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Abstract

The aim of this article is to present a new tool for assessing TU-game based on a
matrix representation. We focus on TU-games with coalition structures and provide a
general matrix form of TU-game. We shed light on some useful properties of the matrix
representation of TU-game and the general form obtained is applied to describe the
representation for some classical TU-game. The facilities provided by such a representa-
tion are used to characterize subclasses of Linear Efficient and Symmetric (LES) values.
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1 Introduction and notations

A cooperative game in the transferable utility form (or a coalitional game with side
payments, or simply a TU-game) is any (N, v), where N is a finite set (of players) with
at least two elements, and v : 2N → R is an application called the characteristic function
satisfying v(∅) = 0. A nonempty subset S of N is called a coalition while v(S) is the
worth of the coalition S. For any set of players N , n is the number of players (or the
cardinality of N). Given such a set N , we denote by Γ(N) the set of all TU-games (N, v).
It is well known that Γ(N) is a 2n − 1 dimensional linear space.

A value on Γ(N) is a function ψ that assigns a single payoff vector (ψi(N, v))i∈N ∈ R
n

to every game (N, v). (ψi(N, v))i∈N is a distribution of the total wealth available to all
the players through their participation in the game (N, v).

A famous solution value for TU-games, Shapley value, is widely used in economic
modeling. Its axiomatization are provided in theoritical game analysis, from which three
main characteristic axioms relate to linearity, efficiency and symmetry. Moreover, the
class of values which verify the three properties is wide, playing an essential role in TU-
games theoretical litterature. Among other members of this class of LES values, we can
cite the Solidarity value (Nowak and Radzik, 1994), Egalitarian value (Van Den Brink,
2007), Equal surplus value (Driessen and Funaki, 1991), Consensus value (Ju, Born and
Ruys, 2007) etc.

A value ψ on Γ(N) is said to be linear if ψi(N,αv+βw) = αψi(N, v)+βψi(N,w) for all
games (N, v), (N,w), for all player i ∈ N and for all α, β ∈ R. ψ on Γ(N) is symmetric
if for all games (N, v) and for any automorphism π of v, ψi(N, v) = ψπ(i)(N, πv). A
value ψ on Γ(N) possesses the efficiency property if

∑

i∈N ψi(N, v) = v(N). A value ψ
is covariant if ψi(N,w) = kψi(N,w) + pi for every (N, v) ∈ Γ(N), k ∈ R+ and p ∈ R

n

where w is given by w(S) = kv(S) +
∑

j∈S pj for all S ⊆ N .

The main purpose of our note is to propose a matrix representation for LES values
computation in TU-games. We start with the representation formula of LES values
found in Ruiz et al. (1998) and Chameni and Andjiga (2008) which establishes some one
to one correspondence between LES values and collections of n−1 constants where n is
the number of the player in the TU-game. It turns out that the matrix representation we
provide, is a very useful and convenient tool in computation of LES values, analyzing
LES values and TU-games. We show that many of the properties of TU-games and
LES values can be obtained using very simple conditions on the matrix representation.

The paper is organized as follows. In Section 2 we state some preliminaries on LES
values and give the matrix representation of such values. The properties of matrix are
studied. In Section 3 we show how using the matrix representation can be usefull in
analysing TU-games and LES values. We illustrate it by characterizing some well-
kwown class of TU-games and LES values. Finally Section 4 contains some concluding
remarks.
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2 Parameterization of LES values and matrix

representation

To start with, we quote a result about the parametric representation for LES.
Proposition 2.1. Consider a set of player N of cardinality n and Γ(N) the set of all
transferable utility games (N, v). Then the following statements, for a value ψ on Γ(N),
are equivalent :

1) ψ is a LES value on Γ(N).

2) There exists a unique collection of n− 1 constants a(s)n−1
s=1 such that, for any i ∈ N ,

ψi(N, v) =
v(N)

n
+

n−1
∑

s=1

a(s)

[

(n− s)!(s− 1)!

n!

∑

S∋i

v(S)−
(n− s− 1)!s!

n!

