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Abstract

We examine the supply function equilibrium (SFE), which is often used in the

analysis of multi-unit auctions such as wholesale electricity markets, among (partially)

public firms. In a general model, we characterize the SFE of such firms and examine

the properties of symmetric SFE. We show, analyzing an asymmetric SFE in a duopoly

model with linear demand and quadratic cost functions, that, when a partially public

firm weighs more on the social welfare, the supply functions of not only the partially

public firm but also a profit maximizing firm are flatter at the equilibrium. We also

confirm that in a linear-quadratic model, the SFE converges to the (inverse) marginal

cost function when the firms’ social concerns increase symmetrically in the industry.
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1 Introduction

Since Green and Newbery (1992) applied the supply function equilibrium (henceforth, SFE)

to the analysis of wholesale electricity markets, a bunch of applications to the electricity

or treasury bills market have appeared in the literature.1 In this paper, we assume that

firms have social welfare concerns; that is, they can be regarded as (partially) public firms

or firms with corporate social responsibility (CSR). When a model with linear demand and

quadratic cost functions is at an equilibrium, the supply functions of not only a partially

public firm (when it weighs more on the social welfare) but also a private firm are closer to

their marginal cost functions. Thus, in contrast to Matsumura (1998), the society benefits

from the existence of a perfectly public firm. We also confirmed that in the linear-quadratic

model, the supply function equilibrium converges to the (inverse) marginal cost function

when the publicity of firms or the extent of social concern is improved symmetrically in the

industry, while it is not guaranteed in the general model.

1.1 SFE and its applications

The SFE, introduced by Klemperer and Meyer (1989), is an equilibrium in a game where

firms choose their own supply function flexibly. Firms offer their own supply schedule si-

multaneously, and the market then clears such that the total supply matches the demand

at a certain price. In a model with demand uncertainty, the market clears after the uncer-

tainty is realized. The SFE is defined as a (pure strategy) Nash equilibrium in this game.

A remarkable feature of the SFE is that it is characterized as the locus of ex post optimal

price-quantity pairs given the other firms’ supply functions. The logic is as follows. Each firm

guesses the others’ (fixed) supply schedules. After the realization of demand uncertainty,

combined with the other firms’ supply functions, a residual demand function is determined.

Suppose that a firm chooses its ex post optimal price-quantity pair along with the residual

demand. Since the ex post optimal points vary according to the uncertainties realized even

1See Holmberg and Newbery (2010) for recent SFE applications to the electricity markets.
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though the firm assumes that the others’ supply functions are fixed, the locus of ex post

optimal points becomes a function from price to quantity. Since the firm can obtain ex

post optimized profit through this supply function, it has no incentive to take other supply

functions in the first stage, given others’ supply functions. Thus, the locus is a best response

to the others’ supply functions. By considering such best responses for each firm, we obtain

Nash Equilibrium in this game, in other words, SFE.

The most famous application of the SFE would be wholesale electricity markets. In dereg-

ulated wholesale electricity markets, generating companies offer their own supply schedules

and retailers bid to supply their own customers such as consumers or other companies. If

there are many retailers, the setting of supply function competition fits well with the struc-

ture in those markets because the retail demand is subject to exogenous shocks such as

weather, holidays, and major sporting events. SFE has been extensively used as a tool to

analyze electricity markets, both theoretically and empirically, ever since Green and Newbery

(1992) employed it to analyze wholesale electricity markets.2

Another important, but less focused, interpretation would be the equilibria in the con-

jectural variation model with appropriately specified strategies. In general, the conjectural

variation first introduced by Bowley (1924) implies that each firm chooses its quantity while

believing that other firms change their quantities by rjdqi in response to a change in firm i ’s

quantity dqi. It has been used in empirical literature to capture various market structures

in a reduced form.3 A major critique on this model is that it contradicts the equilibrium

concept in the field of economics, that is, firms are not assumed to choose quantity, given

others’ quantity.4 However, in supply function competitions, strategies are (usually posi-

2Vives (2011) introduces uncertainty into the cost function rather than the demand function, treating
it as asymmetric information. Holmberg et al. (2013) show that the SFE in step functions, such as actual
offers in the electricity markets, converge to a continuous SFE as the steps becomes finer. Since it is difficult
to obtain an analytical solution of the SFE, computation methods to calculate it are also developed in the
operations research literature (see Holmberg (2009)).

