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Abstract

We analyze how trading in secondary markets for public debt change the inherent links

between monetary and fiscal policy, by studying both inflation and debt dynamics. When

agents do not trade in these markets, there exists a unique steady state and traditional

passive/active policy prescriptions are useful in delivering determinate equilibria. In contrast,

when agents trade in secondary markets and bonds are scarce, there exist a liquidity premium

on public debt and bonds affect inflation dynamics. There are different combinations of

inflation and debt that deliver the same tax revenues. Thus, self-fulfilling beliefs that deliver

multiple steady states are possible. We also find that, with a low inflation target, active

monetary policies are more likely to deliver real and nominal determinacy and further amplify

the effectiveness of these policies in reducing steady state inflation. Finally, we show that

a spread-adjusted Taylor rule delivers a unique steady state where active monetary policies

yield locally determinate equilibria.
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1 Introduction

Traditional dynamic general equilibrium macroeconomic models based on representative agent

frameworks imply various neutrality results.1 In the context of policy, Ricardian equivalence is

the most prominent one. Barro (1974) shows how a government finances its expenditures does not

alter real allocations whenever the economy has rational homogenous agents, lump sum taxes, no

liquidity constraints and complete markets. Environments where a central bank is also included,

Ricardian equivalence typically holds, greatly restricting how monetary and fiscal policies interact

in equilibrium. As a result, the channels through which fiscal policy might influence inflation

dynamics is rather limited.2

Our objective in this paper is to provide new insights of how monetary and fiscal policy

interactions change once households do not always have access complete asset markets. We do

so in the context of the Great Moderation. Over this period we have witnessed several financial

innovations, suggesting the existence of some market incompleteness. Among the various financial

innovations, here we focus the increasing importance of on secondary markets for public debt.3

These markets other than providing an additional opportunity for household’s to re-adjust their

portfolios, they also change the inherent links between monetary and fiscal policies. This is the

case as prices of the primary issuance of public debt also incorporates the value associated of

trading these assets in the future in secondary markets.4 This additional feature greatly alters

relative prices.

To study monetary and fiscal policy interactions, we consider simple policy rules. We do so

in the context of a frictional, stochastic and incomplete market framework, where agents can

trade in secondary markets for public debt. As a result, the liquidity services for public debt

are an equilibrium outcome that not only depends on the primitives of the environment but also

on the policy rules.5 We find that inflation and bond dynamics crucially depend on whether

agents participate in secondary markets or not. When there is no trade in these markets, we

show that there exists a unique monetary steady state, where public debt does not affect inflation

dynamics. However, when there is trade and bonds are scarce, public debt exhibits a liquidity

premium. Agents are willing to buy additional bonds to increase their consumption possibilities in

frictional goods markets. As result, Ricardian equivalence breaks down. By issuing less bonds, the

government can affect the premium and reduce the inflation rate. Thus, the resulting equilibrium

1We refer to Akerlof (2007) for a detailed discussion of five neutrality results in macroeconomics.
2We refer to Sargent and Wallace (1981) and Leeper (1991) among others for more on such interactions.
3From 1986 to 1993, the volume of secondary market sovereign debt sales in the U.S. increased from $7 to $273

Billion. We refer to Power (1996) for more on the evolution of secondary markets.
4Wallace (1981) shows that when markets are complete, open market operations do not have real effects.
5The way monetary and fiscal policies interact critically depends on the beliefs about future inflation. These

beliefs are not only influenced by fiscal and monetary policies, as noted by Sargent and Wallace (1981) and Leeper
(1991), but also by financial frictions, as highlighted by Fernández-Villaverde (2010), Leeper and Nason (2015),
and Gomes and Seoane (2015), among others.
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open market operations in this economy are quite different compared to environments with no

premiums. Thus the traditional prescriptions of active/passive monetary and fiscal policies based

in complete and frictionless financial markets do not always deliver locally determinate equilibria

in our environment.

When bonds are scarce and agents trade in secondary markets, the government is able to

affect the real return on public debt through changes in the inflation rate as well as the issuance

of public debt. As a result, there are different combinations of inflation and real public debt that

deliver the same tax revenues. Thus, self-fulfilling beliefs that are consistent with existence of

multiple steady states are possible. Changes in policies can then imply very different equilibrium

allocations. Finally, regardless of how many steady states exist, we show that traditional active

monetary policies decrease the steady state inflation, while passive monetary policies increase it.

