannes International Film Festival), Grand Jury Prize
(Sundance Film Festival), The Golden Bear (Berlin International Film Festival), The Golden Leopard
(Locarno International Film Festival), and Filmfare Awards.

20In addition, promotional budgets tend to be proportional to production budgets (Vogel, 2014).
21In practice, this codification assumes that missing budgets lie somewhere in the bottom 75% of each
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The indicator BIG6STUDIO was created to identify films involving at least one of the

large “Big 6” studios.22 About 37% of the films in the sample fall in this category. This

variable may help us, among others, to control for potential differences stemming from

studios’ experience engaging with Chinese authorities. Further, we generated USONLY-

FILM to identify films produced by US studios only. Because these films are produced in

absence of international collaboration, they may have a relatively stronger emphasis on

US culture or values.

The variable CHINESECOPROD identifies coproductions with companies from China,

which could facilitate entry into that market.23 Furthermore, in order to pick up the po-

tential appeal derived the inclusion of local actors, we retrieved each star actor’s country

of birth. Because only few of the stars in our data set are reported as born in Mainland

China, we also considered actors born in Hong Kong and Taiwan. The indicator CHI-

NESESTAR identifies the small percentage (less than 1%) of films including at least one

such actor.

Entry into the Chinese market is codified by the variable CHINAENTRY. An initial

inspection of the data revealed that many of the films that IMDb reports as having been

shown on Chinese screens do not correspond to standard commercial releases, but to

limited releases (for example, in the context of screenings and festivals).24 Because such

releases may be subject to less stringent regulatory oversight, or mainly serve promotional

goals, they are not accounted for by CHINAENTRY.

Patterns of entry into the Chinese market according to CHINAENTRY are depicted

by the line plots of Figure 1. Whereas for bars (total releases of all US films in our sample)

the horizontal access represents films’ release year in the US, for line plots it represents

the year of release in China. Thus, the relatively smaller numbers for 2009 likely stem

from data censoring (as opposed to variations in the regulatory environment).25

By focusing on the type of films that are more likely to enter through the revenue-

share system (i.e., large budget-films), the red line maps out the impacts of the new policy

distribution. To investigate the validity of this assumption we resorted to IMDb popularity votes. In
particular, if we found that budget information tends to be missing for very popular films, our assumption
would not be supported by the data. Statistics presented in the Appendix suggest the opposite: films
with missing budget information are typically associated with a much smaller number of IMDb popularity
votes than those for which budget data is available.

22These studios are Disney, Fox, Paramount, Sony, Universal, and Warner Bros.
23As defined, CHINESECOPROD accounts for coproductions with Chinese companies or the inclusion

of scenes shot in Chinese territory. This variable is constructed primarily based on shooting location and
country of origin data for involved firms (available from IMDb Pro), but supplemented with films’ stated
country of origin. That is, CHINESECOPROD=1 if a one of the films’ declared origination country is
China.

24We identify these in the data through the following markers: festival release, limited release, screening,
premiers, and internet release.

25That is, some of the films that entered China in 2009 may correspond to films released in the US in
earlier years. This censoring will not affect our later econometric results, as estimated models include
year fixed effects and primarily rely on cross-sectional film design variation.
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changes on entry quite closely. The observed number of this type of films that enters China

is about 25 in 2010 and 2011, and a bit larger in 2012 (the new policy took effect during

the summer that year). The pattern exhibits a discontinuous increase in 2013, when a

new level of about 35 is reached and maintained through the end of the sample period.

The differences between the observed pre- and post-policy change numbers with respect

to the stated quotas of 20 and 34 may stem from co-production arrangements, or flat-fee

entry that we are not able to identify from the data at hand. However, these differences

are small.

Also note that, despite that the new policy opens 14 new slots for 3D/IMAX films,

the more immediate entry impact is registered among films without these formats. This

supports our previous assertion that, despite its formulation, the new policy effectively

expanded the market for both types of films during the covered period, 3D/IMAX and

not. Lastly, we note that the difference between the total number of films (black line)

and large-budget films that enter China (red line) is likely to reflect the extent flat-fee

entry, that is associated to smaller budget productions. This difference suggests that

only a very small fraction of small budget films (about 1% in our sample) will enter the

market. Thus, for the latter, preferences of Chinese audiences are likely to be a much less

important consideration for casting.

Finally, accounting for production lags will be important in our analysis. Film pro-

duction requires a set of activities (casting, shooting, post-production, etc.) which may

take several months, or even years. This means that the impact of 2012 policy change

may have started to manifest among cohorts of films released in later years. To determine

the specific cohorts that were impacted by the new policy, we retrieved production dates.

In particular, we considered the date at which filming started, which was available for

about 70% of the films in the sample. Using these dates to proxy for the time in which

casting decisions were likely already defined, we computed the production lags. These

correspond to the number of months between the reported date in which filming begun,

and the earliest release date in theaters. The distribution of these lags is presented in the

Appendix. The median of this distribution is 17 months, which suggests that the new

policy’s casting impacts must have been first perceived among the cohort of films released

in 2014.

4.2 Skin Color Coding

We retrieved the list of actors starring on each film, and codified their skin color. We used

the list of star actors presented on each film’s main IMDb profile. Beyond their on-screen

relevance —that is, their importance as it relates to the number and types of scenes

they participate on— star actors usually have an important role in films’ promotional

activities, thus representing the most culturally-charged set of actors within the cast. A
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manual inspection of a number of films revealed that IMDd’s listed stars often correspond

to those appearing in promotional posters, and that these lists tend to coincide with those

of different internet sources (Rotten Tomatoes, Wikipedia).26

Discarding actors for whom there was no profile picture available from IMDb, this

procedure resulted in a sample of 10,127 starring roles (i.e., actor/film combinations) and

5,442 actors. About 85% of films in the sample have three stars, while little under 2%

have only one. About 65% of actors play only one role in the sample, while 15% play two.

A relatively small fraction of actors (less than 5%) play more than 5.

We codified the skin color of each these using MTurk.27 A profile picture of each

actor was shown to 5 MTurk coders, asking each to rate the skin color in a scale with the

following entries: “very light,” “light,” “medium,” “dark,” and “very dark.” We did not

provide information about the actor’s filmography, nor anchored answers by providing

examples. We then codified each response in a 1-5 scale, where 1 corresponded to “very

light” and 5 to “very dark,” and averaged the scores awarded by coders within each actor.

Figure 2 presents the resulting distribution. The median of this distribution is 2, which

can be interpreted as 50% of actors in having a skin color that is somewhere in between

“very light” and “light.”

To contextualize these results and assert their validity, we selected a random sample

of actors across the range of skin color codes. Figure 3 presents the result. The most

important feature of this figure is that it suggests that the MTurk coding results in a

reasonably accurate ordering of actors based on their skin color: from left to right, skin

colors progressively darken. The figure also suggests that the coding procedure was robust

to less-than-ideal profile pictures. Pictures distorted by background light, or with actors

wearing hats or hoods, do not evidence blatant coding errors.

To further assess the validity of this procedure we investigated the degree of agree-

ment among coders. We focused on within-actor coding discrepancies, computed as the

difference between each coder’s rating and the average across coders. Results point to low

overall disagreement. The distribution is symmetric, over 75% of coder/actor ratings are

within the [-0.6,0.6] interval, and 90%, within [-0.8,0.8]. Furthermore, according to the

criteria of Cicchetti (1994), the resulting value of 0.9 for the average absolute-agreement

intraclass correlation is “excellent.”

To facilitate the description of casting patterns across films, we translated the skin

color alternatives presented to coders into a categorical variable. Denoting by ca the

average color score awarded to an actor a across coders, we assign the actor to a category

26In the Appendix we present a sample film to illustrate the retrieval of starring casts, and the corre-
spondence of this list with the design of promotional material.

27MTurk (Amazon Mechanical Turk) is a crowdsourcing online marketplace, where task requesters
post simple Human Intelligence Tasks performed remotely by workers. To minimize cultural variation,
we selected US-based coders only.
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k = 1, .., 4 if k < ca ≤ k + 1, with k = 1 for ca = 1. We then constructed nki as the total

number of actors that belong to category k and star in film i, and Ni as
∑

k nki. Thus,

given the results of Figure 2, n1i not only represents the number of actors in film i whose

skin is judged as “light” or lighter, but also the number of actors who have lighter-than-

median skin. These variables are summarized in Table 1. Because most films have three

color-coded stars, the 1.85 average of n1i suggests that two thirds of actors fall in this

category. The smaller average participation of dark-skinned actors (k = 3, 4) relative to

their frequency in the distribution of Figure 2 stems from the smaller average number of

roles played by them.

5 Empirical Strategy and Shock Exposure

5.1 Empirical Strategy

We conceptualize studios’ production decisions through product design pairs (Y,X), where

Y corresponds to observed casting decisions, and X to the remaining film’s design ob-

servables (e.g., genre, content, etc.). Within the latter we also include observable “behind

the scenes” production arrangements (e.g., co-productions, budget, etc.). Consistent with

our empirical analysis, we restrict our definition of Y to only encompass stars’ skin colors,

assuming their independence with respect to other of characteristics of relevance (e.g.,

acting skills, experience).

The theoretical object on interest is the optimal casting policy, Y ∗|X. We understand

this as the criteria that guide optimal actor selection given a film’s characteristics X. For

example, films inspired on World Wars may call for light-skinned actors, as these events

took place before major waves of African and Middle Eastern immigration into Europe.

For these films, the strive for historical accuracy may lead to an “organic” or “natural”

gravitation towards light-skinned stars.

To rationalize these policies, we denote by P(Y ) the distribution of preferences for

light-skinned stars in the total addressable (global) market. Once the policy change

became effective, Chinese coloristic preferences acquired greater relevance within this

market, inducing a shift in this distribution. We denote this shift by ∆P(Y ). Our

inference is based on a comparison of optimal casting policies E[Y ∗|X] between films

whose characteristics X suggest a relatively large shift ∆P(Y ), and others for which the

shift was presumably smaller. Our focus on X-conditional casting policies means that we

aim to identify a potential change in the set or criteria that govern the selection of stars.

We next present a framework that allows us to implement this strategy in a simple

and transparent way. In this framework, ∆P(Y ) is operationalized through a “treatment
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intensity” function EXPOSURE(X) ∈ [0, 1]. This function is computed based on patterns

of China entry observed prior to the policy change. We use three variants of EXPOSURE,

one dichotomic and two continuous. The consistency of results obtained from each of these

illustrates the robustness of our main finding.

Under certain assumptions, a differences-in-differences specification allows us to iden-

tify the causal impact of the policy change on optimal casting policies. At a broad level,

the effect is identified by the progression of “pre/post” differences in E[Y ∗|X] along the

support of EXPOSURE. Specification details and assumptions are addressed in Section

6. We investigate the validity of the required assumptions, devoting special attention to

the potential endogeneity problem rooted on studios’ ability to choose films’ observable

and non-observable design characteristics.

The next subsection develops the basic elements needed to construct EXPOSURE.

We employ Probit specifications, which relate observables characteristicsX to CHINAEN-

TRY. As expected from our review of Section 3, results are consistent with the idea that a

variety of factors —related to both the preferences of Chinese audiences and gatekeepers—

influence the likelihood of China entry. We emphasize that disentangling the influence of

audiences’ preferences relative to those of gatekeepers’ is neither an essential question, nor

the focus of our analysis. A different question —whether authorities impose a coloristic

bias on entry outcomes— is, however, relevant to interpret our results. We address this

question in subsection 6.6.

