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1. Introduction

We consider the relation between Sion’s minimax theorem and the existence of

Nash equilibrium in a symmetric multi-person zero-sum game. We will show that

they are equivalent. An example of such a game is a relative profit maximization

game in a Cournot oligopoly. Suppose that there are n ≥ 3 firms in an oligopolistic

industry. Let π̄i be the absolute profit of the i-th firm. Then, its relative profit is

πi = π̄i −
1

n − 1

n
∑

j=1, j,i

π̄ j.

We see
n
∑

i=1

πi =

n
∑

i=1

π̄i −
1

n − 1
(n − 1)

n
∑

j=1

π̄ j = 0.

Thus, the relative profit maximization game in a Cournot oligopoly is a zero-

sum game2. If the oligopoly is asymmetric because the demand function is not

symmetric or firms have different cost functions, maximin strategies and minimax

strategies of firms do not correspond to Nash equilibrium strategies. However, if

the demand function is symmetric and the firms have the same cost function, the

maximin strategy and the minimax strategy constitute a Nash equilibrium.

2. The model

Consider a symmetric n-person zero-sum game with n ≥ 3 as follows. There

are n players, 1, 2, . . . , n. The set of players is denoted by N. A vector of strategic

variables is (s1, s2, . . . , sn) ∈ S 1 × S 2 × · · · × S n. S i is a convex and compact set in

a linear topological space for each i ∈ N. The payoff functions of the players are

ui(s1, s2, . . . , sn) for i ∈ N. We assume

ui for each i ∈ N is upper semi-continuous and quasi-concave on S i

for each s j ∈ S j, j ∈ N, j , i. It is lower semi-continuous and

quasi-convex on S j for j ∈ N, j , i for each si ∈ S i.

2About relative profit maximization under imperfect competition please see Matsumura, Mat-

sushima and Cato (2013), Satoh and Tanaka (2013), Satoh and Tanaka (2014a), Satoh and Tanaka

(2014b), Tanaka (2013a), Tanaka (2013b) and Vega-Redondo (1997)
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Since the game is symmetric, all players have the same payoff function, and we

have
n
∑

i=1

ui(s1, s2, . . . , sn) = 0, (1)

for given (s1, s2, . . . , sn) because we consider a zero-sum game. Also all S i’s are

identical. Denote them by S .

3. The main results

Sion’s minimax theorem (Sion (1958), Komiya (1988), Kindler (2005)) is

stated as follows.

Lemma 1 (Sion’s minimax theorem). Let X and Y be non-void convex and com-

pact subsets of two linear topological spaces, and let f : X×Y → R be a function

that is upper semi-continuous and quasi-concave in the first variable and lower

semi-continuous and quasi-convex in the second variable. Then

max
x∈X

min
y∈Y

f (x, y) = min
y∈Y

max
x∈X

f (x, y).

We follow the description of this theorem in Kindler (2005).

Suppose that sk ∈ S k for all k ∈ N other than i and j, j , i are given. Denote a

vector of such sk’s by s−i, j. Then, ui(s1, s2, . . . , sn) is written as ui(si, s j, s−i, j), and

it is a function of si and s j. We can apply Lemma 1 to such a situation, and get the

following lemma.

Lemma 2. Let j , i, and S i and S j be non-void convex and compact subsets of

two linear topological spaces, and let ui : S i×S j → R given s−i, j be a function that

is upper semi-continuous and quasi-concave on S i and lower semi-continuous and

quasi-convex on S j. Then

max
si∈S i

min
s j∈S j

ui(si, s j, s−i, j) = min
s j∈S j

max
si∈S i

ui(si, s j, s−i, j).