∑

i/∈S

v(S)

]

(1)

3) There exists a unique collection of n constants a(s)ns=1 with a(n) = 1, such that, for
any i ∈ N ,

ψi(N, v) =
∑

S∋i

(n− s)!(s− 1)!

n!
[a(s)v(S)− a(s− 1)v(S\i)] . (2)

Remark 2.1. It is easy to see that the formula given in (1) generalizes the classical
Shapley value. The marginal contribution term v(s) − v(S\i) is replaced by a weighted
marginal contribution a(s)v(s)− a(s− 1)v(S\i).

In the literature the formula defined in (2) is attributed to Ruiz et al. (1998) who
had established an equivalent expression. But the current form of the formula appeared
very recently in the literature (see Chameni and Andjiga (2008), Radzick and Driessen
(2013)) for the sake of getting closer to the classical Shapley value expression. We refer
the lector to Chameni (2012) for the economic interpretation of the coefficient a(s)n−1

s=1 .

Corollary 2.1. Let (N, v) be a TU-game of Γ(N) and ψ any LES value on Γ(N), if
we set for any player i ∈ N and for any k with 1 ≤ k ≤ n− 1,

tk(i) =
(n− k)!(k − 1)!

n!

∑

S∋i;|S|=k

v(S)−
(n− k − 1)!k!

n!

∑

S 6∋i;|S|=k

v(S) (3)

Then, ψi(N, v) =
v(N)
n

+
∑n−1

k=1 aψ(k)tk(i)

where aψ(k)
n−1
k=1 is the collection of constants in the representation of the LES value ψ

given by (1).

Proposition 2.2. (Matrix representation of TU-game and LES value)

Consider a TU-game (N, v) of Γ(N) and ψ any LES value on Γ(N), if we set for any
player i ∈ N and for any k with 1 ≤ k ≤ n− 1,

tk(i) =
(n−k)!(k−1)!

n!

∑

S∋i;|S|=k v(S)−
(n−k−1)!k!

n!

∑

S 6∋i;|S|=k v(S).
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Then we have the matrix representation,











ψ1(v)
ψ2(v)

...
ψn(v)











=











v(N)
n

v(N)
n
...

v(N)
n











+







t1(1) · · · t1(n− 1)
...

. . .
...

tn(1) · · · tn(n− 1)

















aψ(1)
aψ(2)

...
aψ(n− 1)











. (4)

In the sequel, for any TU-game (N, v) ∈ Γ(N) the matrix representation in (4) is

denoted Mv =
(

(tik) i=1...n
k=1...n−1

)

and it is called the matrix of the game (N, v) while the

vector Aψ =











aψ(1)
aψ(2)

...
aψ(n− 1)











is called the associated vector of the value ψ.

It is worth noting that each LES value is characterized by its associated vector while
the link between a game and its matrix is not a one to one correspondence. It is easy to
see that two different TU-games may have the same matrix. For more details we give
some properties of the matrix of the game below. In this regard let us introduce a new
subclass of TU-game.

Definition 2.1. A TU-game (N, v) is said to be weakly symmetric if for all players
i, j ∈ N and for all k with 1 ≤ k ≤ n,

∑

S∋i;|S|=k

v(S) =
∑

S∋j;|S|=k

v(S) (5)

The economic interpretation of a weakly symmetric game is done as follow : in a
TU-game (N, v) the productivity of a player i is evaluated by the production vector

u(i) = (uk(i)k=1,2,...,n−1) where uk(i) =
∑

S∋i,|S|=k

v(S) (6)

Then, a weakly symmetric game is a game where all the players have the same level
of productivity. The reason why the term weakly is used is that all symmetric games
(i.e. games (N, v) such that v(S) = v(T ) iff |T |= |S|), are weakly symmetric. Thus, any
additive game (N, v) with v(i) = v(j) for all players i, j ∈ N , is weakly symmetric.

Properties of the matrix Mv

Consider a TU-game (N, v) and a set of any player i ∈ N and for any k with

1 ≤ k ≤ n− 1, tk(i) =
(n−k)!(k−1)!

n!

∑

S∋i;|S|=k v(S)−
(n−k−1)!k!

n!

∑

S 6∋i;|S|=k v(S).

Property 1 : tk(i) =
mik−mk

n−k
= mik−mik

n
, for all k with 1 ≤ k ≤ n− 1

where :
mik = mean of worths of all coalitions size k containing player i.
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mk = mean of worths of all coalitions size k.
mik = mean of worths of all coalitions size k non containing player i.