5.2 Determinants of Entry into the Chinese Market

The arbitrariness and non-transparency China’s importation and content control out-

comes suggest that entry into this market can never be assured. Thus, these factors

support a probabilistic framework to model films’ shock exposure.

We estimate Probit specifications using CHINAENTRY as dependent variable, using

the comprehensive list of observable film characteristics X of Table 1 as independent vari-

ables.28 Table 2 presents the obtained results. Columns 1 and 2 correspond to estimates

from the sample of films released in 2009-2012; Columns 3 and 4, those from the full sam-

ple. Odd-numbered columns do not account for design characteristics that are not fully

controllable during production (MPAA ratings and awards). We focus our discussion on

the estimates of Column 1, which will later be used to derive our main results.

We first turn our attention to genre indicators. These suggest that films in genres

such as action, adventure, thrillers, and romance command relatively higher China entry

probabilities. These results coincide with anecdotal evidence, some suggesting that action

28Standard checks (variance inflation, condition number) do not point to multicollinearity issues.
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movies with special effects have particular appeal among Chinese audiences (Rankin and

Kaiman, 2014) and other that movie going has established itself as part of the ritual of

romantic courtship in the emerging Chinese middle class (The Economist, 2013).

On the other hand, comedy films exhibit systematically lower entry probabilities. This

result likely stems from a large cultural discount, rooted on the fact that humor does not

translate well.29 Interestingly, horror films also exhibit lower entry probabilities. As op-

posed to the previous effects, this may more directly speak to the ideological mandate

of gatekeepers, as authorities are reluctant endorse the promotion of superstition and,

in particular, serial-killer type of violence (Martinsen, 2010).30 Thus, these results illus-

trate that the preferences of both audiences and gatekeepers may determine China entry

outcomes.

The coefficients of P75BUDGET and P90BUDGET suggest that large-budget films

are more likely to enter China. This is hardly surprising as, for obvious economic argu-

ments, large budget films must be designed to have broad appeal. The lack of statistical

significance for the coefficient of BIG6STUDIO may stem from its high correlation with

the budget indicators. The strongly significant and positive coefficient of 3D/IMAX coin-

cides with reports suggesting the special adeptness of these formats to the Chinese market

(Sagakian, 2016).

As expected, the coefficient estimate for CHINESECOPROD is positive, large, and

strongly significant across specifications. However, it is interesting that this variable does

not perfectly predict entry. This finding further supports the idea that entry cannot be

assured.

The positive coefficient of CHINESESTAR and negative coefficient of USONLYFILM

could reflect both audiences’ and gatekeepers’ preferences. In particular, while films with

Chinese stars may be more popular among audiences, gatekeepers may also see it fit to

further support their films. On the other hand, US-only films may have a more marked

focus on US values or themes. For this reason, they may not resonate with Chinese

audiences, nor with the mandate of gatekeepers.

As in most innovation contexts, the characteristics of the finalized product is not

be fully controllable during production. Nevertheless, these will usually still determine

the product’s appeal. Non fully-controllable design characteristics are included in the

specifications of even-numbered columns. The first of these corresponds to film ratings

awarded by the Motion Picture Association of America (MPAA). We previously described

how these ratings can be important for a film’s commercial success, and they cannot be

29Speaking to this point, an expert on the Chinese film market states that “Humor is notorious for not
translating as well, say, action or thrillers. Some genres cross boundaries with relative ease, but humor
is much more difficult” (Andress, 2016).

30“Films are forbidden to have the following contents: (...) publicizing obscenity or superstitions or
playing up violence” (People’s Republic of China, 1996, chapter I, article 5).
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perfectly anticipated during production. Even after controlling for the presence of different

types sensitive content, results show that films with the more family oriented PG-13 are

more likely to enter China (relative to films in the omitted R/non-rated category). The

number and type of awards a film receives and is nominated to, is also a potentially

important non fully-controllable design characteristic.31 Results of Columns 2 and 4

support this view by suggesting that the number of major awards received can significantly

increase the probability of entering China.

Although estimates across columns suggest that the determinants of film entry into

China are relatively stable throughout the covered period, the value and statistical of some

coefficients change. To investigate whether these imply a meaningful aggregate effect, we

compare predicted entry probabilities across a wide set of specifications and estimation

samples.

Table 3 lists the considered samples, specifications, and correlations among predicted

entry probabilities. The correlations between probabilities predicted with estimates from

the 2009-2012 and 2013-2015 samples (bolded) are of particular interest. Their high

values suggest that the policy change did not materially alter the determinants of China

entry. That is, after the new policy became effective, the types of design characteristics

that made a film more likely to enter China did not change much.32 This result suggest

that basing the construction of EXPOSURE on one or other set of estimates will not

significantly impact our results.

5.3 Shock Exposure

We formulate the following EXPOSURE metrics:

DEXPOSUREi = 1[P̂r(CHINAENTRY|Xi) ≥ p(90)]

CEXPOSURE1i = P̂r(CHINAENTRY|Xi)

CEXPOSURE2i = Normalized
(

1− log
(

1− P̂r(CHINAENTRY|Xi)
)

)

DEXPOSURE is an indicator variable, which is activated for films whose estimated entry

probability is equal or larger than the 90th percentile of the 2009-2012 distribution. CEX-

POSURE1 corresponds to the predicted probability of entry, whereas CEXPOSURE2,

to a convex transformation of it. The latter is included to account for the idea that

31These may increase overall interest among audiences amongst others, by generating word of mouth,
or signaling quality (Ginsburgh, 2003).

32Furthermore, note correlations between specifications estimated on the same subsample are also
generally high. This suggests that non fully-controllable characteristics does not materially condition the
likelihood of entry.
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the policy change may have had a larger impact at higher ranges of the predicted entry

probability.33 Its normalization re-scales the expression inside the larger parentheses to

the unit interval. We found no significant correlation between these metrics and films’

production lags.

For our main analysis, we construct these metrics using the results of Table 2, Column

1. Although we have shown that the determinants China entry did not meaningfully

change following the policy change, these estimates are preferred because they better

reflect studios’ information set as they crafted Y ∗|X policies in the wake of the policy

change. We include extensive robustness checks showing that our main result does not

hinge on this specification choice. Figure 4 presents the histogram of predicted probabil-

ities and describes each measure graphically. This figure suggests that, for the bulk of

films in the sample, the policy change may have had little impact.

6 Results

6.1 Light-Skin Shift

Here we present our main result, a shift towards the more frequent inclusion of light-

skinned star actors, among films with higher exposure to the policy shock. As announced

in the introduction, we call this result the “light-skin shift” (LSS). To do so, we opera-

tionalize Y ∗ through the dependent variable SHARELIGHT. We construct this variable

with the aim of reflecting the likely manifestation of coloristic preferences, namely, a

“light-skin premium” as opposed to “dark-skin penalty.” Results of subsection 6.5 sup-

port this specification.

We define SHARELIGHT as the total number of star actors in the lightest-skin cat-

egory (n1i) over the total number of skin-color coded star actors in a film i (Ni). That

is,

SHARELIGHTi =
n1i

Ni

To illustrate how SHARELIGHT traces a “light-skin premium” consider an alternative

metric, AVGCOLOR=(1/Ni)
∑

k k ·nki. Consider also two hypothetic films i′ and i′′ such

that Ni′ = Ni′′ = 2, n1i′ = n4i′ = 1, and n2i′′ = n3i′′ = 1. Under AVGCOLOR, both

films would rank equally under coloristic preferences, whereas under SHARELIGHT, film

i′ ranks higher than film i′′ because it includes one actor in the lightest-skin category.

33Our reasoning is based on the possible presence of risk aversion on the part of producers. Because
entry into China cannot be guaranteed, casting decisions Y ∗|X are made in the context of market
uncertainty. Because the costs implied by this type of risk are relatively more important, the lower
P̂r(CHINAENTRY|X) is, the latter’s impact on casting decisions should be disproportionally larger at
larger values.
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Also note that, since the threshold dividing skin-color categories k = 1 and k = 2 also

corresponds to the median of stars’ skin color distribution, SHARELIGHT also represents

the share of “lighter-than-median” stars.

Table 4 presents descriptive evidence supporting the LSS. This table compares aver-

age values of SHARELIGHT across four groups of films. Films produced prior to the

enactment of the new policy averaged SHARELIGHT values of 0.65, irrespective of shock

exposure. That is, in the “pre” period, two out of the three stars included in the average

film belonged to the lightest skin-color category. Whereas in the “post” period this av-

erage remained virtually unchanged for films with lower shock exposure, it increased by

about 0.07 for films with higher exposure to the shock.

Figure 5 unpacks these averages temporally. In the “pre” period, trends are similar

across exposure groups. In the “post” period, this trend remains roughly stable for low-

exposure films but exhibits a discontinuous increase for high-exposure ones. Figure 6

presents an alternative view, by focusing on the share of films which only include light-

skinned (k = 1) stars. The same discontinuity is observed. To further characterize the

effect, we estimate the following differences-in-differences (DiD) specification:

SHARELIGHTi = α + βEXPOSUREi × POSTt(i) +ΘXi + λt(i) + εi, (1)

where EXPOSURE corresponds to either of the measures introduced earlier. When im-

plemented as DEXPOSURE, the speficication represents a standard 2× 2 design. When

implemented as CEXPOSURE1 or CEXPOSURE2, EXPOSURE represents a measure of

continuous “treatment intensity.”34

Given the distribution of production lags, POST=1[t ≥ 2014] identifies the cohorts of

films that were likely produced after the policy change was announced. The term ε is an

independent error, and λ a release-year fixed effect. The stand-alone POST is omitted

because λ makes it redundant. X is the set of observables used in the China entry probit

model. We do not include the stand-alone EXPOSURE variable because its variation is

picked up by X. Standard checks do not unveil multicollinearity problems. Throughout

our analysis, we report and draw inference from robust standard errors.

The parameter of interest is β. An estimate β̂ ̸= 0 would suggest that, after the

new policy came into place, films with more “China-oriented” characteristics X, altered

star casting guidelines. An estimate β̂ > 0 would be consistent with the descriptive

evidence by implying that such alteration favored light-skinned actors. Studios’ ability to

choose X introduces a natural concern about this inference. We address this concern in

subsection 6.3, finding no evidence to support it.

34This strategy —pairing a DiD specification with a continuous “treatment intensity” measure com-
puted on “pre” data— has previously been used to analyze natural experiments by Acemoglu et al.
(2004), Finkelstein (2007), Lakdawalla et al. (2013), Dranove et al. (2017), among others.
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This DiD specification is useful because it controls for two important forms of con-

founds. We previously illustrated one of these by citing films inspired on World Wars I

and II, which develop stories that are better suited for “light-skinned” characters. If this

was pervasive in the sample, we may observe baseline differences in the propensity to cast

light-skinned stars among films with different characteristics. This effect is controlled

for by including X as explanatory variables. In addition, there may exist unobserved

temporal variation, possibly arising from shifting conditions in the actors’ job market, or

from changes in disposable income across consumer segments.35 This form of unobserved

variation is accounted for by the release-year fixed effects. Results below suggest that

these temporal trends do not differ based on shock exposure.