We assume that arg maxsi∈S i
mins j∈S j

ui(si, s j, s−i, j) and arg mins j∈S j
maxsi∈S i

ui(si, s j, s−i, j)

are single-valued for any pair of i and j. By the maximum theorem they are con-

tinuous in s−i, j.
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Consider the following function;
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arg maxs1∈S 1
mins2∈S 2

u1(s1, s2, s−1,2)
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mins3∈S 3

u2(s2, s3, s−2,3)

· · ·

arg maxsn∈S n
mins1∈S 1

un(sn, s1, s−1,n)































,

given (s1, s2, . . . , sn). This function is continuous, and each S i is convex and com-

pact. Therefore, there exists a fixed point (s̃1, s̃2, . . . , s̃n) (by Glicksberg’s fixed

point theorem (Glicksberg (1952))).

Similarly, we can consider the following function;
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arg mins1∈S 1
maxs2∈S 1

u2(s1, s2, s−1,2)

arg mins2∈S 2
maxs3∈S 3

u3(s2, s3, s−2,3)

· · ·

arg minsn∈S n
maxs1∈S 1

u1(sn, s1, s−1,n)































,

given (s1, s2, . . . , sn). This function also has a fixed point, (s̃′
1
, s̃′

2
, . . . , s̃′n).

Since we consider a symmetric game in which all players have the same payoff

function, we can assume that when s−i, j = s−k,l,

max
si∈S

min
s j∈S

ui(si, s j, s−i, j) = max
sk∈S

min
sl∈S

uk(sk, sl, s−k,l) = min
sl∈S

max
sk∈S

uk(sk, sl, s−k,l)

= min
s j∈S

max
si∈S

ui(si, s j, s−i, j),

and

arg max
si∈S

min
s j∈S

ui(si, s j, s−i, j) = arg max
sk∈S

min
sl∈S

uk(sk, sl, s−k,l) = arg min
sl∈S

max
sk∈S

uk(sk, sl, s−k,l)

= arg min
s j∈S

max
si∈S

ui(si, s j, s−i, j) for i, j, k, l ∈ N.

They mean

max
si∈S

min
s j∈S

ui(si, s j, s−i, j) = max
s j∈S

min
si∈S

u j(si, s j, s−i, j)

= min
si∈S

max
s j∈S

u j(si, s j, s−i, j) = min
s j∈S

max
si∈S

ui(si, s j, s−i, j),

and

arg max
si∈S

min
s j∈S

ui(si, s j, s−i, j) = arg max
s j∈S

min
si∈S

u j(si, s j, s−i, j)

= arg min
si∈S

max
s j∈S

u j(si, s j, s−i, j) = arg min
s j∈S

max
si∈S

ui(si, s j, s−i, j) for any i, j.
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Then, we find (s̃′
1
, s̃′

2
, . . . , s̃′n) = (s̃1, s̃2, . . . , s̃n). Let s = (s, s, . . . , s). If (s1, s2, . . . , sn) =

s, all arg maxsi∈S mins j∈S ui(si, s j, s, . . . , s)’s and all arg minsi∈S maxs j∈S u j(si, s j, s, . . . , s)’s

are the same. Thus, the fixed point obtained from above two functions is sym-

metric. Denote it by s̃ = (s̃, s̃, . . . , s̃). These arguments ensure the existence of

symmetric maximin and minimax strategies.

Summarizing the results, Sion’s minimax theorem for a symmetric multi-

person zero-sum game is stated as follows.

Theorem 1. Let S i’s for i ∈ N be non-void convex and compact subsets of linear

topological spaces, let ui : S i × S j → R given s̃−i, j be a function that is upper

semi-continuous and quasi-concave on S i and lower semi-continuous and quasi-

convex on S j for all j , i and i ∈ N, and S i = S for all i ∈ N. Then, there exists

s̃ = (s̃, s̃, . . . , s̃) such that

max
si∈S

min
s j∈S

ui(si, s j, s̃−i, j) = max
s j∈S

min
si∈S

u j(si, s j, s̃−i, j)

= min
si∈S

max
s j∈S

u j(si, s j, s̃−i, j) = min
s j∈S

max
si∈S

ui(si, s j, s̃−i, j),

and

arg max
si∈S

min
s j∈S

ui(si, s j, s̃−i, j) = arg max
s j∈S

min
si∈S

u j(si, s j, s̃−i, j)

= arg min
si∈S

max
s j∈S

u j(si, s j, s̃−i, j) = arg min
s j∈S

max
si∈S

ui(si, s j, s̃−i, j) for any i, j,

where s̃−i, j = (s̃, s̃, . . . , s̃) for k ∈ N, k , i, j.