3Iwata (1974) and Gollop and Roberts (1979) propose empirical methods to estimate or test the conjec-
tural variation. They also apply it to Japanese plate glass industry and US coffee industry. Brander and
Zhang (1993) estimate the conjectural variation in the US airline industry with dynamic settings. See also
Bresnahan (1989) for review and discussion on the conjectural variation.

4Farrell and Shapiro (1990) explain that we can consider it as “the equilibrium of an (unmodeled) dynamic
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tively sloped) supply functions. Therefore, other firms change their quantity in response to

a quantity change by one firm. In other words, at the SFE, the conjectural parameter rj

is determined by the equilibrium strategy of firm j. Of course, there might be countless

equilibria if there is no uncertainty in the market because the shape of each supply function

only affects the off-equilibrium outcomes and works as an empty threat. However, in the

market with demand uncertainty, the SFE restricts the set of possible outcomes much more

narrowly and helps us to understand the market.

1.2 Mixed Oligopoly, Partial Privatization, and CSR

In this paper, we introduce (partially) public firms into the SFE.5 Oligopoly markets with

public firms, called mixed oligopolies, were first examined by Merrill and Schneider (1966)

and are extensively discussed in the literature.6 Matsumura (1998) generalizes it to the model

of partial privatization by introducing a partially public firm that maximizes a weighted av-

erage of its own profit and the social welfare. In mixed oligopoly markets, the effects of

the public firms are not straightforward because of strategic interactions.7 For instance, De

Fraja and Delbono (1989) show that welfare may be higher when a public firm is a profit-

maximizer rather than a welfare-maximizer, and Matsumura (1998) finds that the optimal

level of partial privatization is neither full privatization nor full nationalization. Matsumura

and Sunada (2013) examine a mixed oligopoly with misleading advertising competition and

find that a public firm engages in rather than cancels out the misleading advertisement.

Even if firms are fully symmetric but concerned about social welfare, the economic implica-

tion could be completely different from standard models with profit-maximizing firms. For

oligopolistic game,” and Cabral (1995) provides an explicit example of the repeated game of which the CV
solution is an exact reduced form of the equilibrium.

5Mixed oligopolies occur in various industries, such as the airline, steel, automobile, railway, natural gas,
electricity, postal service, education, hospital, home loan, and banking industries.

6See, De Fraja and Delbono (1989), Fjell and Pal (1996), Matsumura and Kanda (2005), and Ghosh and
Mitra (2010).

7Assuming that public firms can commit to a certain strategy, we can apply general analysis tools to
the effects of “exogenous competition” discussed by Weyl and Fabinger (2013). However, assuming that the
public firm cannot make such a commitment and responds to others’ strategies, we would need to employ
mixed oligopoly analysis.
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instance, Ghosh and Mitra (2014) examine an oligopoly market where every firm maximizes

a weighted average of its own profit and social welfare. Competition among firms with so-

cial welfare concerns can be understood as that among firms in transition and developing

economies, where the extent of private ownership is restricted, or that among firms with

CSR. They compare Cournot and Bertrand competition in a symmetrically differentiated

market and show that Bertrand competition yields higher profit and lower social welfare

than Cournot competition when profit is weighted sufficiently low. Therefore, we must be

careful in considering the existence of (partially) public firms. Fortunately, it turns out that

in supply function competition, a public firm encourages private firms to take socially better

action through strategic complementarities in terms of the slopes of each supply function.

The remainder of the paper is organized as follows. Section 2 presents the general model.

Section 3 analyzes the linear-quadratic model. Section 4 concludes the paper. The proofs of

propositions can be found in the appendix.

2 The General Model

With symmetric and private firms, Klemperer and Meyer (1989) characterize the SFE under

demand uncertainty as solutions of a differential equation and examine some of its general

properties. In this subsection, we characterize the SFE with partially public firms anal-

ogously and examine the general properties. In the next subsection, we specify a model

with a linear demand function and quadratic cost functions in order to further clarify the

implication of the effects of the public firm.

