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Abstract 

Traditional unit root tests display a tendency to be nonstationary in the case of structural breaks 

and nonlinearity. To eliminate this problem this paper proposes a new flexible Fourier form 

nonlinear unit root test. This test eliminates this problem to add structural breaks and 

nonlinearity together to the test procedure. In this test procedure, structural breaks are modeled 

by means of a Fourier function and nonlinear adjustment is modeled by means of an 

Exponential Smooth Threshold Autoregressive (ESTAR) model. The simulation results 

indicate that the proposed unit root test is more powerful than the Kruse (2011) and KSS(2003) 

tests. 

JEL classification: C12, C22 
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1.Introduction 

Almost all of the empirical studies that use the time series techniques use unit root tests. During 

the last four decades, an increasing number of studies have developed 

tests to analyze the order of integration of variables.  Unit root tests were first introduced to 

literature by Dickey and Fuller (1979). The change in general in the testing concept was 

introduced by Perron (1989). According to Perron (1989), traditional unit root tests will display 

a tendency not to be stationary in the case of a structural break.  After Becker et. al. (2006), the 

flexible Fourier transformation is used quite frequently in modeling structural breaks in recent 

years. The main advantage of this approach is that it eliminates the need to determine the 

number and the type of structural breaks.  

Enders and Granger (1998) demonstrate that the standard tests for unit root and cointegration 

all have lower power in the presence of misspecified dynamics. In the light of this information, 

it is important to determine not only the structural break but also the type of model of the 

nonlinear structure. There have been significant developments in nonlinear unit root tests in 

recent years and various significant tests that make use of various types of models have been 

developed (Kapetanious et al. (2003)(KSS), Sollis (2004, 2009), Kruse (2011)).  

Christopoulos and Leon-Ledesma (2010) made a significant contribution to literature by 

proposing new test procedures that combine Fourier transformation and nonlinearity. This 

procedure is based upon using the Fourier form in the first stage and the KSS test in the second 

stage. This allows for modeling both nonlinearity and structural break.  

This study proposes a new test procedure combining the Kruse (2011) test developed in the 

light of the main criticisms to the KSS test with the Fourier transformation. In this test procedure 

structural breaks are modeled by means of a Fourier function and nonlinear adjustment is 

modeled by means of an Exponential Smooth Threshold Autoregressive (ESTAR) model as 

proposed by Kruse (2011).  

The proposed unit root test is going to be explained in the second section of the study, the third 

section is going to focus on the Monte Carlo simulations and measure the critical values, 

empirical size and the power of the test and the fourth section is going to focus on conclusion. 

 

2. The Flexible Fourier Form Nonlinear Unit Root Test 

The recent developments in unit root tests concentrate mostly on using nonlinear model 

specifications and tests with structural breaks. The structural break tests were first introduced 

to literature by Perron (1989) and the tests by Zivot and Andrews (1992), Lee and Strazicich 

(2003, 2004) Carrion-i-Silvestre et al. (2009) were developed later to define the history  and 

the number of structural break tests. Prodan (2008) demonstrate that when the breaks are of 

opposite sign, it can be difficult to estimate the number and the magnitude of multiple breaks. 

Becker et al. (2004, 2006) propose to use a Fourier series expansion to approximate the 

unknown number of breaks. In this approach, it is not necessary to assume that the number or 

the dates of breaks are known a priori. Following these developments, Enders and Lee (2012) 

suggest a unit root test with a Fourier function in the deterministic term in a Dickey Fuller type 

regression framework.  



Christopoulos and Leon-Ledesma (2010) suggest a unit root test that account jointly for 

structural breaks and nonlinear adjustment. They modeled structural breaks by means of a 

Fourier function. They also modeled nonlinear adjustment by means of an ESTAR model 

proposed by Kapetanious et al. (2003). 

This study is an extension of the test proposed by Christopoulos and Leon-Ledesma (2010). 

The Fourier function was used in the first stage for the proposed test following Christopoulos 

and Leon-Ledesma (2010) to model structural breaks in unknown forms and numbers. In the 

second test, the unit root was tested by using the Kruse (2011) test developed in the light of the 

criticisms made for the KSS test.  