Now we consider a Nash equilibrium of a symmetric multi-person zero-sum

game. Let s∗i , i ∈ N, be the values of si’s which, respectively, maximize ui, i ∈ N,

given s∗j, j , i, in a neighborhood around (s∗
1
, s∗

2
, . . . , s∗n) in S 1 × S 2 × · · · × S n.

Then,

ui(s∗1, . . . , s
∗

i , . . . , s
∗

n) ≥ ui(s∗1, . . . , si, . . . , s
∗

n) for all si , s∗i , i ∈ N. (2)

Since the game is symmetric, we consider a symmetric equilibrium such that all

s∗i ’s are equal at equilibria. Thus, ui(s∗
1
, . . . , s∗i , . . . , s

∗

n)’s for all i are equal, and by

the property of zero-sum game they are zero. By symmetry of the game we have

u j(s∗1, . . . , si, . . . , s
∗

n) = uk(s∗1, . . . , si, . . . , s
∗

n) for j , i, k , i, j , k.

From this and (1)

−

n
∑

j=1, j,i

u j(s∗1, . . . , si, . . . , s
∗

n) = −(n−1)u j(s∗1, . . . , si, . . . , s
∗

n) = ui(s∗1, . . . , si, . . . , s
∗

n).
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Therefore, from (2)

u j(s∗1, . . . , si, . . . , s
∗

n) ≥ u j(s∗1, . . . , s
∗

i , . . . , s
∗

n) for j , i.

By symmetry

ui(s∗1, . . . , s j, . . . , s
∗

n) ≥ ui(s∗1, . . . , s
∗

i , . . . , s
∗

n) for j , i.

Combining this and (2)

ui(s∗1, . . . , si, . . . , s
∗

n) ≤ ui(s∗1, . . . , s
∗

i , . . . , s
∗

n) ≤ ui(s∗1, . . . , s j, . . . , s
∗

n)

for all si , s∗i and all s j , s∗j, j , i, i ∈ N.

This is equivalent to

ui(s∗1, . . . , s
∗

i , . . . , s
∗

n) = max
si

ui(s∗1, . . . , si, . . . , s
∗

n) = min
s j

ui(s∗1, . . . , s j, . . . , s
∗

n),

j , i given s∗k, k , i, j,

Denote the symmetric Nash equilibrium of the zero-sum game by s∗ = (s∗, s∗, . . . , s∗).

Let s̃∗
−i, j = (s̃∗, s̃∗, . . . , s̃∗) for k ∈ N, k , i, j, and s̃−i, j = (s̃, s̃, . . . , s̃) for k ∈ N, k ,

i, j. We can show the following result.

Theorem 2. The following three statements are equivalent.

(1) There exists a symmetric Nash equilibrium in a symmetric multi-person

zero-sum game.

(2) There exists s̃ = (s̃, s̃, . . . , s̃) such that the following relation holds.

vs
i ≡ max

si

min
s j

ui(si, s j, s̃−i, j) = min
s j

max
si

ui(si, s j, s̃−i, j) ≡ vs
j for any pair of i and j.

(3) There exists a real number vs, sm
i

and sm
j

such that

ui(sm
i , s j, s̃−i, j) ≥ vs for any s j, and ui(si, s

m
j , s̃−i, j) ≤ vs for any si, (3)

for any pair of i and j.