Let us denote the demand function as Q = D (p) + ǫ, where p is the price of the product

and ǫ is a scalar random variable with strictly positive density everywhere on the support

[ǫ, ǭ]. We assume that −∞ < D′ (p) < 0, and D′′ (p) ≤ 0. The firms have identical cost

functions C s.t. C ′ (q) ≥ 0 and 0 < C ′′ (q) < ∞ ∀q ∈ [0, ∞). Without loss of generality,

let C ′ (0) = 0.8 A strategy for firm i (i = 1, 2) is defined as a function mapping from price

8If C ′ (0) 6= 0, we can normalize it by considering p̃ = p− C ′ (0) as in Klemperer and Meyer (1989).
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into quantity: Si : [0, p) → (−∞, ∞). Here, we focus on pure strategy Nash equilibria, in

which Si maximizes i’s payoff given that j chooses Sj (i, j = 1, 2, j 6= i).

Given Sj, firm i’s ex post objective function is as follows:

vi(p) = (1− θ) [p (D (p, ǫ)− Sj (p))− C (D (p, ǫ)− Sj (p))] (1)

+ θ

[
ˆ p̂

p

D (ṗ, ǫ) dṗ+ pD (p, ǫ)− C (D (p, ǫ)− Sj (p))− C (Sj (p))

]

.

Therefore, the first order condition is derived as follows:

∂vi
∂p

= (1− θ)
[

(D (p) + ǫ− Sj (p)) + (p− C ′ (D (p) + ǫ− Sj (p)))
(

D′ (p)− S ′

j (p)
)]

(2)

+ θ
[

(p− C ′ (D (p) + ǫ− Sj (p)))D
′ (p) + (C ′ (D (p) + ǫ− Sj (p))− C ′ (Sj (p)))S

′

j (p)
]

= 0.

Since Si is determined by the locus of the optimal price p∗ (ǫ) and the corresponding quantity

D (p∗ (ǫ)) + ǫ−Sj (p
∗ (ǫ)), we can replace D (p) + ǫ−Sj (p) by Si. Then, the above equation

becomes a differential equation:

S ′

j (p) =
(1− θi) [Si + (p− C ′ (Si))D

′ (p)] + θi [(p− C ′ (Si))D
′ (p)]

(1− θi) (p− C ′ (Si)) + θi [(p− C ′ (Si))− (p− C ′ (Sj))]
≡ fi (p, Si, Sj) . (3)

Since a set of functions (S1, S2) that solves a system of differential equations S ′

j (p) =

fi (p, Si, Sj) for i = 1, 2, j 6= i satisfy the first order condition given the others’ strate-

gies, it is an SFE if the payoff function, given the others’ strategies, satisfies the second

order conditions. In a model with only private firms, it is known that the symmetric SFE

strategy S = Si (i = 1, 2) must satisfy 0 < S ′ (p) < ∞ for all p if ǫ has a full support

(ǫ = −D(0), ǭ = ∞). In the competition among partially public firms, this property still

holds, and the set of SFE is bounded by a function that shifts upwards (or becomes flatter

if we take quantity on the horizontal axis and price on the vertical axis) as θ increases.
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Proposition 1 (Necessity of positive slope) If ǫ has full support (ǫ = −D(0), ǭ = ∞)

and S is symmetric SFE tracing through ex post optimal points, then ∀p ≥ 0, S satisfies (3)

and 0 < S ′ (p) < ∞. Furthermore, S is bounded from below by a function S0 (p, θ) with its

derivative

S0′ (p) = −Dp (p) +Dpp (p) (p− C ′ (S0 (p)))

(1− θ)−Dp (p)C ′′ (S0 (p))
. (4)

Proof. See the appendix.

As can be seen from eq. (4), S0′ (p, θ) is increasing in θ for all p, and thus, the lower bound

S0 (p, θ) approaches the (inverse) marginal cost function when θ goes up. It is also worth

noting that, even if θ approaches 1, S0 (p, θ) generally does not converge to the (inverse)

marginal cost function, C ′−1(p). Thus, we cannot guarantee that firms behave (almost) in a

socially optimal way even if they have social welfare concerns and hardly care about profits.

In the following section, we specify the demand and cost functions to analyze the asym-

metric SFE and the role of a public firm.

