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Abstract

We consider domains that exhibit single-peakedness only over a subset of alternatives. We
call such domains partially single-peaked and provide a characterization of the unanimous and
strategy-proof social choice functions on these domains. As an application of this result, we
obtain a characterization of the unanimous and strategy-proof social choice functions on multi-
peaked domains (Stiglitz (1974), Shepsle (1979), Epple and Romano (1996a)), single-peaked
domains with respect to a partial order (Chatterji and Massó (2015)), multiple single-peaked
domains (Reffgen (2015)) and single-peaked domains on graphs (Schummer and Vohra (2002)).
As a by-product of our results, it follows that strategy-proofness implies tops-onlyness on
these domains. Further, we show that strategy-proofness and group strategy-proofness are
equivalent on these domains.

KEYWORDS: Partially single-peaked domain, strategy-proofness, group strategy-proofness,
partly dictatorial min-max rules.

JEL CLASSIFICATION CODES: D71, D82.

1. INTRODUCTION

1.1 BACKGROUND OF THE PROBLEM

This paper deals with the standard social choice problem where an alternative has to be chosen

based on privately known preferences of the individuals in a society. A procedure that maps a
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collection of individual preferences to a social alternative is called a social choice function (SCF).

In such a framework, it is natural to assume that individuals may misreport their preferences

whenever it is strictly beneficial for them. An SCF is called (group) strategy-proof if no individual

(group of individuals) finds it beneficial to misreport her preferences and is called unanimous if it

always selects a unanimously agreed alternative whenever that exists.

Most of the subject matter of social choice theory concerns the study of the unanimous and

strategy-proof SCFs for different admissible domains of preferences. In the seminal works by

Gibbard (1973) and Satterthwaite (1975), it is shown that if a society has at least three alternatives

and there is no particular restriction on the preferences of the individuals, then every unanimous

and strategy-proof SCF is dictatorial, that is, a particular individual in the society determines

the outcome regardless of the preferences of the others. The celebrated Gibbard-Satterthwaite

theorem hinges crucially on the assumption that the admissible domain of each individual is

unrestricted. However, it is well established that in many economic and political applications,

there are natural restrictions on such domains. For instance, in the models of locating a firm in a

unidimensional spatial market (Hotelling (1929)), setting the rate of carbon dioxide emissions

(Black (1948)), setting the level of public expenditure (Romer and Rosenthal (1979)), and so on,

preferences admit a natural restriction widely known as single-peakedness. Roughly speaking, the

crucial property of a single-peaked preference is that there is a prior order over the alternatives

such that the preference decreases as one moves away (with respect to the prior order) from her

best alternative.

The study of single-peaked domains dates back to Black (1948), where it is shown that the

pairwise majority rule is strategy-proof on such domains. Moulin (1980) and Weymark (2011)

have characterized the unanimous and strategy-proof SCFs on such domains as min-max rules.1,2

Recently, Achuthankutty and Roy (2017) characterize the domains where the set of unanimous

and strategy-proof SCFs coincide with that of min-max rules.

1.2 OUR MOTIVATION

It is both experimentally and empirically established that in many political and economic scenarios

(Niemi and Wright (1987), Feld and Grofman (1988), and Pappi and Eckstein (1998)), where the

1Barberà et al. (1993) and Ching (1997) provide equivalent presentations of this class of SCFs.
2A rich literature has developed around the single-peaked restriction by considering various generalizations and

extensions (see Barberà et al. (1993), Demange (1982), Schummer and Vohra (2002), Nehring and Puppe (2007a), and
Nehring and Puppe (2007b)).

2



preferences of individuals are normally assumed to be single-peaked, they are actually not.

Nevertheless, such preferences have close resemblance with single-peakedness. In this paper, we

model such preferences as partially single-peaked. Roughly speaking, partial single-peakedness

requires the individual preferences to be single-peaked only over a subset of alternatives. It

is worth noting that the structure of the unanimous and (group) strategy-proof rules on such

domains are not explored in the literature. In view of this, our main motivation in this paper is to

develop a general model for partially single-peaked domains and to provide a characterization

of the unanimous and (group) strategy-proof rules on those. Below, we present some evidences

of partially single-peaked domains in the literature. In Section 4, we will formally define these

notions and show that they are special cases of partially single-peaked domains.

1.2.1 MULTI-PEAKED DOMAINS

In many practical scenarios in economics and politics, the preferences of the individuals often

exhibit multi-peakedness as opposed to single-peakedness. As the name suggests, multi-peaked

preferences admit multiple ideal points in a unidimensional policy space. We discuss a few

settings where it is plausible to assume that individuals have multi-peaked preferences.

• Preference for ‘Do Something’ in Politics: Davis et al. (1970) and Egan (2014) consider public

(decision) problems such as choosing alternate tax regimes, lowering health care costs,

responding to foreign competition, reducing the national debt, etc. They show that a public

problem is perceived to be poorly addressed by the status-quo policy, and consequently

some individuals prefer both liberal and conservative policies to the moderate status quo.

Clearly, such a preference will have two peaks, one on the left of the status quo and another

one on the right.

• Multi-stage Voting System: Shepsle (1979), Denzau and Mackay (1981), Enelow and Hinich

(1983), etc. deal with multi-stage voting system where individuals vote on a set of issues

where each issue can be thought of as a unidimensional spectrum and voting is distributed

over several stages considering one issue at a time. In such a model, preference of an

individual over the present issue can be affected by her prediction of the outcome of the

future issues. In other words, such a preference is not separable across issues. They show

that the preferences of the individuals in such scenarios exhibit multi-peaked property.
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• Provision of Public Goods with Outside Options: Barzel (1973), Stiglitz (1974), and Bearse et al.

(2001) consider the problem of setting the level of tax rates to provide public funding in

the education sector, and Ireland (1990) and Epple and Romano (1996a) consider the same

problem in the health insurance market. They show that the preferences of individuals

exhibit multi-peaked property due to the presence of outside options (i.e., the public good

is also available in a competitive market as a private good). For instance, in the problem

of determining educational subsidy, an individual with lower income may not prefer a

moderate level of subsidy since she cannot afford to bear the remaining cost for higher

education. Thus, her preference in such a scenario will have two peaks - one at a lower level

of subsidy so that she can achieve primary education, and another one at a very high level

of subsidy so that she can afford the remaining cost for higher education.

• Provision of Excludable Public Goods: Fernandez and Rogerson (1995) and Anderberg (1999)

consider public good provision models such as health insurance, educational subsidies,

pensions, etc. where the government provides the public good to a particular section of

individuals, and show that individuals’ preferences in such scenarios are multi-peaked.

1.2.2 SINGLE-PEAKED DOMAINS WITH RESPECT TO PARTIAL ORDERS

In the literature, single-peaked domains are generally considered with respect to some (prior)

linear order. Such a preference restriction requires an individual to order (a priori) the whole set

of alternatives in a linear fashion. However, it is well-documented in psychology that in many

situations individuals are unable to derive a complete ordering over the alternatives. For instance,

in the political science literature, it may not be possible for the individuals to unambiguously order

the parties who are moderate in their policies (center parties) over the policy spectrum. Similarly,

in a public good provision problem where locations are distributed over different geographical

regions, even though individuals can derive some prior ordering (based on traffic distance or so)

over the locations that are in same region, but they may not be able to do the same for locations in

different regions. Such a situation can only be modeled by considering single-peaked domains

with respect to prior orderings that are incomplete (or partial). In this respect, our work is closely

related to Chatterji and Massó (2015) who consider semi-lattice single-peakedness - preferences that

are single-peaked with respect to a semi-lattice (which is a partial order).

4



1.2.3 MULTIPLE SINGLE-PEAKED DOMAINS

Reffgen (2015) introduces the notion of multiple single-peaked domains. Such a domain is defined as

a union of some domains each of which is single-peaked with respect to some prior orderings

over the alternatives. A plausible justification for such a domain restriction is provided by Niemi

(1969) who argues that the alternatives can be ordered differently using different criteria (which

he calls an impartial culture) and it is not publicly known which individual uses what criterion.

On one extreme, such a domain becomes an unrestricted domain if there is no consensus among

the individuals on the prior order, and on the other extreme, it becomes a maximal single-peaked

domain if all the individuals agree on a single prior order. It is worth noting that such domains

can be seen as a special case of partially single-peaked domains.

1.2.4 SINGLE-PEAKED DOMAINS ON GRAPHS

Schummer and Vohra (2002) considers domains that are based on some graph structure over the

alternatives (e.g., locating a new station in a rail-road network). They assume that the individuals

derive their preferences by using single-peakedness over some spanning tree of the underlying

graph. In this paper, we show that when the underlying graph has some specific structure

(involves a cycle or so), then the induced domains become partially single-peaked.

1.3 OUR CONTRIBUTION

In this paper, we develop a general model for partially single-peaked domains which capture

the non-single-peaked domains that commonly arise in practical scenarios. Formally speaking,

we assume that the whole interval of alternatives is divided into subintervals such that every

preference in the domain is required to satisfy single-peakedness over each of those subintervals,

and is allowed to violate the property outside those. We characterize the unanimous and strategy-

proof SCFs on such domains as partly dictatorial min-max rule (PDMMR). Loosely put, a PDMMR

acts like a min-max rule over the subintervals where the domain respects single-peakedness and

like a dictatorial rule everywhere else. We also establish the equivalence of strategy-proofness

and group strategy-proofness on partially single-peaked domains. Barberà et al. (2010) provides

a sufficient condition for the equivalence of strategy-proofness and group strategy-proofness

on a domain. Partially single-peaked domains do not satisfy their condition. Therefore, we

independently establish the equivalence of strategy-proofness and group strategy-proofness on
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these domains.

The class of partially single-peaked domains that we consider in this paper is quite large.

It includes single-peaked domains on one extreme and unrestricted domains on the other. To

corroborate this fact, we prove that partially single-peaked domains contain almost all domains

on which (i) every unanimous and strategy-proof SCF is a PDMMR and (ii) every PDMMR is

strategy-proof.

A crucial step in the proof of our characterization results is to establish the tops-onlyness

property. Chatterji and Sen (2011) provide a sufficient condition for tops-onlyness, however

partially single-peaked domains do not satisfy that condition.

To put our results in perspective, we conclude this section by comparing them with a few

related articles. Chatterji et al. (2013) study a related restricted domain known as a semi-single-

peaked domain. Such a domain violates single-peakedness around the tails of the prior order. They

show that if a domain admits an anonymous (and hence non-dictatorial), tops-only, unanimous,

and strategy-proof SCF, then it is a semi-single-peaked domain. However, we show that if

single-peakedness is violated around the middle of the prior order, then there is no unanimous,

strategy-proof, and anonymous SCF. Thus, our characterization result on partially single-peaked

domains complements that in Chatterji et al. (2013). Recently, Arribillaga and Massó (2016)

provide necessary and sufficient conditions for the comparability of two min-max rules in terms

of their vulnerability to manipulation. However, our results identify the min-max rules that are

manipulable if single-peakedness is violated over a subset of alternatives.