In our numerical exercise, calibrated to the Pre Great Moderation period, we find that re-

gardless of the fiscal policy stance, active monetary policies are more likely to deliver a unique

monetary steady state. Whenever the steady state is unique, we find that a passive monetary

policy delivers locally indeterminate equilibria regardless of the fiscal stance. At the same time,

active monetary policies deliver determinacy independent of fiscal policy being active or passive.

In contrast, passive monetary policy can lead to multiple steady states, one is stable while the

other is unstable. These findings critically depend on the long run inflation target.6 When the

inflation target is high, two steady states may exist even under active monetary policies, one of

them being locally indeterminate. However, when the central bank follows an active policy and

has a low inflation target, then these policies are likely to deliver a unique and stable monetary

equilibrium, regardless of the fiscal stance. Lastly, we find that secondary markets tend to reduce

the stabilizing effect of monetary policy and depending on the stance of monetary policy, they

strengthen or weaken the stabilizing effect of fiscal policy.

Finally, in the spirit of Canzoneri and Diba (2005) and Cúrdia and Woodford (2010), we

analyze an interest spread-adjusted Taylor rule. Once the monetary authority explicitly takes

into account the additional value that public debt gives to buyers, it can then internalize the

additional value that public debt has. As a result, the central bank is able to rule out self-

fulling beliefs regarding interest rates and public debt that deliver the same revenue, effectively

eliminating real indeterminacies. Typically, when the central bank follows an active policy we find

a stable monetary equilibrium.

The paper is organized as follows. Section 2 offers a literature review. Section 3 illustrates the

mechanism by presenting a simple model with an adhoc bond premium. Section 4 describes the

environment with an endogenous liquidity premium and characterizes the monetary equilibria. In

6In environments with sticky prices and complete financial markets Ascari and Ropele (2009), among others,
also show that the long run inflation target affects the usefulness of the Taylor principle. We obtain similar insights
in a flexible price environment with incomplete markets.
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Section 5 we perform a numerical analysis. A conclusion then follows.

2 Literature Review

(Beg no se si es necesario incur el primer parrafo, en mi opinion lo podriamos quitar).

Conventional stabilization policy suggests that monetary policy controls inflation, while fis-

cal policy stabilizes debt through an appropriate adjustment in current or future taxation.7 In

contrast, proponents of the fiscal theory of the price level emphasize that fiscal policy can also

determine the path of the price level.8 These different views (the ones proposed by Friedman

and proponents of the fiscal theory of the price level) critically depend on having rational ex-

pectations, lump sum taxation, government bonds not providing liquidity services and having

frictionless financial markets. Once agents are boundedly rational, as in Evans and Honkapohja

(2007) or Eusepi and Preston (2011, 2017), taxes are distortionary as in Canzoneri et al. (2016),

government bonds provide liquidity services, as in Canzoneri et al. (2005, 2016) and Andolfatto

and Williamson (2015), when there is uncertainty regarding the underlying policy regime, as in

Davig and Leeper (2011), financial markets are not complete, as in Gomis-Porqueras (2016), or

when and how central bank revenues are transferred to the fiscal authority as in Bassetto and

Cui (2017), traditional stabilization policies fail to be useful.9 Here we add to the literature by

considering an endogenous liquidity premium in an economy with incomplete markets and several

financial markets where agents can rebalance their portfolio.

Our paper relates to a growing literature that consider environments with a bond premium

and studies monetary and fiscal policy interactions. One of the earlier works is that of Canzoneri

and Diba (2005) who consider an endowment economy with a modified cash in advance constraint

framework, where bonds can be used to pay for goods, They do so by specifying an exogenous bond

liquidity service function. Once bonds provide liquidity, fiscal policy becomes a key determinant

for inflation dynamics. As a result a peg interest rate and a passive fiscal rule can yield locally

determinate equilibria. Using a similar environment, Andolfatto and Williamson (2015) allow

government debt to be used as payment in some states of the world. The authors show that under

an indefinite zero interest rate policy non-deflationary periods are possible when bonds have a

liquidity premium. As a result, traditional monetary and fiscal policy interactions at the zero

7We refer to Friedman (1968) for more discussion on this point.
8The Fiscal Theory of the Price Level was developed primarily by Leeper (1991), Sims (1994), Woodford (1994)

and Cochrane (2001). This literature highlights that bonds are denominated in nominal terms so that they may
be fully backed by real resources or backed only by nominal cash flows. We refer to Canzoneri et al. (2011) and
Leeper and Leith (2016) for excellent surveys of the Fiscal Theory of the Price Level. When real resources fully
back debt, Sargent and Wallace (1981) obtain equilibria where fiscal policy is inflationary only if the central bank
monetizes deficits. But when nominal debt is not backed by real resources, the government can trade current for
future inflation through debt operations and then fiscal policies can help stabilize the price level.

