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1 Introduction

Recently there has been increasing consideration in models with spatial interactions. Spatial
models have received substantial interest in traditional econometrics as well, both from a
theoretical as well as from an applied perspective, as suggested by the growing number of
studies that are using spatial methods. In view of that, nowadays spatial regression methods
are becoming an important part of the toolbox of applied econometrics and the interest
is increasingly shifting away from the single-equation cross-sectional background to more
sophisticated settings such as panel data models, qualitative variables models, simultaneous
models or multilevel models in a spatial context (see Anselin, 2006, for a related literature
review).

On the other hand, one of the most widely used spatial models is the spatial autoregressive
(SAR) model based on a single equation introduced by Cliff and Ord (1973) and Cliff and Ord
(1981)1 . This Cliff-Ord type model has recently received substantial attention in various
fields of economics (health, labour and public economics, political economy, international
and urban economics) as it provides a suitable framework to model the interaction between
economic agents2. Most of the literature focused on single-equation models where a single
dependent variable is determined for cross sectional units. However, in economics it is
recurrent that the outcomes for many dependent variables are determined jointly by a system
of equations for units. In this situation, the simultaneous nature of the outcomes can arise
from two sources, interactions between different economic variables as well as interactions
between cross sectional units.

Somewhat surprisingly, the literature on the estimation of simultaneous systems of spatially
interrelated cross sectional equations has so far been limited with some exceptions. Kele-
jian and Prucha (2004) extend the methodology developed in Kelejian and Prucha (1998)
and Kelejian and Prucha (1999) for single equations, an early development of generalized
method of moments (GMM) estimators for the simultaneous equation SAR model. They
propose both limited information two stage least squares (2SLS) and full information three
stage least squares (3SLS) estimators and derive for these estimators their asymptotic prop-
erties. Liu (2014) and Zenou (2017) exploit the methodology of Kelejian and Prucha (2004)
within the context of social interaction models, and provide further refinements. Other re-
cent contribution to the literature on spatial simultaneous equation models are Wang et al.
(2014) who analyse the quasi maximum likelihood (QML) estimator for such a system in the
cross section. Prucha et al. (2016) developed an estimation methodology for network data
generated from a system of simultaneous equations. Their specification allows for network
interdependencies via spatial lags in the endogenous and exogenous variables, as well as
in the disturbances. By allowing for higher-order spatial lags, their specification provides
important flexibility in modeling network interactions. For a simultaneous equation SAR
model, Liu and Saraiva (2017) provided a GMM estimator and its heteroskedasticity-robust

1This model is a variant of the model introduced by Whittle (1954) and is sometimes referred to as a
spatial autoregressive model; see, e.g., Anselin (1988).

2Early development in estimation and testing for cross sectional data can be found in Anselin (1988),
Kelejian and Robinson (1992), Anselin and Bera (1998), and Cressie (2015), among others.
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standard error. They established the consistency and asymptotic normality of the proposed
GMM estimator and also show that it performs well in finite samples. Yang and Lee (2017)
studied parameter spaces, parameter identification and asymptotic properties of the QML
estimation in the framework of the simultaneous equation SAR model which includes si-
multaneity effects, own-variable spatial lags and cross-variable spatial lags as explanatory
variables, and allows for correlation between disturbances across equations. Their main find-
ings reveal that the QML estimator is asymptotically more efficient than the 3SLS estimator
as the former implicitly uses additional information on the covariance structure of model
disturbances. The authors also discussed a multivariate SAR model that can be considered
as a reduced form of the simultaneous equations model.

Furthermore, the studies on spatial simultaneous equations model empirically have been
motivated: see, Ho and Hite (2008); Jeanty et al. (2010); Allers and Elhorst (2011); Gebre-
mariam et al. (2011); Baltagi and Bresson (2011); De Graaff et al. (2012); Hauptmeier et al.
(2012); Goldsmith-Pinkham and Imbens (2013), among others.
Another strand of the literature focused on simultaneous spatial panel data models. Al-
though the panel data simultaneous equations models that ignored the spatial autocorrela-
tion have been developed (see, e.g., Baltagi, 1981; Prucha, 1985; Balestra and Varadharajan-
Krishnakumar, 1987; Cornwell et al., 1992; Baltagi and Li, 1992), the simultaneous panel
data models including spatial dependence structures are practically absent from the econo-
metrics literature, with the possible exceptions of Baltagi and Deng (2015) and Lu (2017).
In the context of the Kelejian and Prucha (1998) and Lee (2003) type instruments and the
Baltagi (1981) error components 3SLS estimator, Baltagi and Deng (2015) propose a spatial
error component 3SLS (SEC-3SLS) system estimator that handles endogeneity, spatial lag
dependence, random effects as well as cross equation correlation simultaneously. Lu (2017)
considered a simultaneous spatial panel data model, jointly modeling three effects, namely
simultaneous effects, spatial effects and common shock effects and proposes the QML and
the iterative generalized principal components (IGPC) methods to estimate the model. For
each method, she determined its identification condition and developed a full inferential
theory for its estimators and found that the estimators from both methods are consistent.

This paper extends the Baltagi (1981) EC-3SLS panel data estimator that ignores spatial
dependence. This more general model allows for correlation across space, time, and equa-
tions. It combines the simplicity of dealing with heterogeneity in the panel using an error
component model and spatial correlation disturbances. Besides, a well-known feature of
the SAR specification is that it allows for a global transmission of shocks through global
spillovers that agglomerate from higher order neighbours (Anselin, 1988; LeSage and Pace,
2009). Contrariwise, the SAR process may not be suitable, if the shocks are not transmitted
globally. Therefore, another specification that allows for a localized transmission of shocks
is required. Haining (1978), Anselin (1988), and recently Hepple (2003), Fingleton (2008),
Baltagi and Pirotte (2011), Doğan and Taşpınar (2013), consider a spatial moving average
(SMA) process for the disturbances. Consequently in the scope of this study, the spatial de-
pendence specifications for the disturbance term uses a SAR as well as a SMA disturbances.
For this purpose, the rest of the paper is organized as follow. Section 2 completly defines the
model; section 3 deals with the limited information estimator; section 4 resolve the problem
of estimation of spatial component ρ of each equation both in the SAR case and the SMA
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case; section 5 deals with the full information estimator; In section 6 we regroup a battery
of simulations in model’s parameters; section 7 applies theses estimators on real data, while
in section 8 we conclude the paper.

2 The model

Consider the following lth structural equation

yl = Ylαl +Xlβl + υl = Zlδl + υl l = 1, . . . , L (1)

where, yl=1,...,L are endogenous variables with dimension TN×1, Yl is the set of TN×(Ml−1)3

right-hand side endogenous variables included in equation l, Xl is a TN ×Kl of right-hand
side exogenous variables of the model included in the equation and Zl = [Yl, Xl] is a matrix
of explanatory variables of the equation; δ′

l = (α′
l, β

′
l) are the associate coefficients of Zl.

We assume that the disturbances are generated either by a spatially autoregressive (SAR)
process or a spatially moving average (SMA) process:

υl = Λlϵl =







ρlWlυl + ϵl = (I − ρlWl)
−1ϵl for SAR

ρlWlϵl + ϵl = (I + ρlWl)ϵl for SMA
(2)

In this section, i = 1, . . . , N and t = 1, . . . , T ; where N denotes the number of individu-
als and T the number of time periods. We order the observations first by time and then
individuals because this grouping is more convenient for modelling spatial correlation via
equation (2). Wl = IT ⊗ WlN with IT being an identity matrix of dimension T and WlN

being a N ×N spatial weighting matrix of known constants which does not involve time and
is usually row-normalized. For 1 ≤ l ≤ L, all diagonal elements of WlN are zero. |ρl| < 1 is
a scalar autoregressive parameter, and ϵl is a TN × 1 vector of innovations.
To allow for the innovations to be correlated over time, we assume the following error com-
ponent structure for the innovation vector ϵl

ϵl = Zηηl + ξl (3)

where Zη = ιT ⊗ IN , η′
l =

(

η1l . . . ηNl

)′
represents the vector of unit specific error compo-

nents; and ξ′
l =

(

ξ11l ξ12l . . . ηT Nl

)′
contains the error components that vary over both

the cross-sectional units and time periods; ιT is a T ×1 vector of ones. ηl and ξl are centered
random vector with covariance matrix

E
(

ηl

ξl

)
(

η′
q ξ′

q

)

=

[

σ2
ηlq
IN 0

0 σ2
ξlq
IT N

]

(4)

3If we let M
−l the set of right-hand side endogenous variables excluded of the lth, we have Ml +M

−l = L.
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In light of equation (3), the covariance matrix Ωϵlq
= E(ϵlϵ

′
q) between the lth and the qth

equation is:

Ωϵlq
= σ2

ηlq
(JT ⊗ IN) + σ2

ξlq
IT N for l, q = 1, . . . , L (5)

and its spectral decomposition can be written in compact form as below:

Ωϵlq
=

1∑

h=0

σ2
hlq
Qh for l, q = 1, . . . , L (6)

where,
Qh = Bh ⊗ IN ,

Bh,{h=0,1} is a square matrix of order T with B0 = ET and B1 = J̄T ; J̄T = ιT ι
′
T/T denoting

average matrix over time, ET = IT − J̄T , σ2
0lq

= σ2
ξlq

and σ2
1lq

= Tσ2
ηlq

+ σ2
ξlq

. The matrices
Q0 and Q1 are standard transformation matrices utilized in the error component literature,
with the appropriate adjustments implied by our adopted ordering of the data; compare, e.g.,
Baltagi (2008). They are symmetric, idempotent and orthogonal to each other. Furthermore,
by letting tr(M) the trace of a square matrix M ,

Q0 +Q1 = IT N , tr(Q0) = (T − 1)N and tr(Q1) = N

and the covariance matrix of Ωυlq
between the lth and the qth equation is:

Ωυlq
= ΛlE(ϵlϵ

′
q)Λ

′
q

= Λl(σ
2
0lq
Q0 + σ2

1lq
Q1)Λ

′
q

= σ2
0lq

ΛlQ0Λ
′
q + σ2

1lq
ΛlQ1Λ

′
q

= σ2
0lq
Q0ΛlΛ

′
q + σ2

1lq
Q1ΛlΛ

′
q

= σ2
0lq
Q0Λlq + σ2

1lq
Q1Λlq

(7)

where Λlq = ΛlΛ
′
q and Λl non-singular ∀l; This comes from the fact that, for SMA process

WlQh = (IT ⊗WlN)(Bh ⊗ IN)

= (ITBh) ⊗ (WlNIN)

= (BhIT ) ⊗ (INWlN)

= QhWl

while for SAR process, since each |ρl| < 1, we have
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ΛlQh = (I − ρlWl)
−1Qh

= (I + ρlWl + ρ2
lW

2
l + ρ3

lW
3
l + . . . )Qh

= (Qh + ρlWlQh + ρ2
lW

2
l Qh + ρ3

lW
3
l Qh + . . . )