3 Linear Demand and Quadratic Cost Function

We specify the cost functions and a demand function for an analytical solution. The identical

cost functions are defined as C (S) = c
2
S2 and the total demand function is defined as

Q = D (p, ǫ) = α + ǫ − mp. That is, U (Q) =
(

α+ǫ
m

)

Q − 1
m
Q2/2, where U is a surplus

function. Suppose player j’s strategy to be qj = Sj(p) = a+ bp. Then, the residual demand

is written as

qi (p, ǫ) = D (p, ǫ)− sj(p) = α + ǫ−mp− a− bp. (5)
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Therefore, the ex post profit maximization problem for firm i, given the others’ strategies, is

written as follows:

max
p

(1− θi) [pqi (p, ǫ)− C (qi (p, ǫ))] (6)

+ θi [U (qi (p, ǫ) + Sj (p))− C (qi (p, ǫ))− C (Sj (p))] .

We can consider the ex post optimal price for each ǫ by taking the first order condition with

respect to p. Since the corresponding qi for each ǫ is determined along the residual demand

function qi (p, ǫ), we can obtain the following locus of optimal points by canceling out ǫ in

the FOC and (5):

qi =
(m+ b) + θi (bc− 1) b

(1− θi) + c (m+ b)
p+

θiabc

(1− θi) + c (m+ b)
.

Then, the SFE is constructed from the following supply functions:

Si (p) = a∗i + b∗i p for all i = 1, 2,

where

a∗i =
θia

∗

jb
∗

jc

(1− θi) + c
(

m+ b∗j
) , and (7)

b∗i =

(

m+ b∗j
)

+ θi
(

b∗jc− 1
)

b∗j

(1− θi) + c
(

m+ b∗j
) ≡ Bi(b

∗

j ; θi) (i = 1, 2, j 6= i). (8)

Suppose b∗j 6= 0. Then, since a∗1 = a∗2 = 0 must hold to satisfy eq. (7), we can obtain the

SFE by solving eq. (8).

Even though eq. (8) is difficult to solve analytically, we can obtain some properties of the

equilibrium without solving it explicitly. If we take b∗i as a function of b∗j , b
∗

i shifts upward

when θi increases. On the other hand, b∗i is increasing in b∗j if firm i is a private firm (θi = 0).
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Figure 1: Numerical examples of SFE where m = 1, c = 0.5, and θ2 = 0. θ1 = 0.1: upper
left, θ1 = 0.4: upper right, θ1 = 0.7: lower left, and θ1 = 0.999: lower right

Here, suppose that firm 1 is partially privatized and firm 2 is completely private. If we

increase θ1, b
∗

1 shifts upward. Therefore, not only b∗1 but also b∗2 would increase since b∗2 is

increasing in b∗1. (Numerical examples are illustrated in Fig. 1.)

Proposition 2: (Effect of partial privatization) If we consider a linear demand func-

tion and quadratic cost functions, an SFE is characterized as Si (p) = b∗i p ∀i = 1, 2, where

b∗i =
[(

m+ b∗j
)

+ θi
(

b∗jc− 1
)

b∗j
]

/
[

(1− θi) + c
(

m+ b∗j
)]

(j 6= i). Furthermore, if firm 2 is

a private firm (θ2 = 0), then both S ′

1 (p) and S ′

2 (p) increase when θ1 increases.

Proof. See Appendix.

Since both firms’ supply functions become closer to the (inverse) marginal cost function

for larger θ1, the social welfare increases with θ1. Thus, we can state the following corollary.

Corollary of Proposition 2: (Mixed oligopoly) Suppose firm 2 is a private firm

(θ2 = 0). Then, θ1 = 1 (completely public) is the optimal level of partial privatization.
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Figure 2: Effects on social welfare and profits. (α = 5, m = 1, c = 0.5, E[ǫ] = 0, E[ǫ2] = 2,
and θ2 = 0.)

Thus, existence of a public firm increases social welfare in supply function competition, in

contrast to the Cournot competition examined by Matsumura (1998). (Welfare improvement

is illustrated in Fig. 2.)

Although we do not have any analytical solutions of eq. (8) for arbitrary θ1 and θ2, we

can solve it for symmetric social concern: θ1 = θ2 = θ. In addition, it turns out that the

solution of eq. (8), which is derived from the assumption that the supply function is linear,

coincides with the unique solution of the differential equation (3), which satisfies SOC of the

payoff function for each firm. Therefore, the uniqueness of the equilibrium is also proven for

symmetric θ. Since we have an analytical formula for SFE, we can confirm that the supply

function converges to the (inverse) marginal cost function when θ approaches 1 under the

symmetry assumption of θ.
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Proposition 3: (Symmetric SFE in a linear-quadratic model) In a symmetric

setting (θ1 = θ2 = θ), we can obtain the unique symmetric SFE:

Si(p) =
−m+

√

m2 + 4m (1− θ) /c)

2 (1− θ)
p ∀i = 1, 2.