Table 5 presents the estimated β coefficients. These point to a robust, positive impact

of the policy change on average SHARELIGHT values. The direct correlate of Figure 5 —

the estimate obtained when using DEXPOSURE (Column 1)— is similar to that implied

by the graph. It suggests that, as a result of the new policy, the share of actors in the

lightest skin category increased by about 8% among films in the top exposure decile.

Results from continuous EXPOSURE metrics suggest that this effect may have been as

large as 22%, for the films with highest measure exposure.

As we noted in Section 3.2, the announcement of the new policy was preceded by

a series of legal disputes and sustained pressure by the US to get China to relax (or

eliminate) restrictions on foreign film importation. This leads us to question whether,

observing this sequence of events, Hollywood studios may have anticipated the 2012 re-

laxation and accordingly adapted film design in years prior. To address this question we

estimate:

SHARELIGHTi = α +
∑

t′≥2010

βt′EXPOSUREi × 1[t(i) = t′] +ΘXi + λt(i) + εi

Here, the parameter vector {β2010, .., β2015} picks up the pattern by which the LSS un-

folded across successive film cohorts. (β2009 is normalized to zero to avoid collinearity.)

Anticipatory effects would be reflected by β̂t > 0, for some t < 2014.

Estimates are shown in Table 6. Because statistical significance arises only among

the 2014 and 2015 cohorts, these suggest that there were no anticipatory effects. We also

note that the LSS seems to have unfolded gradually in 2014-2015. In particular, we obtain

35For instance, since the Affordable Care Act became effective in 2010, there has been a steadily
declining trend in the rates of uninsured young adults (McMorrow et al., 2015), increasing the propensity
of this population segment to quit their jobs and pursue independent professional endeavors. In fact, some
evidence (Bailey, 2017; Blumberg et al., 2014) suggests that, by reducing the dependency employer-based
health insurance, this trend may have had a positive impact on rates of entrepreneurship. Therefore, to
the extent that the decline of uninsurance rates varied across individuals of different races, it is possible
to conceive an impact on the relative supply of light- and dark-skinned actors. Furthermore, insofar
declining uninsurance rates increased disposable income for some segments more than for others, studios
may have adjusted design characteristics (including casting) to better compete for these audiences.
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0 < β̂2014 < β̂2015, across EXPOSURE metrics. This pattern could be rationalized, for

example, if at the time the new policy was announced, a greater share of castings had been

defined for the 2014 than the 2015 cohort of films. In turn, this result insinuates that the

magnitude of the LSS may have continued to grow during following years. Lastly, note

that these results also imply that “pre-trends” did not differ based on shock exposure.36

6.2 Robustness and Falsification

6.2.1 Robustness

Here we address a series of caveats about the above results. To save space, unless noted,

supporting tables and figures are presented in the Appendix.

We start by noting that one could be concerned that the skin-color coding procedure

introduces a violation of ε’s independence assumption. This would be a particularly

serious problem if coding errors favored light-skin coding among actors that appear in

“post” films with high exposure to the shock. This pattern would entail an upward

bias on β̂, and potentially lead us to conclude that there was a LSS when in fact there

was none. This violation is a-priori unlikely because many actors star in both “pre”

and “post” films, with different degrees of shock exposure. We nevertheless assembled

the distributions of within-actor coding discrepancies, across exposure levels and periods.

The cited violation would be reflected by a DEXPOSURE=POST=1 distribution with

relatively higher skewness. However, all distributions have the same roughly symmetric

shape.

Next, we reproduced our main results of Table 5, but instead categorizing actors’ skin

color according to the median score awarded by MTurk coders. Estimates are similar

and statistical significance is preserved. We then considered alternative exposure metrics,

computed from the different subsamples and specifications for the China entry Probit.

Results remain largely robust. We proceeded to implemented a bootstrapping procedure

to account for the stochasticity of the exposure metrics.37 The resulting distributions yield

all strictly-positive β estimates (p = 0), with medians that closely trace the estimates of

Table 5.

Lastly, we replicated the analysis using a matched-samples approach instead. Based on

the vector of observed characteristicsX, we partitioned the sample of films into groups g =

1, .., G using k-means clustering. With these, we computed∆g = E[SHARELIGHT|g,POST=

36Estimating the model on 2009-2013 data only, a test for the joint significance of these coefficients yields
p-values of 0.96, 0.49, and 0.57, respectively for DEXPOSURE, CEXPOSURE1, and CEXPOSURE2.

37We generated 1,000 pseudo-samples, re-sampling (with replacement) in each case the same number
of films released in 2009-2012. Using each of these pseudo-samples, we re-estimated the model of Table
2, Column 1, and constructed the exposure metrics for all films. We then took each of these to the full
sample and re-estimated specification (1).
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1]−E[SHARELIGHT|g,POST= 0]. The analysis presented in the Appendix suggested the

use of G = 190, which left us with 176 matched observations. We then regressed this dif-

ference on a constant and the exposure variable, which is now defined at the cluster level,

computed based on cluster-specific averages of X, and has the same interpretation as

before. Results are presented by Table 7. The small value of the constant suggests that

observations were overall closely matched, and that the “pre/post” differences in aver-

age SHARELIGHT values are solely mediated by films’ degree of exposure to the shock.

These results reaffirm those obtained from our baseline DiD approach.

6.2.2 Falsification

To further investigate the validity of the causal interpretation of β, we carried out three

falsification tests. In the first of these we dropped films released in 2013-2015 and imposed

2011 as a falsified date for the policy change. That is, we are falsely assuming that the

2011 and 2012 film cohorts were produced after the policy change was announced. The

resulting coefficient estimates are presented in Panel A of Table 8. They show that our

DiD regression correctly delivers a statistically insignificant β̂.

Our second test focused on the 110 Animation films in the sample. In most cases,

an actor’s physical characteristics do not map into the characteristics of the animated

character that he or she plays —the actor’s contribution to the films is almost entirely

circumscribed to his or her voice. Furthermore, as it can be seen from a quick Google

Images search for the query “Animation Film Posters,” images of starring actors tend

to not appear in promotional material. Therefore, the heightened relevance of Chinese

coloristic preferences should have been less important for the casting of these actors. Panel

B of the Table presents the results. Resulting β̂ values imply a consistently null effect.

Lastly, we implement a test that exploits the same rough logic, but which focuses

on the casting outcomes among the 324 voice roles observed in the sample. As with

Animation films, coloristic preferences should be less important in this case. Using a

Probit model, we tested whether the probability these roles are played by a light-skinned

actor (k = 1) increased as a result of the new policy. Estimates are presented in Panel C.

Again, these show consistently null effects.

6.3 Endogenous Design Characteristics

6.3.1 Observable Characteristics

As pointed out earlier, our main inference may be confounded by studios’ ability to

choose films’ design characteristics. In particular, after the new policy was announced,
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some studios may have decided to redirect their innovation towards sets of characteristics

that are more amenable to Chinese audiences.

To see the problem, consider an example. Our results of subsection 5.2 showed that

Action and large-budget films are more likely to enter China. Also recall our running

example of films inspired on World Wars, which are usually associated to the Action genre,

and better suited for light-skinned characters. If, in response to the new policy, studios

began to more often allocate large budgets to World War films, these will be associated

with generally higher EXPOSURE values in the “post” period. In this scenario, the

documented LSS may not be entirely rooted on an alteration of casting guidelines, but

also on the “artificial inflation” of EXPOSURE among this type of films, which is better

suited for light-skinned characters.

Before addressing this issue empirically, we must note that, although studios “choose

X,” they do so under constraints. In particular, large studios (which produce most of

the highly-exposed films in the sample) employ “portfolio strategies” aimed at curtailing

their aggregate risk exposure (Vogel, 2014). These strategies limit the extent to which

design characteristics X can be re-shuffled across films within a studio’s portfolio, as

diversification will usually require them to cover different genres (Perretti and Negro, 2007)

and budget levels (Pokorny and Sedgwick, 2010). Furthermore, because films targeting

Chinese audiences are riskier (China entry cannot be assured), they may reinforce the

need to maintain well-diversified portfolios.

To evaluate this “redirection hypothesis” we present Figure 7, which displays the cu-

mulative distributions of new films along the support of predicted China entry probabili-

ties. Blue lines correspond to distributions obtained on the subsample of films produced

before the new policy was announced (“pre” films); red lines, to those obtained from the

subsample of films produced after it (“post” films).38

The “redirection hypothesis” would be reflected here by a distribution of “post” films

that places relatively more mass on higher spectra of predicted entry probabilities. That is,

we should observe that “post” distribution first-order stochastically dominates the “pre”

distribution. However, we observe almost no difference. The Kolmogorov-Smirnov test for

the equality of continuous distributions confirms this graphical finding. In the Appendix

we include regression-based analysis which provides evidence to the same point. Thus,

this result suggests that the new policy did not cause a “Chinese-oriented redirection”

of overall innovation patterns, which in turn alleviates the concerns stemming from the

potential endogeneity of X.

38For robustness we have added dashed lines corresponding to distributions for variations of the con-
sidered sample periods.
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6.3.2 Unobservable Characteristics

Our results so far indicate that, although the new policy prompted studios to use dif-

ferent casting criteria, it did not prompt them to choose more “China-oriented” vectors

of observable characteristics X. Nevertheless, studios may have adjusted other design

characteristics that are not observed in the data. Although this hypothesis cannot be

completely ruled out, it is possible to address a milder version of it. Namely, one focusing

on a leading form of unobservable design characteristic: storylines. Here we test this

hypothesis. We find no support for it.

It is important to first highlight that such impact on storylines would not be incon-

sistent with cultural accommodation. This impact would nevertheless blur the interpre-

tation of the LSS —it would suggest that, at least in part, the LSS may have been the

sub-product of a shift to storylines that are better suited for light-skinned characters.

Since we do not observe this impact on storylines, we revert to interpreting the LSS as a

directly controlled outcome. In particular, as an alteration of casting guidelines “holding

storylines constant.”

Our empirical test relies on a measure of storyline-similarity between pairs of films. To

generate a similarity metric, we draw from Eliashberg et al. (2007) and Eliashberg et al.

(2014), who apply natural-language processing to films’ text descriptions. In particular,

these authors use a “Bag-of-Words” (BW) approach to systematically address the nature

of films’ storylines and covered themes, information which then proves helpful to predict

commercial performance.

As emphasized by the first of these articles (and implemented by the second), natural-

language processing techniques would be ideally applied to scripts, which provide rich

descriptions of films’ storylines. However, scripts are not publicly available on a system-

atic basis.39 Thus, like in Eliashberg et al. (2007), we apply BW to shorter texts that

summarize storylines. In particular, we use IMDb’s “summary plot” and “synopsis” en-

tries, which are available on a reasonably systematic basis. Plots are shorter and less

structured than synopsis.40 Many films have more than one summary plot posted on the

website whereas, when available, there is only one synopsis. After discarding non-usable

entries, plots are available for about 80% of non-Animation films in the sample; synopsis,

for about 44%.

BW codifies each text description as a vector of word densities. Film similarity can

then be assessed by comparing the distributions contained thereby. To make these com-

parisons we employ the “Cosine similarity” metric, which is commonly used for this pur-

pose due to its intuitive formulation (Singhal, 2001). Namely, this metric approaches zero

39Eliashberg et al. (2014) get around this by constructing a sample from (300) publicly available scripts.
40Plots are written by IMDb users. Although IMDb does not clarify the source of films’ synopsis, it is

likely that they are provided by the producers.
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for highly dissimilar vectors, and one for highly similar ones. Intermediate values codify

intermediate degrees of similarity. To avoid common confounds, we run the algorithm on

a pre-processed dataset.41 For every pair of text descriptions (i, j), we label the resulting

variable SIMILARITYij.