= Qh(I + ρlWl + ρ2
lW

2
l + ρ3

lW
3
l + . . . ) = Qh(I − ρlWl)

−1

= QhΛl

3 Single Equation Estimation

Without loss of generality, let us consider the first equation of the system

y1 = Z1δ1 + υ1 = Z1δ1 + Λ1ϵ1 (8)

To get spatial within and spatial between 2SLS estimators, we need a procedure which
both resolves the endogeneity problem and spatial correlation. Thus, one need to combine
instrumental variables (IV) and spatial generalized least squares (GLS) estimator. Hence,
applying transformation Qh on equation (8) gives

y
(h)
1 = Z

(h)
1 δ1 + Λ1ϵ

(h)
1 (9)

where y(h)
1 = Qhy1, Z(h)

1 = QZ1 and ϵ
(h)
1 = Qhϵ1 with,

E(Λϵ
(h)
1 ) = Λ1QhE(ϵ1) = 0

and using equation (7),

var
(

Λ1ϵ
(h)
1

)

= var (Qhυ1) = σ2
h11
QhΛ11

applying Aitken procedure on the following equation

X ′
hy

(h)
1 = X ′

hZ
(h)
1 δ1 +X ′

hΛ1ϵ
(h)
1 (10)

with Xh = QhX and

var
(

X ′
hΛ1ϵ

(h)
1

)

= σ2
h11
X ′

hΛ11Xh (11)

gives
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δ̂
(h)
1,S2SLS =

[

Z
(h)′

1 Xh

(

σ2
h11
X ′

hΛ11Xh

)−1
X ′

hZ
(h)
1

]−1 [

Z
(h)′

1 Xh

(

σ2
h11
X ′

hΛ11Xh

)−1
X ′

hy
(h)
1

]

=
(

Z
(h)′

1 PhZ
(h)
1

)−1 (

Z
(h)′

1 Phy
(h)
1

)
(12)

where Ph = Xh (X ′
hΛ11Xh)−1 X ′

h and with a known ρ1, we estimate the variance components
by

σ̂2
h11

=

(

y⋆
1 − Z⋆

1 δ̂
(h)
1,S2SLS

)′
Qh

(

y⋆
1 − Z⋆

1 δ̂
(h)
1,S2SLS

)

tr(Qh)
(13)

where y⋆
1 = Λ−1y1 and Z⋆

1 = Λ−1Z1. In equation (13), the adjustment on y1 and Z1 is impor-
tant to remove the spatial effect on residuals while the matrix Qh removes the corresponding
specific effect.
The important thing to notice in this case is that the unknown variance components σ2

h11

are estimated using classical one way 2SLS or 3SLS residuals and not OLS or general 2SLS
residuals of the transformed system (9). This is due to the simultaneous nature of (9).
With a known ρ1, equation (12) gives the spatial within and the spatial between 2SLS estima-
tors of δ1 for h = 0 and h = 1 respectively. Note that, if ρ1 = 0 this implies that Λ11 = IT N

and the projection matrix Ph simply PXh
. This means that when ρ1 is null, we fall in the

classical simultaneous panel data models.
An estimate of the asymptotic covariance matrix of δ̂1,2SLS is obtained by multiply σ2

h11
by

the inverted matrix on the righ-hand side of equation (12) i.e.

var
(

δ̂1,S2SLS

)

= σ2
h11

(

Z
(h)′

1 PhZ
(h)
1

)−1
(14)

Iterating equation (10), stacking these two transformed equations as a system and noting
that δ1 is the same for these two transformed equations, we can get a more efficient estimator
of δ1, by applying an Aitken estimation procedure to the following system

(

X ′
0y

(0)
1

X ′
1y

(1)
1

)

=

(

X ′
0Z

(0)
1

X ′
1Z

(1)
1

)

δ1 +

(

X ′
0υ

(0)
1

X ′
1υ

(1)
1

)

(15)

Proposition 1. In a simultaneous equation with spatially autocorrelated error components,
if the component ρ1 is known, the spatial error component two-stage least squares, says
δ̂1,SEC2SLS, is:

δ̂1,SEC2SLS =




Z

′(0)
1 P0Z

(0)
1

σ̂2
011

+
Z

′(1)
1 P1Z

(1)
1

σ̂2
111





−1


Z

′(0)
1 P0y

(0)
1

σ̂2
011

+
Z

′(1)
1 P1y

(1)
1

σ̂2
111



 (16)
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where, Ph = Xh (X ′
hΛ11Xh)−1 X ′

h, Xh = QhX, y(h)
1 = Qhy1, Z(h)

1 = QZ1 for h = 0 and h = 1.
With σ̂2

011
and σ̂2

111
defined in equation (13).

Proof. Since

var
(

X ′
0υ

(0)
1

X ′
1υ

(1)
1

)

= diag
(

σ2
hlq
X ′

hΛ11Xh

)

(17)

we simply apply GLS on system (15).

Practically, the component ρl is unknow then we need a procedure to derive a consistent
estimate of ρl. A solution can be obtained from Kapoor et al. (2007) GMM procedure for
SAR and from Fingleton (2008) for SMA.

4 Estimation of the component ρl

For notation convenience, let
a
ϵ̄ = W aϵ,

this means that
0
ϵ̄ = W 0ϵ = ϵ,

1
ϵ̄ = Wϵ and

2
ϵ̄ = W 2ϵ = ¯̄ϵ. Such that

QhE(ϵ1ϵ
′
1) = QhΩϵ11

= σ2
h11
Qh =







σ2
011
Q0 for h = 0

σ2
111
Q1 for h = 1

(18)

and using the following general relation:

E
( a

ϵ̄′
1Qh

b
ϵ̄1

)

= E




ϵ′

1W
′
1 . . .W

′
1

︸ ︷︷ ︸

a times

QhW1 . . .W1
︸ ︷︷ ︸

b times

ϵ1






= E
(

ϵ′
1(W

′
1)

aQhW
b
1 ϵ1

)

= tr
(

(W ′
1)

aW b
1QhΩϵ11

)

= σ2
h11

tr(Bh)tr
(

(W ′
1N)aW b

1N

)

(19)

with tr(W 0
1N) = tr(IN) = N and tr(W1N) = 0; the general form of the six moment conditions

can be derived as follow:
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E(ϵ′
1Qhϵ1) = σ2

h11
tr (Qh) (20)

E(ϵ̄′
1Qhϵ̄1) = σ2

h11
tr (Bh) tr (W1NW

′
1N) (21)

E(ϵ̄′
1Qhϵ1) = σ2

h11
tr (Bh) tr (W1N) = 0 (22)

which lead to general system for T ≥ 2

E






ϵ′
1Qhϵ1/tr(Qh)
ϵ̄′

1Qhϵ̄1/tr(Qh)
ϵ̄′

1Qhϵ1/tr(Qh)




 = σ2

h11






1
tr (W1NW

′
1N)/N

0




 (23)

To get each equation, one should replace each notation by its corresponding form (see Kapoor
et al., 2007, for more details). Our three GMM estimators of ρ1, σ2

011
and σ2

111
are based on

these moment relationships. If ϵ1 were observed, then ϵ′
1Qhϵ1/tr(Qh) represents the (unbi-

ased) analysis of variance estimators of σ2
h11

.

4.1 SAR Process

For spatial autoregressive process,

υ1 = (I − ρ1W1)
−1ϵ1 =⇒







ϵ1 = υ1 − ρ1ῡ1

ϵ̄1 = ῡ1 − ρ1
¯̄υ1

Substituting these expressions for ϵ1 and ϵ̄1 into equations (20) to (22), we obtain the general
form of system of three equations involving the second moments of υ1, ῡ1 and ¯̄υ1.







ϵ′
1Qhϵ1 = υ′

1Qhυ1 − ρ1 (υ′
1Qhῡ1 + ῡ′

1Qhυ1) + ρ2
1ῡ

′
1Qhῡ1

ϵ̄′
1Qhϵ̄1 = ῡ′

1Qhῡ1 − ρ1

(

ῡ′
1Qh

¯̄υ1 + ¯̄υ′
1Qhῡ1

)

+ ρ2
1
¯̄υ′

1Qh
¯̄υ1

ϵ̄′
1Qhϵ1 = ῡ′

1Qhυ1 − ρ1

(

ῡ′
1Qhῡ1 + ¯̄υ′

1Qhυ1

)

+ ρ2
1
¯̄υ′

1Qhῡ1

(24)

Hence the six equations can be easily obtained by simply iterate h = 0, 1 on system (24).
This system involves ρ1 and σ2

h11
and can be expressed as:

Γ1h






ρ1

ρ2
1

σ2
h11




− Θ1h = 0 (25)

where
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Γ1h =







2γ1h
1 −γ1h

2 1
2γ1h

3 −γ1h
4 γ1h

5(

γ1h
2 + γ1h

6

)

−γ1h
3 0







Θ1h =






γ1h
0

γ1h
2

γ1h
1






the elements γ1h
i have the following form,

γ1h
1 =

(ῡ′
1Qhυ1)

tr (Qh)
, γ1h

2 =
(ῡ′

1Qhῡ1)

tr (Qh)
, γ1h

3 =
(ῡ′

1Qh
¯̄υ1)

tr (Qh)

γ1h
4 =

(¯̄υ′
1Qh

¯̄υ1)

tr (Qh)
, γ1h

5 =
tr(W ′

1NW1N)

N
, γ1h

6 =
(¯̄υ′

1Qhυ1)

tr (Qh)
, γ1h

0 =
(υ′

1Qhυ1)

tr (Qh)
.