The test developed by Kruse (2011) is the advanced version of the root test introduced to 

literature by Kapetanios et al. (2003). The test developed by Kruse (2011) examines the 

nonlinear stationary exponential smooth transition autoregressive (ESTAR) against the null 

hypothesis of unit root.  

 

The ESTAR model could be shown as follows:  
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Contrary to Kapetanios et al. (2003), the Kruse (2011) study has shown that in real world 

examples, the possibility of non-zero location parameter (𝑐 ≠ 0) is imminent (Anoruo and 

Murthy, 2014). Based on this, the equation was changed as follows using the Taylor 

approximation in the Kruse (2011) study: 

 

 ∆𝑦𝑡 = 𝛿1𝑦𝑡−13 + 𝛿2𝑦𝑡−12 + ∑ 𝜑𝑗∆𝑦𝑡−𝑗𝑝𝑗=1 + 𝜀𝑡       

 

Kruse (2011) proposes a 𝜏 test here to test the null hypothesis of unit root (𝐻0: 𝛿1 = 𝛿2 = 0) 

against globally stationary ESTAR process (𝐻1: 𝛿1 < 0, 𝛿2 ≠ 0). This test statistics is 

formulated as follows: 

 𝜏 = 𝑡𝛿2⊥=02 + 1(𝛿1 < 0)𝑡𝛿1=02  

 

Kruse(2011) show that 𝜏 statistic has the following asymptotic distribution which is free of 

nuisance parameters 𝜏 ⇒ 𝑎(𝑊(𝑟)) + 𝐵(𝑊(𝑟)) 

where A and B are function of Brownian motion W(r) (for details, see Kruse(2011)). 



The test procedure proposed in the study can be shown as follows similar to the study by 

Christopoulos and Leon-Ledesma (2010). 

Step 1: the nonlinear deterministic component is specified in the first stage. 𝑦𝑡 = 𝛼0 + 𝛼1𝑠𝑖𝑛 (2𝜋𝑘∗𝑡𝑇 ) + 𝛼2𝑐𝑜𝑠 (2𝜋𝑘∗𝑡𝑇 ) + 𝑣𝑡 
k* is the optimal frequency and it will be obtained by assigning values to k changing between 

1 to 5, then predicting the equation by using OLS and minimizing the total of the squares of 

error terms. The error terms of the equation predicted will be obtained.  

 𝑣𝑡 = 𝑦𝑡 − 𝛼0 − 𝛼1𝑠𝑖𝑛 (2𝜋𝑘∗𝑡𝑇 ) − 𝛼2𝑐𝑜𝑠 (2𝜋𝑘∗𝑡𝑇 ) 

 

Step 2: The test statistics is calculated predicting the equation below using the error terms 

obtained in the first stage: ∆𝑣𝑡 = 𝛿1𝑦𝑡−13 + 𝛿2𝑦𝑡−12 + ∑ 𝜑𝑗∆𝑣𝑡−𝑗𝑝𝑗=1 + 𝜀𝑡  
 

Step 3: If the null hypothesis of unit root is rejected, then  𝐻0: 𝛼1 = 𝛼2 = 0 against the alternative hypotheses 𝐻1: 𝛼1 = 𝛼2 ≠ 0 is tested in this step using 

the F test. If the null hypothesis is rejected, we can conclude that the variable is stationary 

around a breaking deterministic function. The critical values of this test are tabulated in Becker 

et al. (2006). 

 

3. Monte Carlo Results 

The empirical size and power comparison of the critical values for the proposed flexible Fourier 

form nonlinear unit root test are presented in this section.  

 

3.1. Critical Values 

 

The computed critical values of the Fourier Kruse test statistics are presented in Table 1. They 

are based on 50,000 replications for T= 50, 100, 250, 500 and k=1, 2, 3, 4, 5. This paper reports 

the critical values for nominal significance levels of 1, 5 and 10%, respectively.  