The resulting distribution of SIMILARITY provides some validation for the approach.

For example, even though used texts do not include films’ titles, there is a strong con-

vergence of themes among pairs with highest SIMILARITY values.42 Furthermore, the

average plot-SIMILARITY among same-film pairs is over five standard deviations larger

than that for different-film pairs. A final piece of validatory evidence is available from the

idea that higher SIMILARITY values should be expected from pairs of films associated

to the same sets of genres, or which exhibit similar types of sensitive content.43 That is,

SIMILARITY should decrease with the “distance” between two films’ genre and sensitive

content profiles. To verify this, we measured this distance through the Euclidean norm

of vectors of genre and sensitive content indicators (respectively ||XG
ij || and ||XC

ij ||), and

estimated:

SIMILARITYij = γ + φ||XG
ij ||+ ϕ||XC

ij ||+ ε,

Our hypothesis is supported by negative, statistically significant estimates for φ and ϕ.

These results are presented in the Appendix.

Using SIMILARITY, we now test whether higher shock exposure can be linked to

larger changes in films’ storylines. We rely on the clustering procedure used before, which

partitioned the sample of films into groups g = 1, .., 190 based on their observable design

characteristicsX. We construct a sample composed of unique, non-ordered film pairs (i, j)

that belong to the same group g. We further restrict the sample to the set of pairs which

either include two films produced before the policy change, or which include one produced

before and the other after it. That is, we consider the sample in which each observation

is a pair of films in the set {(i, j) : i ̸= j, g(i) = g(j),POST(t(i)) × POST(t(j)) = 0}.

Defining CROSSPERij = 1[max{POST(t(i)),POST(t(j))} = 1] to identify pairs that

include one film produced after the policy change, we estimate:

SIMILARITYij = α + βEXPOSUREg × CROSSPERij + µg + ε,

41We applied three filters. First, we removed punctuation and “stop words,” which are common words
that usually do not add meaning to the text (e.g., “a,” “and,” “is,” “the”). Second, we applied a
“stemming” procedure, aimed at distilling a base from derivatives and inflectional forms. For example,
after the stemming procedure is applied, “cars,” “car’s” and “cars’ ” are all be replaced by “car.” Lastly,
we removed personal names. In preliminary runs, we found that personal names artificially inflated
measured similarity between films. We removed them using the list of each film’s characters and a library
of personal names.

42Three of the ten most similar pairs correspond to sequels, while among most of the remaining, both
films develop the same, distinctive topic (e.g., rodeo, vampires, witch hunts).

43For example, the storylines of many thrillers revolve around a crime, while many comedies are inspired
on stories about college.
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where µg represents a cluster-specific fixed effect. A stand-alone EXPOSURE variable

is omitted because µg makes it redundant. As in our earlier analysis, EXPOSURE is

computed based on cluster-specific averages. Recall that, since all pairs in the constructed

sample have been matched on X, including these as independent variables does not add

much information.44 With this, β picks the potential impacts of the policy change on

storylines. In particular, this parameter captures the potential role of EXPOSURE as

mediator of cross-period differences in SIMILARITY. An estimate β̂ < 0 would indicate

that storylines were altered a consequence of the policy change.

Panel A of Table 9 presents the results obtained from the plots data. These suggest

that storylines were not impacted. Results obtained from the synopsis data (Panel B)

yield the same conclusion. This finding is supported by further results presented in

Appendix, which rely on a more sophisticated natural-language processing technique,

“Term Frequency-Inverse Document Frequency” (TF-IDF), which gives more weight to

words that are more frequent in a particular document, and less weight to those are more

frequent in the entire collection of texts in the sample (Leskovec et al., 2014). Thus, we

conclude that the policy change did not alter the nature of storylines developed by films

targeting the Chinese market. In turn, this conclusion supports interpreting of the LSS

as the result of a direct control of casting guidelines.

6.4 A Superstar Shift?

The distribution of actors’ skin colors in the sample (Figure 2) shows that the majority of

star actors have a generally light skin tone. Based on this observation, one may wonder

whether the LSS was motivated by the more frequent casting of more popular/famous

actors (superstars), but who happen to be light-skinned. If this “superstar shift” hypoth-

esis was true, we should conclude that the LSS was not motivated by the strive to cast

more pale-skinned stars, but instead, more popular ones.

Before turning to our analysis, we note that, although entirely plausible, the “superstar

shift” could be tempered by supply- and demand-side factors. Namely, by definition, there

is a limited number of superstars, who can appear in a limited number of films. From a

demand perspective, superstars may also be “too expensive” to be used as a “wink” to

Chinese audiences, particularly given that entry into that market cannot be assured.

To address this question we retrieved IMDb’s “Starmeter” data, which has been pre-

viously used as a proxy for actors’ fame/popularity (Mathys et al., 2016; Karniouchina,

2011). IMDb describes this metric as a measure of “what people are interested in, based

not on small statistical samplings, but on the actual behavior of millions of IMDb users.”

The website constructs it using proprietary, undisclosed methods, based on the in-site

44Specifically, results do not change when we also include ||XG
ij || and ||XC

ij ||.
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search behavior of the over 250 million monthly IMDb users. The resulting metric en-

ables a ranking, with lower values indicating higher popularity.

We obtained complete “Starmeter” series for each actor in the sample. Values are

reported at the weekly level. Reflecting promotional activities and viewership, these series

exhibit considerable short-time variation, which we mute by averaging within years. For

each actor/film combination, we consider this value during the year prior to the film’s

release. For an actor a featuring in film i, we label this variable as FAMEai. Given the

definition of the Starmeter metric, lower values of FAME indicate higher popularity.

To investigate the validity of FAME, we first look at the number of roles played by

each actor. Here, we would expect more famous actors to play a larger number of roles.

Data confirm this prediction.45 Next, we consider films’ budget levels. In this case, we

would expect higher-budget films to cast more famous actors. The data also confirm this

prediction, by showing that films with top 25% and top 10% budgets are much more likely

to cast the 10% and 1% more popular stars. The supporting table is presented in the

Appendix.

Our test relies on the variable SHARELIGHT FAME90i, which is computed as the

share of star actors in a film i, who both (i) belong the lightest-skin category (k = 1),

and (ii) belong to the 90% less popular actors within the set of all those starring in films

released on a given year. That is, SHARELIGHT FAME90 reflects the participation of

light-skinned, non-superstar actors in each film. We then regress SHARELIGHT FAME90

on specification (1). An estimate β̂ > 0 would lead us to conclude that the LSS was not

driven by a shift towards light-skinned superstars, and thus reject the “superstar shift”

hypothesis.

Panel A of Table 10 shows the estimated coefficients. These point to β̂ > 0, prompting

the rejection of the “superstar shift” hypothesis. In fact, these estimates are somewhat

larger than those obtained from the baseline SHARELIGHT variable, suggesting that the

LSS may have represented a stronger turn towards not-so-popular light-skinned actors.

Panel B shows analog results for SHARELIGHT FAME99, which is constructed analo-

gously, but focusing on the 99% less popular actors. These results also suggest that the

hypothesis should be rejected.

Although Chinese people have for some time now been able access to IMDb, it is

possible that Starmeter data do not accurately reflect popularity in China. To evaluate

whether this caveat changes our results, we would ideally employ a variable like the IMDb’s

Starmeter, but which is constructed based on the browsing behavior of Chinese people

only. Having been unable to identify such data, we leverage the available information

45Actors in the decile of highest popularity play an average of 4.8 roles; those in the next decile, 3.1;
those in the decile that follows, 2.3. This monotonic progression continues to hold as we move down in
the rank of measured fame. The average number of roles played by actors in the lowest-popularity decile
is 1.1. These results also hold when we consider actors’ mean FAME in the sample.
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from IMDb.

Following the results of Mathys et al. (2016) —which suggest that an actor’s previous

number of roles increases consumer interest in his/her personal brand— we adjust FAME

by each actor’s number starring roles in China releases previous to the release of film i

(PREVCHINAROLESai).
46 We construct CHINAFAMEai as:

CHINAFAMEai =
FAMEai

1 + PREVCHINAROLESai

,

Notice that, because lower values of FAME represent higher popularity, a larger value

of PREVCHINAROLES increases the popularity in China that is measured by CHI-

NAFAME.47 Using this variable, we construct and analyze SHARELIGHT CHINAFAME90

and SHARELIGHT CHINAFAME99 as before. Panels C and D of Table 10 present the

results. Although estimates are somewhat smaller and estimated less precisely, they still

evidence the LSS. We conclude that, although Chinese popularity seems to have sustained

part of the LSS, it did not drive the effect.

6.5 Composition

Our review of Coloristic preferences in China suggested that these may manifest more like

a “light skin premium” than a “dark skin penalty,” and that the pale-skin standard may

be more stringent for female than male beauty. In this section we investigate the whether

the composition of the LSS supports these insights.

To implement this analysis we construct a dataset with observations defined at the role

(r = 1, .., R) level. That is, observations correspond to unique film/actor combinations.

We then divide this dataset in two subsamples, one corresponding to all the roles played

by females; the other, to those played by males. As in our main analysis, we drop voice

roles and Animation films. In the resulting sample, there are 2,779 male actors, who play

5,683 roles. There are 1,863 actresses, who play 3,541 roles. In the Appendix we show

that the policy change did not alter proportion of roles played by each.

For the lightest (k = 1) and darkest (k = 4) skin-color categories, we define the

indicator ykr = 1[The individual who plays role r belongs to skin color category k], and

estimate the following equation separately on each subsample:

ykr = f(α + βEXPOSUREi(r) × POSTt(i(r)) +ΘXi(r) + λt(i(r))),

where f corresponds to the Probit functional form. When estimated using y1r on the sub-

46To construct PREVCHINAROLES we use casting data for films released 2005-2015, and which satisfy
the same popularity criteria as in our main sample.

47We add one in the numerator because PREVCHINAROLES equals zero in the majority of cases.
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sample of female roles, an estimate β̂ > 0 would suggest that the policy change increased

the probability that female roles are played by light-skinned actresses. Analogously, if we

were to obtain β̂ < 0 on the same subsample, but instead using y4r as dependent variable,

we should conclude that the policy change led to a decrease in the probability of female

roles being played by actresses that belong to the darkest skin-color category. While

both these results would be consistent with the LSS, only the former would support the

“light-skin premium” view.

Results are shown by Table 11. Panels A (for y1r) and B (for y4r) refer to the subsample

of female roles; Panels C and D, to that of male roles.48 Consistent with the more

important role of pale skin for female beauty standards, patterns of statistical significance

suggest that the LSS primarily unfolded through female roles. Furthermore, this effect

is shown to have manifested through the more frequent casting of pale-skinned actresses

rather than the less frequent casting of those with dark-most skin colors. The estimate of

Column 1 in Panel A implies that, evaluated at the mean, the probability that a female

role of a DEXPOSURE=1 film is played by one of the former, increased by about 12% as

a consequence of the policy change.