The rest of the paper is organized as follows. We describe the usual social choice framework in

Section 2. In Section 3, we presents our main results. Section 4 provides a few applications of our

results, and the last section concludes the paper. All the omitted proofs are collected in Appendix

A.

2. PRELIMINARIES

Let N = {1, . . . , n} be a set of at least two agents, who collectively choose an element from a finite

set X = {a, a + 1, . . . , b − 1, b} of at least three alternatives, where a is an integer. For x, y ∈ X

such that x ≤ y, we define the intervals [x, y] = {z ∈ X | x ≤ z ≤ y}, [x, y) = [x, y] \ {y},

(x, y] = [x, y] \ {x}, and (x, y) = [x, y] \ {x, y}. Throughout this paper, we denote by x and x two

arbitrary but fixed alternatives such that x < x − 1. For notational convenience, whenever it is
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clear from the context, we do not use braces for singleton sets, i.e., we denote sets {i} by i.

A preference P over X is a complete, transitive, and antisymmetric binary relation (also called a

linear order) defined on X. We denote by L(X) the set of all preferences over X. An alternative

x ∈ X is called the kth ranked alternative in a preference P ∈ L(X), denoted by rk(P), if |{a ∈ X |

aPx}| = k − 1. For notational convenience, sometimes we denote by P = xy . . . a preference P

with r1(P) = x and r2(P) = y. A domain of admissible preferences, denoted by D, is a subset of

L(X). An element PN = (P1, . . . , Pn) ∈ Dn is called a preference profile. The top-set of a preference

profile PN, denoted by τ(PN), is defined as τ(PN) = {x ∈ X | r1(Pi) = x for some i ∈ N}.

2.1 DOMAINS AND THEIR PROPERTIES

In this subsection, we introduce a few properties of a domain and a class of domains.

Definition 2.1. A domain D of preferences is regular if for all x ∈ X, there exists a preference

P ∈ D such that r1(P) = x.

All the domains we consider in this paper are assumed to be regular.

Definition 2.2. A domain D satisfies the top-connectedness property if for all x, y ∈ X with

|x − y| = 1, there is P ∈ D such that P = xy . . ..

2.1.1 GRAPH OF A DOMAIN

In this subsection, we introduce the notion of the graph of a domain. First, we introduce a few

graph theoretic notions. A directed graph G is defined as a pair 〈V, E〉, where V is the set of nodes

and E ⊆ V × V is the set of directed edges, and an undirected graph G is defined as a pair 〈V, E〉,

where V is the set of nodes and E ⊆ {{u, v} | u, v ∈ V and u 6= v} is the set of undirected edges. For

a graph (directed or undirected) G = 〈V, E〉, a subgraph G′ of G is defined as a graph G′ = 〈V, E′〉,

where E′ ⊆ E. For two graphs G1 = 〈V1, E1〉 and G2 = 〈V2, E2〉, the graph G1 ∪ G2 is defined as

G1 ∪ G2 = 〈V1 ∪ V2, E1 ∪ E2〉.

All the graphs we consider in this paper are of the kind G = 〈X, E〉, i.e., whose node set is the

set of alternatives.

Definition 2.3. A directed (undirected) graph G = 〈X, E〉 is called the directed (undirected) line

graph on X if (x, y) ∈ E ({x, y} ∈ E) if and only if |x − y| = 1.

7



Definition 2.4. A graph G is called a directed (undirected) partial line graph if G can be expressed as

G1 ∪ G2, where G1 = 〈X, E1〉 is the directed (undirected) line graph on X and G2 = 〈[x, x], E2〉 is a

directed (undirected) graph such that (x, y), (x, z) ∈ E2 ({x, y}, {x, z} ∈ E2) for some y ∈ (x+ 1, x]

and z ∈ [x, x − 1).

In Figure 1, we present a directed partial line graph on X = {x1, x2, x3, x4, x5, x6, x7} where

x = x3 and x = x6.

x1 x2 x3 x4 x5 x6 x7

Figure 1: A directed partial line graph

Definition 2.5. The top-graph of a domain D is defined as the directed graph 〈X, E〉 such that

(x, y) ∈ E if and only if there exists a preference P = xy . . . ∈ D.

Note that a domain satisfies the top-connectedness property if and only if its top-graph is the

directed line graph on X.

2.2 SINGLE-PEAKED DOMAINS

Definition 2.6. A preference P ∈ L(X) is called single-peaked if for all x, y ∈ X, [x < y ≤

r1(P) or r1(P) ≤ y < x] implies yPx. A domain is called single-peaked if each preference in it

is single-peaked, and a domain is called maximal single-peaked if it contains all single-peaked

preferences.

Definition 2.7. A domain is called top-connected single-peaked if it is both top-connected and

single-peaked.

2.3 PARTIALLY SINGLE-PEAKED DOMAINS

In this section, we consider a class of domains that violates single-peaked property over the

interval [x, x] and exhibits the property everywhere else. We call such domains partially single-

peaked domains which are formally defined below.
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Definition 2.8. A domain S̃ is said to satisfy single-peakedness outside [x, x] if for all P ∈ S̃ , all

u /∈ (x, x), and all v ∈ X,

[

v < u ≤ r1(P) or r1(P) ≤ u < v
]

implies uPv.

To gain more insight about Definition 2.8, first consider a preference with top-ranked alternative

in [x, x]. Then, Definition 2.8 says that such a preference satisfies single-peakedness over the

intervals [a, x] and [x, b]. That is, the relative ordering of two alternatives u, v is derived by

using single-peaked property whenever both of them are either in the interval [a, x] or in the

interval [x, b]. Note that Definition 2.8 does not impose any restriction on the relative ordering

of an alternative in [x, x] and any other alternative. Next, consider a preference P such that

r1(P) /∈ [x, x]. Suppose, for instance, r1(P) ∈ [a, x). Then, Definition 2.8 says that P satisfies

single-peakedness over the interval [a, r1(P)]. It further says that if an alternative u lies in the

interval (r1(P), x] or in the interval [x, b], then, as required by single-peakedness, it is preferred to

any alternative v in the interval (u, b]. Thus, Definition 2.8 does not impose on P any restriction on

the relative ordering of an alternative in (x, x) and an alternative in [x, b]. Therefore, in particular,

Definition 2.8 does not impose any restriction on any preference on the relative ordering of two

alternatives in the interval (x, x).

Definition 2.9. A domain S̃ is said to violate single-peakedness over [x, x] if there exist Q =

xy . . . , Q′ = xz . . . ∈ S̃ such that either
[

y ∈ (x + 1, x) and z ∈ (x, x − 1)
]

or
[

y = x and z = x
]

.

Note that since r2(Q) > r1(Q) + 1 and r2(Q
′) < r1(Q

′) − 1, both the preferences Q and

Q′ violate single-peakedness. This, together with the facts that r1(Q) = x, r1(Q
′) = x, and

r2(Q), r2(Q
′) ∈ (x, x), implies that a domain with those two preferences violates single-peakedness

over [x, x]. In Section 3.2, we show that the particular restrictions on the second-ranked alterna-

tives of Q and Q′ given in Definition 2.9 are necessary for the results we derive in this paper.

REMARK 2.1. Definition 2.9 considers violation of single-peakedness only over intervals. It may

seem that the possibility of violating this over several intervals is excluded in this definition.

However, as we argue in the following, that is not the case. Note that by Definition 2.9, if a

domain violates single-peakedness over several intervals, then it also violates the same over the

minimal interval that contains all those. Thus, for the notion of violation of single-peakedness

that we consider in this paper, it is enough to consider it over an interval.
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Definition 2.10. A domain S̃ is called partially single-peaked if

(i) it satisfies single-peakedness outside [x, x] and violates it over [x, x], and

(ii) it contains a top-connected single-peaked domain.

REMARK 2.2. Condition (ii) in Definition 2.10 may not seem to be essential in modeling non-

single-peaked preferences that arise in political and economic scenarios. However, we feel this is

not the case. In most political and economic scenarios where a prior ordering over the alternatives

exists (naturally), non-single-peaked preferences arise because some individuals may not use that

ordering completely in deriving their preferences. However, there is no logical ground to rule

out the possibility that some individuals may still use that ordering in deriving their preferences.

Thus, one must allow for the single-peaked preferences in such domains.

We illustrate the notion of partially single-peaked domains in Figure 2. Figure 2(a) and

Figure 2(b) present partially single-peaked preferences P with r1(P) ∈ [x, x] and r1(P) ∈ [a, x),

respectively. Figure 2(c) presents partially single-peaked preferences Q = xy . . . and Q′ = xz . . .

when y ∈ (x + 1, x) and z ∈ (x, x − 1), and Figure 2(d) presents those when y = x and z = x.

Note that, as explained before, all these preferences are single-peaked over the intervals [a, x]

and [x, b]. Furthermore, for the preference depicted in Figure 2(a), there is no restriction on the

ranking of the alternatives in the interval (x, x), and for the one shown in Figure 2(b), there is no

restriction on the ranking of the alternatives in the interval (x, x) except that x is preferred to all

the alternatives in (x, b]. Also, for the preferences in Figures 2(c) and 2(d), there is no restriction

on the ranking of the alternatives in (x, x) other than that on the second-ranked alternatives.

Now, we interpret Definition 2.10 in terms of its top-graph. Let G be the top-graph of a partially

single-peaked domain. Then, G can be written as G1 ∪ G2, where G1 = 〈X, E1〉 is the directed

line graph on X and G2 = 〈[x, x], E2〉 is a directed graph such that (x, r2(Q)), (x, r2(Q
′)) ∈ E2

where r2(Q) ∈ (x + 1, x] and r2(Q
′) ∈ [x, x − 1). Therefore, G is a directed partial line graph. In

Example 2.1, we present a partially single-peaked domain with seven alternatives, and in Figure

3, we present the top-graph of that domain.