Property 2 : Each column entries of the matrix Mv sum to zero and each LES value
is obtained as linear combination of vectors column plus the egalitarian value E
(where E(N, v) = V (N)

n
for all i ∈ N).

Property 3 : The application H defined by H(N, v) =Mv verifies :

a) H is a linear transformation.

b) The kernel of H is formed by the familly of weakly symmetric games. In other
words Mv = 0 iff (N, v) is a weakly symmetric game.

c) For two TU-games (N, v) and (N,w) in Γ(N), Mv =Mw iff there exist a weakly
symmetric game (N, u) such that w=v+u.

Proof: See Appendix.

Definition 2.2. Two TU-games (N, v) and (N,w) are said to be similar if their res-
pective matrix Mv and Mw coincide, that is Mv =Mw.

Note that the binary relation ∼ defined in Γ(N) by (N, v) ∼ (N,w) iff (N, v) and
(N,w) are similar, is an equivalent relation. In other words, the relation ∼ satisfies :
reflexivity, symmetry and transitivity.

The next proposition sheds light on the cosets of the equivalence relation.

Proposition 2.3. Let (N, v) and (N,w) be any TU-games. Then the following state-
ments are equivalent :

1) (N, v) and (N,w) are similar.

2) There exists a weakly symmetric game (N, u) such that v = w + u.

3) For any LES value ϕ and for any player i ∈ N , ϕi(N, v)−
V (N)
n

= ϕi(N,w)−
w(N)
n

.

Proof: See Appendix.

3 Applications

In this section we study the matrix representation for some classical TU-games. We
use the facilities provided by the representation to characterize subclasses of values.

3.1 Matrix representation of some classical TU-games

3.1.1 Characteristic game

The characteristic game of a coalition T ⊆ N is the game vT (S) =

{

1 if S = T ,
0 otherwise.
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The set of all characteristic games {vT (S), T ⊆ N, T = ∅} constitutes a base of Γ(N).
If we suppose that T = {1, 2, ..., t}, the matrix of the game vT is of the form :

MvT =



























1 · · · t− 1 t t+ 1 · · · n− 1

1 0 · · · 0 1

(n−1

t−1
)

0 · · · 0

...
... 0

...
...

... 0
...

t 0 · · · 0 1

(n−1

t−1
)

0 · · · 0

t+ 1 0 · · · 0 −1

(n−1

t )
0 · · · 0

...
... 0

...
...

... 0
...

n 0 · · · 0 −1

(n−1

t )
0 · · · 0



























(7)

3.1.2 Unanimity game

Another famous basis of TU-game consist of unanimity games. Unanimity game as-

sociated to a coalition T ⊆ N is defined by vT (S) =

{

1 if T ⊆ S,
0 otherwise.

The matrix of unanimity game vT is given by :

MvT (i, k) =



















0 if k < t,

( 1
n
)
(n−t

k−t)
(n−1

k−1
)

if k ≥ t and i ∈ T

( 1
n
)
(n−t−1

k−t−1
)

(n−1

k−1
)

− ( 1
n
)
(n−t−1

k−t )
(n−1

k−1
)

if k ≥ t and i /∈ T

(8)

3.1.3 Additive game

A game (N, v) is additive or inessential if for all S ⊆ N , v(S)=
∑

i∈S v(i).

If a game (N, v) is additive then the terms of it matrix Mv are :

Mv(i, k) =
v(i)

n
−

∑

j 6=i v(j)

n(n− 1)
=

∑n
j=1(v(i)− v(j))

n(n− 1)
(9)

It is worth noting that in this case, Mv(i, k) is independent to k, which also means
that the n− 1 columns of the matrix are identical. Besides, the following result holds :

Proposition 3.1. Let ϕ be any LES value on Γ(N). Then, the following statements
are equivalent :

1) ϕ is covariant.

2) For any additive game (N, v) and for any i ∈ N , ϕi(N, v) = v(i).