9In particular, in all these previous cases, public debt matters for inflation dynamics.
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lower bound are quite different from traditional frameworks. Within the same spirit, Bassetto and

Cui (2017) show that when there is a liquidity premium on government debt, additional Taylor

rule perils emerge when the economy faces persistently low real interest rate. When agents face

frictional and stochastic trading opportunities and nominal government bonds as collateral in

secured lending arrangements, Berensten and Waller (21016) show that if the collateral constraint

binds, agents price in a liquidity premium on bonds that lowers the real rate on bonds. As a

result, the market value of the government debt can fluctuate even though there are no changes

to current or future taxes or spending. The price dynamics can be driven solely by the liquidity

premium on the debt.

In contrast to Canzoneri and Diba (2005) and Andolfatto and Williamson (2015), our frame-

work considers trading in a decentralized financial market for government debt, which can deliver

an endogenous liquidity premium. The features of this over the counter market (search and

bargaining frictions) directly impact the resulting equilibrium liquidity premia. These are con-

siderations that have not being explored in previous work, when examining monetary and fiscal

policy interactions. Here we show that these details are not as innocuous as it may seem a priori.

Finally, in our environment agents can adjust their consumption through changes in their labor

income, thus we do not impose a negative relationship between fiat money and bonds, which is

what is implied by the augmented cash constraint in an endowment economy as in Canzoneri and

Diba (2005). Such restriction is important as it ensures a unique monetary equilibrium as well

as directly affects the potential open market operations that are consistent with implementing a

Taylor rule. As these operations change the relative prices, the class of monetary and fiscal policies

consistent with determinate equilibria are generally going to be different.

3 A Motivating Example

Let us consider an endowment economy where an infinitely lived household that discounts the

future at a rate β derives utility from the consumption of a perishable good. Other than the

representative household, there is a government that needs to finance a constant stream of expen-

ditures, G, by issuing nominal debt, Bt, and collecting lump sum taxes, τt. To implement policies,

the government follows simple rules. In particular, the central bank implements a Taylor rule so

that nominal interest rates, Rt, are linked to inflation, Πt. On the other hand, the fiscal authority

considers a rule that links taxes to real public debt. In particular, we have that

Rt = α0 + αΠt, (1)

τt = γ0 + γ
Bt−1

Pt−1

, (2)
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where Pt−1 is the price level at time t − 1, α0 and α (γ0 and γ) are the monetary (fiscal) policy

parameters.

To smooth consumption, the representative household has access to nominal government bonds,

while facing some market incompleteness. Other than storing value, public debt also provides

liquidity services.10 In what follows we take a reduced form approach and are not explicit about

the underlying frictions of the environment that generate the bond premium and how it depends

on the economic environment. In particular, we allow the premia to depend on inflation and real

public debt, which we denote by s̃t+1(Πt+1, bt) > 0; where bt denotes real bonds.

In this simple and stylized environment, it is easy to show that the resulting equilibrium is

characterized by the evolution of inflation and real debt, which are given by

Πt+1 = β [α0 + αΠt + s̃t+1(Πt+1, bt)] , (3)

bt = G− γ0 +

(

1

β
− γ −

s̃t(Πt, bt−1)

Πt

)

bt−1; (4)

where equation (3) corresponds to the household’s first order condition for public debt, and equa-

tion (4) describes the evolution of real bonds implied by the government budget constraint.

Within this environment, we analyze how monetary and fiscal policy interactions change once

different types of debt premiums are considered. We first analyze an economy where the repre-

sentative agent faces a constant premium.11 Then we analyze an economy where the premium

depends on inflation and real bonds. To establish comparisons with the previous literature, we

define traditionally active/passive policies termed by Leeper (1991), as follows.

Definition 1 Monetary policy is defined as traditionally active (passive) when βα > 1 (βα < 1)

and α0 < 0 (α0 > 0).