4.2 SMA Process

For spatial moving average process,

υ1 = (I + ρ1W1)ϵ1 =⇒







υ1 = ϵ1 + ρ1ϵ̄1

ῡ1 = ϵ̄1 + ρ1
¯̄ϵ1

then,

υ′
1Qhυ1 = ϵ′

1Qhϵ1 + ρ1 (ϵ′
1Qhϵ̄1 + ϵ̄′

1Qhϵ1) + ρ2
1ϵ̄

′
1Qhϵ̄1

ῡ′
1Qhῡ1 = ϵ̄′

1Qhϵ̄1 + ρ1

(

ϵ̄′
1Qh

¯̄ϵ1 + ¯̄ϵ′
1Qhϵ̄1

)

+ ρ2
1
¯̄ϵ′

1Qh
¯̄ϵ1

ῡ′
1Qhυ1 = ϵ̄′

1Qhϵ1 + ρ1

(

ϵ̄′
1Qhϵ̄1 + ¯̄ϵ′

1Qhϵ1

)

+ ρ2
1
¯̄ϵ′

1Qhϵ̄1

(26)

to obtain the expectation of each equation of system (26), we use relation (19)

E (υ′
1Qhυ1) = σ2

h11
tr(Bh)

{

N + ρ1 [tr (W1N) + tr (W1N)] + ρ2
1tr (W ′

1NW1N)
}

E (ῡ′
1Qhῡ1) = σ2

h11
tr(Bh)

{

tr (W ′
1NW1N) + ρ1

[

tr
(

W ′
1NW

2
1N

)

+ tr
(

(W ′
1N)2W1N

)]

+ ρ2
1tr

(

(W ′
1N)2W 2

1N

)}

E (ῡ′
1Qhυ1) = σ2

h11
tr(Bh)

{

tr (W1N) + ρ1

[

tr (W ′
1NW1N) + tr

(

W 2
1N

)]

+ ρ2
1tr

(

(W ′
1N)2W1N

)}

which lead to
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E
(

υ′
1Qhυ1

tr (Qh)

)

= σ2
h11

[

1 + ρ2
1

tr (W ′
1NW1N)

N

]

(27)

E
(

ῡ′
1Qhῡ1

tr (Qh)

)

= σ2
h11

[

tr (W ′
1NW1N)

N
+ 2ρ1

tr (W ′
1NW

2
1N)

N
+ ρ2

1

tr ((W ′
1N)2W 2

1N)

N

]

(28)

E
(

ῡ′
1Qhυ1

tr (Qh)

)

= σ2
h11
ρ1

[

tr (W ′
1NW1N)

N
+

tr (W 2
1N)

N
+ ρ1

tr ((W ′
1N)2W1N)

N

]

(29)

Ignoring the expectations, and put these equations together using the 3 × 3 matrix Γ1h, the
3 × 1 vector Θ1h,

γ1
1 =

tr (W ′
1NW1N)

N
, γ1

2 =
tr (W ′

1NW
2
1N)

N
, γ1

3 =
tr (W 2

1N)

N
, γ1

4 =
tr ((W ′

1N)2W 2
1N)

N

so that

Γ1h






σ2
h11

ρ1σ
2
h11

ρ2
1σ

2
h11




− Θ1h = 0 (30)

where

Γ1h =






1 0 γ1
1

γ1
1 2γ1

2 γ1
4

0 (γ1
1 + γ1

3) γ1
2




 , Θ1h =

1

tr (Qh)






υ′
1Qhυ1

ῡ′
1Qhῡ1

ῡ′
1Qhυ1






4.3 Estimation

The estimation procedure of SAR (respectively SMA) process comprises two (02) stages. At
stage one, because of simultaneity problem, we obtain IV estimates of δ⋆

1 and hence residuals
υ⋆

1 = y1 − Z1δ
⋆
1; At stage two, we use these IV residuals to obtain the estimates g1h of Θ1h

and G1h of Γ1h. Then a sample analogue to equation (25) or (30) in terms of υ⋆
1, ῡ⋆

1 and ¯̄υ⋆
1

is

G1hψh − g1h = e(ρ1, σ
2
h11

) (31)

in which

ψh =







ψh
SAR =

(

ρ1 ρ2
1 σ2

h11

)′
for SAR

ψh
SMA =

(

σ2
h11

ρ1σ
2
h11

ρ2
1σ

2
h11

)′
for SMA

and e(ρ1, σ
2
h11

) is a vector of residuals.
The GMM estimators of ρ1 and σ2

h11
are the solution of the sample counterpart of the six

equations given above. Following Kapoor et al. (2007) and using their results in the context
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of simultaneous panel data, we only use the first three moments which do not involve σ2
111

and yield estimates of ρ1 and σ2
011

. The fourth moment condition is then used to solve for
σ2

111
given estimates of ρ1 and ρ1. Since Fingleton (2008) extended this GMM estimator to

the SMA panel data model with random effects, we also use and adapte his results for the
SMA case.
The non-linear least square estimator is therefore given by

(ρ̃1, σ̃
2
h11

) = arg min{e(ρ1, σ
2
h11

)′e(ρ1, σ
2
h11

)} (32)

Proposition 2. In a simultaneous equation with spatially autocorrelated error components
and an unknow ρ1 the spatial error component two-stage least square, says δ̂1,SEC2SLS, is:

δ̂1,SEC2SLS =




Z

′(0)
1 P0Z

(0)
1

σ̂2
011

+
Z

′(1)
1 P1Z

(1)
1

σ̂2
111





−1


Z

′(0)
1 P0y

(0)
1

σ̂2
011

+
Z

′(1)
1 P1y

(1)
1

σ̂2
111



 (33)

where ρ̂1, σ2
ξ11

and σ2
111

are directly obtained from non-linear least square estimators. Ph =

Xh (X ′
hΛ11Xh)−1 X ′

h, Xh = QhX, y(h)
1 = Qhy1, Z(h)

1 = QZ1 for h = 0 and h = 1.

Proof. We replace ρ1, σ2
ξ11

and σ2
111

by their consistent estimate ρ̂1, σ̂2
ξ11

and σ̂2
111

in equation
(32).

5 System Estimation

The single equation estimation described in the previous section provides consistent estima-
tors in the presence of a spatially autocorrelated error. But like all single equation estimators,
this SEC2SLS estimator ignores the cross equation correlation between υl and υq, and the
information content of the full system of simultaneous equations. This is bound to result in
loss of efficiency.
This section focuses on 3SLS system estimation which utilizes the correlation across equa-
tions and should lead to gains in efficiency over its 2SLS counterpart. Of course, this system
estimation has to handle the spatial autocorrelation structure, the presence of right hand-side
endogenous variables as well as individual random effect.

The system of L equations can be obtained from equation (1), by iterate l = 1, . . . , L and
stack these L equations

y = Zδ + υ (34)

where, y′ =
(

y′
1 · · · y′

L

)

, Z = diag(Zl), δ′ =
(

δ′
1 · · · δ′

L

)

and υ′ =
(

υ′
1 · · · υ′

L

)

with
Zl =

[

Yl Xl

]

. The disturbance process of the system can be written as:
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υ = Λϵ =







diag(ρlWl)υ + ϵ = diag(I − ρlWl)
−1ϵ for SAR

diag(ρlWl)ϵ+ ϵ = diag(I + ρlWl)ϵ for SMA
(35)

where Λ = diag (Λl) and ϵ′ =
(

ϵ′
1 · · · ϵ′

L

)

; with

ϵ = (IL ⊗ ιT ⊗ IN)η + ξ = IL ⊗ Zηη + ξ (36)

where η′ =
(

η′
1 · · · η′

L

)

and ξ′ =
(

ξ′
1 · · · ξ′

L

)

.
We note that if the row-standardized spatial matrixWl is common to all equation,i.e.,Wl = W
hence,







ρ1W · · · 0
... . . . ...
0 · · · ρLW







= diag(ρl) ⊗W = ρ⊗W (37)

The covariance matrix of innovations for the system Ωϵ is

Ωϵ =
(

Ωϵlq

)

=
(

σ2
0lq

)

⊗Q0 +
(

σ2
1lq

)

⊗Q1 = Σ0 ⊗Q0 + Σ1 ⊗Q1 (38)

with Σ1 =
(

σ2
1lq

)

and Σ0 =
(

σ2
0lq

)

. Using equation (35) the covariance matrix of the distur-
bance υ can be written as follow:

Ωυ = ΛΩϵΛ
′ = Λ (Σ0 ⊗Q0) Λ′ + Λ (Σ1 ⊗Q1) Λ′

however,

Λ (Σh ⊗Qh) Λ′ = diag(Λl)
(

σ2
hlq
Qh

)

diag(Λ′
l)

=
(

σ2
hlq

ΛlQhΛ′
q

)

=
(

σ2
hlq
QhΛlq

)

this implies that

Ωυ = (IL ⊗Q0) ∆Σ0
+ (IL ⊗Q1) ∆Σ1

(39)

where ∆Σh
=
(

σ2
hlq

Λlq

)

. Starting with equation (34) and applying the transformation IL⊗Qh

we get:
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y(h) = Z(h)δ + Λϵ(h) (40)

where y(h) = (IL ⊗Qh)y, Z(h) = (IL ⊗Qh)Z and ϵ(h) = (IL ⊗Qh)ϵ with,

E(Λϵ(h)) = Λ(IL ⊗Qh)E(ϵ) = 0

and,

var
(

Λϵ(h)
)

= (IL ⊗Qh) ∆Σh
(41)

Premultiply equation (40) by xh = IL ⊗Xh gives

x′
hy

(h) = x′
hZ

(h)δ + x′
hΛϵ(h) (42)

with

var
(

x′
hΛϵ(h)

)

= x′
hvar

(

Λϵ(h)
)

xh = x′
h∆Σh

xh (43)

where ∆Σh
=
(

σ2
hlq

Λlq

)

. Applying Aitken procedure on equation (42) give us

δ̂
(h)
S3SLS =

[

Z(h)′

xh (x′
h∆Σh

xh)
−1
x′

hZ
(h)
]−1 [

Z(h)′

xh (x′
h∆Σh

xh)
−1
x′

hy
(h)
]

=
(

Z(h)′

PhZ
(h)
)−1 (

Z(h)′

Phy
(h)
) (44)

with Ph = xh (x′
h∆Σh

xh)−1 x′
h.

Equation (44) gives the spatial within and the spatial between 3SLS estimator of δ for h = 0

and 1 respectively. An estimate of the asymptotic covariance matrix of δ̂(h)
S3SLS is given by

the inverted matrix on the righ-hand side of equation (44).

Iterate equation (42), stack these two transformed equations as a system and noting that δ
is the same for these two transformed equations, we can get a more efficient estimator of δ.
This is done by applying an Aitken estimation procedure to the following system:

(

x′
0y

(0)

x′y(1)

)

=

(

x′
0Z

(0)

x′Z(1)

)

δ +

(

x′
0υ

(0)

x′υ(1)

)

(45)

Proposition 3. In a simultaneous equation with spatially autocorrelated error components,
the spatial error component three stage least squares, says δ̂SEC3SLS, is:
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δ̂SEC3SLS =
(

Z ′(0)P0Z
(0) + Z

′(1)
1 P1Z

(1)
1

)−1 (

Z ′(0)P0y
(0) + Z

′(1)
1 P1y

(1)
1

)

(46)

where, Ph = xh (x′
h∆Σh

xh)−1 x′
h; y(h) = IM ⊗ Qhy, Z(h) = IM ⊗ QhZ for h = 0 and h = 1.

With

σ̂2
hlq

=

(

y⋆
l − Z⋆

l δ̂
(h)
l,S2SLS

)′
Qh

(

y⋆
q − Z⋆

q δ̂
(h)
q,S2SLS

)

tr(Qh)
(47)

Proof. Straightforward.