3) The associated vector











aψ(1)
aψ(2)

...
aψ(n− 1)











of the value ϕ is such that
∑n−1

k=1 aϕ(k) = n−1.
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Note that, the result stated in proposition 3.1 is already obtained in Chameni and
Andjiga (2008). However, here the proof is easily obtained by using the matrix repre-
sentation of TU-game.

Proposition 3.2. If M is a n× (n− 1) matrix with all its n− 1 columns identical and
each column entries sum to zero, then there exists an additive game (N, v) such that
Mv =M .

Proposition 3.3. The n−1 columns of a matrix Mv of a TU-game (N, v) are identical
iff there exists an additive game (N,w) such that (N, v) and (N,w) are similar.

Proof: See Appendix.

3.1.4 Weakly symmetric game

In this subsection, we use previous results to give a general characterization of weakly
symmetric games.

Proposition 3.4. For any TU-game (N, v), the following statements are equivalent.

1) (N, v) is weakly symmetric.

2) Mv=0.

3) For any LES value ϕ and φ, for any player i ∈ N , ϕi(N, v) = φi(N, v).
In other words, all LES values coincide in (N, v).

4) For any player i ∈ N , for any LES value φ, φi(N, v) =
V (N)
n

.

Proof: See Appendix.

3.1.5 Weakly Linear game (Freixas, 2010)

Let (N, v) be a TU-game. For any player i ∈ N we consider the vector u(i) defined
in (6) whose components are respectively uk(i). Clearly, the process defines a func-
tion u : N → R

n−1. Therefore, the binary relation <u defined by i <u j iff for all k,
k = 1, 2, · · · , n− 1, uk(i) ≥ uk(j) is a preordering in N that is not always complete.

Note that, generaly speaking, the canonical preordering defined in R
n by :











x1
x2
...
xn











≤











y1
y2
...
yn











iff xi ≤ yi for all i = 1, 2, · · · , n, is not a complete preordering

in R
n. However, it could be the case in particular subsets on R

n.

Definition 3.1. A TU-game (N, v) is weakly linear if the binary relation <u is a com-
plete preordering in N .

Definition 3.2. Consider a TU-game (N, v) and let <1 and <2 be two binary relations
in N that are preordering. We say that <1 and <2 are compatible if, for all i, j ∈ N ,
i ≻1 j ⇒ i <2 j and i ≻2 j ⇒ i <1 j
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Note that, two preordering <1 and <2 are compatible does not necessarely means
that they coincide, since it is possible to obtain i ≻1 j and i ∼2 j. However, if the
compatibility holds, the two preordering can not opposite.

Proposition 3.5. For any TU-game (N, v), the following statements are equivalent.

1) (N, v) is weakly Linear.

2) The canonical preordering of Rn−1 is complete in the set of the n vectors line of Mv.

3) All the n − 1 preordering <k (k = 1, 2, · · · , n − 1) defined in N by : i <k j iff
Mv(i, k) ≥Mv(j, k) are compatible.

Proof: See Appendix.

4 Concluding remark

In this article, we have proposed a matrix representation of TU-games which is a
useful tool for handling such cooperative games and computing LES values. We have
shown that many of the properties of TU-games and LES values can be obtained using
very simple conditions on the matrix representation. In particular a new class of TU-
games have been introduced, the so called weakly symmetric game. This class of game
contains the subclass of symmetric games and the question at this stage is whether the
two classes of game coincide. It is easy to observe that in games of small size (n < 5),
weakly symmetric game and symmetric game coincide. However for games of large size
(n ≥ 5) the question is still pending.

5 Appendix

Proof of properties

Property 1

a) We show that, for 1 ≤ k ≤ n− 1, tk(i) =
mik−mik

n

tk(i) =
(n− k)!(k − 1)!

n!

∑

S∋i;|S|=k

v(S)−
(n− k − 1)!k!

n!

∑

S 6∋i;|S|=k

v(S)

=
1

n
[
(n− k)!(k − 1)!

(n− 1)!

∑

S∋i;|S|=k

v(S)]−
1

n
[
(n− k − 1)!k!

(n− 1)!

∑

S 6∋i;|S|=k

v(S)]

=
1

n
[

1
(

n−1
k−1

)

∑

S∋i;|S|=k

v(S)−
1

(

n−1
k

)

∑

S 6∋i;|S|=k

v(S)]

=
1

n
(mik −mik).
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b) We show that, tk(i) =
mik−mk

n−k

tk(i) =
(n− k)!(k − 1)!

n!