Definition 2 Fiscal policy is defined as traditionally active (passive) when 1
β
− γ > 1 ( 1

β
− γ < 1)

and γ0 > G (γ0 < G).

Constant Premium

When bonds provide some liquidity services that are constant overtime, we have that s̃t+1(Πt+1, bt) =

s̃ ∀t. In this environment we can establish the following results.

Lemma 1 The stationary monetary equilibria has the following properties:

10These services can be viewed as stemming from two sources. Bonds can be used as a medium of exchange or
they can be used as collateral for secured loans.

11Note that when there is no premium (the constant is zero), we recover the complete market and frictionless
environment.
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(i) The steady state is unique where the long run inflation and real debt are given by Π0 =
β(α0+s̃)
(1−αβ)

and b0 =
G−γ0

1−( 1

β
−γ)+ s̃

Π

, respectively.

(ii) Traditional active/passive monetary policies deliver locally determinate equilibria.

As we can see, when the premium is constant, the economy does not have real indeterminacies

and we recover the same active/passive policy prescriptions that deliver local determinate equi-

libria as in Leeper (1991) and Woodford (1998). We can then conclude that the type of market

incompleteness that delivers a constant premium does not alter the properties of the equilibrium

nor the traditional policy prescriptions that deliver locally determinate equilibria.

Time Varying Premium

We now explore the equilibrium properties once agents face a premium on public debt that evolves

over time. In particular, the premium on public debt depends on both real bonds, bt, and gross

inflation, Πt+1, so that s̃t+1(bt,Πt+1) is generally a non-linear function in both arguments.

As we can see from equation (3), once bonds provide liquidity services that are not constant

over time, the evolution of inflation depends on the additional value that bonds provide. As a

result, inflation dynamics are affected by real debt. Now, the fiscal authority has a direct impact

on the evolution of inflation through the amount of bonds that it issues via the liquidity premium.

In such environment fiscal policy matters, breaking the traditional dichotomy of monetary and

fiscal policies observed in frictionless and complete market environments. Thus we expect to have

drastically different equilibrium properties, which are summarized in the following Proposition.

Proposition 1 With a time varying premium s̃t+1(bt,Πt+1), the stationary monetary equilibria

has the following properties:

(i) The steady state is generically is not unique.

(ii) Traditional active/passive monetary policies are not useful in delivering locally determinate

equilibria.

All proofs can be found in the Appendix.

Bego, los resultado de active/pasive no estoy 100% seguro que sean correctos, pues cuando el

premium depende de (bt,Πt+1), el valor en el estado estacionario de Π y b puede ser mas grande

o mas pequenyo dependiendo de la forma funcional de s̃(b,Π).

Once public debt provides liquidity services, government liabilities exhibit a premium. This is

the case as agents are willing to buy government bonds above their fundamental value. Moreover,

when the bond premium depends on inflation and real debt, Ricardian equivalence does not
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hold anymore. As a result, the underlying wealth and substitution effects when revaluing public

debt, through changes in price levels, are drastically different to environments without a liquidity

premium. Thus it is not surprising that the resulting equilibrium properties and traditional

active/passive monetary and fiscal policy prescriptions that deliver locally determinate equilibria

are different from environments without a premium.

In this environment where fiscal policy matters, observing real indeterminacies is a direct

consequence of agents trading in an economy that is not Ricardian. In this setting the government

is able to affect the real return on public debt through changes in the inflation rate as well

as the issuance of public debt. As a result, there are different combinations of inflation and

real public debt that deliver the same tax revenues.12 Thus, self-fulfilling beliefs that generate

multiple steady states are possible. Moreover, dynamic indeterminacies can be observed when

traditional active/passive monetary and fiscal policies are followed. It is important to highlight

that the underlying mechanism delivering the multiplicity of steady states is in sharp contrast to

economies with no public debt premiums. In this latter environments departures from Ricardian

equivalence are a result of distortionary taxation. In contrast, here we deliver such departure by

considering the liquidity services that bonds can provide.

This motivating example illustrates the importance of providing explicit frictions in the eco-

nomic environment that yield bond premia when studying how monetary and fiscal policy interact.

This is the case as the details of the premium can deliver quite different equilibrium properties. In

the next sections we present a frictional framework that delivers a bond premia as an equilibrium

outcome. In particular, we consider a frictional, stochastic and incomplete market environment

based on Berentsen and Waller (2011). Such framework allow us to nest various economies that

differ in terms of the severity of the market incompleteness and the development of secondary

markets, which can give rise to the premium on government debt. Within this environment we

study the properties of the resulting monetary equilibria and analyze the underlying monetary

and fiscal policy interactions.