Furthermore, it converges to the (inverse) marginal cost function as θ → 1.

Proof. See Appendix.

We can interpret the symmetric θ as the extent of corporate social responsibility and an

increase in θ as the improvement in the industry’s social concern. The model guarantees that

the supply function shifts upward monotonically as the industry’s social concern improves

and that it converges to the socially optimal level as θ → 1.

4 Conclusion

In this paper, we examine the supply function equilibrium introduced by Klemperer and

Meyer (1989) for (partially) public firms. First, we generally characterize the SFEs in par-

tially privatized markets. We show the necessity of a positive slope for a symmetric SFE.

Second, we specify the demand and cost functions and show that the supply functions of not

only a partially public firm (when it weighs more on the social welfare) but also a private firm

is flatter. Thus, existence of a public firm increases social welfare in supply function com-

petition in contrast to the Cournot competition examined by Matsumura (1998). Finally,

we confirmed that the supply function equilibrium converges to the (inverse) marginal cost

function when the firm generates more publicity or social concern in the industry increases

symmetrically.
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Appendix

A Proofs

We characterize the differential equation (3) by the following series of lemmas.

Lemma 1 The locus of points satisfying f (p, S) = 0 is a continuous, differentiable function

S = S0 (p) , satisfying

(i) S0 (0) = 0,

(ii) S0 (p) < (C ′)−1 (p) , ∀p > 0,

(iii) S0′ (p) is positive and increasing in θ, ∀p≥0, and

(iv) S0′ (0) < 1
C′′(0)

.

Proof of Lemma 1: Differentiating (3) w.r.t. S yields

fS (p, S) =
p− C ′ (S) + SC ′′ (S)

(p− C ′ (S))2

so for all
(

p̄, S̄
)

6= (0, 0) such that f
(

p̄, S̄
)

= 0,

fS
(

p̄, S̄
)

=
1

p̄− C ′
(

S̄
) +

S̄

p̄− C ′
(

S̄
)

C ′′
(

S̄
)

p̄− C ′
(

S̄
)

=
1− 1

(1−θ)
Dp (p̄)C

′′
(

S̄
)

p̄− C ′
(

S̄
) 6= 0.

Therefore, by the implicit function theorem, f (p, S) = 0 implicitly defines, in the neighbor-

hood of any such
(

p̄, S̄
)

, a unique function S = S0 (p) , which is continuous and differentiable.

To prove (i) and (ii), observe that ∀θ ∈ [0, 1), S0 (p) and p−C ′ (S0 (p)) are both positive
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or both zero since −∞ < Dp (p) < 0 and f (p, S0 (p)) = 0. Hence, p > C ′ (S0 (p)) whenever

S0 (p) > 0. Furthermore, S0 (0) = 0 is the unique solution to f (0, S) = 0. For all p > 0,

S0 (p) > 0 (otherwise, S0 (p) = 0 and p−C ′ (S0 (p)) > 0) and p > C ′ (S0 (p)) . Since C ′′ > 0,

we can take the inverse function of C ′ and obtain (C ′)−1 (p) > S0 (p) for all p > 0. Here,

as p → 0, the upper bound of S0 (p) converges to zero and S0 (p) > 0 for all p > 0. Then,

S0 (p) → 0 as p → 0. Thus, S0 (p) is continuous at p = 0.

To prove (iii) and (iv), differentiate f (p, S0 (p)) = 0 totally with respect to p and

substitute using this equation to get

S0′ (p) = −Dp (p) +Dpp (p) (p− C ′ (S0 (p)))

(1− θ)−Dp (p)C ′′ (S0 (p))
.

Now limp→0S
0′ (p) exists and equals

− Dp (0)

(1− θ)−Dp (0)C ′′ (0)
≡ S0′ (p) ,

where 0 < S0′ (p) < 1
C′′(0)

, and thus S0 (p) is continuous and differentiable at p = 0. Q.E.D.