Example 2.1. Let X = {x1, x2, x3, x4, x5, x6, x7}, where x1 < x2 < x3 < x4 < x5 < x6 < x7, and let

x = x3 and x = x6. Then, the domain in Table 1 is a partially single-peaked domain. To see this,

first consider a preference with top-ranked alternative in the interval [x3, x6], say P7. Note that

x3P7x2P7x1 and x6P7x7, which means P7 is single-peaked over the intervals [x1, x3] and [x6, x7].
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a x y br1(P)

(a) Partially single-peaked preference P with r1(P) ∈ [x, y]

a x y br1(P)

(b) Partially single-peaked preference P with r1(P) ∈ [a, x)

a byr1(Q) = x r2(Q) = x′ a bx r1(Q
′) = yr2(Q

′) = y′

(c) Partially single-peaked preferences Q, Q′ with x + 1 < r2(Q) < y and x < r2(Q
′) < y − 1

a br1(Q) = x r2(Q) = y a br1(Q
′) = yr2(Q

′) = x

(d) Partially single-peaked preferences Q, Q′ with r2(Q) = y and r2(Q
′) = x

Figure 2: Partially single-peaked preferences

Moreover, the position of x5 is completely unrestricted (here at the bottom) in P7. Next, consider

a preference with top-ranked alternative in the interval [x1, x3], say P2. Once again, note that P2 is

single-peaked over the intervals [x1, x3] and [x6, x7]. Further, x3 is preferred to the alternatives

x4, x5, x6, x7, and there is no restriction on the relative ordering of the alternatives x4 and x5 (here

x5P2x4). Thus, the domain in Table 1 satisfies single-peakedness outside the interval [x3, x6]. Now,

consider the preferences Q and Q′. Since r1(Q) = x3, r2(Q) = x5, r1(Q
′) = x6, and r2(Q

′) = x4,

this domain violates single-peakedness over [x3, x6]. Finally, note that the domain contains a

top-connected single-peaked domain given by P1, P3, P4, P5, P6, P8, P9, P10, P11, P12, P13, and P14.

The top-graph G of the domain in Example 2.1 is given in Figure 3. Note that G is a

partial line graph since it can be written as G1 ∪ G2, where G1 is the directed line graph on

{x1, x2, x3, x4, x5, x6, x7} and G2 is a directed graph on {x3, x4, x5, x6} having edges (x3, x5) and

(x6, x4).
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P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 Q Q′

x1 x2 x2 x2 x3 x3 x4 x4 x4 x5 x5 x6 x6 x7 x3 x6

x2 x1 x1 x3 x2 x4 x6 x3 x5 x4 x6 x5 x7 x6 x5 x4

x3 x3 x3 x1 x4 x2 x3 x5 x3 x3 x4 x4 x5 x5 x2 x3

x4 x6 x4 x4 x5 x5 x2 x2 x2 x6 x3 x3 x4 x4 x6 x7

x5 x5 x5 x5 x6 x6 x1 x6 x1 x7 x2 x2 x3 x3 x1 x2

x6 x7 x6 x6 x7 x1 x7 x1 x6 x2 x7 x7 x2 x2 x7 x1

x7 x4 x7 x7 x1 x7 x5 x7 x7 x1 x1 x1 x1 x1 x4 x5

Table 1: A partially single-peaked domain

x1 x2 x3 x4 x5 x6 x7

Figure 3: Top-graph of the domain in Example 2.1

2.4 SOCIAL CHOICE FUNCTIONS AND THEIR PROPERTIES

In this section, we introduce the notion of social choice functions and discuss their properties.

Definition 2.11. A social choice function (SCF) f on Dn is a mapping f : Dn → X.

Definition 2.12. An SCF f : Dn → X is unanimous if for all PN ∈ Dn such that r1(Pi) = x for all

i ∈ N and some x ∈ X, we have f (PN) = x.

Definition 2.13. An SCF f : Dn → X is manipulable if there exists i ∈ N, PN ∈ Dn, and P
′

i ∈ D

such that f (P
′

i , PN\i)Pi f (PN). An SCF f is strategy-proof if it is not manipulable.

Definition 2.14. An SCF f : Dn → X is called dictatorial if there exists i ∈ N such that for all

PN ∈ Dn, f (PN) = r1(Pi).

Definition 2.15. A domain D is called dictatorial if every unanimous and strategy-proof SCF

f : Dn → X is dictatorial.

Definition 2.16. Two preference profiles PN, P′
N are called tops-equivalent if r1(Pi) = r1(P′

i ) for all

agents i ∈ N.

Definition 2.17. An SCF f : Dn → X is called tops-only if for any two tops-equivalent PN , P′
N ∈ Dn,

f (PN) = f (P′
N).
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Definition 2.18. A domain D is called tops-only if every unanimous and strategy-proof SCF

f : Dn → X is tops-only.

Definition 2.19. An SCF f : Dn → X is called uncompromising if for all PN ∈ Dn, all i ∈ N, and

all P′
i ∈ D:

(i) if r1(Pi) < f (PN) and r1(P′
i ) ≤ f (PN), then f (PN) = f (P′

i , P−i), and

(ii) if f (PN) < r1(Pi) and f (PN) ≤ r1(P′
i ), then f (PN) = f (P′

i , P−i).

REMARK 2.3. If an SCF satisfies uncompromisingness, then by definition, it is tops-only.

Definition 2.20. Let β = (βS)S⊆N be a list of 2n parameters satisfying: (i) βS ∈ X for all S ⊆ N,

(ii) β∅ = b, βN = a, and (iii) for any S ⊆ T, βT ≤ βS. Then, an SCF f β : Dn → X is called a

min-max rule with respect to β if

f β(PN) = min
S⊆N

{max
i∈S

{r1(Pi), βS}}.

REMARK 2.4. Every min-max rule is uncompromising.3

Definition 2.21. A min-max rule f β : Dn → X with parameters β = (βS)S⊆N is a partly dictatorial

min-max rule (PDMMR) if there exists an agent d ∈ N, called the partial dictator of f β, such that

βd ∈ [a, x] and βN\d ∈ [x, b].

In Lemma 3.1, we explain why the particular agent d is called the partial dictator of f β.

REMARK 2.5. Reffgen (2015) defines partly dictatorial generalized median voter scheme (PDGMVS)

on multiple single-peaked domains. It can be shown that PDMMR coincides with PDGMVS on

those domains.4

3. RESULTS

3.1 UNANIMOUS AND STRATEGY-PROOF SCFS ON PARTIALLY SINGLE-PEAKED DOMAINS

In this subsection, we characterize the unanimous and strategy-proof SCFs on partially single-

peaked domains as partly dictatorial generalized median voter schemes.

3For details, see Weymark (2011).
4For details see the proof of Theorem 3.1 in Reffgen (2015).
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First, we present a lemma that justifies why the agent d in Definition 2.21 is called the partial

dictator. It shows that a PDMMR chooses the top-ranked alternative of the partial dictator

whenever that lies in the interval [x, x]. It further shows that it chooses an alternative in the

interval [a, x] or [x, b] depending on whenever the top-ranked alternative of the partial dictator

lies in that interval.

Lemma 3.1. Let f β : Dn → X be a PDMMR. Suppose agent d is the partial dictator of f β. Then,

(i) f β(PN) ∈ [a, x] if r1(Pd) ∈ [a, x),

(ii) f β(PN) ∈ [x, b] if r1(Pd) ∈ (x, b], and

(iii) f β(PN) = r1(Pd) if r1(Pd) ∈ [x, x].

Proof. First, we prove (i). The proof of (ii) can be established using symmetric arguments. As-

sume for contradiction that r1(Pd) ∈ [a, x) and f β(PN) > x. Since f β is a min-max rule, f β is

uncompromising. Therefore, f β(P′
d, PN\d) = f β(PN), where r1(P′

d) = a. Again by uncompromis-

ingness, we have f β(P′
N) ≥ f β(PN), where r1(P′

i ) = b for all i 6= d. Because f β(PN) > x, this

means f β(P′
N) > x. However, by the definition of f β, f β(P′

N) = βd. Since βd ∈ [a, x], this is a

contradiction. This completes the proof of (i).

Now, we prove (iii). Without loss of generality, assume for contradiction that r1(Pd) ∈ [x, x]

and f β(PN) > r1(Pd). Using a similar argument as for the proof of (i), we have f β(P′
N) ≥ f β(PN),

where r1(P′
d) = a and r1(P′

i ) = b for all i 6= d. This, in particular, means f β(P′
N) > x. Since by the

definition of f β, f β(P′
N) = βd and βd ∈ [a, x], this is a contradiction. This completes the proof of

(iii). �

Now, we present a characterization of the the unanimous and strategy-proof SCFs on partially

single-peaked domains.

Theorem 3.1. Let S̃ be a partially single-peaked domain. Then, an SCF f : S̃n → X is unanimous and

strategy-proof if and only if it is a PDMMR.

The proof of the Theorem 3.1 is relegated to Appendix A.

Our next corollary is a consequence of Lemma 3.1 and Theorem 3.1. It characterizes a class of

dictatorial domains, and thereby it generalizes the celebrated Gibbard-Satterthwaite (Gibbard

(1973), Satterthwaite (1975)) results. Note that our dictatorial result is independent of those in

Aswal et al. (2003), Sato (2010), Pramanik (2015), and so on.
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Corollary 3.1. Let x = a and x = b. Then, every partially single-peaked domain is dictatorial.

3.2 A RESULT ON PARTIAL NECESSITY

In Subsection 3.1, we have focused on partially single-peaked domains and have shown that

every unanimous and strategy-proof SCF on those is a PDMMR. In this subsection, we look at

the converse of this problem, that is, we focus on PDMMR and investigate the class of domains

where these rules are unanimous and strategy-proof. We show that the partially single-peaked

domains are almost all domains with the said property. This indicates that our notion of partial

single-peaked domains is quite general. A formal definition is as follows.

Definition 3.1. A domain D is called a PDMMR domain if

(i) every unanimous and strategy-proof SCF on Dn is a PDMMR, and

(ii) every PDMMR on Dn is strategy-proof.

Conditions (i), (ii), and (iii) in Definition 2.10 are obviously strong conditions. Are they

necessary for PDMMR domains? The question appears to be extremely difficult to resolve

completely. However, Lemma 3.2 shows that Conditions (i) and (ii) are necessary, and the

subsequent discussion shows that Condition (iii) is also close to being necessary in an appropriate

sense.

Lemma 3.2. Let D be a PDMMR domain. Then, D satisfies single-peakedness outside [x, x].

Proof. First, we show that a preference with top-ranked alternative in [x, x] satisfies single-

peakedness outside [x, x]. Without loss of generality, assume for contradiction that there exists

P̃ ∈ D with r1(P̃) ∈ [x, x] such that uP̃v for some u < v ≤ x. Consider the PDMMR f β : Dn → X,

where

βS =



















v if S = {1},

a if {1} ( S,

b if 1 /∈ S.