∑

S∋i;|S|=k

v(S)−
(n− k − 1)!k!

n!

∑

S 6∋i;|S|=k

v(S)

=
(n− k)!(k − 1)!

(n)!

∑

S∋i;|S|=k

v(S)−
(n− k − 1)!k!

(n)!
[
∑

|S|=k

v(S)−
∑

S∋i;|S|=k

v(S)]

=
(n− k)!(k − 1)! + (n− k − 1)!k!

(n)!

∑

S∋i;|S|=k

v(S)−
(n− k − 1)!k!

(n)!

∑

|S|=k

v(S)

=
(n− k − 1)!(k − 1)!

(n− 1)!

∑

S∋i;|S|=k

v(S)−
(n− k)!k!

(n− k)n!

∑

|S|=k

v(S)

=
1

(n− k)
[
(n− k − 1)!(k − 1)!

(n− 1)!

∑

S∋i;|S|=k

v(S)−
(n− k)!k!

(n− k)n!

∑

|S|=k

v(S)]

=
mik −mk

n− k
.

Property 2
We show that, for all k, column k entries sum to zero,

n
∑

i=1

mik −mk

n− k
=

1

(n− k)
[
n

∑

i=1

mik − nmk]

=
1

(n− k)
[
n

∑

i=1

1
(

n−1
k−1

)

∑

S∋i;|S|=k

v(S)− nmk]

=
1

(n− k)
[

1
(

n−1
k−1

)

n
∑

i=1

∑

S∋i;|S|=k

v(S)− nmk]

=
1

(n− k)
[

1
(

n−1
k−1

)

∑

|S|=k

v(S)− nmk]

=
1

(n− k)
[nmk − nmk] = 0.

Property 3

a) H(αv + βw) =Mαv+βw For all i ∈ N and 1 ≤ k ≤ n− 1,
Mαv+βw(i, k) =

1
(n−k)

[ 1

(n−1

k−1
)

∑

S∋i;|S|=k(αv+βw)(S)−
1

(n−1

k )

∑

|S|=k(αv+βw)(S)]

= [ 1

(n−1

k−1
)

∑

S∋i;|S|=k αv(S) −
1

(n−1

k )

∑

|S|=k αv(S)] + [ 1

(n−1

k−1
)

∑

S∋i;|S|=k βw(S) −

1

(n−1

k )

∑

|S|=k βw(S)]

= αMv(i, k) + βMw(i, k)
⇒Mαv+βw = αMv + βMw = αH(v) + βH(w).

b) If (N, v) is weakly symmetric, then
∑

S∋i;|S|=k v(S) =
∑

S∋j;|S|=k v(S) for all
i, j ∈ N and for all 1 ≤ k ≤ n − 1, thus for all i ∈ N , and for all k,
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1 ≤ k ≤ n− 1, we have :
If we set N = {i, j1, j2, · · · , jn−1},
∑

S∋i;|S|=k v(S) =
∑

S∋i;|S|=k v(S)
∑

S∋i;|S|=k v(S) =
∑

S∋j1;|S|=k
v(S)

...
...
∑

S∋i;|S|=k v(S) =
∑

S∋jn−1
; |S| = kv(S), where N = {i, j1, j2, · · · , jn−1}

Summing each side of the equations leads to :
n
∑

S∋i;|S|=k v(S) =
∑

j∈N

∑

S∋j;|S|=k v(S)

⇒ n
∑

S∋i;|S|=k v(S) = k
∑

|S|=k v(S) ⇒
1

(n−1

k−1
)

∑

S∋i;|S|=k =
k

n(n−1

k−1
)

∑

|S|=k

⇒ mi,k = mk ⇒ mi,k −mk = 0
⇒ For all i ∈ N , for all 1 ≤ k ≤ n− 1, Mv(i, k) = 0 ⇒Mv = 0

Conversely, suppose that (N, v) is such that Mv=0.
⇒ for all i ∈ N , and for all 1 ≤ k ≤ n− 1, Mv(i, k) = 0
⇒ for all i ∈ N , and for all 1 ≤ k ≤ n, mi,k = mk ⇒ mi,k = mj,k = mk for
all i, j ∈ N , and for all 1 ≤ k ≤ n− 1 ⇒ (N, v) is weakly linear.