6.6 Were Gatekeepers Responsible for the Light-Skin Shift?

We have previously emphasized that China entry outcomes depend on the composition

of preferences of Chinese audiences and gatekeeping authorities. Even though the stated

ideological mandate faced by the latter does not offer grounds to suspect that they may

impose a coloristic bias on entry or censorship outcomes, one may still wonder if, at least

in part, their preferences may drive the documented LSS. Here we test this hypothesis.

Results suggest that gatekeepers do not impose a coloristic bias, which leads us to conclude

that the LSS was fundamentally driven by the preferences of Chinese audiences.

Our test compares patterns of film entry into China against those into two “control”

markets, Taiwan and Hong Kong. Due to their deep cultural connections, these three

markets are likely to have similar preferences, particularly coloristic ones. Moreover,

because Taiwan and Hong Kong do not restrict film imports, a comparison thereof can

shed some light regarding the potential biases imposed by the gatekeepers of the Chinese

market.

Despite the existence of many non-trivial differences across these markets, the exis-

tence of a relatively large degree of cultural similarity can be argued on the grounds of

a shared history. First and foremost, recall that the degree of political independence

that Hong Kong and Taiwan today have has been achieved in relatively recent historic

48The number of observations in Panel B (D) is smaller than that in Panel A (C) because, due to the
lower frequency of actors in the darkest skin-color category, the dependent variable is sometimes perfectly
predicted by some combinations of X.
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times, over two millennia after coloristic preferences were forged (Dikötter, 1992). Today,

populations remain ethnically similar and overwhelmingly homogeneous across the three

markets: over 90% of the population of each is ethnic Han.49 Furthermore, skin-whitening

cosmetics are about equally important for all of them (World Health Organization, 2011;

Tan, 2012). Importantly, however, in contrast to the Chinese case, film imports into Tai-

wan and Hong Kong are largely unregulated. Thus, entry outcomes into these markets

are fundamentally driven by the preferences of their audiences.50

In our data, the openness of the Hong Kong and Taiwanese markets is reflected by

the total entry statistics, which appear at the bottom of the Table 12.51 Despite that the

Chinese market is about 25 times larger than each of the other two, the number films

that enter them is at least double that of films that enter China. Statistics in this table

also insinuate a high degree of preference overlap. For example, out of all the films that

entered either Hong Kong or Taiwan, over 55% entered both of these markets. In addition,

only 30 out of the 248 films that entered China entered neither Hong Kong nor Taiwan.

As a comparison, when we instead consider two different Asian markets, Vietnam and

Thailand, this number is more than double.

To investigate the hypothesis of interest we first consider the China entry Probit

model of subsection 5.2. We enrich its specification by adding SHARELIGHT and an

indicator activated for films that enter either Taiwan or Hong Kong (TWHKENTRY).52

By including the latter, the specification controls for the common appeal of the films’

overall design across markets. Because stars’ skin color is part of this overall design,

and Hong Kong and Taiwan do not have gatekeepers, the coefficient of SHARELIGHT

captures the potential coloristic bias of Chinese gatekeepers. Table 13 presents the results,

for three variants of the used specification. Because the coefficients for SHARELIGHT

and its interaction with POST are statistically insignificant, neither set of results supports

the alleged bias of Chinese authorities.

A potential weakness of this test is that it implicitly assumes that all China entry

outcomes in the sample contain useful information. If not all films attempted to enter

49In China, this is about 92% (People’s Republic of China, 2010); in Taiwan, more than 95% (De-
partment of Information Services, Executive Yuan, 2014); in Hong Kong, about 94% (Population Census
Office, 2011). For comparison with other countries in which the Han ethnicity has a significant presence,
these percentages are 76% in Singapore (Department of Information Services, Executive Yuan, 2014) and
23% in Malaysia (Department of Statistics Malaysia, 2016).

50Taiwan first lifted the importation quota and relaxed print control during the 1980s (Wang, 2003),
while other restrictions were dropped when Taiwan joined the WTO in 2001. In 2011, 97% of box-
office revenues in this market were generated by foreign movies (Jaffe, 2011). Hong Kong, on the other
hand, has historically displayed large degrees of trade openness and become a theatrical hub for the
region. (Current US official reports do not mention restrictions for entry into this market. See http:

//2016.export.gov/hongkong/eg_hk_027494.asp). In 2016, over 80% of all films screened in Hong
Kong were foreign (HKTDC Research, 2017).

51We identified films released in Hong Kong and Taiwan as previously done for China. That is, we
excluded limited and festival releases, and others that do not entail broad access by general audiences.

52Because the focus of this analysis is entry (as opposed to design), we also include non-fully controllable
design characteristics (MPAA ratings, awards), and define POST as 1[t ≥ 2013].
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China, the influence of the hypothesized bias could be muted by the variation along other

design dimensions.53 To address this issue, we restrict the attention to the 916 films

released in at least one of three markets. Note that, when comparing a film i’s entry

outcome into China and into a market m (Hong Kong, Taiwan), there are three possible

outcomes, described by the definition of the variable z:

zim =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

3 if i enters China but not m

2 if i enters m and China

1 if i enters m but not China

Under the hypothesized bias, higher SHARELIGHT values would foster the transition

from the first to the second outcome and, in extreme cases, to the third.

Our second test rationalizes the variation of z with the following specification:

zim = f(α + βSHARELIGHTi +ΘXi + λt(i)),

where f corresponds to Ordered Probit functional form, X represents the set observable

design characteristics, and λ are release-year fixed effects. Parameter β captures the role of

SHARELIGHT as mediator of differential entry outcomes. The hypothesized bias would

be supported by a positive estimate of this parameter.54 Table 14 presents the obtained

results. Again here, the lack of statistical significance means that results support neither

a baseline coloristic bias of Chinese gatekeepers, nor an accentuation thereof following the

enactment of the new policy.

We conclude by noting that the relevance of coloristic preferences among Chinese

audiences could be investigated in a more direct way using revenue data, and guided by

the question “do films with higher SHARELIGHT values produce superior competitive

outcomes in China relative to in the US?” Such strategy would face the usual hurdles of

demand estimation, which in this case would include endogenous allocation of promotional

resources and release configurations (e.g., number and types of screens in which the film

is shown, and the amount of time it is shown for). It would also face the doubts cast by

allegations of manipulations of box-office figures in China (Lang, 2017). We are assembling

a dataset to pursue this approach in future research.

53For example, the coefficient of SHARELIGHT in the above specification is forced to rationalize China
entry outcomes for low-budget horror films, which tend to not enter China for reasons other than the
potential coloristic bias of authorities (Martinsen, 2010).

54As before, because the focus in entry (as opposed to design), we define POST=1[t ≥ 2013].
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7 Conclusion

Discussing the China release of “Transformers: Age of Extintion” (2014), the Sony Pic-

tures executive Nigel Clark wrote:

The seamless integration of the Chinese elements mentioned above, without
the appearance of tokenism, is perhaps the most important key to the appeal
of the film to the mainstream Chinese audience.55

In this paper we have shown that, beyond anecdote, many large Hollywood productions

have accommodated their design to elements of the Chinese culture. Whereas in the above

statement, Clark primarily refers to a kind of childhood memories that are deeply held by

many Chinese adults, we illustrate the point through another distinctive, although more

generalized and socially sensitive element of their culture: a marked aesthetic preference

for light skin.

The influence of Chinese culture is taken here as an example of a wider-ranged phe-

nomenon: the economic rise and integration of emerging markets has created an influx of

“newly endowed” consumers into the global demand for products and services. Because

these consumers are known to considerably differ from their counterparts of developed

markets in many cultural and behavioral respects, their “global activation” may also

imply a shift of aggregate preferences in the total addressable market for international

products and services, and thus condition their optimal design.

Although marketing scholars have widely acknowledged and explored the nature and

implications of these differences, these have not yet been shown to have the type of first-

order, unexpected global impact that we demonstrate. Like Chandy and Narasimhan

(2015) —who state that “the changes that are happening in emerging markets today are

unprecedented –in scale, scope, and speed– in human history”— we interpret this finding

as a testament to their newly acquired global influence, and ensuing relevance for the

practice of international marketing.

Our main result —a light-skin shift among Hollywood starring casts— is supported by

various pieces of evidence and extensive robustness checks. Yet, an important question

remains. To which extent did this light-skin shift pay-off for Hollywood studios? Consid-

ering that box-office performance in China continues to be a hit-or-miss for Hollywood

productions,56 there is a real possibility that studios may not yet fully grasp the deter-

55See https://wikileaks.org/sony/emails/emailid/62426.
56The are several examples of films that have dramatically over- or under-performed in China relative

to pre-release expectations. For example, Mendelson (2017b) claims that “Arthur: Legend of the Sword”
(2017) and “Power Rangers” (2017) “got their butts kicked” in their opening weekends in China, further
stating that the case of “Power Rangers” was a “real tragedy.” In contrast, the unexpected China success
of “Pacific Rim” (2013) has been pointed by Lee (2016) as the main factor behind its upcoming sequel.
The same article states that in 2013, this seemed an “unlikely proposition.”
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minants of success in that market. Data limitations and multiple layers of endogeneity

make this a difficult empirical question, however. We must therefore leave this question

for future research.
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Figures

Figure 1: Number of Films: Sample Total (US) and Releases in China (CH)
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Figure 2: Distribution of Color Codes Among the Sample of 5,442 Coded Starring Actors
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Figure 3: Random Sample of Actors and Actresses by Skin Color Code
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Images obtained from IMDb.

44



Figure 4: Predicted Probabilities of China Entry and Shock Exposure Metrics
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Figure 5: Average Shares of Light-Skinned Star Actors by Degree of Exposure to the
Policy Change.
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Figure 6: Average Fraction of All-Light-Skinned-Stars Films.
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Figure 7: Film Distribution Along the Support of China Entry Probabilities.
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Tables

Table 1: Sample Descriptive Statistics.

Mean Std. Dev. Mean Std. Dev.
Genre Indicators Format Indicator

Action 0.19 0.39 3D/IMAX 0.05 0.21
Adventure 0.11 0.31 Production Indicators
Animation 0.03 0.18 USONLYFILM 0.77 0.42
Comedy 0.34 0.47 CHINESESTAR 0.00 0.07
Crime 0.14 0.35 CHINESECOPROD 0.01 0.12
Drama 0.48 0.50 BIG6STUDIO 0.37 0.48
Family 0.07 0.25 P75BUDGET 0.26 0.44
Fantasy 0.08 0.27 P90BUDGET 0.10 0.30
Horror 0.21 0.41 Major Awards
Mystery 0.10 0.30 AWRNOM 0.59 2.61
Romance 0.18 0.38 AWRWON 0.15 0.90
Science Fiction 0.11 0.31 China Entry Indicator
Thriller 0.34 0.47 CHINAENTRY 0.09 0.28
Other 0.11 0.31 Color Coded Star Actors

Sensitive Content Indicators n1 1.85 0.94
Sex 0.38 0.49 n2 0.74 0.79
Nudity 0.16 0.37 n3 0.11 0.37
Violence 0.35 0.48 n4 0.11 0.37
Drug use 0.19 0.40 N (total) 2.83 0.43
Strong language 0.55 0.50

MPAA Rating Indicators
PG 0.07 0.26
PG-13 0.21 0.40
R 0.44 0.50
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Table 2: Probit Specifications for CHINAENTRY.