Lemma 2 The locus of the points satisfying f (p, S) = ∞ is a continuous, differentiable

function, S = S∞ (p) ≡ (C ′)−1 (p) . Hence, S∞ (0) = 0 and 0 < S∞′ (p) < ∞∀p ≥ 0.

Proof of Lemma 2 (same as the proof of claim 2 in KM ): From (3), S∞ (p)

solves f (p, S∞ (p)) = ∞ implies that S∞ (p) solves p−C ′ (S∞ (p)) = 0. Hence, since C ′′ > 0,

S∞ (p) = (C ′)−1 (p) ∀p. The stated properties of S∞ (p) follow from the assumptions for

C ′ (S). Q.E.D.

Lemma 3 For all points (p, S) between the f = 0 and f = ∞ loci, 0 < f (p, S) < ∞.

For all points in the first quadrant above the f = 0 locus or below the f = ∞ locus, 0 >

f (p, S) > −∞.
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Proof of Lemma 3 (same as the proof of claim 3 in KM): Since S
p−C′(S)

is finite

and increasing in S as long as p > C ′ (S), for a given p̄, f (p̄, S) is finite and monotonically

increasing in S for S ∈ [0, (C ′)−1 (p)). Below the f = ∞ locus, 0 > S
p−C′(S)

> −∞. Hence,

since 0 > Dp > −∞, 0 > f (p, S) > −∞. Q.E.D.

Lemma 4 If S (p) solves (3) and the other firm takes S (p), the second derivative of i’s

payoff with respect to p for a given ǫ evaluated at an intersection of S (p) and residual demand

function D (p) + ǫ− S (p) is written as

∂2vi (p, ǫ; S (p))

∂p2
|p=p∗ = (Dp (p

∗)− S ′ (p∗)) ((1− θ) + C ′′ (D (p∗) + ǫ− S (p∗))) (9)

−C ′′ (D (p∗) + ǫ− S (p∗)) (Dp (p
∗)− S ′ (p∗))

2 − (1− θ)S ′ (p∗) ,

where p∗ is the price that solves D (p∗) + ǫ− 2S (p∗) = 0.

Proof of Lemma 4: Given that j chooses S (p), the second order derivative of i’s

payoff with respect to p for a given ǫ is

∂2vi (p, ǫ; S (p))

∂p2
= (2− θ) {Dp (p)− S ′ (p)} − C ′′ (D (p) + ǫ− S (p)) (Dp (p)− S ′ (p))

2

+(p− C ′ (D (p) + ǫ− S (p))) (Dpp (p)− S ′′ (p))

+θS ′ (p)− θC ′′ (S (p)) (S ′ (p))
2
+ θ (p− C ′ (S (p)))S ′′ (p) . (10)

If S (p) solves (3), we can differentiate (3) totally with respect to p to obtain an expression

for S ′′ (p):

S ′′ (p) =
X1

((1− θ) (p− C ′ (S (p))))2
, (11)

where
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X1 ≡ [(1− θ)S ′ (p) + (1− C ′′ (S (p))S ′ (p))Dp (p) + (p− C ′ (S (p)))Dpp (p)] [(1− θ) (p− C ′ (S (p)))]

− [(1− θ)S (p) + (p− C ′ (S (p)))Dp (p)] [(1− θ) (1− C ′′ (S (p))S ′ (p))] .

Substituting (3) for S (p) into (11) gives

S ′′ (p) =
(1− θ)S ′ (p) + (1− C ′′ (S (p))S ′ (p)) (Dp (p)− (1− θ)S ′ (p)) + (p− C ′ (S (p)))Dpp (p)

(1− θ) (p− C ′ (S (p)))
,

(12)

and thus, when S (p) solves (3), S ′′ (p) in (10) is replaced by (12). Moreover, if we evaluate

at p = p∗ where p∗ solves D (p∗) + ǫ− 2S (p) = 0, (10) becomes (9). Q.E.D.

By these lemmas, we can prove Proposition 1.

Proof of Proposition 1 Satisfaction of (3) ∀p ≥ 0 is a necessary condition for a

supply function defined for all p ≥ 0 to trace through ex post optimal points when the other

firm commits to the same supply function. To show that 0 < S ′ (p) < ∞∀p ≥ 0 is also a

necessary condition, we show that if, for some p, S ever crosses either f = 0 from below or

f = ∞ from the left, then S must eventually violate the global optimality9.