6 Monte Carlo Investigation

6.1 Design of sampling

The purposes of our Monte Carlo experiment are threefolds: Firstly, we study the small
sample behavior of our proposed estimators that can handle endogeneity, spatial error corre-
lation and random individual effects in function of spatial coefficient, spatial matrix, variance
covariance of specific component and the increase of time. These estimators are compared
with those that may ignore one or more of these symptoms. For example, OLS ignores all
these symptoms, while EC-2SLS only ignore spatial error correlation. Secondly, we also in-
vestigate the gain in efficiency; for example when we move from usual one way to spatial one
way estimator. Also, when we move from spatial two stage that does not take into account
simultaneity, to spatial three stage least squares. Thirdly, we study the sample properties
of the spatial component ρl, which is necessary to get σ2

hlq
and our spatial estimators. We

note that, the estimations of ρl, σ2
hll

are done on each equation l; and we use four (04) values
of ρl namely, -0.8, -0.4, 0.4 and 0.8. Hence, we can write the linear simultaneous equation
model in equation (1) as:

Γyit + Λxit = υit (48)

Here yit, xit and υit are column vectors of dimensions 2, 4 and 2 respectively. We simplify the
Monte Carlo design by using the same weight matrix W in both equations. The disturbance
υitl, l = 1, 2, for each equation has the following form

υitl =







(I − ρlW )−1ϵl for SAR
(I + ρlW )ϵl for SMA

where ϵitl = ηil + ξitl. Γ is a 2 × 2 matrix of coefficients of current endogenous variables and
Λ is a 2 × 4 matrix coefficients of predetermined variables.
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Γ =

(

1 0.5
4 1

)

, Λ =

(

2 −1.5 0 0
0 0 3 −1.8

)

There are four exogenous variables X11, X12, X21 and X22 in the system, two for each
equation. The data generating process for the exogenous variables follows the approach used
in Baltagi et al. (2013)

xp,it = ζp,i + zp,it p = 11, 12, 21, 22

where ζp,i  iidU [−10, 10], and zp,it  iidU [−5, 5]. We follow two steps to generate the
error terms. First, we generate 2(N +NT ) independent N (0, 1) random numbers. For each
equation, the first 2N are used for generating first cross section specific effects and the re-
maining 2NT are used to generate the idiosyncratic errors.
Second, we transform these N (0, 1) disturbances to obtain the appropriate covariance ma-
trices Ωη, Ωξ respectively. Four combinations are considered:

V1. Ωη =

(

16 8
8 16

)

and Ωξ =

(

4 2
2 4

)

V2. Ωη =

(

12 6
6 12

)

and Ωξ =

(

8 4
4 8

)

V3. Ωη =

(

8 4
4 8

)

and Ωξ =

(

12 6
6 12

)

V4. Ωη =

(

4 2
2 4

)

and Ωξ =

(

16 8
8 16

)

For all experiments, we keep the total variance fixed at Ωϵ =

(

20 10
10 20

)

For the spatial weights matrices, we use regular4 structures. We decide to use four weight
matrices, W1,W3,W7 and W9, which essentially differ in their degree of sparseness (see Figure
7 in the Appendix). In fact, the matrixWJ where J is a positive integer is labelled as “J ahead
and J behind”. Since in panel data many studies are not done in all the countries, we relax
the hypothesis of a circular world in the construction of the matrix WJ . We consider several
individuals N = 25 and time dimensions T = (7, 10, 15). First, we consider five simultaneous
equation estimators of the one-way error component model which ignore spatial dependence:

1. Ordinary Least Squares (OLS).

2. Two Stage Least Square (2SLS).

3. Fixed Effects Two Stage Least Squares (FE-2SLS).

4. Error Component Two Stage Least Squares (EC-2SLS).

5. Error Component Three Stage Least Squares (EC-3SLS).
4Irregular lattices structures are left for application on real data.
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Second, we consider our two simultaneous equation estimators which take into account cross-
section spatial dependence:

1. Spatial Error component Two Stage Least Squares (SEC-2SLS).

2. Spatial Error Component Three Stage Least Squares (SEC-3SLS).

To sum up, we will have a total of sixteen (16) Monte Carlo designs (see Table 1). We run
1000 replications for each experiment.

Table 1: Monte Carlo designs

No σ2

ηlq σ2

ξlq WN T ρ1 ρ2 α1 β11 β12 α2 β21 β22

Covariance
1 16 4 W3 7 -0.8 -0.3 -0.5 -2 1.5 -4 -3 1.8
2 12 8 W3 7 -0.8 -0.3 -0.5 -2 1.5 -4 -3 1.8
3 8 12 W3 7 -0.8 -0.3 -0.5 -2 1.5 -4 -3 1.8
4 4 16 W3 7 -0.8 -0.3 -0.5 -2 1.5 -4 -3 1.8

Spatial matrix
5 12 8 W1 7 -0.8 -0.3 -0.5 -2 1.5 -4 -3 1.8
6 12 8 W3 7 -0.8 -0.3 -0.5 -2 1.5 -4 -3 1.8
7 12 8 W7 7 -0.8 -0.3 -0.5 -2 1.5 -4 -3 1.8
8 12 8 W9 7 -0.8 -0.3 -0.5 -2 1.5 -4 -3 1.8

Time
9 12 8 W3 7 -0.8 -0.3 -0.5 -2 1.5 -4 -3 1.8

10 12 8 W3 10 -0.8 -0.3 -0.5 -2 1.5 -4 -3 1.8
11 12 8 W3 15 -0.8 -0.3 -0.5 -2 1.5 -4 -3 1.8

Spatial coefficient
12 12 8 W3 7 -0.8 -0.8 -0.5 -2 1.5 -4 -3 1.8
13 12 8 W3 7 -0.4 -0.4 -0.5 -2 1.5 -4 -3 1.8
14 12 8 W3 7 0.0 0.0 -0.5 -2 1.5 -4 -3 1.8
15 12 8 W3 7 0.4 0.4 -0.5 -2 1.5 -4 -3 1.8
16 12 8 W3 7 0.8 0.8 -0.5 -2 1.5 -4 -3 1.8

6.2 Efficiency Criteria

To compare the performance of these estimators, we use three criteria. The first is an
adjusted version of the root mean square error (RMSE) criterion proposed by Kelejian and
Prucha (1998):

RMSE∗(α̂k) =



bias2(α̂k) +

(

IQ(α̂k)

1.35

)2




1/2

where median is used instead of mean for bias. So bias is the difference between median and
the true parameter. IQ is the inter-quartile range defined as the difference between the 0.75
quantile and the 0.25 quantile of our estimates, α̂k is the estimator of kth parameter αk.
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Figure 1: Estimators Average NOMAD evolution under covariance and spatial matrix.

As a supplement to RMSE∗ for each structural parameter, we employ two other comprehen-
sive criteria proposed by Sasser (1969). The normalized mean absolute deviation (NOMAD)
and normalized root mean square deviation (NORMSQD). These measures were also used
by Baltagi (1984) in his Monte Carlo experiments. Specifically, NOMAD is defined as

NOMAD(α̂) =
1

RK

K∑

k=1

R∑

r=1

∣
∣
∣
∣
∣

α̂k,r − αk

αk

∣
∣
∣
∣
∣

where K is the number of parameters, i.e., the dimension of parameter vector, R is the
number of replications, α̂k,r is the estimator of kth parameter k in rth replication. Since
NORMSQD relies on moments as well, we will also use quantiles instead to adjust for this
criterion. Therefore, NORMSQD becomes

NORMSQD∗(α̂) =







1

K

K∑

k=1

[

bias2(α̂k) +
(

IQ(α̂k)
1.35

)2
]

α̂2
k







1/2

where bias and IQ are defined similarly to those in RMSE. For simplicity of notation, we
still use RMSE and NORMSQD in the text when using these adjusted measures.
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6.3 Results

6.3.1 Changes in the Variance-Covariance matrix

Tables 4, 5, 6 and 7 show the bias, the standard deviation, the RMSE, the NOMAD and the
NORMSQD based on 1000 replications. The structural parameters (α1, β11, β12, α2, β21, β22)
take the values (−0.5,−2, 1.5,−4,−3, 1.8), the spatial coefficients (ρ1, ρ2) are fixed at
(−0.8,−0.3), and the weighting matrix is fixed at W3. The four tables differ only in the
degree of heterogeneity in the individual effects and in the cross-equation correlation5.
For the first three (03) usual estimators, with not surprise, OLS gives the largest NOMAD
and NORMSQD. This is due to it inconsistency in a panel data (see Kelejian et al., 2004;
Baltagi and Deng, 2015, for similar results). In contrast, when endogeneity is taken care
of, i.e., we applied 2SLS, NOMAD gives an average gain of around 68.73% over OLS. In
addition of 2SLS, when we swipe off all the specific effects, i.e., FE-2SLS is applied, now
NOMAD exhibits an average gain of around 40.74% over 2SLS. As we move from V1 to V4,
i.e. the variances of the individual effects decrease, 2SLS shows smaller RMSE as well as
NOMAD and NORMSQD than FE-2SLS. For example, in Table 7 the NORMSQD gives an
average gain of 33.01% over FE-2SLS (one can revisit Baltagi and Deng, 2015, for similar
results).
Next, we compare 2SLS, FE-2SLS, EC-2SLS and EC-3SLS. As we see, when the variance
covariance of the idiosyncratic term is small (Table 4), according to NOMAD and NORM-
SQD, EC-(3SLS and 2SLS) give better results than FE and 2SLS. According to standard
deviation and RMSE, EC-3SLS exhibits better results than EC-2SLS. This is not surprising
considering the fact that 2SLS does not take into account simultaneity. EC-2SLS NOMAD
(0.35) is less than those of FE-2SLS (0.36). As the variance of individual effects decrease,
the inequality between FE-2SLS and EC (2SLS and 3SLS) increases. For example in Table
7, considering EC-2SLS, NOMAD exhibits an average gain of 36.11% than FE-2SLS.
Now we compare classical error component estimators and spatial (AR) error component
estimators. When the covariance matrix of individual effects are high (Table 4), results
reveal that even if NOMADs are equal, NORMSQD, standard deviations and RMSE of
spatial error components are less than those of classical error component estimators. For
example, EC-2SLS normalized root mean square deviation is 0.052 while its equivalent in
the spatial approach (SEC-2SLS) is 0.051. As the covariance matrix of individual effect
decreases, this inequality holds. When we move from SEC-2SLS to SEC-3SLS, three stage
least squares give better results than spatial two stage least squares. Indeed, even if RMSE
and NORMSQD are close, we have a tiny gain in efficiency in favor of SEC-3SLS of the
RMSE (respectively standard deviation) of each structural parameters. See Figure 1 column
Sigma for a graphical appreciation.
Finally, we compare spatial (MA) error component and spatial (AR) error component
estimators. As we see in Table 4 even if standard deviations and RMSE are closes, NOMAD
exhibits an average gain of around 8.57% while NORMSQD gives 7.84% over spatial
autoregressive error components. This difference in favor of SMA can be explained by shock
affectations. Indeed, in SMA, spatial shock propagations are local’s while in SAR process

5This respectively correspond to the following covariance setup: V1, V2, V3 and V4.
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Figure 2: Estimators Average NOMAD evolution under time and spatial coefficient

they are global’s.