 

 

 

 



Table 1: Critical Values for Kruse test with Fourier Aproximation     

    Level    Trend     

  k 1% 5% 10%  1% 5% 10% 

T = 50 1 20.32 14.72 12.32  24.24 18.38 15.66 

 2 16.04 11.46 9.28  22.34 15.62 13.16 

 3 14.48 10.14 8.38  19.26 13.96 11.62 

 4 13.38 9.56 7.92  17.88 13.1 10.88 

  5 13.58 9.58 7.90  17.5 12.6 10.58 

T = 100 1 19.46 14.76 12.44  23.78 18.4 15.78 

 2 16.06 11.6 9.64  21.42 15.62 13.28 

 3 14.74 10.7 8.96  18.62 14.46 12.14 

 4 14.26 10.3 8.64  17.96 13.56 11.58 

  5 14.26 10.06 8.52  17.8 13.24 11.2 

T = 250 1 18.82 14.8 12.52  23.56 18.14 15.74 

 2 15.84 11.92 9.98  20.02 15.74 13.5 

 3 15.04 11.14 9.28  18.78 14.2 12.32 

 4 14.58 10.74 9.1  18.28 13.88 11.96 

  5 13.98 10.4 8.8  17.76 13.6 11.52 

T = 500 1 19.56 14.86 12.7  23.26 18.14 15.8 

 2 16.36 12.01 9.92  20.4 16.08 13.64 

 3 14.9 11.24 9.4  19.12 14.6 12.44 

 4 14.6 10.94 9.2  18.24 13.9 11.98 

  5 14.34 10.92 9.1   17.66 13.76 11.76 

 

 

3.2. Finite Sample Size 

 

To evaluate the size of the test statistics, we consider the following data generating process 

(DGP) 

 𝑦𝑡 = 𝛼0 + 𝛼1𝑠𝑖𝑛 (2𝜋𝑘∗𝑡𝑇 ) + 𝛼2𝑐𝑜𝑠 (2𝜋𝑘∗𝑡𝑇 ) + 𝑣𝑡 𝑣𝑡 = 𝑣𝑡−1 + 𝜀𝑡 
 

where 𝜀𝑡 is a sequence of standard normal errors and 𝑘∗ stands for optimal frequency. The 

empirical size is considered for sample sizes 𝑇 = 50, 100, 250, 500, values of k=1,2,3, and 𝛼1 = 𝛼2 = 1, 0.5, 0.1 with nominal sizes of 5%.  

   

 

 



Table 2 : Empirical Sizes of the Test 𝛼1 = 𝛼2 k=1 k=2 k=3 

 T=50 

1 0.042 0.043 0.058 

0.5 0.042 0.043 0.058 

0.1 0.042 0.043 0.059 

 T=100 

1 0.051 0.053 0.053 

0.5 0.051 0.054 0.053 

0.1 0.051 0.053 0.053 

 T=250 

1 0.045 0.047 0.047 

0.5 0.045 0.047 0.047 

0.1 0.05 0.047 0.047 

 T=500 

1 0.05 0.05 0.052 

0.5 0.05 0.05 0.052 

0.1 0.05 0.05 0.052 

 

The results in Table 2 show that the size of proposed test is close to 5% in all cases with different 

values of k and 𝛼.  

 

3.3. Empirical Power 

 

We next investigate the power properties of the unit root tests against globally stationary 

process using the following Fourier-ESTAR model as a DGP: 

 𝑦𝑡 = 𝛼0 + 𝛼1𝑠𝑖𝑛 (2𝜋𝑘∗𝑡𝑇 ) + 𝛼2𝑐𝑜𝑠 (2𝜋𝑘∗𝑡𝑇 ) + 𝑣𝑡 ∆𝑣𝑡 = 𝜙𝑣𝑡−1(1 − 𝑒𝑥𝑝{−𝛾(𝑣𝑡−1 − 𝑐)2}) + 𝜀𝑡 
 

following Taylor et al. (2001)  𝜙 = −1 parameter restriction. The location parameter 𝑐 and 

smoothness parameter 𝛾 are  𝑐 = (−10,−5, 0, 5, 10) , 𝛾 = (0.05, 0.1, 1), respectively.  