4 The environment

The basic structure builds on the frictional and incomplete market framework of Berentsen and

Waller (2011). Time is discrete and there is a continuum of infinitively-lived agents of measure one

that discount the future at a rate β ∈ (0, 1). These agents have access to fiat money and nominal

government bonds. These are the only durable assets in the economy. As in Lagos and Wright

12It is easy to rearrange equation (4) in steady state so that the tax revenue is equal to the bond seignorage

τ = γ0 + γb = G−

(

1−

(

1

β
−

s̃(Π, b)

Π

))

b.

It is then possible that various combinations of Π and b yield the same tax revenue.
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(2005), agents face preference shocks, have stochastic trading opportunities and sequentially trade

in various markets that are characterized by different frictions. In particular, each period has

three sub-periods. In the first one, after the preference shocks are realized, agents have access to

a decentralized secondary market for government debt (SM).13 In this market, government debt is

traded for money in an over the counter (OTC) market, which is characterized by search frictions

and bargaining. Due to search frictions, a buyer (seller) is matched with a seller (buyer) with

probability κ ∈ [0, 1].14 With complementary probability, a buyer and a seller are not matched,

so they cannot trade. In the second sub-period, agents can trade goods for fiat money in a

decentralized frictional goods market (DM). In this market, anonymous buyers and sellers are also

randomly and bilaterally matched. In particular, matches in DM are such that with probability

σ ∈ (0, 1), a buyer (seller) is matched with a seller (buyer).15 Finally, in the last sub-period, agents

trade in a frictionless centralized market (CM), where they can produce and consume a general

good, re-adjust their portfolio as well as pay their taxes.16

4.1 Preferences and Technologies

Agents have preferences over consumption of the general CM perishable good (xt), effort to produce

the CM good (ht), consumption of the specialized DM perishable good (qt) and effort to produce

the DM good (et). Their expected utility is then given by

E0

∞
∑

t=0

βt

[

ln(xt)− ht + χ
q1−ξ
t

1− ξ
− et

]

, (5)

where χ>0 captures the relative weight on DM consumption and ξ ∈ (0, 1) is the inverse of

the inter-temporal elasticity of substitution of DM consumption. Finally, E0 denotes the linear

expectation operator with respect to an equilibrium distribution of idiosyncratic agent types.

All perishable goods in the economy are produced according to a linear technology where labor

is the only input. The production function is such that one unit of labor yields one unit of output.

13In contrast to Berentsen and Waller (2011), we consider an over the counter market rather than a competitive
market. This is the case as secondary markets for public debt around the world are mostly structured as OTC
markets with bargaining and search/informational frictions, rather than competitive financial markets.

14The value of κ captures the accessibility of these secondary markets faced by agents.
15The magnitude of σ give us the degree of market incompleteness faced by agents.
16An alternative specification to the DM/CM structure to generate a demand for money would be a cash/credit

framework, as in Lucas and Stokey (1983). However, such environments imply a constant velocity of money and no
variability in the demand for liquidity, features that we do not want to impose in our environment. Such properties
restrict how the government implements open market operations (exchanging bonds for money) that are going to
be consistent with a central bank following a Taylor rule and having a fiscal rule that links taxes to government
debt. Given that the underlying economy is frictional and incomplete, this allows the possibility for open market
operation to have real effects. Thus imposing the underlying restrictions of the cash/credit framework are not
innocuous when thinking about monetary and fiscal policies that deliver determinate equilibria.
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4.2 Government

The government must finance a constant stream of exogenous expenditures, G>0, through lump

sum CM taxes and by issuing nominal bonds as well as fiat money. The corresponding per period

government budget constraint is given by

τCM
t + φtMt + φtBt = G+ φtMt−1 + φtRt−1Bt−1; (6)

where Mt denotes money supply at time t, Bt represents nominal bonds, Rt−1 is the gross nominal

interest rate on bonds issued at t − 1, τCM
t represents lump sum taxes in CM and φt is the real

price of money in terms of the CM good. The real value of all bond issues at every period is

assumed to be bounded above by a sufficiently large constant as to avoid Ponzi schemes.