6.3.2 Change in the number of Neighbours

Tables 8, 9 and 10 differ from Table 4 in the number of neighbours J . In Table 8 J = 1,
in Table 4 J = 3, in Table 9 J = 7 and J = 9 in Table 10. The structural parameters
(α1, β11, β12, α2, β21, β22) take the value (−0.5,−2, 1.5,−4,−3, 1.8), the spatial coefficients
(ρ1, ρ2) are fixed at (−0.8,−0.3), and the variance covariance matrix design is fixed at V1.
This means that, the four tables differ only in the degree of sparseness. The non-zero rate
of spatial matrices W1, W3, W7 and W9 are respectively 7.68%, 22.08%, 47.04% and 57.6%
(see their representation in Figure 7).
For one neighbour ahead (W1), results reveal that spatial three stage least squares give better
results than spatial two stages. The average gain in effeciency of NOMAD is 1.64%. And as
the number of neighbours increase i.e. as we move from W1 to W9, this inequality holds (see
Figure 1 column Neighbour).
Comparing SAR and SMA approaches, as we move from Table 8 to Table 10, their NOMAD
and NORMSQD become more close. It seems that when the number of neighbours increases,
this tend to vanish to effect between this two approaches.

6.3.3 Change in time

Tables 4, 11 and 12 deal with the change in temporal size. Indeed, the first table con-
sider T = 7 the second T = 10 and the third T = 15. The structural parameters
(α1, β11, β12, α2, β21, β22), the coefficient of spatial dependence of each equation (ρ1, ρ2) take
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Figure 3: Estimators Average NOMAD evolution in a SMA case

the same values as above and the variance covariance matrix design is fixed at V1. Com-
paring the results from Table 4 to 11 we see that an increase of temporal size leads to (i)
a decrease in NOMAD and NORMSQD in all estimators (see Figure 2 column Time); (ii)
SEC-3SLS are significantly better than SEC-2SLS only in standard deviation and RMSE of
structural parameters.

6.3.4 Change in coefficient of spatial dependence

Tables 13 to 14 show the bias, the standard deviation, the RMSE, the NOMAD and the
NORMSQD based on 1000 replications6. The structural parameters (α1, β11, β12, α2, β21, β22)
take the values (−0.5,−2, 1.5,−4,−3, 1.8), the weighting matrix is fixed at W3, we use the
first covariance design V1 and time dimension is fixed at 7. In this investigation, ρ1 and ρ2

take the same values. In the first table ρl = −0.8, in the second ρl = −0.4, in the third ρl is
null, in the fourth ρl = 0.4 and in the fifth ρl = −0.8. As we see in Figure 2 column ρ when
ρl is negative, RMSE, NOMAD and NORMSQD are progressively decreasing while when
this coefficient changes sign, NOMAD and NORMSQD progressively increase. For ρl = 0,
SEC-3SLS (respectively SEC-2SLS) and EC-3SLS (respectively EC-2SLS) gives the same
standard deviation, RMSE, NOMAD and NORMSQD.

6.3.5 Estimation of the coefficient of spatial dependence

Table 2 contains results on a measure of dispersion relating to the small sample distribution
of our GMM estimator of ρl for each sixteen (16) cases. We applied GMM procedure in

6We only report the first and the last tables. The others are available on request.
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two approaches; in the first, we used residuals of EC-2SLS whereas in the second we used
residuals for EC-3SLS. We note some points.
The absolute average biases are generally similar for ρ̂2SLS and ρ̂3SLS. Error components
3SLS gives better results than 2SLS. Which means that taking into account of simultaneity
can slightly improve the quality of our GMM estimator. For all the weighting matrices
considered in our experiment, as the number of neighbours increases, RMSE proportionaly
increases. When we move from ρl = −0.8 to ρl = 0.8 each RMSE of WJ progressively
decreases to its smallest value. We also study sample properties of our GMM estimators
ρ̂2SLS and ρ̂3SLS for J = 3 under variance covariance designs. Results are similar from the
spatial case (see Figure 4 for a better visualization).

Table 2: Bias and RMSEs of the estimator ρl

Parameter values EC-2SLS EC-3SLS
J ρ Bias ρ2SLS Bias ρ3SLS

One Neighbour
1 -0.8 0.043 0.063 0.043 0.063
1 -0.4 0.013 0.072 0.012 0.071
1 0.4 0.008 0.069 0.008 0.068
1 0.8 0.037 0.059 0.036 0.058

Three Neighbours
3 -0.8 0.023 0.182 0.021 0.183
3 -0.4 0.001 0.170 0.000 0.173
3 0.4 0.016 0.108 0.016 0.108
3 0.8 0.017 0.054 0.016 0.053

Seven Neighbours
7 -0.8 0.029 0.320 0.031 0.313
7 -0.4 0.044 0.271 0.045 0.272
7 0.4 0.040 0.152 0.039 0.149
7 0.8 0.022 0.063 0.022 0.064

Nine Neighbours
9 -0.8 0.053 0.365 0.055 0.356
9 -0.4 0.064 0.319 0.065 0.306
9 0.4 0.050 0.165 0.050 0.163
9 0.8 0.025 0.068 0.025 0.068

7 Health Expenditure and Real Income in SSA

7.1 The Model

No formal theory is available that predicts per capita health care expenditure (HCE) and
economic growth. However, Parkin et al. (1987) developed a theory of national health
expenditure in order to model the purchasing behavior at individual as well as at family levels
The literature on economic growth suggests that investment in human capital particularly
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Figure 4: Spatial coefficient RMSE evolution

on health promotes the economic growth. Barro and Sala-i Martin (1995) argued that
factors such as economic conditions, the level of economic development, and human and
physical capital stock are the driving force of economic growth. Solow (1956) suggests that
simultaneous increase in the level of physical and human capital causes per capita GDP and
increased expenditure on health spurs the economic growth. To examine the dynamics of
health expenditures, non-economic factors such as elderly population age of 65 years and
above have play an important role. Hitiris and Posnett (1992) and O’Connell (1996) found
that a percent of elderly population age of 65 years and above had a significant correlation
with per capita health care expenditure. They used elderly age of 65 and above to show high
potential health care. It can be argued that there exists bidirectional causality relationship
between HCE and economic growth. On one hand, economic growth exerts positive impacted
on HCE and on the other hand, HCE causes economic growth through its impact on the
labor productivity. Taking the lead from the above analytical framework, we specify the
following spatial simultaneous empirical model:







yti = β01 + α1hti + β1fti + β2kti + β3opti + υ1,ti

hti = β02 + α2yti + β4pubti + β5oldti + β6youngti + υ2,ti

(49)

where hti and yti, the dependent variables of the system, respectively indicate, per capita
health care expenditure and real GDP per capita for the ith country at time t; the exogenous
variables of the model f , k, pub, old and young respectively indicate labor force, physical
capital, trade openness, public expenditure on health care, the dependency rates for old and
young people, defined as the population aged 65 and over divided by the population aged
15–64, and the population aged 0–14 divided by the population aged 15–64. All variables
in equation (49) are expressed in natural logarithm. The structural disturbances for each
equation follows a SAR process defined as in equation (2) with l = {1, 2}.

υl = Λlϵl = (I − ρlW )−1ϵl = A−1
l ϵl (50)
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Figure 5: Spatial matrix of 20 SSA countries

Where the nonnegative matrix WN = (ωij), known as spatial weights matrix, provides infor-
mation on the neighborhood linkages among Sub-Saharan African countries. In this study,
we define neighborliness via a contiguity criterion, and assign ωij = 1 when country i and j
share a common border or vertex, and ωij = 0 otherwise. This spatial matrix WN gives a
non-zero rate of 13% (see figure 5). The innovations ϵl follows a one-way error component
model defined as in equation (3)

ϵl = Zηηl + ξl

7.2 Data

We used annual data of 20 SSA countries over the period 1995 to 2015. The data comes from
the World Development Indicators as published by the World Bank (2017). The selected
countries under study and time span are dictated by data availability. Figure 6 displays the
evolution of per capita HCE and per capita GDP for Sub-Saharan African countries.
We first made a preliminary exploratory data analysis this means: check whether our vari-
ables are nonstationary, then test their cointegrating properties and therefore, if they are
linked in the long-run7.

7We found that our variables are nonstationary in level, i.e, they are I(1). And the Johansen cointegration
test reveals that they are cointegrated. For space requirement, results are not plot here but are availabe in
request.
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7.3 Empirical Comments

Table 3 shows results from: Ordinary Least Squares (column 1), Two Stage Least Squares
(column 2), Least Square Dummy Variable 2SLS (column 3), Error component 2SLS (column
4), Error Components 3SLS (column 5), Spatial Error Component 2SLS (column 6) and
Spatial Error Component Three Stage Least Squares (column 7) estimations when income
is the dependent variable in the regression (Equation 1), as well as when health expenditure
is the dependent variable (Equation 2).
Equation 1 reveals the following results. The impact of Health Care Expenditure on per
capita income is negative in SSA; so an increment of 1% in HCE leads to a reduction of
0.037% in per capita GDP. Capital Stock and Trade Openness positively and significantly
affect per capita Income; for example when we focus on 3EC-3SLS, an increase of 1% on
capital stock (respectively Trade Openness) leads ceteris paribus in long run, to an increment
of 0.305% (respectively 0.18%) of per capita GDP. Interestingly, per capita GDP is negatively
affected by Labor force. This can be explaining by the properties of real Income. Indeed,
our dependent variable is per capita GDP this means gross domestic product of a country
divide by the population of the same year. So a negative impact of Labor force on per capita
GDP in Sub-Saharan Africa means that the total quantity value-added by Labor force is less
than the quantity absorbed by the excess of the population in the same period. In others
words, even if Labor force play a positive role on GDP, if the natural growth is significantly
high, it can imply a reduction of per capita GDP.

In the second equation 2 health expenditure is the dependent variable. As we can see, health
care expenditure is positively impact by per capita GDP and the magnitude vary according
to the estimator used. Indeed, a 1% increase in per capita real income leads in long run
to an increase of 0.894% in health care expenditure for 3EC-3SLS and 1.431% in HCE for
2EC-3SLS. Public expenditure positively and significantly affects health expenditure while
old ratio dependency rate and young ratio dependency rate negatively affect Health care
expenditure.
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Figure 6: Health Expenditure and Income versus in SSA

Table 3: Health and Income in SSA SPE-SAR Estimates 1

Variables OLS 2SLS LSDV EC2SLS EC3SLS SEC2SLS SEC3SLS
Real Income

Constant 8.062* 10.664* 0.349 8.445* 10.459* 8.734* 7.048*
(0.433) (0.702) (190.776) (3.279) (2.99) (3.242) (3.258)

Health 0.324* -0.101 -0.099 -0.024 -0.003 -0.019 -0.037
(0.032) (0.087) (0.056) (0.069) (0.064) (0.068) (0.068)

Labour -0.463* -0.804* 0.336* -0.281 -0.45* -0.3 -0.196
(0.034) (0.075) (0.113) (0.234) (0.213) (0.231) (0.232)

Capital 0.424* 0.789* 0.201* 0.288* 0.337* 0.289* 0.305*
(0.033) (0.077) (0.024) (0.031) (0.029) (0.03) (0.03)

Openness 0.255* 0.325* 0.112* 0.181* 0.203* 0.18* 0.18*
(0.049) (0.06) (0.034) (0.034) (0.032) (0.034) (0.032)

Health Expenditure
Constant -5.653* -6.239* -16.314 -11.155* -9.351* -12.004* -6.143*