Once trajectory S crosses f = 0 from below, S ′ become and stays negative and, from (A2),

S ′′ also becomes and stays negative. Therefore, the trajectory would eventually intersect the

S = 0 axis at a point (p0, 0) with p0 > C ′ (0) , where S ′ (p0) = f (p0, 0) = 1
1−θ

Dp (p0) .

Therefore, for ǫ = e (0, p0) , Q = D (p0, ǫ) = 0 by definition and then, residual demand

D (p0, ǫ)−S (p0) = 0. Then, given firm j takes S, p0 satisfies the first order condition but that

results in qi = qj = 0 and SW = πi = vi = 0. On the other hand, since S ′ (p0) =
1

1−θ
Dp (p0),

S (p) and the residual demand D (p, ǫ) − S (p) for the same ǫ = e (0, p0) cross each other

9Such a part of S represents ones of multiple intersections for certain ǫ which results in a smaller profit
than that of another intersection for the same ǫ.
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Figure 3: A supply function (satisfying FOC and symmetry) violating global optimality.
(Left: θ = 0, Right: 0 < θ < 1 )

at another point (p1, q1) where q1 > 0 and p1 > C ′ (q1) (Fig.3). Since SW, πi, vi > 0 at

(p1, q1), firm i has an incentive to adjust from p0 to p1. Thus, S eventually violates the

global optimality. Q.E.D.

Proof of Proposition 2 WLOG, let assume that firm 1 is a partially public firm

(θ1 ∈ [0, 1]) and firm 2 is a private firm (θ2 = 0). Then, Bi(bj; θi) is rewritten as follows:

B1(b2; θ1) =
(m+ b2) + θ1 (b2c− 1) b2
(1− θ1) + c (m+ b2)

,

and

B2(b1) ≡ B2(b1; 0) =
(m+ b1)

1 + c (m+ b1)
.

At the equilibrium, b∗1 and b∗2 satisfy the following:

F (b∗1, b
∗

2; θ) ≡







b∗1 − B1(b
∗

2; θ1)

b∗2 − B2(b
∗

1)






= 0

Then, the Jacobian of F (b∗1, b
∗

2; θ) w.r.t. (b
∗

1, b
∗

2) is written as J(b∗1, b∗2)
=







1 −∂B1(b∗2, θ1)

∂b∗
2

−∂B2(b∗1)

∂b∗
1

1






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, and then, by Implicit Function Theorem,







db∗
1

dθ1

db∗
2

dθ1






= −J−1

b







−dB1(b∗2, θ1)

dθ1

0







=
1

1− ∂B1(b∗2; θ1)

∂b∗
2

∂B2(b∗1)

∂b∗
1







1
∂B1(b∗2; θ1)

∂b∗
2

∂B2(b∗1)

∂b∗
1

1













∂B1(b∗2; θ1)

∂θ1

0







Then, what we need to show is that
∂B1(b∗2; θ1)

∂θ1
> 0,

∂B1(b∗2; θ1)

∂b∗
2

< 1, and
∂B2(b∗1)

∂b∗
1

∈ (0, 1).

In general, we have

∂Bi(bj; θi)

∂bj
=

{1 + θi (2bjc− 1)} {(1− θi) + c (m+ bj)} − c {(m+ bj) + θi (bjc− 1) bj}
{(1− θi) + c (m+ bj)}2

Thus, for firm 2,

∂B2(b1)

∂b1
=

1

{1 + c (m+ b1)}2
> 0.

Furthermore, we can rewrite
∂Bi(bj ;θi)

∂bj
as the following:

∂Bi(bj; θi)

∂bj
= 1 +

{− (1− θ) cbj} {1− θi + cm+ cbj} − cbj (1− θ)2 − (1− θi) cmbjc− cm {2− θi + cm}
{(1− θi) + c (m+ bj)}2

.

Since the second term is less than 0, we have
∂Bi(bj ;θi)

∂bj
< 1. Lastly, by taking the derivative

w.r.t. θ1,

∂B1(b
∗

2; θ1)

∂θ1
=

(1− θ1) (b2c− 1) b2 + c (m+ b2) (b2c− 1) b2 + (m+ b2) + θ1 (b2c− 1) b2

{(1− θ1) + c (m+ b2)}2

=
b32c

2 + (b22c
2 − b2c)m+m

{(1− θ1) + c (m+ b2)}2

=
b32c

2 +
(

b2c− 1
2

)2
m+ 3

4
m

{(1− θ1) + c (m+ b2)}2
> 0
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Thus, if we suppose that θ2 = 0 , then
db∗

1

dθ1
> 0 and

db∗
2

dθ1
> 0 Q.E.D.