Proof of proposition 2.3
(1) ⇒ 2)) Suppose that (N, v) and (N,w) are two similar TU-games ⇒ Mv = Mw ⇒
Mv−w = 0. Setting u = v − w, we have Mu = 0 ⇒ (N, u) is weakly symmetric
⇒ v = w + u, with u weakly symmetric.
(2) ⇒ 3)) Suppose (N, v) and (N,w) are such that v = w+u with u a weakly symmetric
game ⇒ Mv = Mw+u = Mw +Mu = Mw + 0 = Mw, thus the matrix representation
implies ϕi(N, v)−

V (N)
n

= ϕi(N,w)−
w(N)
n

for any LES value ϕ and for any i ∈ N .
(3) ⇒ 1)) Consider Mv and Mw the matrix of (N, v) and (N,w). According to property

(3)), for any vector











a1
a2
...

an−1











∈ R
n−1, we have Mv











a1
a2
...

an−1











= Mw











a1
a2
...

an−1











⇒

Mv =Mw ⇒ (N, v) and (N,w) are similar.

Proof of proposition 3.1
(1) ⇒ 2)) Obvious from definition of covariant value.
(2) ⇒ 3)) According to the matrix representation of an additive game, we have :

ϕi(N, v) =
V (N)
n

+
∑n−1

k=1 ak

(

v(i)
n

−
∑

j 6=i v(j)

n−1

)

= v(i) for all v(j) ∈ R

⇒ v(i)
n

∑n−1
k=1 ak −

∑
j 6=i v(j)

(n−1)n

∑n−1
k=1 ak = v(i)− v(i)

n
−

∑
j 6=i v(j)

n
for all v(j) ∈ R

⇒ v(i)
∑n−1

k=1
ak

n
−

∑
j 6=i v(j)

n

∑n−1

k=1
ak

n−1
= n−1

n
v(i)−

∑
j 6=i v(j)

n

⇒
∑n−1

k=1
ak

n
= n−1

n
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⇒
∑n−1

k=1 ak = n− 1.
(3) ⇒ 1)) (See corollary 2 in Chameni and Andjiga, 2008).

Proof of proposition 3.2
Suppose that M is a n × (n − 1) matrix with the n − 1 columns identical and each
column entries sum to zero. Setting E = {(x1, x2, · · · , xn) ∈ R

n/
∑n

i=1 xi = 0}.

It is clear that E is a hyperplane of Rn, thus dimE = n− 1 and every column of M

belongs to E. Now, suppose that X =











x1
x2
...
xn











is equal to the n− 1 identical columns

of M .

We have to prove that, there exists an additive TU-game (N, v) such that,Mv =M ⇔

there exists v(1), v(2), · · · , v(n) such that v(i)
n

−
∑

j 6=i v(j)

n(n−1)
= xi for all i = 1, 2, · · · , n (1)

(1) ⇔ 1
n











1 − 1
n−1

· · · − 1
n−1

− 1
n−1

1 · · · − 1
n−1

...
...

. . .
...

− 1
n−1

− 1
n−1

· · · 1





















v(1)
v(2)

...
v(n)











=











x1
x2
...
xn











Consider F the subspace of Rn generated by the n columns of the matrix A such
that :

A =











1 − 1
n−1

· · · − 1
n−1

− 1
n−1

1 · · · − 1
n−1

...
...

. . .
...

− 1
n−1

− 1
n−1

· · · 1











= − 1
n−1











−n− 1 1 · · · 1
1 −n− 1 · · · 1
...

...
. . .

...
1 1 · · · −n− 1











To obtain the exixtence of v(1), v(2), · · · , v(n), it is sufficient to prove that E = F .
Since F ⊆ E, we need only to prove that dimF = rank(A) = n− 1 = dimE.

Let us prove that rank(A) = n− 1 by induction on n.

If n = 2

A =

(

−1 +1
+1 −1

)

⇒ rank(A) = rank

(

−1 +1
0 0

)

= 1 = n− 1.