We show that f β is not strategy-proof. Note that agent 1 is the partial dictator of f β. Consider the

preference profile PN ∈ Dn such that r1(P1) = a, P2 = P̃, and r1(Pj) = b for all j 6= 1, 2. Then, by

the definition of f β, f β(PN) = v. Let P′
2 ∈ D be such that r1(P′

2) = u. Again, by the definition of

f β, f β(P′
2, PN\2) = u. Since uP̃v, this means agent 2 manipulates at PN via P′

2.
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Now, we show that a preference with top-ranked alternative outside [x, x] satisfies single-

peakedness outside [x, x]. Without loss of generality, assume for contradiction that there exist

P̃ ∈ D with r1(P̃) ∈ [a, x) and u, v ∈ X with u /∈ (x, x) such that
[

v < u ≤ r1(P) or r1(P) ≤ u <

v
]

and vP̃u. If
[

v < u ≤ r1(P̃)
]

and vP̃u, then using a similar argument as for the proof of the

necessity of Condition (i), it follows that there is a PDMMR on Dn that is manipulable. Hence,

assume r1(P̃) ≤ u < v and vP̃u. We distinguish two cases.

CASE 1. Suppose u ≤ x.

Consider the PDMMR f β : Dn → X, where

βS =







u if 1 ∈ S and S 6= N,

b if 1 /∈ S.

We show that f β is not strategy-proof. Let PN ∈ Dn be such that P1 = P̃ and r1(Pj) = b for all

j 6= 1. Then, by the definition of f β, f β(PN) = u. Let P′
1 ∈ D be such that r1(P′

1) = v. Again, by

the definition of f β, f β(P′
1, PN\1) = v. Since vP̃u, agent 1 manipulates at PN via P′

1.

CASE 2. Suppose x < u.

Since u /∈ (x, x), this means x ≤ u. Consider the PDMMR f β : Dn → X, where

βS =







a if 1 ∈ S,

u if 1 /∈ S and S 6= ∅.

We show that f β is not strategy-proof. Let PN ∈ Dn be such that P2 = P̃ and r1(Pj) = b for all

j 6= 2. Then, by the definition of f β, f β(PN) = u. Let P′
2 ∈ D be such that r1(P′

2) = v. Again, by

the definition of f β, f β(P′
2, PN\2) = v. Since vP̃u, agent 2 manipulates at PN via P′

2. �

Coming to the violation of single-peakedness over [x, x], that is, the requirement of the existence

of two particular preferences Q, Q′ as mentioned in Definition 2.9, it is to be noted that it can be

violated in many ways. We consider those domains obtained through mild violations of the same

and show that there do exist unanimous and strategy-proof SCFs on such domains that are not

PDMMR.

Now, we discuss the necessity of the existence of two particular preferences Q, Q′ as mentioned

in Definition 2.9. Recall that Definition 2.9 requires two non-single-peaked preferences Q = xy . . .

and Q′ = xz . . . in D such that either
[

y ∈ (x + 1, x) and z ∈ (x, x − 1)
]

or
[

y = x and z = x
]

.
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Suppose a domain D satisfies single-peakedness outside [x, x]. Suppose further that it contains a

non-single-peaked preference of the form Q, but no preference of the form Q′. In the following

example, we construct a two-agent unanimous and strategy-proof SCF on such a domain that is

not a PDMMR.

Example 3.1. Let X = {x1, x2, x3, x4, x5}, where x1 < x2 < x3 < x4 < x5. By P = x1x2x3x4x5, we

mean a preference P such that x1Px2Px3Px4Px5. Consider the domain as follows:

D ={x1x2x3x4x5, x1x3x4x5x2, x2x1x3x4x5, x2x3x4x5x1, x3x2x1x4x5, x3x4x5x2x1, x4x3x2x1x5,

x4x5x3x2x1, x5x4x3x2x1}.

Note that D \ {x1x3x4x5x2} is a top-connected single-peaked domain and the preference

x1x3x4x5x2 is of the form Q where x = x1 and x ≥ x3. However, there is no preference in D of the

form Q′, that is, no preference Q′ with r1(Q
′) ≥ x3 and r2(Q

′) ∈ [x1, r1(Q
′)− 1). In Table 2, we

present a two-agent SCF that is unanimous and strategy-proof but not a PDMMR.

P1

P2 x1x2x3x4x5 x1x3x4x5x2 x2x1x3x4x5 x2x3x4x5x1 x3x2x1x4x5 x3x4x5x2x1 x4x3x2x1x5 x4x5x3x2x1 x5x4x3x2x1

x1x2x3x4x5 x1 x1 x2 x2 x2 x2 x2 x2 x2

x1x3x4x5x2 x1 x1 x2 x2 x3 x3 x3 x3 x3

x2x1x3x4x5 x2 x2 x2 x2 x2 x2 x2 x2 x2

x2x3x4x5x1 x2 x2 x2 x2 x2 x2 x2 x2 x2

x3x2x1x4x5 x2 x3 x2 x2 x3 x3 x3 x3 x3

x3x4x5x2x1 x2 x3 x2 x2 x3 x3 x3 x3 x3

x4x3x2x1x5 x2 x3 x2 x2 x3 x3 x4 x4 x4

x4x5x3x2x1 x2 x3 x2 x2 x3 x3 x4 x4 x4

x5x4x3x2x1 x2 x3 x2 x2 x3 x3 x4 x4 x5

Table 2: A unanimous and strategy-proof SCF which is not a PDMMR

It is left to the reader to verify that the SCF presented in Table 2 is unanimous and strategy-

proof. Note that it violates tops-onlyness at the preference profiles (x3x4x5x2x1, x1x2x3x4x5) and

(x3x4x5x2x1, x1x3x4x5x2), and hence it is not a PDMMR.

Now, suppose that D contains two non-single-peaked preferences Q and Q′, however, they

do not satisfy Definition 2.9 for their second-ranked alternatives. In the following example, we

construct a two-agent unanimous and strategy-proof SCF on such a domain D that is not a

PDMMR.

Example 3.2. Let X = {x1, x2, x3, x4, x5}, where x1 < x2 < x3 < x4 < x5. Let D be the domain

given in Example 3.1. Consider the domain D ∪ {x5x1x4x3x2}. As pointed out in Example 3.1,
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D \ {x1x3x4x5x2} is a top-connected single-peaked domain. Consider the non-single-peaked

preferences x1x3x4x5x2 and x5x1x4x3x2. They can be considered as Q and Q′ only if x = x1 and

x = x5. However, since their second-ranked alternatives are x3 and x1, respectively, they do not

satisfy Definition 2.9. In Table 3, we present a two-agent SCF that is unanimous and strategy-proof

but not a PDMMR.

P1

P2 x1x2x3x4x5 x1x3x4x5x2 x2x1x3x4x5 x2x3x4x5x1 x3x2x1x4x5 x3x4x5x2x1 x4x3x2x1x5 x4x5x3x2x1 x5x4x3x2x1 x5x1x4x3x2

x1x2x3x4x5 x1 x1 x2 x2 x2 x2 x2 x2 x2 x1

x1x3x4x5x2 x1 x1 x2 x2 x3 x3 x3 x3 x3 x1

x2x1x3x4x5 x2 x2 x2 x2 x2 x2 x2 x2 x2 x2

x2x3x4x5x1 x2 x2 x2 x2 x2 x2 x2 x2 x2 x2

x3x2x1x4x5 x2 x3 x2 x2 x3 x3 x3 x3 x3 x3

x3x4x5x2x1 x2 x3 x2 x2 x3 x3 x3 x3 x3 x3

x4x3x2x1x5 x2 x3 x2 x2 x3 x3 x4 x4 x4 x4

x4x5x3x2x1 x2 x3 x2 x2 x3 x3 x4 x4 x4 x4

x5x4x3x2x1 x2 x3 x2 x2 x3 x3 x4 x4 x5 x5

x5x1x4x3x2 x1 x1 x2 x2 x3 x3 x4 x4 x5 x5

Table 3: A unanimous and strategy-proof SCF which is not a PDMMR

Note that the restriction of the SCF presented in Table 3 to D2 is same as the SCF presented in

Table 2. It is left to the reader to verify that this SCF is unanimous and strategy-proof. However,

as pointed out in Example 3.1, it violates tops-onlyness, and hence it is not a PDMMR.

3.3 GROUP STRATEGY-PROOFNESS

In this section, we consider group strategy-proofness and obtain a characterization of the unan-

imous and group strategy-proof SCFs on partially single-peaked domains. We begin with the

definition of group strategy-proofness.

Definition 3.2. An SCF f : Dn → X is called group manipulable if there is a preference profile PN,

a non-empty coalition C ⊆ N, and a preference profile P′
C ∈ D|C| of the agents in C such that

f (P′
C, PN\C)Pi f (PN) for all i ∈ C. An SCF f : Dn → X is called group strategy-proof if it is not

group manipulable.

In the following theorem, we present a characterization of the unanimous and group strategy-

proof SCFs on partially single-peaked domains. It is worth mentioning that these domains do

not satisfy the sufficient condition for the equivalence of strategy-proofness and group strategy-

proofness provided in Barberà et al. (2010).

Theorem 3.2. Let S̃ be a partially single-peaked domain. Then, an SCF f : S̃n → X is unanimous and

group strategy-proof if and only if it is a PDMMR.
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Proof. Let S̃ be a partially single-peaked domain. Suppose f : S̃n → X is a PDMMR where agent

d is the partial dictator. It is enough to show that f is group strategy-proof. Clearly, no group

can manipulate f at a preference profile PN ∈ S̃n where r1(Pd) ∈ [x, x]. Consider a preference

profile PN ∈ S̃n such that r1(Pd) ∈ [a, x). We show that f is group strategy-proof at PN. Since

r1(Pd) ∈ [a, x), by the definition of PDMMR, f (PN) ∈ [a, x]. Let C′ = {i ∈ N | r1(Pi) ≤ f (PN)}

and let C′′ = {i ∈ N | r1(Pi) > f (PN)}. Suppose a coalition C manipulates f at PN. Then,

there is P′
C ∈ S̃ |C| such that f (P′

C, PN\C)Pi f (PN) for all i ∈ C. If f (P′
C, PN\C) < f (PN), then by the

definition of S̃ , we have C∩C′′ = ∅. However, by the definition of PDMMR, f (P′
C, PN\C) ≥ f (PN)

for all C ⊆ C′ and all P′
C ∈ S̃ |C|, a contradiction. Again, if f (P′

C, PN\C) > f (PN), then by the

definition of S̃ , we have C ∩C′ = ∅. However, by the definition of PDMMR, f (P′
C, PN\C) ≤ f (PN)

for all C ⊆ C′′ and all P′
C ∈ S̃ |C|, a contradiction. The proof of the same for the case where

r1(Pd) ∈ (x, b] follows from a symmetric argument. This shows f is group strategy-proof, and

hence completes the proof of the theorem. �

4. APPLICATIONS

In this section, we present a couple of examples of our main result.

4.1 MULTI-PEAKED DOMAINS

In Section 1, we have discussed the importance of multi-peaked domains in modeling preferences

of individuals in certain economic and political scenarios. In this subsection, we formally define

this notion and show that these are special cases of partially single-peaked domains.