To implement monetary policy, the central bank follows a Taylor rule so that nominal interest

rates are linked to inflation. This can be achieved through appropriate open market operations in

CM. The fiscal authority considers a rule, whereby taxes are related to the previous level of real

debt. These rules are given by

Rt = α0 + α Πt, (7)

τCM
t = γ0 + γ φt−1Bt−1, (8)

where Πt =
φt−1

φt
denotes the gross inflation rate at time t and α0, α, γ0 and γ are constants that

determine the responsiveness of monetary and fiscal rules to inflation and real debt, respectively.

While typically these policy rules may not be optimal, these rules have been extensively analyzed

in the macroeconomic literature as stabilization tools. More precisely, particular combinations

of monetary (α) and fiscal (γ) policies are known to deliver locally determinate equilibria under

various environments with frictionless financial markets.

It is important to highlight that the underlying open market operations consistent with the

implementation of monetary and fiscal policy can have real effects when agents trade in frictional

and incomplete markets. Thus not having an equilibrium money to bond ratio is not without loss

of generality.

4.3 Agent’s Problem

Given the sequential nature of the problem, we solve the representative agent’s problem backwards.

Thus we first solve the CM problem, then the DM and finally solve the SM problem, respectively.

10



4.3.1 CM Problem

In this market, all agents can produce and consume the general consumption good, xt and trade

in a frictionless competitive market. Thus, a medium of exchange is not essential in CM. Agents

can settle their CM trades with any assets, CM goods or CM labor.

An agent in period t enters CM with a portfolio of fiat money (M̃t−1) and nominal government

bonds (B̃t−1). This portfolio is different across agents, depending on the type of preference shock

they have previously received. In particular, the portfolio when entering CM reflects whether they

were able to trade in SM or not and if they had the opportunity to trade in the previous DM.

We refer the reader to the Appendix for the various initial CM portfolios before trade occurs that

agents can have.

Given the portfolio (M̃t−1, B̃t−1), the problem of the representative agent in CM can be written

as follows

W (M̃t−1, B̃t−1) = max
xt,ht,Mt,Bt

{

ln(xt)− ht + β V SM(Mt, Bt)
}

s.t. xt + φtMt + φtBt = ht − τCM
t + φtM̃t−1 + φtRt−1B̃t−1, (9)

where V SM is the expected value function of an agent for the next period SM. After the preference

shock has been realized, agents may have the possibility to trade in SM and adjust their liquidity,

by trading fiat money for nominal bonds.

The corresponding first order conditions are given by

1

xt

− 1 = 0, (10)

−φt + β
∂V SM(Mt, Bt)

∂Mt

= 0, (11)

−φt + β
∂V SM(Mt, Bt)

∂Bt

= 0, (12)

and the associated envelope conditions are ∂Wt

∂Mt−1
= φt and

∂Wt

∂Bt−1
= φtRt−1.

4.3.2 DM Problem

Before CM and right after SM, buyers/sellers enter DM. This market is characterized by random

and bilateral trading opportunities as well as a lack of record-keeping services. Matches in DM

are such that with probability σ ∈ (0, 1), a buyer (seller) is matched with a seller (buyer). As

in Aruoba and Chugh (2010), Berentsen and Waller (2011) and Mart́ın (2011), among others,
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government bonds are viewed as book-entries in the government’s record.17 Since sellers do not

have access to record-keeping services in this market, nominal bonds will not be accepted as a

means of payment in DM. Moreover, since agents are anonymous, sellers are not going to extend

unsecured credit to buyers when purchasing DM goods. Thus, the only feasible trade is the

exchange of DM goods for fiat money.

An agent in period t enters DM with a portfolio of fiat money (M̂t−1) and nominal government

bonds (B̂t−1). These will differ across agents depending on the preference shock they have received

at the beginning of the period as well as their trading opportunities in SM. We refer the reader

to the Appendix for these various portfolios.

The expected utility of a buyer that has traded in the previous SM and enters DM with a

portfolio (M̂t−1, B̂t−1) is then given by

V DM
b,κ (M̂t−1, B̂t−1) = σ

[

χ
qSt

1−ξ

1− ξ
+W (M̂t−1 −DMs

t , B̂t−1)

]

+ (1− σ)W (M̂t−1, B̂t−1),

where qSt denotes the DM quantity of goods purchased in DM when the buyer has traded in SM

and DMs
t represents the corresponding cash payment. By feasibility, buyers cannot pay more than

the fiat money they brought into the match so that DMs
t ≤ M̂t−1.