Proof. (1→ 2)

Set s̃ = s∗. Then,

vs
j = min

s j

max
si

ui(si, s j, s
∗

−i, j) ≤ max
si

ui(si, s
∗

j, s
∗

−i, j) = ui(s∗i , s
∗

j, s
∗

−i, j)

= min
s j

ui(s∗i , s j, s
∗

−i, j) ≤ max
si

min
s j

ui(si, s j, s
∗

−i, j) = vs
i .
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On the other hand, mins j
ui(si, s j, s

∗

−i, j) ≤ ui(si, s j, s
∗

−i, j), then maxsi
mins j

ui(si, s j, s
∗

−i, j) ≤

maxsi
ui(si, s j, s

∗

−i, j), and so maxsi
mins j

ui(si, s j, s
∗

−i, j) ≤ mins j
maxsi

ui(si, s j, s
∗

−i, j).

Thus, vs
i
≤ vs

j
, and we have vs

i
= vs

j
.

(2→ 3)

Set s̃ = s∗. Let sm
i
= arg maxsi

mins j
ui(si, s j, s

∗

−i, j) (the maximin strategy),

sm
j
= arg mins j

maxsi
ui(si, s j, s

∗

−i, j) (the minimax strategy), and let vs = vs
i
= vs

j
.

Then, we have

ui(sm
i , s j, s

∗

−i, j) ≥ min
s j

ui(sm
i , s j, s

∗

−i, j) = max
si

min
s j

ui(si, s j, s
∗

−i, j) = vs

= min
s j

max
si

ui(si, s j, s
∗

−i, j) = max
si

ui(si, s
m
j , s
∗

−i, j) ≥ ui(si, s
m
j , s
∗

−i, j).

By Theorem 1 sm
i
= s̃ = s∗ and sm

j
= s̃ = s∗.

(3→ 1)

Set s̃ = s∗. Since sm
i
= sm

j
= s∗ from (3) we get

ui(s∗, s j, s
∗

−i, j) ≥ vs ≥ ui(si, s
∗, s∗
−i, j) for all si ∈ S i, s j ∈ S j.

Putting si = s∗i and s j = s∗j, we see vs = ui(s∗, s∗, s∗
−i, j) and s∗ = (s∗, s∗, . . . , s∗) is

an equilibrium.

Therefore, Sion’s minimax theorem is equivalent to the existence of Nash

equilibrium of a symmetric multi-person zero-sum game.

4. Example of asymmetric multi-person zero-sum game

Consider a three-person game. Suppose that the payoff functions of players

are

π1 = (a−s1−(s2+s3)s1−c1s1−
1

2
[(a−s2−(s1+s3)s2−c2s2+(a−s3−(s2+s1)s3−c3s3],

π2 = (a−s2−(s1+s3)s2−c2s2−
1

2
[(a−s1−(s2+s3)s1−c1s1+(a−s3−(s2+s1)s3−c3s3],

and

π3 = (a−s3−(s2+s1)s3−c3s3−
1

2
[(a−s1−(s2+s3)s1−c1s1+(a−s2−(s1+s3)s2−c2s2].

This is a model of relative profit maximization in a three firms Cournot oligopoly

with constant marginal cost and zero fixed cost producing a homogeneous good.
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si, i = 1, 2, 3 are the outputs of the firms. The conditions for maximization of

πi, i = 1, 2, 3 are

∂π1

∂s1

= a − 2s1 − (s2 + s3) − c1 +
1

2
(s2 + s3) = 0,

∂π2

∂s2

= a − 2s2 − (s1 + s3) − c2 +
1

2
(s1 + s3) = 0,

and
∂π3

∂s3

= a − 2s3 − (s2 + s1) − c3 +
1

2
(s2 + s1) = 0.