(0.472) (0.516) (14.198) (0.917) (0.887) (0.868) (1.01)
Income 1.005* 1.064* 2.264* 1.784* 1.663* 1.886* 1.327*

(0.032) (0.038) (0.094) (0.078) (0.073) (0.077) (0.091)
Public 0.583* 0.607* 0.53* 0.673* 0.682* 0.646* 0.528*

(0.044) (0.045) (0.044) (0.042) (0.042) (0.039) (0.041)
Old -0.353* -0.411* -0.604* -0.157 0.134 -0.171 0.256

(0.125) (0.127) (0.21) (0.233) (0.224) (0.213) (0.205)
Young -0.486* -0.242 -1.28* -0.227 -0.226 -0.432 -0.043

(0.184) (0.204) (0.264) (0.262) (0.267) (0.242) (0.255)
1 Simultaneous Panel Equation with Spatial Autoregressive Error.
2 The number in parentheses denotes the standard deviation.
3 * Denote significance at 5% of the parameter.
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8 Conclusion

This paper develops estimation for a simultaneous panel data with spatially autocorrelated
error componenent. For the disturbance, we considered SAR process developped by Kelejian
and Prucha (2004) in which the global effect shock occurs because it is transmitted also to
location that are “neigbours of neighbours” via the power of the spatial matrix. We also
consider SMA process developped by Fingleton (2008) in which a shock at a specific location
will only affect the directly interacting location. We derive a limited information estimator,
termed SEC2SLS estimator, and a full information estimator, termed SEC3SLS. To derive
our spatial error component estimators, we need a procedure which both resolve the endo-
geneity problem and spatial correlation. Thus we combine instrumental variable and spatial
GLS estimator. And the coefficient of the spatial dependence of each equation is therefore
derived by using GMM procedure.
The purpose of our Monte Carlo experiment were threefolds: Firstly, we study the small
sample behavior of our estimators that can handle endogeneity, spatial error correlation
and random individual effects in function of spatial coefficient, contiguity matrix, variance
covariance of specific component and the increase of time. These estimators are compared
with those that may ignore one or more of these symptoms. Secondly, we also investigate
the gains in efficiency by comparing SEC to others estimators. Thirdly, we study the sample
properties of the spatial component ρl in limited and full information cases. Results sug-
gesting many conclusions. Our estimators are consistent. According to RMSE and standard
deviation, SEC3SLS is better than SEC2SLS. When we estimate the coefficient of spatial
dependence it seems better to use IV estimator that takes into account simultaneity. This
means that when it is possible use EC3SLS in lieu of EC2SLS.
Finally, we apply these estimators to real data of 20 Sub-Saharan African countries . We
used these set of estimators to evaluate the modification of the magnitude in the model of
health care expenditure and per capita real income.
In future research it should be of interest to extend the analysis of this paper to the case
that contains spatial lag and spatially autocorrelated error components.
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A Appendix

Table 4: Efficient Criteria under Covariance V1

Method α1 β11 β12 α2 β21 β22 Nomad

Value -0.5 -2.0 1.5 -4 -3.0 1.8 Normsq
Usual Estimators
OLS 0.106 0.851 0.64 0.003 0.002 0 0.194

(0.01) (0.095) (0.077) (0.021) (0.061) (0.056) (0.46)
[0.11] [0.877] [0.662] [0.046] [0.13] [0.119]

2SLS 0.001 0.005 0 0.001 0.004 0.003 0.074
(0.018) (0.153) (0.121) (0.022) (0.062) (0.057) (0.108)
[0.038] [0.332] [0.25] [0.048] [0.129] [0.118]

LSDV 0.001 0.01 0.003 0 0.002 0.002 0.036
(0.019) (0.163) (0.129) (0.023) (0.067) (0.061) (0.052)
[0.018] [0.153] [0.126] [0.021] [0.064] [0.062]

One Way Error Components
2SLS 0.006 0.048 0.04 0 0.002 0.002 0.035

(0.017) (0.144) (0.115) (0.021) (0.061) (0.056) (0.052)
[0.018] [0.153] [0.124] [0.021] [0.064] [0.063]

3SLS 0.007 0.052 0.043 0.001 0.009 0.005 0.035
(0.016) (0.142) (0.111) (0.021) (0.059) (0.051) (0.053)
[0.018] [0.158] [0.123] [0.02] [0.062] [0.058]

SAR Error Components
S2SLS 0.006 0.046 0.039 0 0.001 0.002 0.035

(0.017) (0.145) (0.115) (0.021) (0.061) (0.056) (0.051)
[0.018] [0.152] [0.12] [0.021] [0.064] [0.062]

S3SLS 0.006 0.05 0.041 0.001 0.009 0.005 0.035
(0.016) (0.142) (0.112) (0.021) (0.059) (0.051) (0.052)
[0.018] [0.154] [0.122] [0.02] [0.061] [0.058]

SMA Error Components
S2SLS 0.005 0.037 0.032 0 0.001 0.002 0.032

(0.016) (0.138) (0.11) (0.021) (0.06) (0.055) (0.047)
[0.016] [0.137] [0.112] [0.02] [0.063] [0.062]

S3SLS 0.005 0.04 0.034 0.001 0.007 0.004 0.032
(0.016) (0.136) (0.107) (0.021) (0.058) (0.05) (0.047)
[0.017] [0.141] [0.108] [0.02] [0.06] [0.056]

1 In each cell of columns 2-7, the upper number denotes the bias.
2 The middle one in parentheses denotes the standard deviation.
3 The bottom number denotes the RMSE.
4 In each cell of column 8, the upper number denotes NOMAD.
5 the lower one in parentheses denotes NORMSQD.
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Table 5: Efficient Criteria under Covariance V2

Method α1 β11 β12 α2 β21 β22 Nomad

Value -0.5 -2.0 1.5 -4 -3.0 1.8 Normsq
Usual Estimators
OLS 0.108 0.864 0.649 0.003 0.002 0 0.195

(0.01) (0.095) (0.078) (0.021) (0.062) (0.057) (0.465)
[0.11] [0.885] [0.663] [0.041] [0.112] [0.105]

2SLS 0.001 0.005 0 0.001 0.004 0.003 0.066
(0.018) (0.154) (0.122) (0.022) (0.063) (0.057) (0.096)
[0.033] [0.295] [0.224] [0.044] [0.116] [0.107]

LSDV 0.002 0.015 0.005 0 0.003 0.003 0.051
(0.027) (0.232) (0.184) (0.033) (0.095) (0.086) (0.073)
[0.026] [0.221] [0.176] [0.03] [0.091] [0.088]

One Way Error Components
2SLS 0.009 0.072 0.059 0 0.001 0.002 0.045

(0.021) (0.182) (0.144) (0.027) (0.077) (0.07) (0.069)
[0.023] [0.201] [0.16] [0.026] [0.081] [0.078]

3SLS 0.01 0.076 0.062 0.001 0.013 0.008 0.046
(0.02) (0.177) (0.139) (0.026) (0.075) (0.064) (0.07)
[0.024] [0.207] [0.162] [0.026] [0.08] [0.073]

SAR Error Components
S2SLS 0.009 0.071 0.057 0 0.001 0.002 0.045

(0.021) (0.182) (0.145) (0.027) (0.077) (0.07) (0.067)
[0.023] [0.193] [0.156] [0.026] [0.08] [0.077]

S3SLS 0.009 0.074 0.059 0.001 0.013 0.007 0.045
(0.02) (0.178) (0.14) (0.026) (0.074) (0.064) (0.068)
[0.023] [0.197] [0.16] [0.026] [0.078] [0.073]

SMA Error Components
S2SLS 0.007 0.059 0.049 0 0.001 0.001 0.041

(0.02) (0.174) (0.138) (0.026) (0.076) (0.069) (0.06)
[0.021] [0.175] [0.14] [0.026] [0.079] [0.076]

S3SLS 0.008 0.061 0.05 0.001 0.011 0.006 0.041
(0.02) (0.17) (0.134) (0.026) (0.074) (0.064) (0.062)
[0.022] [0.18] [0.147] [0.026] [0.077] [0.072]

1 In each cell of columns 2-7, the upper number denotes the bias.
2 The middle one in parentheses denotes the standard deviation.
3 The bottom number denotes the RMSE.
4 In each cell of column 8, the upper number denotes NOMAD.
5 the lower one in parentheses denotes NORMSQD.
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Table 6: Efficient Criteria under Covariance V3

Method α1 β11 β12 α2 β21 β22 Nomad

Value -0.5 -2.0 1.5 -4 -3.0 1.8 Normsq
Usual Estimators
OLS 0.11 0.878 0.66 0.01 0.014 0.007 0.193

(0.01) (0.095) (0.078) (0.019) (0.056) (0.052) (0.476)
[0.112] [0.895] [0.671] [0.03] [0.081] [0.075]

2SLS 0.001 0.004 0 0.001 0.002 0.003 0.055
(0.018) (0.154) (0.122) (0.02) (0.057) (0.052) (0.083)
[0.03] [0.262] [0.196] [0.028] [0.081] [0.075]

LSDV 0.002 0.019 0.006 0 0.003 0.004 0.062
(0.033) (0.287) (0.227) (0.04) (0.116) (0.106) (0.089)
[0.031] [0.269] [0.212] [0.036] [0.111] [0.108]

One Way Error Components
2SLS 0.01 0.08 0.064 0 0.001 0 0.047

(0.022) (0.193) (0.154) (0.025) (0.072) (0.065) (0.074)
[0.025] [0.217] [0.174] [0.025] [0.076] [0.069]

3SLS 0.01 0.081 0.065 0.001 0.015 0.01 0.047
(0.022) (0.188) (0.147) (0.024) (0.068) (0.057) (0.074)
[0.026] [0.221] [0.174] [0.025] [0.076] [0.067]

SAR Error Components
S2SLS 0.01 0.078 0.062 0 0.001 0 0.046

(0.022) (0.193) (0.154) (0.025) (0.071) (0.065) (0.072)
[0.025] [0.209] [0.171] [0.025] [0.078] [0.069]

S3SLS 0.01 0.079 0.063 0.001 0.014 0.009 0.046
(0.022) (0.188) (0.147) (0.024) (0.067) (0.057) (0.072)
[0.025] [0.214] [0.169] [0.025] [0.075] [0.065]

SMA Error Components
S2SLS 0.008 0.067 0.054 0 0.001 0 0.043

(0.021) (0.185) (0.148) (0.024) (0.07) (0.064) (0.066)
[0.022] [0.194] [0.156] [0.025] [0.076] [0.068]

S3SLS 0.008 0.067 0.054 0.001 0.012 0.008 0.043
(0.021) (0.181) (0.142) (0.024) (0.067) (0.057) (0.066)
[0.023] [0.192] [0.156] [0.025] [0.073] [0.064]

1 In each cell of columns 2-7, the upper number denotes the bias.
2 The middle one in parentheses denotes the standard deviation.
3 The bottom number denotes the RMSE.
4 In each cell of column 8, the upper number denotes NOMAD.
5 the lower one in parentheses denotes NORMSQD.
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Table 7: Efficient Criteria under Covariance V4