Proof of Proposition 3 By proposition 1, for S to be a symmetric SFE, S must

satisfy (3) and 0 < S ′ (p) < ∞. In the linear case, (3) is rewritten as follows:

S ′ (p) =
(1− θ)S + {p− C ′ (S)} ·Dp (p)

(1− θ) {p− C ′ (S)}

=
(1− θ)S + {p− cS} · (−m)

(1− θ) {p− cS} .

In an autonomous form,

dS

dt
= (1− θ)S + {p− cS} · (−m)

dp

dt
= (1− θ) {p− cS} .

Then,







dS
dt

dp

dt






=







(1− θ +mc)S −mp

−c (1− θ)S + (1− θ) p







=







(1− θ +mc) −m

−c (1− θ) (1− θ)













S

p






.

For any eigenvalue r, the following equation must be satisfied:

det













(1− θ +mc) −m

−c (1− θ) (1− θ)






− rI






= 0

⇔ r =
2 (1− θ) +mc±

√

m2c2 + 4mc (1− θ)

2
.
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We have different and unequal eigenvalues. For each eigenvalue r1, r2, the eigenvectors are

defined as follows:

















(1− θ +mc) −m

−c (1− θ) (1− θ)






− riI

















ui

wi






= 0

⇔







((1− θ +mc)− ri) ui −mwi

−c (1− θ) ui + ((1− θ)− ri)wi






= 0.

Then,

ui

wi

=
(1− θ)− ri
c (1− θ)

=
(1− θ)− (1− θ)− mb±

√
m2c2+4mc(1−θ)

2

c (1− θ)

=
−mb∓

√

m2c2 + 4mc (1− θ)

2c (1− θ)

=
−m∓

√

m2 + 4m(1−θ)
c

2 (1− θ)
.

Let larger eigenvalue be r1. Then, u1

w1

< 0 and u2

w2

> 0. Since the eigenvalues are real and

unequal, the solution to the differential equation is written as







S

p






= A1e

λ1t







u1

w1






+ A2e

λ2t







u2

w2






(13)

where A1 and A2 are arbitrary constants. Here, if A1 6= 0,

S

p
=

A1e
λ1tu1 + A2e

λ2tu2

A1eλ1tw1 + A2eλ2tw2

=
A1u1 + A2

(

e(λ2−λ1)t
)

u2

A1w1 + A2 (e(λ2−λ1)t)w2

→ u1

w1

< 0 as t → ∞,
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and thus, all trajectories eventually leave the region between f = 0 and f = ∞, and

their slope becomes negative. Therefore, the only remaining S that satisfies the necessary

conditions is (13) with A1 = 0:

S (p) =
−m+

√

m2 + 4m(1−θ)
c

2 (1− θ)
p ≡ g(θ)

h(θ)
. (14)

Suppose that the other firm takes this linear supply function. Then, the local optimality

for firm i’s payoff function is satisfied along S (p) by lemma 5, and the residual demand is

also linear since the demand function is defined as linear. Since both the residual demand

and marginal cost are linear in p, given ǫ, firm i’s profit function πi is written as a function

quadratic in p. On the other hand, since the demand function and industrial marginal costs

are linear in p, given ǫ, SW is written as a function quadratic in p. Therefore, the payoff

for firm i, which is the weighted average of i’s profit and SW , is written as a quadratic

function. Therefore, the local optimal point given ǫ is actually a unique global maximizer

given ǫ. Thus, (14) is a symmetric SFE.

We check the effect of θ. Since g(1) = h(1) = 0 by l’Hopital’s Rule we have

lim
θ→1

S(p) = lim
θ→1

g(θ)

h(θ)
= lim

θ→1

g′(θ)

h′(θ)
= lim

θ→1

m

c

p
√

m2 + 4m(1−θ)
c

=
p

c

Thus, θ converges to 1 and the supply function converges to the marginal production cost.

Q.E.D.
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