Suppose that the property is true for n and let us prove that the property holds for
n+ 1,

with A =











−n 1 · · · 1
1 −n · · · 1
...

...
. . .

...
1 1 · · · −n











,

rank(A) = rank











−n 1 · · · 1
0 1

n
− n · · · 1

n
+ 1

...
...

. . .
...

0 1
n
+ 1 · · · 1

n
− n
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= 1 + rank











1
n
− n 1

n
+ 1 · · · 1

n
+ 1

1
n
+ 1 1

n
− n · · · 1

n
+ 1

...
...

. . .
...

1
n
+ 1 1

n
+ 1 · · · 1

n
− n











= 1 + rank











(1−n)(n+1)
n

(n+1)
n

· · · (n+1)
n

(n+1)
n

(1−n)(n+1)
n

· · · (n+1)
n

...
...

. . .
...

(n+1)
n

(n+1)
n

· · · (1−n)(n+1)
n











= 1 + rank











−(n− 1) 1 · · · 1
1 −(n− 1) · · · 1
...

...
. . .

...
1 1 · · · −(n− 1)











=1+(n-1)
=n

Proof of proposition 3.3
Suppose that the n − 1 columns of the matrix Mv of the game (N, v) are identical.
According to the proposition 3.1, there exits an additive game (N,w) such that :

Mw =Mv

⇔Mw−v = 0
⇔ u = v − w, (N, u) is weakly symmetric
⇔ v = w + u with w additive and u weakly symmetric.

Proof of proposition 3.4
(1) ⇒ 2)) See property 3 of the matrix Mv.

(2) ⇒ 3)) If Mv = 0 then for any LES value ϕ, ϕi(N, v) =
V (N)
n

for all i ∈ N . Thus for

any two LES value ϕ and φ, ϕi(N, v) = φi(N, v) =
V (N)
n

for all i ∈ N .
(3) ⇒ 4)) if for any player i ∈ N and for any LES value ϕ and φ, we have ϕi(N, v) =
φi(N, v). Thus for any LES value ϕ and for φ = E (Egalitarian Value), we have

ϕi(N, v) = Ei(N, v) =
V (N)
n

.

(4) ⇒ 2)) If for any i ∈ N and for any LES value φ we have φi(N, v) =
V (N)
n

. Thus, using
the matrix representation, we have for any V ∈ R

n−1 MvV = 0 ⇒ Mv = 0 ⇔ (N, v) is
weakly symmetric.

Proof of proposition 3.5
(1) ⇒ 2)) (N, v) is a weakly linear ⇔ the binary relation <u defined by i <u j iff, for
all k = 1, 2, · · · , N − 1, uk(i) ≥ uk(j) is a complete preordering in N .
Noting that, uk(i) ≥ uk(j) ⇔ mik ≥ mjk ⇔

mik−mk

n−k
≥

mjk−mk

n−k
⇔Mv(i, k) ≥Mv(j, k).

This proves that, the preordering <u is equivalent to the canonical preordering in the
subset of the n vectors line of the matrix Mv.
Thus <u complete in N ⇔ the canonical preordering is complete in the subset of the n
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vectors line of Mv.
(2) ⇒ 3)) Suppose that, for k = 1, 2, · · · , n − 1, we have i ≻k j (i, j ∈ N) and there
exists k′ 6= k (k′ = 1, 2, · · ·n − 1) such that j ≻k′ i. Thus Mv(i, k) > Mv(j, k) and
Mv(i, k

′) > Mv(j, k
′).

Thus the vector of Rn−1 corresponding to the line of i and the vector of the line of j are
not comparable by the canonical preordering of Rn−1. This is in contradiction with (2).
Hence, i ≻k j ⇒ i <k′ j for all k, k′ = 1, 2, · · · , n− 1.
(3) ⇒ 2)) Suppose that (2) is not satisfied, that is, the canonical preordering is not
complete in the set of the n vectors line of Mv. Therefore, there exists two vectors line,
corresponding to two players i and j, which are not comparable. Thus, there exists k
and k′ such that Mv(i, k) > Mv(j, k) and Mv(i, k

′) < Mv(j, k
′), hence i ≻k j and i ≺k′ j.

This implies that <k and <k′ are not compatible, which is in contradiction with (3).
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