(1) (2) (3) (4)
2009-2012 2009-2015

Production Indicators
3D/IMAX 0.94*** 0.88*** 0.79*** 0.74***

(0.22) (0.23) (0.16) (0.16)
BIG6STUDIO -0.08 -0.23 -0.01 -0.08

(0.17) (0.16) (0.12) (0.12)
P75BUDGET 0.51*** 0.51*** 0.68*** 0.63***

(0.18) (0.18) (0.13) (0.13)
P90BUDGET 1.08*** 1.06*** 1.02*** 0.96***

(0.18) (0.19) (0.13) (0.13)
CHINESECOPROD 0.96*** 1.00*** 0.92*** 0.95***

(0.37) (0.39) (0.27) (0.28)
CHINESESTAR 1.36*** 1.45*** 1.10** 1.19**

(0.44) (0.46) (0.48) (0.48)
USONLYFILM -0.55*** -0.54*** -0.59*** -0.56***

(0.13) (0.14) (0.10) (0.10)
Genre Indicators

Action 0.56*** 0.61*** 0.38*** 0.42***
(0.15) (0.16) (0.11) (0.12)

Adventure 0.35** 0.35** 0.30** 0.27**
(0.17) (0.18) (0.13) (0.13)

Animation 0.43 0.52* 0.45** 0.51**
(0.27) (0.29) (0.22) (0.23)

Comedy -0.69*** -0.77*** -0.47*** -0.47***
(0.21) (0.22) (0.15) (0.14)

Crime -0.18 -0.12 -0.15 -0.09
(0.19) (0.20) (0.14) (0.14)

Drama -0.15 -0.20 -0.27** -0.30***
(0.15) (0.16) (0.11) (0.11)

Family 0.58** 0.75** 0.26 0.37*
(0.23) (0.30) (0.18) (0.20)

Fantasy -0.25 -0.29 -0.24* -0.21
(0.19) (0.20) (0.14) (0.14)

Horror -1.15*** -1.01*** -1.40*** -1.31***
(0.25) (0.25) (0.22) (0.22)

Mystery 0.22 0.19 0.21 0.20
(0.19) (0.20) (0.15) (0.15)

Romance 0.43*** 0.41** 0.15 0.11
(0.17) (0.18) (0.14) (0.14)

SciFi -0.02 -0.04 0.24* 0.23*
(0.18) (0.20) (0.13) (0.13)

Thriller 0.38** 0.44** 0.25** 0.26**
(0.16) (0.17) (0.11) (0.12)

Other -0.12 -0.28 0.03 -0.05
(0.21) (0.22) (0.14) (0.14)
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Table 2 (Continued): Probit Specifications for CHINAENTRY.

(1) (2) (3) (4)
2009-2012 2009-2015

Sensitive Content Indicators
Sex 0.03 0.03 -0.06 -0.10

(0.16) (0.17) (0.12) (0.13)
Nudity -0.34 -0.27 -0.25* -0.19

(0.21) (0.22) (0.15) (0.15)
Violence 0.36** 0.33** 0.28*** 0.22*

(0.15) (0.17) (0.11) (0.12)
Drug Use 0.01 0.02 0.03 0.06

(0.18) (0.19) (0.14) (0.13)
Strong Language -0.08 -0.09 0.06 0.05

(0.15) (0.17) (0.11) (0.12)
MPAA Ratings

PG 0.38 0.18
(0.33) (0.23)

PG-13 0.58** 0.43**
(0.28) (0.20)

R 0.19 0.16
(0.29) (0.22)
Major Awards

AWRNOM -0.05 -0.00
(0.04) (0.02)

AWRWON 0.35*** 0.12*
(0.10) (0.07)

Constant -1.95*** -2.25*** -1.85*** -2.01***
(0.22) (0.26) (0.17) (0.19)

Observations 1,812 1,812 3,378 3,378

Robust standard errors are presented in parentheses. Legend: ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
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Table 3: Pierson correlations for predicted China entry probabilities under different spec-
ifications.

Sample (1) (2) (3) (4) (5) (6) (7) (8)
(1) 2009-2010 1
(2) 2009-2010† 0.97 1
(3) 2009-2012 0.97 0.94 1
(4) 2009-2012† 0.94 0.96 0.98 1
(5) 2013-2015 0.91 0.88 0.95 0.93 1
(6) 2013-2015† 0.91 0.87 0.95 0.92 0.99 1
(7) 2009-2015 0.95 0.92 0.99 0.97 0.98 0.98 1
(8) 2009-2015† 0.95 0.94 0.98 0.98 0.97 0.97 0.99 1

All correlations are computed with all films in the sample and are significant at a 1% confidence level.
†Model includes award and MPAA ratings variables.

Table 4: Average SHARELIGHT values.

DEXPOSURE = 0 DEXPOSURE = 1
PRE (t ≤ 2013) 0.65 0.65

(0.32) (0.31)
POST (t ≥ 2014) 0.66 0.72

(0.32) (0.31)

Standard deviations are presented in parentheses.
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Table 5: Differences-in-Differences Specifications for SHARELIGHT.

(1) (2) (3)
DEXPOSURE CEXPOSURE1 CEXPOSURE2

EXPOSURE×POST 0.08** 0.13** 0.22**
(0.03) (0.05) (0.10)
[0.02] [0.01] [0.02]

Observations 3,268 3,268 3,268

EXPOSURE metrics are computed with the estimates Table 2, Column 1. Estimated models include
release-year fixed effects as well as the controls X used in the China entry specification referenced above.
Robust standard errors are presented in parenthesis and p-values in brackets. Legend: ∗p < 0.1,∗∗ p <

0.05,∗∗∗ p < 0.01.

Table 6: Temporal Unfolding of the “Light-Skin Shift.”

(1) (2) (3)
DEXPOSURE CEXPOSURE1 CEXPOSURE2

EXPOSURE ×1[t = 2010] 0.02 0.12 0.19
(0.06) (0.09) (0.22)
[0.66] [0.18] [0.40]

EXPOSURE ×1[t = 2011] 0.03 0.12 0.26
(0.05) (0.09) (0.23)
[0.55] [0.21] [0.25]

EXPOSURE ×1[t = 2012] 0.03 0.13 0.30
(0.06) (0.10) (0.24)
[0.59] [0.19] [0.21]

EXPOSURE ×1[t = 2013] 0.02 0.06 0.00
(0.05) (0.09) (0.28)
[0.68] [0.54] [0.99]

EXPOSURE ×1[t = 2014] 0.09* 0.19** 0.29*
(0.05) (0.08) (0.17)
[0.10] [0.02] [0.08]

EXPOSURE ×1[t = 2015] 0.10* 0.23*** 0.47***
(0.05) (0.08) (0.17)
[0.06] [0.00] [0.01]

Observations 3,268 3,268 3,268

EXPOSURE metrics are computed with the estimates of Table 2, Column 1. Estimated models include
release-year fixed effects as well as the controls X used in the China entry specification referenced above.
Robust standard errors are presented in parenthesis and p-values in brackets. Legend: ∗p < 0.1,∗∗ p <

0.05,∗∗∗ p < 0.01.
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Table 7: Estimates from the Matched-Samples Procedure.

(1) (2) (3)
DEXPOSURE CEXPOSURE1 CEXPOSURE2

EXPOSURE 0.11** 0.15** 0.19**
(0.06) (0.07) (0.08)
[0.05] [0.02] [0.02]

Constant 0.01 0.00 0.00
(0.02) (0.02) (0.02)
[0.59] [0.97] [0.81]

Observations 176 176 176

OLS results. The matching procedure is described in the text. Robust standard errors are presented in
parenthesis and p-values in brackets. Legend: ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.

Table 8: Falsification Tests.

(1) (2) (3)
DEXPOSURE CEXPOSURE1 CEXPOSURE2

A. 2009-2012 Subsample, POST=1[t ≥ 2011]
EXPOSURE×POST -0.04 0.01 0.21

(0.04) (0.07) (0.18)
[0.33] [0.86] [0.24]

Observations 1,745 1,745 1,745
B. Animation Films

EXPOSURE×POST 0.08 -0.10 -0.33
(0.12) (0.21) (0.63)
[0.51] [0.62] [0.61]

Observations 110 110 110
C. Voice role played by light-skin (k = 1) actor (Probit)

EXPOSURE×POST 0.21 -0.39 -1.22
(0.35) (0.55) (1.43)
[0.55] [0.48] [0.39]

Observations 324 324 324

Panels A and B: OLS specifications. Panel C: Probit specification. EXPOSURE metrics are computed
with the estimates Table 2, Column 1. Estimated models include release-year fixed effects as well as the
controls X used in the China entry specification referenced above. Robust standard errors are presented
in parenthesis and p-values in brackets. Legend: ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
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Table 9: Storyline Similarity.

(1) (2) (3)
DEXPOSURE CEXPOSURE1 CEXPOSURE2

A. Summary Plots
EXPOSURE × CROSSPER -0.001 -0.003 -0.003

(0.00) (0.00) (0.00)
[0.61] [0.36] [0.42]

Constant 0.051*** 0.051*** 0.051***
(0.00) (0.00) (0.00)
[0.00] [0.00] [0.00]

Observations 23,177 23,177 23,177
B. Synopsis

EXPOSURE × CROSSPER 0.004 0.013 0.013
(0.01) (0.01) (0.01)
[0.56] [0.13] [0.26]

Constant 0.086*** 0.085*** 0.086***
(0.00) (0.00) (0.00)
[0.00] [0.00] [0.00]

Observations 5,201 5,201 5,201

EXPOSURE metrics are computed with the estimates of Table 2, Column 1. Estimated models include
cluster-specific fixed effects. Robust standard errors are presented in parenthesis and p-values in brackets.
Legend: ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.

Table 10: The “Superstar Shift” Hypothesis.

(1) (2) (3)
DEXPOSURE CEXPOSURE1 CEXPOSURE2

A. SHARELIGHT FAME90
EXPOSURE×POST 0.10** 0.18*** 0.35***

(0.04) (0.06) (0.13)
[0.02] [0.00] [0.01]

B. SHARELIGHT FAME99
EXPOSURE×POST 0.08* 0.14** 0.29**

(0.04) (0.06) (0.13)
[0.05] [0.01] [0.03]

C. SHARELIGHT CHINAFAME90
EXPOSURE×POST 0.06 0.10* 0.23*

(0.04) (0.06) (0.13)
[0.14] [0.07] [0.07]

D. SHARELIGHT CHINAFAME99
EXPOSURE×POST 0.06 0.11** 0.21*

(0.04) (0.06) (0.13)
[0.13] [0.05] [0.09]

Observations 3,268 3,268 3,268

OLS estimates for specification (1). Dependent variables are defined in text and listed as each panel’s
title. EXPOSURE metrics are computed with the estimates of Table 2, Column 1. Estimated models
include release-year fixed effects as well as the controls X used in the China entry specification referenced
above. Robust standard errors are presented in parenthesis and p-values in brackets. Legend: ∗p <

0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
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Table 11: Composition of the Light-Skin Shift.