When the buyer has not been able to trade in SM, his expected utility entering DM with a

portfolio (M̂t−1, B̂t−1) is then given by

V DM
b,1−κ(M̂t−1, B̂t−1) = σ

[

χ
qt

1−ξ

1− ξ
+W (M̂t−1 −DM

t , B̂t−1)

]

+ (1− σ)W (M̂t−1, B̂t−1),

where qt denotes the DM quantity of goods consumed in DM when the buyer has not traded in SM

and DM
t is the corresponding cash payment. As in the previous state of the world, buyers cannot

pay more than the fiat money they brought into the match, thus we have that DM
t ≤ M̂t−1. Note

that these buyers will have fewer cash balances to buy in DM, as they did not have an opportunity

to rebalance their portfolio in the secondary market.

Similarly, the expected utility of a seller that has traded in the previous SM and enters DM

with a portfolio (M̂t−1, B̂t−1) is given by

V DM
s,κ (M̂t−1, B̂t−1) = σ

[

−qSt +W (M̂t−1 +DMs

t , B̂t−1)
]

+ (1− σ)W (M̂t−1, B̂t−1),

while the expected utility of a seller that has not traded in the previous SM and enters DM with

17Alternatively, this could be interpreted as a fraction of sellers where government bonds are not recognized as
in Shi (2014) or Rocheteau, Wright and Xiao (2016). This could be endogenized as in Lester et al. (2012) or as Li
et al. (2012). This treatment is beyond the scope of this paper.
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a portfolio (M̂t−1, B̂t−1) is given by

V DM
s,1−κ(M̂t−1, B̂t−1) = σ

[

−qt +W (M̂t−1 +DM
t , B̂t−1)

]

+ (1− σ)W (M̂t−1, B̂t−1).

The terms of trade in DM are determined ex-post by a buyer take it or leave it offer. In order

to induce trade in DM, buyers need to offer terms of trade that satisfy the seller’s participation

constraint and their cash feasibility constraint. For buyers that have not been able to trade in the

previous SM, the terms of trade solve the following problem

max
qt,D

M
t

{

χ
qt

1−ξ

1− ξ
+W (Mb,t−1 −DM

t , Bb,t−1)

}

s.t.

Mb,t−1−DM
t ≥ 0,

−qt +W (Ms,t−1+DM
t , Bs,t−1) ≥ W (Ms,t−1, Bs,t−1),

where Mb,t−1(Ms,t−1) and Bb,t−1(Bs,t−1) represent the buyer’s (seller’s) fiat money and nominal

bond holdings, respectively, when trading in DM. The previous problem yields the following first

order conditions

χ

qtξ
= 1 + λt,

λt(Mb,t−1 −DM
t ) = 0,

qt = φtD
M
t ,

where λt denotes the Lagrange multiplier associated with the payment feasibility constraint. It

is important to note that the optimal terms of trade do not depend on whether the seller has

previously traded in SM or not. This is the case as the CM value function is linear.

Similarly, for buyers that have been able to trade in the previous SM, the terms of trade in

DM are given by

χ

qSt
ξ
= 1 + λs

t ,

λs
t(Mb,t−1 +DMo

t −DMs

t ) = 0,

qSt = φtD
Ms

t ;

where λs
t represents the Lagrange multiplier associated with the payment feasibility constraint

when the agent has previously traded in SM. Relative to the previous case, here buyers have

access to more fiat money as they have been able to trade some bonds for fiat money in the

previous SM.

13



These various terms of trade imply the following envelope conditions for fiat money

∂V DM
b,κ

∂Mb,t−1

= σ

[

χ

qSt
ξ

∂qSt
∂Mb,t−1

− φt

∂DMs
t

∂Mb,t−1

+ φt

]

+ (1− σ)φt,

∂V DM
b,1−κ

∂Mb,t−1

= σ

[

χ

qtξ
∂qt

∂Mb,t−1

− φt

∂DM
t

∂Mb,t−1

+ φt

]

+ (1− σ)φt,

while for bonds we have that
∂V DM

b,κ

∂Bb,t−1

=
∂V DM

b,1−κ

∂Bb,t−1

= φtRt−1.

For the seller, we obtain similar envelope expressions, which are given by

∂V DM
s,κ

∂Ms,t−1

= φt,
∂V DM

s,1−κ

∂Ms,t−1

= φt,
∂V DM

s,κ

∂Bs,t−1

=
∂V DM

s,1−κ

∂Bs,t−1

= φtRt−1.