Definition 4.1. A preference P is called multi-peaked if there are d0, p1, d1, p2, d2, . . . , dk−1, pk, dk

with a = d0 ≤ p1 < d1 < . . . < pk ≤ dk = b such that for all i = 0, . . . , k− 1 and all x, y ∈ [di, di+1],

[x < y ≤ pi+1 or pi+1 ≤ y < x] implies yPx. For such a preference P the alternatives p1, . . . , pk

are called its peaks.

We present a multi-peaked domain in Figure 4.

Definition 4.2. Let c1 and c2 be such that a ≤ c1 < c2 − 1 ≤ b. Then, a domain D is called multi-

peaked with critical values c1, c2 if each preference in D is either single-peaked or multi-peaked with

all its peaks in the interval [c1, c2].
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d0 = p1 d1
p2 d2

p3 d3
p4 d4

p5 d5
p6 d6

Figure 4: A multi-peaked preference

It is easy to verify that a multi-peaked domain with critical values x and x is a partially

single-peaked domain. Thus, we have the following corollary.

Corollary 4.1. Let S be a multi-peaked domain. Then, an SCF f : Sn → X is unanimous and (group)

strategy-proof if and only if it is a PDMMR.

4.2 SINGLE-PEAKED DOMAINS WITH RESPECT TO PARTIAL ORDERS

As discussed in Section 1, expecting individuals to have a complete prior order over the alterna-

tives is a strong prerequisite. In view of this, we relax this condition by requiring the individuals

to have a partial prior order over the alternatives and to derive preferences based on such a partial

order. In this subsection, we argue that such a domain is partially single-peaked.

Definition 4.3. A binary relation is called a partial order if it is reflexive, antisymmetric, and

transitive.

Note that a partial order need not be complete. We denote a partial order by ⊳.5 Also, we write

a E b to mean a ⊳ b or a = b.

Definition 4.4. A preference P is said to be single-peaked with respect to a partial order ⊳ over X if

for all distinct x, y ∈ X,

[x ⊳ y E r1(P) or r1(P) E y ⊳ x] implies yPx.

A domain is called single-peaked with respect to a partial order ⊳ if it contains all single-peaked

preferences with respect to ⊳.

5To be precise, the antisymmetric part of a partial order.
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Since every partial order can be thought of a subset of a linear order (as a binary relation), it can

be shown that a single-peaked domain with respect to a partial order is partially single-peaked.

However, we do not provide a concrete proof of this since that is a bit technical.6 Nevertheless, in

what follows we provide a few examples of single-peaked domains with respect to partial orders

and show that those domains are partially single-peaked.

Example 4.1. Suppose that the set of alternatives is partitioned into a number of subsets such

that the designer knows how agents order (a priori) the alternatives in each of those subsets, but

does not know how agents compare alternatives in two different subsets.

More formally, suppose that X is partitioned into the subsets X1, . . . , Xk. For all i = 1, . . . , k, let

≺i∈ L(Xi) be a linear order over Xi. Consider the partial order ⊳ over X given by the union of

≺is, that is, x ⊳ y if and only if there is i = 1, . . . , k such that x, y ∈ Xi and x ≺i y. In what follows,

we consider a simple such partial order and present the single-peaked domain with respect to the

same.

Let the set of alternatives be X = {x1, x2, x3, x4, x5, x6}. Suppose that X is partitioned into the

sets {x1, x2, x3} and {x4, x5, x6}. Consider the partial order ⊳ given by x1 ⊳ x2 ⊳ x3 and x4 ⊳ x5 ⊳ x6.

In Table 4, we present the single-peaked domain with respect to ⊳. Note that the domain has

the property that its restriction on {x1, x2, x3} is single-peaked with respected to the prior order

x1 ⊳ x2 ⊳ x3 and on {x4, x5, x6} is single-peaked with respected to the prior order x4 ⊳ x5 ⊳ x6. Since

this domain is large, we provide only a few preferences that are significant for our purpose.

Clearly, this domain is partially single-peaked with x = x1 and x = x6. Therefore, it follows from

Theorem 3.1 that it is a dictatorial domain.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

x1 x1 x2 x2 x3 x3 x4 x4 x5 x5 x6 x6

x2 x4 x1 x3 x2 x4 x3 x5 x4 x6 x5 x3

x3 x2 x3 x1 x1 x5 x2 x6 x6 x4 x4 x5

x4 x5 x4 x4 x4 x6 x1 x3 x3 x3 x3 x2

x5 x3 x5 x5 x5 x2 x5 x2 x2 x2 x2 x4

x6 x6 x6 x6 x6 x1 x6 x1 x1 x1 x1 x1

Table 4: A single-peaked domain with respect to the partial order ⊳

Example 4.2. In political science, it is often assumed that the parties can be ordered from left to

right on the policy spectrum based on whether they are more liberal (left) or more conservative

6A proof of this fact is available on request.
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(right) in their policies. Deriving such an ordering can be done unambiguously over the parties

who are clearly identifiable as more left or more right. However, ordering parties who are

moderate in their policies (i.e., having policies around the center of the spectrum) may not be

possible. To model such a situation, one needs to assume that the prior ordering of the parties (on

the political spectrum) is not complete around the center of the spectrum. In what follows, we

consider a simple such partial order and present the single-peaked domain with respect to the

same.

Suppose that the set of alternatives is given by X = {x1, x2, x3, x4, x5, x6}. Consider the

partial order ⊳ obtained from the linear order x1 ≺ x2 ≺ x3 ≺ x4 ≺ x5 ≺ x6 by making x3 and x4

incomparable, that is, ⊳ is given by x1 ⊳ x2 ⊳ x3 ⊳ x5 ⊳ x6 and x1 ⊳ x2 ⊳ x4 ⊳ x5 ⊳ x6. The single-peaked

domain with respect to ⊳ is given in Table 5. Note that this domain is partially single-peaked with

x = x2 and x = x5. Therefore, it follows from Theorem 3.1 and Theorem 3.2 that any unanimous

and (group) strategy-proof SCF on this domain is a PDMMR.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

x1 x1 x2 x2 x2 x3 x3 x4 x4 x5 x5 x5 x6 x6

x2 x2 x1 x3 x4 x2 x4 x3 x5 x4 x6 x3 x5 x5

x3 x4 x3 x1 x3 x1 x5 x5 x3 x6 x4 x4 x4 x3

x4 x3 x4 x4 x1 x4 x6 x6 x6 x3 x3 x2 x3 x4

x5 x5 x5 x5 x5 x5 x2 x2 x2 x2 x2 x6 x2 x2

x6 x6 x6 x6 x6 x6 x1 x1 x1 x1 x1 x1 x1 x1

Table 5: A single-peaked domain with respect to the partial order ⊳

The following corollary summarizes the above discussion on single-peaked domains with

respect to a partial order.

Corollary 4.2. Let ⊳ be a partial order over X and let S be the single-peaked domain with respect to ⊳.

Then, an SCF f : Sn → X is unanimous and (group) strategy-proof if and only if it is a PDMMR.

4.3 MULTIPLE SINGLE-PEAKED DOMAIN

In this subsection, we consider a well-known class of domains called multiple single-peaked

domains and show that they are special cases of partially single-peaked domains.

We begin with introducing the notion of a single-peaked domain with respect to an arbitrary

order over X.

22



Definition 4.5. Let ≺∈ L(X) be a prior order over X. Then, a preference P ∈ L(X) is single-peaked

with respect to ≺ if for all x, y ∈ X, [x ≺ y � r1(P) or r1(P) � y ≺ x] implies yPx. A domain

S≺ is called a single-peaked domain with respect to ≺ if each preference in it is single-peaked with

respect to ≺, and a domain S̄≺ is called maximal single-peaked with respect to ≺ if it contains all

single-peaked preferences with respect to ≺.

Definition 4.6. Let L = {≺1, . . . ,≺q}, where ≺k∈ L(X) for all 1 ≤ k ≤ q, be a set of q prior

orders over X. Then, a domain is called a multiple single-peaked domain with respect to L, denoted

by SL, if SL =
⋃

k∈{1,...,q}

S̄≺k
, where S̄≺k

is the maximal single-peaked domain with respect to the

prior order ≺k. A multiple single-peaked domain with respect to L is called trivial if S̄≺ = S̄≺′

for all ≺,≺′∈ L.

For ease of presentation, for any multiple single-peaked domain with respect to L, we assume

without loss of generality that the integer ordering < is in the set L.

Definition 4.7. Let SL be a non-trivial multiple single-peaked domain with respect to a set of

prior orders L. Then, alternatives u, v ∈ X with u < v − 1 are called break-points of SL if

(i) for all preferences P ∈ SL and all c, d ∈ X \ (u, v),
[

d < c ≤ r1(P) or r1(P) ≤ c < d
]

implies

cPd, and

(ii) there exist P, P′ ∈ SL such that r1(P) = u, r2(P) ∈ (u + 1, v], r1(P′) = v, and r2(P′) ∈

[u, v − 1).

REMARK 4.1. The break points, say u, v, of a non-trivial multiple single-peaked domain SL induce

the partition {XL, XM, XR} of X, where XL = [a, u), XM = [u, v], and XR = (v, b]. Reffgen (2015)

calls such a partition the maximal common decomposition of X and the sets XL, XM, and XR as the

left component, the middle component, and the right component of alternatives, respectively.

In the following, we illustrate the notion of break-points of a non-trivial multiple single-peaked

domain by means of an example.

Example 4.3. Let X = {x1, x2, x3, x4, x5, x6, x7} be the set of alternatives. Consider the set of prior

orders L = {<,≺1,≺2,≺3}, where <= x1x2x3x4x5x6x7, ≺1= x1x2x3x5x4x6x7, ≺2= x1x2x5x4x3x6

x7, and ≺3= x1x2x4x3x5x6x7. Let SL be the multiple single-peaked domain with respect to L.

Clearly, SL is non-trivial since S̄≺1
6= S̄≺2 . We claim u = x2 and v = x6 are the break points of
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SL. It is easy to verify that SL satisfies Condition (i) in Definition 4.7. For Condition (ii), note

that we have preferences P, P′ ∈ S̄≺2 ⊆ SL where r1(P) = x2, r2(P) = x5, r1(P′) = x6, and

r2(P′) = x3. Further, note that the maximal common decomposition of X is given by XL = {x1},

XM = {x2, x3, x4, x5, x6}, and XR = {x7}.

It can be easily verified that every non-trivial multiple single-peaked domain is a partially

single-peaked domain where x and x are the break-points. Thus, we have the following corollary.

Corollary 4.3 (Reffgen (2015)). Let SL be a non-trivial multiple single-peaked domain with break-points

x and x. Then, an SCF f : Sn
L → X is unanimous and (group) strategy-proof if and only if it is a

PDMMR.