Method α1 β11 β12 α2 β21 β22 Nomad

Value -0.5 -2.0 1.5 -4 -3.0 1.8 Normsq
Usual Estimators
OLS 0.11 0.883 0.663 0.003 0.003 0 0.195

(0.01) (0.095) (0.078) (0.021) (0.063) (0.058) (0.474)
[0.112] [0.892] [0.669] [0.029] [0.084] [0.076]

2SLS 0 0.003 0 0.001 0.003 0.003 0.048
(0.018) (0.155) (0.123) (0.022) (0.064) (0.058) (0.069)
[0.024] [0.212] [0.162] [0.031] [0.085] [0.077]

LSDV 0.002 0.022 0.007 0 0.004 0.005 0.072
(0.038) (0.335) (0.264) (0.046) (0.134) (0.122) (0.103)
[0.036] [0.31] [0.245] [0.042] [0.128] [0.125]

One Way Error Components
2SLS 0.009 0.071 0.056 0 0.001 0.001 0.046

(0.021) (0.183) (0.146) (0.027) (0.078) (0.071) (0.072)
[0.024] [0.213] [0.168] [0.028] [0.082] [0.075]

3SLS 0.009 0.074 0.059 0.001 0.015 0.009 0.046
(0.021) (0.179) (0.14) (0.027) (0.075) (0.065) (0.072)
[0.025] [0.211] [0.17] [0.029] [0.084] [0.073]

SAR Error Components
S2SLS 0.009 0.069 0.055 0 0.001 0.001 0.045

(0.021) (0.182) (0.145) (0.027) (0.078) (0.071) (0.071)
[0.024] [0.207] [0.167] [0.028] [0.082] [0.074]

S3SLS 0.009 0.072 0.057 0.002 0.014 0.009 0.046
(0.021) (0.178) (0.14) (0.027) (0.075) (0.065) (0.071)
[0.024] [0.211] [0.165] [0.029] [0.083] [0.071]

SMA Error Components
S2SLS 0.008 0.06 0.048 0 0.001 0.001 0.042

(0.02) (0.176) (0.14) (0.027) (0.077) (0.07) (0.065)
[0.022] [0.188] [0.154] [0.027] [0.081] [0.073]

S3SLS 0.008 0.062 0.05 0.002 0.013 0.008 0.042
(0.02) (0.172) (0.136) (0.026) (0.074) (0.064) (0.065)
[0.023] [0.192] [0.15] [0.028] [0.081] [0.07]

1 In each cell of columns 2-7, the upper number denotes the bias.
2 The middle one in parentheses denotes the standard deviation.
3 The bottom number denotes the RMSE.
4 In each cell of column 8, the upper number denotes NOMAD.
5 the lower one in parentheses denotes NORMSQD.
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Table 8: Efficient Criteria under Neighbour J=1

Method α1 β11 β12 α2 β21 β22 Nomad

Value -0.5 -2.0 1.5 -4 -3.0 1.8 Normsq
Usual Estimators
OLS 0.189 1.511 1.137 0.027 0.037 0.022 0.333

(0.009) (0.093) (0.08) (0.02) (0.063) (0.058) (1.871)
[0.192] [1.542] [1.158] [0.053] [0.138] [0.131]

2SLS 0.001 0.009 0.02 0.001 0.005 0.004 0.131
(0.04) (0.342) (0.268) (0.023) (0.066) (0.06) (0.204)
[0.069] [0.578] [0.481] [0.051] [0.137] [0.13]

LSDV 0.001 0.014 0.004 0 0.002 0.003 0.062
(0.038) (0.326) (0.258) (0.024) (0.071) (0.065) (0.099)
[0.034] [0.309] [0.247] [0.023] [0.067] [0.065]

One Way Error Components
2SLS 0.026 0.201 0.161 0.001 0.004 0.003 0.071

(0.03) (0.267) (0.213) (0.022) (0.064) (0.059) (0.126)
[0.041] [0.35] [0.288] [0.021] [0.067] [0.064]

3SLS 0.026 0.204 0.162 0 0.016 0.009 0.072
(0.03) (0.259) (0.204) (0.022) (0.062) (0.054) (0.127)
[0.042] [0.355] [0.288] [0.021] [0.07] [0.064]

SAR Error Components
S2SLS 0.019 0.148 0.119 0.001 0.003 0.003 0.061

(0.032) (0.283) (0.226) (0.022) (0.064) (0.059) (0.105)
[0.036] [0.305] [0.238] [0.022] [0.068] [0.064]

S3SLS 0.018 0.142 0.113 0 0.01 0.005 0.06
(0.032) (0.277) (0.219) (0.022) (0.062) (0.055) (0.105)
[0.035] [0.303] [0.242] [0.022] [0.065] [0.061]

SMA Error Components
S2SLS 0.005 0.038 0.032 0 0.001 0.002 0.033

(0.018) (0.156) (0.124) (0.021) (0.061) (0.056) (0.051)
[0.017] [0.149] [0.121] [0.021] [0.064] [0.06]

S3SLS 0.005 0.038 0.032 0.001 0.006 0.003 0.033
(0.018) (0.153) (0.121) (0.021) (0.059) (0.052) (0.051)
[0.017] [0.148] [0.123] [0.02] [0.063] [0.057]

1 In each cell of columns 2-7, the upper number denotes the bias.
2 The middle one in parentheses denotes the standard deviation.
3 The bottom number denotes the RMSE.
4 In each cell of column 8, the upper number denotes NOMAD.
5 the lower one in parentheses denotes NORMSQD.
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Table 9: Efficient Criteria under Neighbour J=7

Method α1 β11 β12 α2 β21 β22 Nomad

Value -0.5 -2.0 1.5 -4 -3.0 1.8 Normsq
Usual Estimators
OLS 0.096 0.768 0.577 0 0.002 0.002 0.176

(0.01) (0.093) (0.075) (0.021) (0.061) (0.055) (0.386)
[0.099] [0.793] [0.595] [0.046] [0.128] [0.118]

2SLS 0.001 0.004 0 0.001 0.004 0.003 0.069
(0.016) (0.14) (0.111) (0.021) (0.061) (0.056) (0.102)
[0.035] [0.31] [0.238] [0.047] [0.126] [0.117]

LSDV 0.001 0.01 0.003 0 0.002 0.002 0.033
(0.017) (0.15) (0.119) (0.023) (0.066) (0.06) (0.047)
[0.017] [0.139] [0.114] [0.021] [0.063] [0.063]

One Way Error Components
2SLS 0.005 0.039 0.033 0 0.001 0.002 0.033

(0.015) (0.134) (0.107) (0.021) (0.06) (0.055) (0.049)
[0.017] [0.141] [0.115] [0.02] [0.063] [0.061]

3SLS 0.006 0.044 0.036 0.001 0.008 0.005 0.033
(0.015) (0.132) (0.103) (0.021) (0.058) (0.05) (0.049)
[0.017] [0.148] [0.115] [0.02] [0.062] [0.056]

SAR Error Components
S2SLS 0.005 0.04 0.034 0 0.001 0.002 0.033

(0.015) (0.134) (0.106) (0.021) (0.06) (0.055) (0.049)
[0.017] [0.142] [0.117] [0.02] [0.063] [0.061]

S3SLS 0.006 0.044 0.037 0.001 0.008 0.005 0.033
(0.015) (0.132) (0.103) (0.021) (0.058) (0.05) (0.049)
[0.017] [0.147] [0.114] [0.02] [0.062] [0.056]

SMA Error Components
S2SLS 0.005 0.038 0.032 0 0.001 0.002 0.032

(0.015) (0.132) (0.105) (0.021) (0.06) (0.055) (0.047)
[0.016] [0.136] [0.113] [0.02] [0.062] [0.06]

S3SLS 0.005 0.042 0.035 0.001 0.008 0.004 0.032
(0.015) (0.13) (0.102) (0.02) (0.058) (0.05) (0.047)
[0.016] [0.137] [0.111] [0.02] [0.061] [0.056]

1 In each cell of columns 2-7, the upper number denotes the bias.
2 The middle one in parentheses denotes the standard deviation.
3 The bottom number denotes the RMSE.
4 In each cell of column 8, the upper number denotes NOMAD.
5 the lower one in parentheses denotes NORMSQD.
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Table 10: Efficient Criteria under Neighbour J=9

Method α1 β11 β12 α2 β21 β22 Nomad

Value -0.5 -2.0 1.5 -4 -3.0 1.8 Normsq
Usual Estimators
OLS 0.095 0.757 0.569 0 0.002 0.002 0.174

(0.01) (0.093) (0.075) (0.021) (0.06) (0.055) (0.381)
[0.098] [0.783] [0.592] [0.045] [0.127] [0.119]

2SLS 0.001 0.005 0 0.001 0.004 0.003 0.069
(0.016) (0.139) (0.11) (0.021) (0.061) (0.056) (0.102)
[0.035] [0.309] [0.241] [0.048] [0.128] [0.118]

LSDV 0.001 0.01 0.003 0 0.002 0.002 0.033
(0.017) (0.149) (0.118) (0.023) (0.066) (0.06) (0.047)
[0.017] [0.14] [0.113] [0.021] [0.063] [0.063]

One Way Error Components
2SLS 0.005 0.038 0.032 0 0.001 0.002 0.032

(0.015) (0.133) (0.105) (0.021) (0.06) (0.055) (0.049)
[0.017] [0.143] [0.116] [0.02] [0.064] [0.06]

3SLS 0.005 0.042 0.036 0.001 0.008 0.005 0.033
(0.015) (0.13) (0.102) (0.021) (0.058) (0.05) (0.049)
[0.017] [0.144] [0.115] [0.02] [0.062] [0.056]

SAR Error Components
S2SLS 0.005 0.039 0.033 0 0.001 0.002 0.033

(0.015) (0.132) (0.105) (0.021) (0.06) (0.055) (0.049)
[0.017] [0.14] [0.117] [0.02] [0.063] [0.06]

S3SLS 0.005 0.043 0.036 0.001 0.008 0.005 0.033
(0.015) (0.13) (0.102) (0.021) (0.058) (0.05) (0.049)
[0.017] [0.145] [0.116] [0.019] [0.062] [0.056]

SMA Error Components
S2SLS 0.005 0.038 0.032 0 0.001 0.002 0.032

(0.015) (0.131) (0.104) (0.021) (0.06) (0.055) (0.047)
[0.016] [0.136] [0.112] [0.02] [0.063] [0.061]

S3SLS 0.005 0.042 0.035 0.001 0.008 0.005 0.032
(0.015) (0.129) (0.101) (0.02) (0.058) (0.05) (0.048)
[0.017] [0.139] [0.114] [0.019] [0.061] [0.056]

1 In each cell of columns 2-7, the upper number denotes the bias.
2 The middle one in parentheses denotes the standard deviation.
3 The bottom number denotes the RMSE.
4 In each cell of column 8, the upper number denotes NOMAD.
5 the lower one in parentheses denotes NORMSQD.
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Table 11: Efficient Criteria for Time T=10