(1) (2) (3)
DEXPOSURE CEXPOSURE1 CEXPOSURE2
A. Female Role played by light-skinned (k = 1) actress

EXPOSURE×POST 0.41* 0.73** 1.14*
(0.21) (0.31) (0.68)
[0.06] [0.02] [0.09]

Observations 3,541 3,541 3,541
B. Female Role played by dark-skinned (k = 4) actress

EXPOSURE×POST -0.20 -0.07 1.49
(0.41) (0.78) (1.39)
[0.63] [0.93] [0.28]

Observations 3,156 3,156 3,156
C. Male Role played by light-skinned (k = 1) actor

EXPOSURE×POST 0.16 0.25 0.59
(0.12) (0.18) (0.42)
[0.17] [0.16] [0.16]

Observations 5,683 5,683 5,683
D. Male Role played by dark-skinned (k = 4) actor

EXPOSURE×POST -0.10 -0.24 -0.90
(0.20) (0.32) (0.90)
[0.62] [0.45] [0.32]

Observations 5,654 5,654 5,654

Probit specifications. The dependent variables are defined as 1[Female (male) role played by female
(male) actor in skin color category k]. EXPOSURE metrics are computed with the estimates of Table 2,
Column 1. Estimated models include release-year fixed effects as well as the controls X used in the China
entry specification referenced above. Robust standard errors are presented in parenthesis and p-values in
brackets. Legend: ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
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Table 12: Descriptive Statistics for Entry into China, Hong-Kong and Taiwan (2009-2015)

Markets Number of Films Percent
China only 30 3.3%
Hong Kong only 200 21.8%
Taiwan only 135 14.7%
China and Hong Kong only 35 3.8%
China and Taiwan only 16 1.8%
Hong Kong and Taiwan only 333 36.4%
China, Hong Kong, and Taiwan 167 18.2%

Total China, Hong Kong, or Taiwan 916 100%
Total China 248
Total Hong Kong 735
Total Taiwan 651
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Table 13: Probability of China Entry as a function of SHARELIGHT and Entry into
Taiwan or Hong Kong.

(1) (2) (3)
HKTWENTRY 0.71*** 0.69*** 0.69***

(0.15) (0.15) (0.15)
[0.00] [0.00] [0.00]

SHARELIGHT -0.10 -0.11 -0.23
(0.16) (0.16) (0.20)
[0.54] [0.50] [0.26]

SHARELIGHT × POST 0.26
(0.31)
[0.40]

Release Year Fixed Effects No Yes Yes

Observations 3,268 3,268 3,268

Probit Estimates. Models are estimated on the full sample of film and include the controls X used in the
china entry specifications of odd-number columns in Table 2. POST is implemented as 1 = [t ≥ 2013].
Robust standard errors are presented in parenthesis and p-values in brackets. Legend: ∗p < 0.1,∗∗ p <

0.05,∗∗∗ p < 0.01.

Table 14: Differential Probabilities of Entry into China, Hong Kong, and Taiwan.

(1) (2) (3) (4)
China and Hong Kong China and Taiwan

SHARELIGHT -0.24 -0.29 -0.28 -0.30
(0.19) (0.22) (0.19) (0.26)
[0.20] [0.19] [0.14] [0.24]

SHARELIGHT × POST 0.11 0.04
(0.36) (0.34)
[0.77] [0.91]

Observations 781 781 716 716

Ordered Probit Specifications. Estimated models include release-year fixed effects as well as the controls
X used in the China entry specifications of odd-number columns in Table 2. POST is implemented as
1 = [t ≥ 2013]. Robust standard errors are presented in parenthesis and p-values in brackets. Legend:
∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
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Can Emerging Markets Impact Tilt Global Product

Design? Impacts of Chinese Colorism on Hollywood

Castings

October 2017
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A. Film Popularity and Availability of Budget Infor-

mation

Table A1: Availability of Film Budget Information and IMDb Popularity Votes.

Budget Number of Percentile of Vote Distribution

Information Films 10 25 50 75 90

Available 1,816 858 2,262 19,886 84,908 207,315

Missing 1,452 622 881 1,869 5,537 15,012

Total 3,268 702 1220 4,573 34,766 119,119
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B. Distribution of Production Lags

Figure A1: Distribution of Production Lags
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Lags are computed as the number of months between the earliest observed release and the reported

filming start date. Computed with data for 2,377 films for which filming dates are observed.
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C. Retrieval of Films’ Starring Casts from IMDb

Figure A2 illustrates the retrieval of starring casts for each film, using as an example the

film “Interstellar” (2014). Retrieved starring casts are highlighted by the red rectangle.

Figure A3 presents a promotional poster of the same film, which highlights the actors

retrieved from the IMDb page.

Figure A2: Sample Identification of Starring Casts on IMDb: “Interstellar” (2014)

Source: http://www.imdb.com/title/tt0816692
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Figure A3: Promotional Poster: “Interstellar” (2014)

Source: http://camartin.deviantart.com/art/Interstellar-Poster-Comp-496032882
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D. Robustness for the “Light-Skin Shift”

D.1 Color-Coding Discrepancies

Figure A4: Distributions of Within-Actor Coding Discrepancies. Considers Starring Ac-

tors Within each set of Films Separately.
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D.2 Classifying Actors Based on the Median (as opposed to Mean)

MTurk Scores

Table A2: OLS Specifications for SHARELIGHT (actors categorized based on median
MTurk scores).

(1) (2) (3)
DEXPOSURE CEXPOSURE1 CEXPOSURE2

EXPOSURE×POST 0.05* 0.11*** 0.23***
(0.03) (0.04) (0.08)
[0.07] [0.00] [0.00]

Observations 3,268 3,268 3,268

Actors are assigned to skin-color categories based on the median score awarded MTurk coders (as opposed
to based on the average, as in our main analysis). Estimated models include release-year fixed effects
as well as the controls X used in the china entry specification. Robust standard errors are presented in
parenthesis and p-values in brackets. Legend: ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
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D.3 Computing Exposure Metrics from Alternative Samples and

Specifications for the China Entry Probit Model

Table A3: Main Results When Exposure Metrics are Computed from Alternative Samples
and Specifications for the China Entry Probit Model.

(1) (2) (3)
DEXPOSURE CEXPOSURE1 CEXPOSURE2

(1) 2009-2010
EXPOSURE×POST 0.07* 0.11* 0.20

(0.04) (0.06) (0.13)
[0.06] [0.05] [0.12]

(2) 2009-2010, includes non-fully controllable X

EXPOSURE×POST 0.07* 0.11** 0.37
(0.03) (0.05) (0.27)
[0.05] [0.04] [0.17]

(3) 2009-2012
EXPOSURE×POST 0.09** 0.13** 0.22**

(0.03) (0.05) (0.10)
[0.01] [0.01] [0.03]

(4) 2009-2012, includes non-fully controllable X

EXPOSURE×POST 0.09** 0.14*** 0.54**
(0.03) (0.05) (0.22)
[0.01] [0.01] [0.01]

(5) 2013-2015
EXPOSURE×POST 0.06* 0.13*** 0.33***

(0.03) (0.05) (0.11)
[0.07] [0.01] [0.00]

(6) 2013-2015, includes non-fully controllable X

EXPOSURE×POST 0.05 0.13*** 0.31***
(0.03) (0.05) (0.11)
[0.16] [0.01] [0.00]

(7) 2009-2015
EXPOSURE×POST 0.08** 0.13** 0.27**

(0.03) (0.05) (0.11)
[0.02] [0.01] [0.02]

(8) 2009-2015, includes non-fully controllable X

EXPOSURE×POST 0.09** 0.13** 0.27**
(0.03) (0.05) (0.11)
[0.01] [0.01] [0.02]

Observations 3,268 3,268 3,268

Panels are titled according to the sample and specification used to estimate the China entry probit.
(They follow the same order used in the Table of correlations of predicted China entry probabilities.)
“Non-fully controllable X” refers to MPAA rating indicators and award variables. Estimated models
include release-year fixed effects. Robust standard errors are presented in parenthesis and p-values in
brackets. Legend: ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
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D.4 Bootstrapping

Figure A5: β Estimates from Bootstrapped Samples.
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The Bootstrapping procedure focuses on the estimation of the China entry probability model. We generate
1,000 pseudo samples by sampling 1,812 films released in 2009-2012 (with replacement) and generate the
set of exposure metrics from the resulting estimates. For each of these set of estimates, we then estimate
specification (1). Black dashed lines mark the median of each distribution; red lines, the respective point
estimates from our main results table.
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D.5 Details and Robustness for The Matched-Samples Procedure

We apply k-means clustering on the entire vector of observable film characteristics X.

Throughout our analysis, we only consider the main sample of non-animation films.

A crucial aspect to implement clustering is to determine the number of clusters. A

common way to approach this problem –the “Elbow” method– progressively increases the

number of clusters until the marginal reduction of total explained variance stabilizes. Our

approach adapts this principle to the overarching empirical design of our research.

In particular, because our inference crucially relies on a “pre/post” comparison, we

seek to balance this principle with the goal of producing as many clusters including both

“pre” and “post” films, as is possible.

Figure A6: Main elements for determination of the number of film clusters

75 105 165 190

Between SQ / Total SQ

Percentage matched
films

Percentage matched
clusters

.8

.85

.9

.95

1

P
e

rc
e

n
ta

g
e

 m
a

tc
h

e
d

.5

.6

.7

.8

B
e

tw
e

e
n

 S
Q

 /
 T

o
ta

l 
S

Q

0 50 100 150 200 250 300
Number of clusters

Figure A6 presents the main elements to consider in deciding the number of clusters.

The horizontal axis shows the number of clusters considered in each case. We vary these

in increments of 5. (Because X contains 25 variables, we consider a minimum of 25.)

The black line depicts the percentage of total variance (total sum of squares - Total SQ)

accounted for by between-cluster variation (between SQ). The larger this percentage, the

higher the share of total variance that is explained by the clustering. The solid blue line

shows the percentage of clusters within which there is at least one “pre” and at least one

“post” film. We refer to this statistic as the percentage of “matched” clusters. The dashed

blue line presents the percentage of all films in the sample included in these clusters.

Although the percentage of variance explained by the clustering increases concavely
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with the number of clusters, there is no noticeable stabilization of this trend in the con-

sidered range. Thus, we primarily base our decision on the number of matched clusters.

As shown by the generally declining blue lines, finer clustering translates into a marked

decrease in extent of matching. Up until 75 clusters, there is perfect matching. The

percentage of matched films (dashed blue line) remains generally high (≥ 99%) up to 190

clusters, after which it drops without recovering. With this configuration, 93% of clusters

(176) are matched and can be used in the main analysis.

Because it provides the finest categorization of films without implying a significant

loss of information, we use the 190-cluster clustering for our main analysis (presented in

text). Nevertheless, for robustness, we also consider three alternative, coarser clusterings.

These are shown by the dashed vertical lines in the graph. They are selected because

they represent a local peak in the number of matched clusters.

Before turning to our main robustness results, in Figure A7 we present the distribution

of clusters on the support of predicted probabilities of China entry (which map one-

to-one to EXPOSURE metrics). Graphs on the left are computed by predicting entry

probabilities after clustering (i.e., computed based on each cluster’s average X); those

on the right, by predicting these before clustering (predicted probabilities are computed

before clustering). Panels A-D reproduce these distributions under the different numbers

of considered clusters. Overall, these distributions have similar shapes. More importantly,

they all resemble the distribution of films on the same support (see Figure 4 in article).