4.4 SINGLE-PEAKED DOMAINS ON GRAPHS

In this subsection, we introduce the notion of single-peaked domains on graphs and show that

such a domain is partially single-peaked if the underlying graph satisfies some condition. All the

graphs we consider in this subsection are undirected.

Definition 4.8. A path in an undirected graph G = 〈X, E〉 from a node x to a node y, denoted

by πG(x, y), is defined as a sequence of nodes (x1, . . . , xk) such that {xi, xi+1} ∈ E for all i =

1, . . . , k − 1. An undirected graph G = 〈X, E〉 is called connected if for all x, y ∈ X, there is a path

from x to y.

Definition 4.9. An undirected graph G = 〈X, E〉 is called a tree if for every two distinct nodes

x, y ∈ X, there is a unique path from x to y. A spanning tree of an undirected connected graph G is

defined as a connected subgraph of G that is a tree. For an undirected connected graph G, we

denote by TG the set of all spanning trees of G.

Definition 4.10. Let T = 〈X, E〉 be a tree. Then, a domain is called single-peaked with respect to T,

denoted by ST, if for all P ∈ ST and all distinct x, y ∈ X,

[x ∈ πT(r1(P), y)] =⇒ [xPy].

Definition 4.11. Let G = 〈X, E〉 be an undirected connected graph. Then, a domain is called

single-peaked with respect to G, denoted by SG, if SG = ∪T∈TG
ST.
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Note that if T is the undirected line graph on X, then ST is the maximal single-peaked domain.

In Lemma 4.1, we show that if a domain is single-peaked with respect to an undirected partial

line graph as defined in Definition 2.4, then it is a partially single-peaked domain.

Lemma 4.1. Let G be an undirected partial line graph. Then, SG is a partially single-peaked domain.

Proof. Let G be an undirected partial line graph. We show that SG is a partially single-peaked

domain. Let G = G1 ∪ G2, where G1 = 〈X, E1〉 is the undirected line graph on X and G2 =

〈[x, x], E2〉 is an undirected graph such that {x, y}, {x, z} ∈ E2 for some y ∈ (x + 1, x] and

z ∈ [x, x − 1).

First, we show that SG satisfies single-peakedness outside [x, x]. Take P ∈ SG with r1(P) ∈

[x, x] and take u, v ∈ X \ (x, x). Suppose [v < u ≤ r1(P) or r1(P) ≤ u < v]. Consider an arbitrary

spanning tree T of G. Then, by the definition of G, u ∈ πT(r1(P), v), and hence uPv. Therefore,

P satisfies single-peakedness outside [x, x]. Using a similar argument, it can be shown that a

preference P with r1(P) /∈ [x, x] satisfies single-peakedness outside [x, x].

Next, we show that SG violates single-peakedness over [x, x]. Consider the tree T = 〈X, E〉

such that E = (E1 \ {x, x + 1}) ∪ {x, y}. Since G1 = 〈X, E1〉 is the undirected line graph on X, T

is a spanning tree of G. Because {x, y} ∈ E, there is a preference Q = xy . . . ∈ ST ⊆ SG. Similarly,

there is a preference Q′ = xz . . . ∈ SG. If y 6= x and z 6= x, then clearly Q and Q′ satisfy Definition

2.9. On the other hand, if, for instance, y = x, then that means there is an edge {x, x} in G, and

consequently, z can be chosen as x. This shows SG violates single-peakedness over [x, x].

Now, we show that SG contains a top-connected single-peaked domain. Since G1 is the

undirected line graph on X, SG1
is the maximal single-peaked domain. Moreover, since G1 is a

spanning tree of G, SG1
⊆ SG. This completes the proof of the lemma. �

Combining Theorem 3.1 and Theorem 3.2 with Lemma 4.1, we obtain the following characteri-

zation of the unanimous and strategy-proof SCFs on a single-peaked domain with respect to an

undirected partial line graph.

Corollary 4.4. Let G = 〈X, E〉 be an undirected partial line graph. Suppose SG is the single-peaked

domain with respect to G. Then, an SCF f : Sn
G → X is unanimous and (group) strategy-proof if and only

if it is a PDMMR.
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5. CONCLUSION

In this paper, we have considered non-single-peaked domains that arise in the literature of

economics and political science. We have modelled them as partially single-peaked domains and

have characterized all unanimous and (group) strategy-proof rules on those as PDMMR.

APPENDIX A. PROOF OF THEOREM 3.1

We use the following theorem in Achuthankutty and Roy (2017) in the proof of Theorem 3.1. It

characterizes the unanimous and strategy-proof SCFs on a top-connected single-peaked domain

as min-max rules.

Theorem A.1 (Achuthankutty and Roy (2017)). Let S be a top-connected single-peaked domain. Then,

an SCF f : Sn → X is unanimous and strategy-proof if and only if it is a min-max rule.

Proof of Theorem 3.1. (If part) Let S̃ be a partially single-peaked domain. Suppose f β be a PDMMR

on S̃n. Then, f β is unanimous by definition. We show that f β is strategy-proof. Let d be

the partial dictator of f β. If r1(Pd) ∈ [x, x], then f β(PN) = r1(Pd), and hence f β cannot be

manipulated at a preference profile PN ∈ S̃n. Take PN ∈ S̃n such that r1(Pd) ∈ [a, x). Then,

by Lemma 3.1, f β(PN) ∈ [a, x]. Take i ∈ N such that r1(Pi) ≤ f β(PN). By the definition of

f β, f β(P′
i , PN\i) ≥ f β(PN) for all P′

i ∈ S̃ . Since f β(PN) ≤ x, by the definition of a partially

single-peaked domain, r1(Pi) ≤ f β(PN) means f β(PN)Piu for all u > f β(PN). Therefore, agent

i cannot manipulate f β at PN. By a symmetric argument, agent i cannot manipulate f β at a

preference profile where r1(Pi) ≥ f β(PN). Using a similar argument, it follows that f β cannot be

manipulated at a preference profile PN with r1(Pd) ∈ (x, b]. This completes the proof of the if

part.

(Only-if part) Let S̃ be a partially single-peaked domain. Suppose f : S̃n → X is a unanimous and

strategy-proof SCF. We show that f is a PDMMR. Let S be a top-connected single-peaked domain

contained in S̃ . Such a domain must exist by Definition 2.10. By Theorem A.1, f restricted to Sn

must be a min-max rule. We establish a few properties of f in the following sequence of lemmas.

Our next lemma and its corollary show that f satisfies tops-onlyness for a particular type of

preference profiles. It says the following. Let c be an arbitrary alternative. Consider a preference

profile PN such that for all i ∈ N, Pi is single-peaked and r1(Pi) ∈ {x, c}. Suppose the outcome of

26



f at PN is c. Consider a tops-equivalent preference profile P′
N where the agents with top-ranked

alternative c in PN do not change their preferences in P′
N . Then, the outcome of f at P′

N must be c.

Lemma A.1. Let ∅ ( S ( N and let c ∈ X. Suppose (PS, PN\S) ∈ Sn and (P′
S, PN\S) ∈ S̃n are two

tops-equivalent preference profiles such that r1(Pi) = x for all i ∈ S, and r1(Pj) = c for all j ∈ N \ S.

Then, f (PS, PN\S) = c implies f (P′
S, PN\S) = c.

Proof. Take S such that ∅ ( S ( N. We prove the lemma using induction on |c− x|. By unanimity,

the lemma holds for c = x. Suppose the lemma holds for all c such that |c − x| ≤ k. We prove

the lemma for all c such that |c − x| = k + 1. Take c such that |c − x| = k + 1. Let (PS, PN\S) ∈ Sn

and (P′
S, PN\S) ∈ S̃n be two tops-equivalent preference profiles such that r1(Pi) = x for all i ∈ S,

and r1(Pj) = c for all j ∈ N \ S. Suppose f (PS, PN\S) = c. We show f (P′
S, PN\S) = c. We show

this for x < c, the proof for the case x > c is similar. Since x < c and |c − x| = k + 1, we have

c = x + k + 1. Let (PS, P̂N\S) ∈ Sn be such that P̂j = (x + k)(x + k + 1) . . . for all j ∈ N \ S.

Because f is a min-max rule on Sn and f (PS, PN\S) = x + k + 1, we have f (PS, P̂N\S) = x + k.

Since (PS, P̂N\S) and (P′
S, P̂N\S) are tops-equivalent and r1(P̂j) = x+ k for all j ∈ N \ S, we have by

the induction hypothesis, f (P′
S, P̂N\S) = x + k. For all j ∈ N \ S, let P̄j = (x + k + 1)(x + k) . . . ∈

S . Since f (P′
S, P̂N\S) = x + k, by moving the agents j ∈ N \ S from P̂j to P̄j one-by-one and

applying strategy-proofness at every step, we have f (P′
S, P̄N\S) ∈ {x + k, x + k + 1}. We claim

f (P′
S, P̄N\S) = x + k + 1. Assume for contradiction that f (P′

S, P̄N\S) = x + k. Recall that Pi ∈ S

for all i ∈ S. Since (x + k)Pi(x + k + 1) for all i ∈ S, by moving the agents i ∈ S from P′
i to Pi

one-by-one and applying strategy-proofness at every step, we have f (PS, P̄N\S) ≤ x + k. Since

r1(Pj) = r1(P̄j) = x + k + 1 for all j ∈ N \ S, by strategy-proofness, f (PS, PN\S) 6= x + k + 1. This

contradicts our assumption that f (PS, PN\S) = x + k + 1. Therefore, f (P′
S, P̄N\S) = x + k + 1.

Since r1(Pj) = r1(P̄j) = x + k + 1 for all j ∈ N \ S, we have by strategy-proofness, f (P′
S, PN\S) =

x + k + 1. This completes the proof of the lemma. �

Corollary A.1. Let ∅ ( S ( N and let c ∈ X. Suppose (PS, PN\S) ∈ Sn and (P′
S, PN\S) ∈ S̃n are two

tops-equivalent preference profiles such that r1(Pi) = x for all i ∈ S, and r1(Pj) = c for all j ∈ N \ S.

Then, f (PS, PN\S) = c implies f (P′
S, PN\S) = c.

Our next lemma shows that the outcome of f at a boundary preference profile cannot be strictly

in-between x and x.7

7A boundary preference profile is one where the top-ranked alternative of each agent is either a or b.
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Lemma A.2. Let PN ∈ S̃n be such that r1(Pi) ∈ {a, b} for all i ∈ N. Then, f (PN) /∈ (x, x).

Proof. Assume for contradiction that f (PN) = u ∈ (x, x) for some PN ∈ S̃n such that r1(Pi) ∈

{a, b} for all i ∈ N. Let S = {i ∈ N | r1(Pi) = a}. Then, it must be that ∅ ( S ( N as otherwise

we are done by unanimity. Let r2(Q) = y and r2(Q
′) = z, where Q, Q′ ∈ S̃ are as given in

Definition 2.9. We distinguish three cases based on the relative positions of y, z, and u.