Method α1 β11 β12 α2 β21 β22 Nomad

Value -0.5 -2.0 1.5 -4 -3.0 1.8 Normsq
Usual Estimators
OLS 0.106 0.85 0.641 0.004 0.001 0.004 0.194

(0.009) (0.079) (0.065) (0.017) (0.051) (0.047) (0.463)
[0.109] [0.882] [0.667] [0.047] [0.14] [0.121]

2SLS 0.001 0.009 0.002 0 0.005 0 0.072
(0.015) (0.127) (0.101) (0.018) (0.052) (0.047) (0.107)
[0.036] [0.32] [0.259] [0.046] [0.144] [0.123]

LSDV 0 0.001 0.002 0 0 0.003 0.029
(0.015) (0.132) (0.105) (0.019) (0.055) (0.05) (0.044)
[0.015] [0.134] [0.106] [0.019] [0.058] [0.049]

One Way Error Components
2SLS 0.004 0.035 0.027 0 0.001 0.003 0.029

(0.014) (0.122) (0.097) (0.018) (0.052) (0.047) (0.045)
[0.015] [0.135] [0.106] [0.019] [0.056] [0.049]

3SLS 0.005 0.039 0.029 0.001 0.008 0.003 0.029
(0.014) (0.12) (0.094) (0.018) (0.05) (0.043) (0.045)
[0.015] [0.135] [0.107] [0.02] [0.056] [0.047]

SAR Error Components
S2SLS 0.004 0.034 0.025 0 0.001 0.003 0.029

(0.014) (0.122) (0.097) (0.018) (0.052) (0.047) (0.043)
[0.015] [0.132] [0.102] [0.019] [0.056] [0.049]

S3SLS 0.005 0.037 0.028 0.001 0.007 0.003 0.029
(0.014) (0.12) (0.094) (0.018) (0.05) (0.043) (0.044)
[0.015] [0.135] [0.105] [0.02] [0.057] [0.047]

SMA Error Components
S2SLS 0.003 0.027 0.02 0 0.001 0.003 0.027

(0.013) (0.115) (0.092) (0.017) (0.051) (0.046) (0.04)
[0.014] [0.121] [0.095] [0.019] [0.055] [0.048]

S3SLS 0.004 0.03 0.021 0.001 0.006 0.002 0.027
(0.013) (0.114) (0.09) (0.017) (0.049) (0.042) (0.04)
[0.013] [0.123] [0.095] [0.02] [0.055] [0.046]

1 In each cell of columns 2-7, the upper number denotes the bias.
2 The middle one in parentheses denotes the standard deviation.
3 The bottom number denotes the RMSE.
4 In each cell of column 8, the upper number denotes NOMAD.
5 the lower one in parentheses denotes NORMSQD.
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Table 12: Efficient Criteria for Time, T=15

Method α1 β11 β12 α2 β21 β22 Nomad

Value -0.5 -2.0 1.5 -4 -3.0 1.8 Normsq
Usual Estimators
OLS 0.106 0.85 0.641 0.004 0.001 0.004 0.194

(0.009) (0.079) (0.065) (0.017) (0.051) (0.047) (0.463)
[0.109] [0.882] [0.667] [0.047] [0.14] [0.121]

2SLS 0.001 0.009 0.002 0 0.005 0 0.072
(0.015) (0.127) (0.101) (0.018) (0.052) (0.047) (0.107)
[0.036] [0.32] [0.259] [0.046] [0.144] [0.123]

LSDV 0 0.001 0.002 0 0 0.003 0.029
(0.015) (0.132) (0.105) (0.019) (0.055) (0.05) (0.044)
[0.015] [0.134] [0.106] [0.019] [0.058] [0.049]

One Way Error Components
2SLS 0.004 0.035 0.027 0 0.001 0.003 0.029

(0.014) (0.122) (0.097) (0.018) (0.052) (0.047) (0.045)
[0.015] [0.135] [0.106] [0.019] [0.056] [0.049]

3SLS 0.005 0.039 0.029 0.001 0.008 0.003 0.029
(0.014) (0.12) (0.094) (0.018) (0.05) (0.043) (0.045)
[0.015] [0.135] [0.107] [0.02] [0.056] [0.047]

SAR Error Components
S2SLS 0.004 0.034 0.025 0 0.001 0.003 0.029

(0.014) (0.122) (0.097) (0.018) (0.052) (0.047) (0.043)
[0.015] [0.132] [0.102] [0.019] [0.056] [0.049]

S3SLS 0.005 0.037 0.028 0.001 0.007 0.003 0.029
(0.014) (0.12) (0.094) (0.018) (0.05) (0.043) (0.044)
[0.015] [0.135] [0.105] [0.02] [0.057] [0.047]

SMA Error Components
S2SLS 0.003 0.027 0.02 0 0.001 0.003 0.027

(0.013) (0.115) (0.092) (0.017) (0.051) (0.046) (0.04)
[0.014] [0.121] [0.095] [0.019] [0.055] [0.048]

S3SLS 0.004 0.03 0.021 0.001 0.006 0.002 0.027
(0.013) (0.114) (0.09) (0.017) (0.049) (0.042) (0.04)
[0.013] [0.123] [0.095] [0.02] [0.055] [0.046]

1 In each cell of columns 2-7, the upper number denotes the bias.
2 The middle one in parentheses denotes the standard deviation.
3 The bottom number denotes the RMSE.
4 In each cell of column 8, the upper number denotes NOMAD.
5 the lower one in parentheses denotes NORMSQD.
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Table 13: Efficient Criteria for ρl=-0.8

Method α1 β11 β12 α2 β21 β22 Nomad

Value -0.5 -2.0 1.5 -4 -3.0 1.8 Normsq
Usual Estimators
OLS 0.105 0.844 0.634 0.001 0.006 0.004 0.194

(0.01) (0.096) (0.078) (0.023) (0.069) (0.063) (0.455)
[0.109] [0.873] [0.658] [0.051] [0.143] [0.135]

2SLS 0.001 0.005 0 0.001 0.005 0.003 0.076
(0.018) (0.153) (0.121) (0.024) (0.069) (0.063) (0.109)
[0.038] [0.333] [0.249] [0.053] [0.149] [0.136]

LSDV 0.001 0.01 0.003 0 0.003 0.003 0.037
(0.019) (0.163) (0.129) (0.026) (0.075) (0.068) (0.052)
[0.018] [0.154] [0.126] [0.023] [0.073] [0.07]

One Way Error Components
2SLS 0.006 0.047 0.039 0 0.002 0.002 0.036

(0.017) (0.144) (0.115) (0.023) (0.068) (0.062) (0.053)
[0.018] [0.152] [0.124] [0.023] [0.07] [0.067]

3SLS 0.007 0.052 0.043 0.001 0.01 0.006 0.036
(0.016) (0.142) (0.111) (0.023) (0.066) (0.056) (0.053)
[0.019] [0.159] [0.123] [0.023] [0.068] [0.065]

SAR Error Components
S2SLS 0.006 0.046 0.038 0 0.002 0.002 0.035

(0.017) (0.145) (0.115) (0.023) (0.068) (0.062) (0.052)
[0.018] [0.151] [0.12] [0.023] [0.069] [0.067]

S3SLS 0.006 0.05 0.041 0.001 0.009 0.005 0.035
(0.016) (0.142) (0.112) (0.023) (0.066) (0.057) (0.052)
[0.018] [0.154] [0.121] [0.023] [0.068] [0.063]

SMA Error Components
S2SLS 0.005 0.037 0.032 0 0.002 0.002 0.032

(0.016) (0.138) (0.11) (0.022) (0.065) (0.059) (0.048)
[0.017] [0.137] [0.112] [0.021] [0.065] [0.062]

S3SLS 0.005 0.04 0.034 0.001 0.007 0.004 0.032
(0.016) (0.135) (0.106) (0.022) (0.063) (0.054) (0.047)
[0.017] [0.14] [0.108] [0.021] [0.062] [0.059]

1 In each cell of columns 2-7, the upper number denotes the bias.
2 The middle one in parentheses denotes the standard deviation.
3 The bottom number denotes the RMSE.
4 In each cell of column 8, the upper number denotes NOMAD.
5 the lower one in parentheses denotes NORMSQD.
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Table 14: Efficient Criteria for ρl=0.8

Method α1 β11 β12 α2 β21 β22 Nomad

Value -0.5 -2.0 1.5 -4 -3.0 1.8 Normsq
Usual Estimators
OLS 0.137 1.099 0.824 0 0.002 0.002 0.252

(0.011) (0.101) (0.084) (0.029) (0.088) (0.081) (0.715)
[0.139] [1.118] [0.833] [0.068] [0.174] [0.153]

2SLS 0.001 0.005 0.006 0 0.003 0.002 0.092
(0.023) (0.201) (0.16) (0.031) (0.09) (0.082) (0.127)
[0.042] [0.373] [0.302] [0.066] [0.173] [0.154]

LSDV 0.002 0.015 0.006 0.002 0.002 0 0.057
(0.029) (0.252) (0.199) (0.039) (0.115) (0.105) (0.082)
[0.03] [0.25] [0.192] [0.036] [0.11] [0.102]

One Way Error Components
2SLS 0.012 0.094 0.072 0.002 0.003 0.001 0.054

(0.023) (0.205) (0.163) (0.034) (0.098) (0.089) (0.082)
[0.028] [0.236] [0.189] [0.033] [0.101] [0.096]

3SLS 0.013 0.103 0.078 0.004 0.025 0.015 0.054
(0.023) (0.197) (0.155) (0.033) (0.093) (0.08) (0.084)
[0.029] [0.245] [0.189] [0.033] [0.104] [0.084]

SAR Error Components
S2SLS 0.009 0.074 0.06 0.001 0.001 0.001 0.051

(0.024) (0.211) (0.168) (0.034) (0.099) (0.091) (0.079)
[0.029] [0.231] [0.183] [0.032] [0.095] [0.088]

S3SLS 0.01 0.08 0.062 0.003 0.019 0.012 0.051
(0.024) (0.206) (0.162) (0.034) (0.096) (0.083) (0.08)
[0.028] [0.229] [0.187] [0.032] [0.099] [0.081]

SMA Error Components
S2SLS 0.004 0.034 0.029 0.001 0 0.001 0.033

(0.015) (0.135) (0.107) (0.022) (0.063) (0.057) (0.049)
[0.017] [0.145] [0.117] [0.02] [0.068] [0.058]

S3SLS 0.005 0.039 0.031 0.001 0.009 0.005 0.033
(0.015) (0.132) (0.104) (0.022) (0.061) (0.052) (0.049)
[0.017] [0.147] [0.116] [0.021] [0.067] [0.056]

1 In each cell of columns 2-7, the upper number denotes the bias.
2 The middle one in parentheses denotes the standard deviation.
3 The bottom number denotes the RMSE.
4 In each cell of column 8, the upper number denotes NOMAD.
5 the lower one in parentheses denotes NORMSQD.
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