 

 

 

 

 

 



Table 3 : Power Analysis of Fourier Kruse, Kruse and KSS Tests 

T=50   Fourier Kruse   Kruse   KSS 𝛾 𝑐 k=1 k=2 k=3   k=1 k=2 k=3   k=1 k=2 k=3 

0.05 -10 0.94 0.98 0.99  0.83 0.83 0.86  0.88 0.89 0.91 

 -5 0.6 0.77 0.81  0.44 0.44 0.47  0.49 0.49 0.52 

 0 0.35 0.55 0.59  0.28 0.27 0.23  0.31 0.31 0.27 

 5 0.59 0.77 0.81  0.46 0.44 0.47  0.5 0.49 0.52 

 10 0.94 0.98 0.99  0.84 0.83 0.86  0.9 0.89 0.91 

0.1 -10 0.95 0.98 0.99  0.85 0.84 0.87  0.9 0.9 0.92 

 -5 0.79 0.9 0.93  0.64 0.64 0.68  0.7 0.7 0.75 

 0 0.58 0.77 0.82  0.44 0.43 0.4  0.47 0.47 0.47 

 5 0.79 0.9 0.93  0.65 0.65 0.68  0.71 0.72 0.75 

 10 0.95 0.98 0.99  0.85 0.84 0.87  0.9 0.9 0.92 

1 -10 0.95 0.98 0.99  0.85 0.84 0.87  0.89 0.9 0.92 

 -5 0.95 0.98 0.99  0.84 0.84 0.87  0.9 0.91 0.92 

 0 0.96 0.99 0.99  0.81 0.81 0.83  0.86 0.86 0.89 

 5 0.95 0.98 0.99  0.85 0.84 0.87  0.89 0.91 0.92 

  10 0.95 0.98 0.99   0.84 0.84 0.87   0.9 0.9 0.92 

T=100             

0.05 -10 0.99 1 0.99  0.99 1 0.99  0.99 1 0.99 

 -5 0.9 0.94 0.97  0.88 0.89 0.88  0.78 0.79 0.78 

 0 0.81 0.94 0.96  0.76 0.76 0.75  0.79 0.8 0.79 

 5 0.89 0.94 0.97  0.87 0.89 0.88  0.79 0.79 0.78 

 10 0.99 1 0.99  0.99 1 0.99  0.99 1 0.99 

0.1 -10 0.99 1 1  0.99 1 1  0.99 1 1 

 -5 0.98 0.99 0.99  0.97 0.97 0.97  0.95 0.95 0.95 

 0 0.97 0.99 0.99  0.91 0.92 0.91  0.93 0.94 0.93 

 5 0.98 0.99 0.99  0.97 0.97 0.97  0.95 0.95 0.95 

 10 0.99 1 1  0.99 1 1  0.99 1 1 

1 -10 0.99 1 1  0.99 1 1  0.99 1 1 

 -5 0.99 0.99 1  0.99 0.99 1  0.99 0.99 1 

 0 0.99 1 1  0.99 0.99 0.99  0.99 0.99 1 

 5 0.99 0.99 1  0.99 0.99 1  0.99 0.99 1 

  10 0.99 1 1   0.99 1 1   0.99 1 1 

Note: T is the sample size. 

 

The results of power experiments are presented in Table 3. A combination of the 𝑐 = (−10, −5, 0, 5, 10) , 𝛾 = (0.05, 0.1, 1) and k=1,2,3 were used. General outcome obtained 

from Table 3 is that the Fourier Kruse test is more powerful than the Kruse (2011) and KSS 

tests for all combinations of parameter values and frequencies. In small samples T=50, the 

power performance of the proposed test is good.       

 

 

 



 

4. Conclusion 

 

In this study, a new unit root test which can be useful in the presence of unknown number of 

breaks and nonlinearity was proposed. The finite sample properties of the suggested test via 

Monte Carlo simulations were examined. It was found that the proposed test has greater power 

than the Kruse (2011) and KSS tests. Especially for small sample cases, the power and size  

performance of the proposed test is good. This test eliminates the problems over-acceptance of 

the null of nonstationarity to add structural breaks and nonlinearity together into the test 

procedure. 
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