Table A4 reproduces the matched-sample regression presented in the main text, for

each case (i.e., number of clusters), when EXPOSURE metrics are based on China entry

probabilities predicted after clustering (i.e., using each cluster’s average X). Table A5

reproduces the same results, but with EXPOSURE metrics based on China entry prob-

abilities predicted before clustering. Results support the overall robustness of our main

estimate.
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Figure A7: Main elements for determination of the number of film clusters
(Left: probabilities predicted with average X within each cluster – Right: probabilities
predicted with each film’s X, then averaged within each cluster)
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D. 190 Clusters
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Table A4: Robustness for the Matched-Samples procedure. (China entry probabilities
predicted after clustering.)

(1) (2) (3)
DEXPOSURE CEXPOSURE1 CEXPOSURE2

A. 75 Clusters
EXPOSURE 0.02 0.11** 0.11**

(0.05) (0.05) (0.05)
[0.67] [0.04] [0.04]

Constant 0.03 0.02 0.03
(0.02) (0.02) (0.02)
[0.14] [0.29] [0.21]

Observations 75 75 75
B. 105 Clusters

EXPOSURE 0.09** 0.12* 0.13*
(0.04) (0.06) (0.07)
[0.02] [0.06] [0.05]

Constant 0.01 0.01 0.01
(0.02) (0.02) (0.02)
[0.59] [0.59] [0.48]

Observations 104 104 104
C. 165 Clusters

EXPOSURE 0.10*** 0.18*** 0.18**
(0.04) (0.06) (0.08)
[0.01] [0.01] [0.02]

Constant 0.01 0.00 0.01
(0.02) (0.02) (0.02)
[0.58] [0.79] [0.59]

Observations 156 156 156
D. 190 Clusters

EXPOSURE 0.11** 0.15** 0.19**
(0.06) (0.07) (0.08)
[0.05] [0.02] [0.02]

Constant 0.01 0.00 0.01
(0.02) (0.02) (0.02)
[0.59] [0.87] [0.72]

Observations 176 176 176

OLS results. Exposure metrics are computed from the estimates of Table 2, Column 1, given the average
values of the X vector within each cluster. Except for in panel A (where there is 100% “pre/post”
matching), the number of observations used in the regression is smaller than the number of clusters
because some observations are unmatched. Robust standard errors are presented in parenthesis and
p-values in brackets. Legend: ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
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Table A5: Robustness for the Matched-Samples procedure. (China entry probabilities
predicted before clustering.)

(1) (2) (3)
DEXPOSURE CEXPOSURE1 CEXPOSURE2

A. 75 Clusters
EXPOSURE 0.02 0.11** 0.10**

(0.05) (0.05) (0.05)
[0.67] [0.04] [0.05]

Constant 0.03 0.02 0.02
(0.02) (0.02) (0.02)
[0.14] [0.35] [0.26]

Observations 75 75 75
B. 105 Clusters

EXPOSURE 0.05 0.11* 0.13*
(0.05) (0.06) (0.07)
[0.34] [0.08] [0.06]

Constant 0.01 0.01 0.01
(0.02) (0.02) (0.02)
[0.42] [0.66] [0.55]

Observations 104 104 104
C. 165 Clusters

EXPOSURE 0.12*** 0.18*** 0.19**
(0.04) (0.06) (0.08)
[0.00] [0.00] [0.01]

Constant 0.01 0.00 0.01
(0.02) (0.02) (0.02)
[0.62] [0.97] [0.73]

Observations 156 156 156
B. 190 Clusters

EXPOSURE 0.11** 0.15** 0.19**
(0.06) (0.07) (0.08)
[0.05] [0.02] [0.02]

Constant 0.01 0.00 0.00
(0.02) (0.02) (0.02)
[0.59] [0.97] [0.81]

Observations 176 176 176

OLS results. Exposure metrics are computed from the estimates of Table 2, Column 1, for each film,
then averaged within each cluster. Except for in panel A (where there is 100% “pre/post” matching),
the number of observations used in the regression is smaller than the number of clusters because some
observations are unmatched. Robust standard errors are presented in parenthesis and p-values in brackets.
Legend: ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
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E. Endogenous Design Characteristics

E.1 Observable Characteristics

To further investigate the “redirection hypothesis” we aggregate the number of films

released each year, at different shock exposure levels. We label the resulting variable

as NFILMS and perform the aggregation in two ways. First we aggregate within each

(DEXPOSURE,t) cell, and then within (q, t) cells, where q represents deciles of each of

the continuous exposure metrics among the distribution of films released prior to the new

policy’s announcement. The first aggregation procedure leaves us with 14 observations,

whereas the second, with 70. For each approach, respectively, we estimate the following

specifications:

E[NFILMS|DEXPOSURE, t] = f(α + βDEXPOSURE× POSTt

+γDEXPOSURE + λt)

E[NFILMS|q, t] = f(α + βEXPOSUREq × POSTt + δq + λt)

Where, as in our main specification, POST=1[t ≥ 2014] and λ are release-year fixed

effects. f represents the functional form of the Poisson count-data model.1 In the second

specification, δ represents a fixed effect for each exposure decile. In this specification,

we implement EXPOSUREq as the mean of EXPOSURE metrics within each decile.

Qualitative results don’t change if we instead use the maximum or minimum.

As before, the parameter of interest is β. A positive estimate thereof would suggest

that the 2012 policy change translated into a relative increase in the number of films with

characteristics X associated with more likely entry into the Chinese market. Because

identification arguments described in the main text apply directly to this specification,

they are omitted here. Similar specifications have been used by research exploring the

impacts of market expansion on technological innovation activity in the context of nat-

ural experiments (e.g., Blume-Kohout and Sood, 2013; Dranove et al., 2017; Hermosilla

and Wu, 2016). Estimation results are presented by Table A6. The lack of statistical

significance of β estimates invariably supports the graphical result, suggesting that the

2012 policy change did not fuel innovation of the types of films that cater to the Chinese

market.

1The data do not reject the Poisson assumptions. Results from analog Negative Binomial specifications

do not change the qualitative results.
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Table A6: Impacts on Innovative Activity.

(1) (2) (3)
DEXPOSURE CEXPOSURE1 CEXPOSURE2

EXPOSURE×POST -0.02 -0.05 -0.07
(0.05) (0.09) (0.25)
[0.75] [0.58] [0.78]

Observations 14 70 70

Procedures for data aggregation are described in text. Estimated models include release-year fixed effects
as well fixed effects for exposure categories. Exposure metrics are computed from the estimates of Table 2,
Column 1. POST is implemented as 1 = [t ≥ 2014]. Robust standard errors are presented in parenthesis
and p-values in brackets. Legend: ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
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E.2 Unobservable Characteristics

Table A7 presents the validation results mentioned in text, for both metrics. Table A8

replicates our main results presented in text using the TF-IDF approach.

Table A7: Natural-Language Processing SIMILARITY and Differences in Observable
Characteristics.

(1) (2)
Bag-of-Words TF-IDF

A. Summary Plots
||XG|| -0.0074*** -0.0042***

(0.00) (0.00)
[0.00] [0.00]

||XC || -0.0002*** -0.0003***
(0.00) (0.00)
[0.00] [0.00]

Constant 0.0571*** 0.0292***
(0.00) (0.00)
[0.00] [0.00]

Observations 2,748,340 2,748,340
B. Synopsis

||XG|| -0.0031*** -0.0023***
(0.00) (0.00)
[0.00] [0.00]

||XC || -0.0013*** -0.0006***
(0.00) (0.00)
[0.00] [0.00]

Constant 0.0814*** 0.0226***
(0.00) (0.00)
[0.00] [0.00]

Observations 774,390 774,390

The dependent variable is SIMILARITY. ||XG
ij || and ||XC

ij || are Euclidean norms of vectors of genre

and sensitive content indicators, respectively. Robust standard errors are presented in parenthesis and

p-values in brackets. Legend: ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
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Table A8: Storyline Similarity (TF-IDF SIMILARITY).

(1) (2) (3)
DEXPOSURE CEXPOSURE1 CEXPOSURE2

A. Summary Plots
EXPOSURE × CROSSPER -0.000 -0.001 -0.001

(0.00) (0.00) (0.00)
[0.96] [0.66] [0.76]

Constant 0.027*** 0.027*** 0.027***
(0.00) (0.00) (0.00)
[0.00] [0.00] [0.00]

Observations 23,177 23,177 23,177
B. Synopsis

EXPOSURE × CROSSPER -0.003 -0.001 -0.001
(0.01) (0.01) (0.01)
[0.69] [0.95] [0.97]

Constant 0.024*** 0.024*** 0.024***
(0.00) (0.00) (0.00)
[0.00] [0.00] [0.00]

Observations 5,201 5,201 5,201

The dependent variable is SIMILARITY. EXPOSURE metrics are computed with the estimates of Table

2, Column 1. Estimated models include cluster-specific fixed effects. Robust standard errors are presented

in parenthesis and p-values in brackets. Legend: ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
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F. Starmeter Data

Table A9: Films with larger budgets are more likely to include more famous actors.

Films’ budget Shares of actors with
percentiles top 10% popularity top 1% popularity
0-75 0.04 0.00

(0.21) (0.05)
76-90 0.20 0.02

(0.40) (0.14)
91-100 0.39 0.07

(0.49) (0.27)

Budget levels are computed according to the P75BUDGET and P90BUDGET variables introduced in

Section 3. Actors’ popularity is measured using IMDB’s “Starmeter” variable.
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G. Composition

We first provide a falsification test for the Probit results of Table 11 (Panel) A. These

suggest that the participation of light-skin actresses increased as a consequence of the

policy change. Because once we focus on female roles we are left with few observations

from voice roles and animation films, we focus on the test that falsifies the date of the

policy change. As in our main analysis, we drop films released after 2012, and assume a

that the policy change impacted films released in 2011 and 2012. That is, in this case we

implement POST=1[t ≥ 2011]. Results are presented in Table A10. These support the

causal interpretation of the estimates presented in the text.

Table A10: Female/Male Starring Participation.

(1) (2) (3)
DEXPOSURE CEXPOSURE1 CEXPOSURE2

EXPOSURE×POST 0.24 0.48 1.64
(0.22) (0.37) (1.27)
[0.27] [0.20] [0.19]

Observations 1,867 1,867 1,867

Probit results. The dependent variable is y1
r
= 1[Individual playing female role r belongs to skin color

category k = 1]. Exposure metrics are computed from the estimates of Table 2, Column 1. POST is
implemented as 1 = [t ≥ 2011]. Robust standard errors are presented in parenthesis and p-values in
brackets. Legend: ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.

We now turn to providing evidence suggesting that the 2012 Chinese policy change

did not alter the female/male composition among starring roles. To this end, we compute

the following variable:

SHAREFEMALEROLESi =
Number of female actors in non-voice roles in film i

Total (female+male) actors in non-voice roles in film i

We use this as a dependent variable in a regression using the specification of equation

(1). Results are presented in Table A11. These suggest that the policy change did not

impact the male/female composition among starring roles.

Table A11: Female/Male Starring Participation.

(1) (2) (3)
DEXPOSURE CEXPOSURE1 CEXPOSURE2

EXPOSURE×POST -0.01 -0.00 0.04
(0.03) (0.04) (0.09)
[0.70] [1.00] [0.67]

Observations 3,268 3,268 3,268

The dependent variable is SHAREFEMALEROLES. Exposure metrics are computed from the estimates
of Table 2, Column 1. POST is implemented as 1 = [t ≥ 2014]. Robust standard errors are presented in
parenthesis and p-values in brackets. Legend: ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
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