CASE 1. Suppose y ∈ (x + 1, x), z ∈ (x, x − 1), and u ∈ (x, z] ∪ [y, x).

We consider the case where u ∈ (x, z], the proof for the case where u ∈ [y, x) follows from a

symmetric argument. Let P′
N ∈ Sn be such that r1(P′

i ) = z for all i ∈ S, and P′
j = (x − 1)(x) . . . for

all j ∈ N \ S. Further, let P̂N ∈ Sn be such that r1(P̂i) = x for all i ∈ S and r1(P̂j) = x + 1 for all

j ∈ N \ S. Because f is a min-max rule on Sn and f (PS, PN\S) = u, we have f (P′
S, P′

N\S) = z and

f (P̂S, P̂N\S) = x + 1. As f (P̂S, P̂N\S) = x + 1, by Lemma A.1, we have f (QS, P̂N\S) = x + 1, where

Qi = Q for all i ∈ S. Consider the preference profile (Q′
S, P′

N\S), where Q′
i = Q′ for all i ∈ S.

Note that f (P′
S, P′

N\S) = z and Q′ = xz . . .. Therefore, by moving the agents i ∈ S from P′
i to Q′

one-by-one and using strategy-proofness at every step, we have f (Q′
S, P′

N\S) ∈ {x, z}. We claim

f (Q′
S, P′

N\S) = x. Assume for contradiction that f (Q′
S, P′

N\S) = z. Since xP′
j z for all j ∈ N \ S, by

moving the agents j ∈ N \ S from P′
j to Q′ one-by-one and applying strategy-proofness at every

step, we have f (Q′
S, Q′

N\S) 6= x. However, this contradicts unanimity. So, f (Q′
S, P′

N\S) = x. For

all i ∈ S, let P̃i ∈ S be such that r1(P̃i) = x. By strategy-proofness, f (P̃S, P′
N\S) = x. Since f is a

min-max rule on Sn, this means f (P̃S, P̂N\S) = x. For all i ∈ S, let P̃′
i ∈ S be such that r1(P̃′

i ) = y.

Because (P̃S, P̂N\S), (P̃′
S, P̂N\S) ∈ Sn and f is a min-max rule on Sn, f (P̃S, P̂N\S) = x implies

f (P̃′
S, P̂N\S) = y. Because f (P̃′

S, P̂N\S) = y and Q = xy . . ., by moving the agents i ∈ S from P̃′
i

to Q one-by-one and applying strategy-proofness at every step, we have f (QS, P̂N\S) ∈ {x, y}.

Since {x + 1} ∩ {x, y} = ∅ by our assumption, this is a contradiction to our earlier finding

f (QS, P̂N\S) = x + 1. This completes the proof of the lemma for Case 1.

CASE 2. Suppose y ∈ (x + 1, x), z ∈ (x, x − 1), z < y − 1, and u ∈ (z, y).

Let P′
N, P̂N ∈ Sn be such that r1(P′

i ) = y and r1(P̂i) = x for all i ∈ S, and r1(P′
j ) = x and

r1(P̂j) = z for all j ∈ N \ S. Because f is a min-max rule on Sn and f (PS, PN\S) = u, we

have f (P′
S, P′

N\S) = y and f (P̂S, P̂N\S) = z. As f (P̂S, P̂N\S) = z, by Lemma A.1, we have

f (QS, P̂N\S) = z, where Qi = Q for all i ∈ S. Again, as f (P′
S, P′

N\S) = y, by Corollary A.1, we

have f (P′
S, Q′

N\S) = y, where Q′
j = Q′ for all j ∈ N \ S. Because f (QS, P̂N\S) = z and Q′ = xz . . .,

by moving the agents j ∈ N \ S from P̂j to Q′ one-by-one and using strategy-proofness at every
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step, we have f (QS, Q′
N\S) ∈ {x, z}. Again, because f (P′

S, Q′
N\S) = y, Q = xy . . ., by moving

the agents i ∈ S from P′
i to Q one-by-one and using strategy-proofness at every step, we have

f (QS, Q′
N\S) ∈ {x, y}. Since {x, y} ∩ {x, z} = ∅ by our assumption, this is a contradiction. This

completes the proof of the lemma for Case 2.

CASE 3. Suppose y = x, z = x, and u ∈ (z, y).

Let P′
N ∈ Sn be such that r1(P′

i ) = x for all i ∈ S and r1(P′
j ) = x for all j ∈ N \ S. Because

f is a min-max rule on Sn and f (PS, PN\S) = u, we have f (P′
S, P′

N\S) = u. Take i ∈ N and

consider the preference profile (Qi, P′
S\i, P′

N\S), where Qi = Q. Since r1(P′
i ) = r1(Qi) = x and

f (P′
S, P′

N\S) 6= x, by strategy-proofness, f (Qi, P′
S\i, P′

N\S) 6= x. Continuing in this manner, it

follows that f (QS, P′
N\S) 6= x, where Qi = Q for all i ∈ S. Moreover, since r2(Qi) = x for all i ∈ S

and r1(P′
j ) = x for all j ∈ N \ S, by unanimity and strategy-proofness, f (QS, P′

N\S) ∈ {x, x}. Since

f (QS, P′
N\S) 6= x, this means f (QS, P′

N\S) = x. Let Q′
j = Q′ for all j ∈ N \ S. As f (QS, P′

N\S) = x

and r1(Q
′) = x, by strategy-proofness, f (QS, Q′

N\S) = x. Now, if we first move the agents

j ∈ N \ S from P′
j to Q′ and then move the agents i ∈ S from P′

i to Q, then it follows from a similar

argument that f (QS, Q′
N\S) = x. Since x 6= x, this is a contradiction to our earlier finding that

f (QS, Q′
N\S) = x. This completes the proof of the lemma for Case 3.

Since Cases 1, 2 and 3 are exhaustive, this completes the proof of the lemma. �

Let (βS)S⊆N be the parameters of f restricted to Sn. In Lemma A.3 and Lemma A.4, we

establish a few properties of these parameters.

Lemma A.3. For all S ⊆ N, βS ∈ [a, x] if and only if βN\S ∈ [x, b].

Proof. Take S ⊆ N. It is enough to show that βS ∈ [a, x] implies βN\S ∈ [x, b]. Assume for

contradiction that βS, βN\S ∈ [a, x]. Let Q′ ∈ S̃ with r1(Q
′) = x be as given in Definition 2.9.

Suppose r2(Q
′) = z. Take u ∈ (z, x). Let (PS, PN\S) ∈ Sn be such that r1(Pi) = a for all i ∈ S and

r1(Pj) = b for all j ∈ N \ S. Since f restricted to Sn is a min-max rule, f (PS, PN\S) = βS ∈ [a, x].

Let (P′
S, P′

N\S) ∈ Sn be such that r1(P′
i ) = z for all i ∈ S and r1(P′

j ) = u for all j ∈ N \ S. Since

f (PS, PN\S) ∈ [a, x], by uncompromisingness of f restricted to Sn, we have f (P′
S, P′

N\S) = z.

Because Q′ = xz . . ., by moving the agents i ∈ S one-by-one from P′
i to Q′ and applying strategy-

proofness at every step, we have f (Q′
S, P′

N\S) ∈ {x, z}, where Q′
i = Q′ for all i ∈ S.

Now, let (P̄S, P̄N\S) ∈ Sn be such that r1(P̄i) = b for all i ∈ S and r1(P̄j) = a for all j ∈ N \ S.

Again, since f restricted to Sn is a min-max rule, f (P̄S, P̄N\S) = βN\S ∈ [a, x]. Recall that for

29



j ∈ N \ S, P′
j ∈ S with r1(P′

j ) = u. Consider (P′′
S , P′

N\S) ∈ Sn such that r1(P′′
i ) = x for all i ∈ S.

Since f (P̄S, P̄N\S) ∈ [a, x], by uncompromisingness of f restricted to Sn, we have f (P′′
S , P′

N\S) = u.

Because r1(P′′
i ) = x = r1(Q

′) for all i ∈ S, by Corollary A.1, it follows that f (Q′
S, P′

N\S) = u.

However, as u /∈ {x, z}, this is a contradiction to our earlier finding that f (Q′
S, P′

N\S) ∈ {x, z}.

This completes the proof of the lemma. �

The following lemma says that there is exactly one agent i such that βi ∈ [a, x].

Lemma A.4. It must be that |{i ∈ N | βi ∈ [a, x]}| = 1.

Proof. Suppose there are i 6= j ∈ N such that βi, β j ∈ [a, x]. By Lemma A.3, βi ∈ [a, x] implies

βN\i ∈ [x, b]. Since j ∈ N \ i and βT ≤ βS for all S ⊆ T, βN\i ∈ [x, b] implies β j ∈ [x, b], a

contradiction. Hence, there can be at most one agent i ∈ N such that βi ∈ [a, x].

Now, suppose βi ∈ [x, b] for all i ∈ N. By Lemma A.3, this means βN\i ∈ [a, x] for all i ∈ N.

Therefore, there must be S ⊆ N such that βS ∈ [a, x] and for all S′ ( S, βS′ ∈ [x, b]. By unanimity,

S 6= ∅. If S is singleton, say {i} for some i ∈ N, then βi ∈ [a, x] and we are done. So assume that

there are j 6= k ∈ S.

Consider the preference profile PN ∈ Sn such that r1(Pj) = x + 1, r2(Pj) = x, r1(Pi) = y for all

i /∈ S, and r1(Pi) = x for all i ∈ S \ j. Since βS ∈ [a, x] and βS′ ∈ [x, b] for all S′ ( S, it follows from

the definition of a min-max rule that f (PN) = x + 1. Let P′
k ∈ S be such that r1(P′

k) = y. Since

βS\k ∈ [x, b] and f restricted to Sn is a min-max rule, it follows that f (P′
k, PN\k) = y. Consider

the preference profile (Qk, PN\k), where Qk = Q. Because f (P′
k, PN\k) = y and Qk = xy . . ., by

strategy-proofness, f (Qk, PN\k) ∈ {x, y}. Suppose f (Qk, PN\k) = x. Because f (PN) = x + 1

and r1(Pk) = x, this means agent k manipulates at PN via Qk. So, f (Qk, PN\k) = y. Let P′
j ∈ S

be such that r1(P′
j ) = x. Since βS ∈ [a, x] and x is the top-ranked alternative of the agents

in S at preference profile (P′
j , PN\j), we have f (P′

j , PN\j) = x. As r1(Pk) = r1(Qk) = x, this

means f (P′
j , Qk, PN\{j,k}) = x. Because f (Qk, PN\k) = y, r1(Pj) = x + 1, and r2(Pj) = x, agent j

manipulates at (Qk, PN\k) via P′
j . This completes the proof of the lemma. �

REMARK A.1. By Lemma A.3 and Lemma A.4, it follows that f restricted to Sn is a PDMMR.