The Nash equilibrium strategies are

s1 =
3a − 5c1 + c2 + c3

9
, s2 =

3a − 5c2 + c1 + c3

9
, s3 =

3a − 5c3 + c2 + c1

9
. (4)

We consider maximin and minimax strategy about Player 1 and 2. The con-

dition for minimization of π1 with respect to s2 is ∂π1

∂s2
= 0. Denote s2 which

satisfies this condition by s2(s1, s3), and substitute it into π1. Then, the condition

for maximization of π1 with respect to s1 given s2(s1, s3) and s3 is

∂π1

∂s1

+
∂π1

∂s2

ds2

ds1

= 0.

We call the strategy of Player 1 obtained from these conditions the maximin strat-

egy of Player 1 to Player 2. It is denoted by arg maxs1
mins2

π1. The condition for

maximization of π1 with respect to s1 is ∂π1

∂s1
= 0. Denote s1 which satisfies this

condition by s1(s2, s3), and substitute it into π1. Then, the condition for minimiza-

tion of π1 with respect to s2 given s1(s2, s3) is

∂π1

∂s2

+
∂π1

∂s1

ds1

d2

= 0.

We call the strategy of Player 2 obtained from these conditions the minimax strat-

egy of Player 2 to Player 1. It is denoted by arg mins2
maxs1

π1. In our example

we obtain

arg max
s1

min
s2

π1 =
3a − 4c1 + c2

9
, arg min

s2

max
s1

π1 =
6a − 9s3 − 2c1 − 4c2

9
.

Similarly, we get the following results.

arg max
s2

min
s1

π2 =
3a − 4c2 + c1

9
, arg min

s1

max
s2

π2 =
6a − 9s3 − 2c2 − 4c1

9
,
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arg max
s1

min
s3

π1 =
3a − 4c1 + c3

9
, arg min

s3

max
s1

π1 =
6a − 9s2 − 2c1 − 4c3

9
,

arg max
s3

min
s1

π3 =
3a − 4c3 + c1

9
, arg min

s1

max
s3

π3 =
6a − 9s2 − 2c3 − 4c1

9
,

arg max
s2

min
s3

π2 =
3a − 4c2 + c3

9
, arg min

s3

max
s2

π2 =
6a − 9s1 − 2c2 − 4c3

9
,

arg max
s3

min
s2

π3 =
3a − 4c3 + c2

9
, arg min

s2

max
s3

π3 =
6a − 9s1 − 2c3 − 4c2

9
.

If the game is asymmetric, for example, c2 , c3, arg maxs1
mins2

π1 , arg maxs1
mins3

π1,

arg maxs2
mins3

π2 , arg maxs3
mins2

π3, arg mins3
maxs2

π2 , arg mins2
maxs3

π3and

so on. However, if the game is symmetric, we have c2 = c3 = c1 and

arg max
s1

min
s2

π1 = arg max
s2

min
s1

π2 = arg max
s1

min
s3

π1 = arg max
s3

min
s1

π3

= arg max
s2

min
s3

π2 = arg max
s3

min
s2

π3 =
a − c1

3
.

All of the Nash equilibrium strategies of the players in (4) are also equal to a−c1

3
.

Assume s2 = s3 = s1 as well as c2 = c3 = c1. Then,

arg min
s2

max
s1

π1 = arg min
s1

max
s2

π2 = arg min
s3

max
s1

π1 = arg min
s1

max
s3

π3

= arg min
s3

max
s2

π2 = arg min
s2

max
s3

π3 =
2a − 3s1 − 2c1

3
.

Further, if

s1 = arg min
s1

max
s2

π2 = arg min
s1

max
s3

π3,

we obtain

arg min
s2

max
s1

π1 = arg min
s1

max
s2

π2 = arg min
s3

max
s1

π1 = arg min
s1

max
s3

π3

= arg min
s3

max
s2

π2 = arg min
s2

max
s3

π3 =
a − c1

3
.

Therefore, the maximin strategy, the minimax strategy and the Nash equilibrium

strategy for all players are equal.
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