Our next lemma establishes that f is uncompromising.8 First, we introduce few notations

that we use in the proof of the lemma. For PN ∈ S̃n, let Ñ(PN) = {i ∈ N | Pi /∈ S} be the

8Since every SCF satisfying uncompromisingness is tops-only, Lemma A.5 shows that a partially single-peaked
domain is a tops-only domain. It can be easily verified that partially single-peaked domains fail to satisfy the
sufficient conditions for a domain to be tops-only identified in Chatterji and Sen (2011) and Chatterji and Zeng (2015).
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set of agents who do not have single-peaked preferences at PN. Moreover, for 0 ≤ l ≤ n, let

S̃n
l = {PN ∈ S̃n | |Ñ(PN)| ≤ l} be the set of preference profiles where at most l agents have

non-single-peaked preferences. Note that S̃n
0 = Sn and S̃n

n = S̃n.

Lemma A.5. The SCF f is uncompromising.

Proof. Since S̃n
0 = Sn, f restricted to S̃n

0 is uncompromising. Suppose f restricted to S̃n
k is

uncompromising for some k < n. We show that f restricted to S̃n
k+1 is uncompromising. It is

enough to show that f restricted to S̃n
k+1 is tops-only. To see this, note that if f restricted to S̃n

k+1

is tops-only, then f is uniquely determined on S̃n
k+1 by its outcomes on Sn. Therefore, since f

restricted to Sn is uncompromising, f is uncompromising on S̃n
k+1.

Take PN ∈ S̃n
k+1 and j ∈ Ñ(PN). Let P̂j ∈ S be such that r1(P̂j) = r1(Pj). Then, PN and

(P̂j, PN\j) are tops-equivalent and (P̂j, PN\j) ∈ S̃n
k . It is sufficient to show that f (PN) = f (P̂j, PN\j).

Assume for contradiction that f (PN) 6= f (P̂j, PN\j). Assume, without loss of generality, that the

partial dictator of f restricted to Sn is agent 1. Then, by the induction hypothesis, agent 1 is the

partial dictator of f restricted to S̃n
k , i.e., for all PN ∈ S̃n

k , if r1(P1) ∈ [a, x) then f (PN) ∈ [a, x], if

r1(P1) ∈ (x, b] then f (PN) ∈ [x, b], and if r1(P1) ∈ [x, x] then f (PN) = r1(P1). We distinguish two

cases based on the position of the top-ranked alternative of agent 1.

CASE 1. Suppose r1(P1) ∈ [a, x) ∪ (x, b].

We consider the case where r1(P1) ∈ [a, x), the proof for the case where r1(P1) ∈ (x, b] follows

from symmetric arguments. Since r1(P1) ∈ [a, x), we have f (P̂j, PN\j) ∈ [a, x]. Because P̂j is single-

peaked, if f (P̂j, PN\j) < f (PN) ≤ r1(P̂j) or r1(P̂j) ≤ f (PN) < f (P̂j, PN\j), then agent j manipulates

at (P̂j, PN\j) via Pj. Moreover, since f (P̂j, PN\j) ∈ [a, x], if f (PN) < f (P̂j, PN\j) ≤ r1(P̂j) or

r1(Pj) ≤ f (P̂j, PN\j) < f (PN), then by the definition of a partially single-peaked domain, agent j

manipulates at (Pj, PN\j) via P̂j. Now, suppose f (P̂j, PN\j) < r1(P̂j) < f (PN). Let P̄j ∈ S be such

that r1(P̄j) = f (PN). Since f restricted to S̃n
k is uncompromising and f (P̂j, PN\j) < r1(P̂j) < r1(P̄j),

we have f (P̄j, PN\j) = f (P̂j, PN\j). Because r1(P̄j) = f (PN), it follows that agent j manipulates

at (P̄j, PN\j) via Pj. Using a similar argument, it can be shown that f (PN) < r1(P̂j) < f (P̂j, PN\j)

leads to a manipulation by agent j. Therefore, f (PN) = f (P̂j, PN\j) when r1(P1) ∈ [a, x). This

completes the proof of the lemma for Case 1.

CASE 2. Suppose r1(P1) ∈ [x, x].

Since agent 1 is the partial dictator, f (P̂j, PN\j) = r1(P1). Consider P̄j ∈ S such that r1(P̄j) =

f (PN). Since (P̄j, PN\j) ∈ S̃n
k , by the induction hypothesis, we have f (P̄j, PN\j) = r1(P1). Because
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r1(P̄j) = f (PN) and f (P̄j, PN\j) = r1(P1) 6= f (PN), agent j manipulates at (P̄j, PN\j) via Pj.

Therefore, f (PN) = f (P̂j, PN\j) when r1(P1) ∈ [x, x]. This completes the proof of the lemma for

Case 2.

Since Cases 1 and 2 are exhaustive, this completes the proof of the lemma by induction. �

Now, we complete the proof of the only-if part of Theorem 3.1. Since f is uncompromising on

S̃n and f restricted to Sn is a min-max rule with parameters (βS)S⊆N satisfying the properties as

stated in Lemma A.3 and Lemma A.4, it follows that f is a PDMMR. �
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CHATTERJI, S. AND J. MASSÓ (2015): “On strategy-proofness and the salience of single-

peakedness,” Research Collection School Of Economics.

CHATTERJI, S., R. SANVER, AND A. SEN (2013): “On domains that admit well-behaved strategy-

proof social choice functions,” Journal of Economic Theory, 148, 1050 – 1073.

CHATTERJI, S. AND A. SEN (2011): “Tops-only domains,” Economic Theory, 46, 255–282.

32



CHATTERJI, S. AND H. ZENG (2015): “On Random Social Choice Functions with the Tops-only

Property,” Working paper.

CHING, S. (1997): “Strategy-proofness and “median voters”,” International Journal of Game Theory,

26, 473–490.

DAVIS, O. A., M. J. HINICH, AND P. C. ORDESHOOK (1970): “An Expository Development of a

Mathematical Model of the Electoral Process,” American Political Science Review, 64, 426448.

DEMANGE, G. (1982): “Single-peaked orders on a tree,” Mathematical Social Sciences, 3, 389 – 396.

DENZAU, A. T. AND R. J. MACKAY (1981): “Structure-induced equilibria and perfect-foresight

expectations,” American Journal of Political Science, 762–779.

EGAN, P. J. (2014): “Do Something Politics and Double-Peaked Policy Preferences,” The Journal of

Politics, 76, 333–349.

ENELOW, J. M. AND M. J. HINICH (1983): “Voter expectations in multi-stage voting systems: an

equilibrium result,” American Journal of Political Science, 820–827.

EPPLE, D. AND R. E. ROMANO (1996a): “Public Provision of Private Goods,” Journal of Political

Economy, 104, 57–84.

FELD, S. L. AND B. GROFMAN (1988): “Ideological consistency as a collective phenomenon,”

American Political Science Review, 82, 773–788.

FERNANDEZ, R. AND R. ROGERSON (1995): “On the Political Economy of Education Subsidies,”

The Review of Economic Studies, 62, 249–262.

GIBBARD, A. (1973): “Manipulation of Voting Schemes: A General Result,” Econometrica, 41,

587–601.

HOTELLING, H. (1929): “Stability in Competition,” The Economic Journal, 41–57.

IRELAND, N. J. (1990): “The mix of social and private provision of goods and services,” Journal of

Public Economics, 43, 201 – 219.

MOULIN, H. (1980): “On strategy-proofness and single peakedness,” Public Choice, 35, 437–455.

NEHRING, K. AND C. PUPPE (2007a): “The structure of strategy-proof social choice Part I: General

characterization and possibility results on median spaces,” Journal of Economic Theory, 135, 269 –

305.

——— (2007b): “Efficient and strategy-proof voting rules: A characterization,” Games and Economic

Behavior, 59, 132 – 153.

NIEMI, R. G. (1969): “Majority decision-making with partial unidimensionality,” American Political

Science Review, 63, 488–497.

33



NIEMI, R. G. AND J. R. WRIGHT (1987): “Voting cycles and the structure of individual preferences,”

Social Choice and Welfare, 4, 173–183.

PAPPI, F. U. AND G. ECKSTEIN (1998): “Voters’ party preferences in multiparty systems and

their coalitional and spatial implications: Germany after unification,” in Empirical Studies in

Comparative Politics, ed. by M. J. Hinich and M. C. Munger, Boston, MA: Springer US, 11–37.

PRAMANIK, A. (2015): “Further results on dictatorial domains,” Social Choice and Welfare, 45,

379–398.

REFFGEN, A. (2015): “Strategy-proof social choice on multiple and multi-dimensional single-

peaked domains,” Journal of Economic Theory, 157, 349 – 383.

ROMER, T. AND H. ROSENTHAL (1979): “Bureaucrats Versus Voters: On the Political Economy of

Resource Allocation by Direct Democracy,” The Quarterly Journal of Economics, 93, 563–587.

SATO, S. (2010): “Circular domains,” Review of Economic Design, 14, 331–342.

SATTERTHWAITE, M. A. (1975): “Strategy-proofness and Arrow’s conditions: Existence and corre-

spondence theorems for voting procedures and social welfare functions,” Journal of Economic

Theory, 10, 187 – 217.

SCHUMMER, J. AND R. V. VOHRA (2002): “Strategy-proof Location on a Network,” Journal of

Economic Theory, 104, 405 – 428.

SHEPSLE, K. A. (1979): “Institutional Arrangements and Equilibrium in Multidimensional Voting

Models,” American Journal of Political Science, 23, 27–59.

STIGLITZ, J. E. (1974): “The demand for education in public and private school systems,” Journal

of Public Economics, 3, 349–385.

WEYMARK, J. A. (2011): “A unified approach to strategy-proofness for single-peaked preferences,”

SERIEs, 2, 529–550.

34


	Introduction
	Background of the Problem
	Our Motivation
	Multi-peaked Domains
	Single-peaked Domains with respect to Partial Orders
	Multiple Single-peaked Domains
	Single-peaked Domains on Graphs

	Our Contribution

	Preliminaries
	Domains and Their Properties
	Graph of a Domain

	Single-peaked Domains
	Partially Single-peaked Domains
	Social Choice Functions and Their Properties

	Results
	Unanimous and Strategy-proof SCFs On Partially Single-peaked Domains
	A Result on Partial Necessity
	Group Strategy-proofness

	Applications
	Multi-peaked Domains
	Single-peaked Domains with respect to Partial Orders
	Multiple Single-peaked Domain
	Single-peaked Domains on Graphs

	Conclusion
	Appendix Proof of Theorem 3.1