Throughout the rest of the paper we focus on monetary equilibria with positive nominal interest

rates so that Rt > 1. This type of equilibria then implies that λt > 0, so that buyers that have not

been able to trade in the previous SM spend all their money when purchasing DM goods. Thus

we have that
∂DM

t

∂Mt−1
= 1. For buyers that were able to trade in the SM, their cash constraint may

or not bind.

4.3.3 SM Problem

At the beginning of each period, agents experience a preference shock that determines whether

they are a buyer or a seller in the ensuing DM. After this preference shock is realized, agents

enter a secondary market for government debt where they can re-adjust their portfolio according

to their new liquidity needs. The SM is an OTC financial market that is characterized by random

trading opportunities and bargaining.18 Matches in this market are such that with probability

κ ∈ [0, 1], a buyer (seller) is matched with a seller (buyer). With complementary probability, a

buyer (seller) is not matched, thus cannot trade in SM.

The expected utility of an agent entering SM with a portfolio (Mt−1, Bt−1) is then given by

V SM(Mt−1, Bt−1) =
1

2

[

κ V DM
b,κ (Mt−1+atD

Bo

t , Bt−1−DBo

t ) + (1− κ) V DM
b,1−κ(Mt−1, Bt−1)

]

+

+
1

2

[

κ V DM
s,κ (Mt−1−atD

Bo

t , Bt−1+DBo

t ) + (1− κ) V DM
s,1−κ(Mt−1, Bt−1)

]

,

where 1
2
reflects that an agent has equal probability to be either a buyer or a seller in the ensuing

DM and V DM
j,n represents the value function of trading in DM where j = {b, s} and n = {κ, 1−κ}.

18Berentsen et al. (2014) consider a similar environment where agents face an exogenous probability that dictates
whether they can participate or not in a competitive and Walrasian secondary market for government debt.
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The terms of trade in the OTC market are (at, D
Bo

t ), where at denotes the price per unit of

bonds and atD
Bo

t represents the total units of money received by the buyer. These terms of trade

are determined ex-post by a buyer take it or leave it offer. It is important to note that when

determining the terms of trade, agents do not know if they will have an opportunity to trade in

the ensuing DM. Moreover, the threat point of both the buyer and seller is to not trade in the

OTC. This is equivalent to the value of not having had the opportunity to trade in the OTC.

Thus, the terms of trade in the OTC solves the following problem

max
at,D

Bo
t

{

V DM
b,κ − V DM

b,1−κ

}

s.t.

V DM
s,κ − V DM

s,1−κ ≥ 0,

atD
Bo

t ≤ Ms,t−1,

DBo

t ≤ Bb,t−1.

Using the previous expressions for the DM value functions, the OTC terms of trade can then be

written as follows

max
at,D

Bo
t

{

σ

[

χ
qSt

1−ξ
− qt

1−ξ

1− ξ
+ φt

(

DM
t −DMs

t

)

]

+ φt

(

atD
Bo

t −DBo

t

)

}

s.t.

σ
[

−qSt + qt − φt

(

DM
t −DMs

t

)]

− φt

(

atD
Bo

t −DBo

t

)

≥0,

atD
Bo

t ≤ Ms,t−1,

DBo

t ≤ Bb,t−1.

Using the fact that the differential payment in DM for the two different states of the world in

SM is DM
t −DMs

t = −atD
Bo

t , and that the amount produced in DM for buyers that have traded in

SM is qSt = φt

(

Mt−1 + atD
Bo

t

)

, the corresponding first-order conditions for at and DBo

t are given

by

at : σ
{

χ
(

qSt
)

−ξ
− 1
}

+ 1− ǫot − µs
t = 0,

DBo

t : atσ
{

χ
(

qSt
)

−ξ
− 1
}

+ (at − 1)− ǫot (at − 1)− µs
tat − µb

t = 0,

where µs
t (µ

b
t) corresponds to the Lagrange multiplier of the seller (buyer) when trading in SM.

From the first order condition, we have that ǫot = σ
{

χ
(

qSt
)

−ξ
− 1
}

+ 1− µs
t . From the second

optimality condition, we can then establish the following

σ
{

χ
(

qSt
)

−ξ
− 1
}

− µs
t − µb

t = 0.

Since µs
t and µb

t are non-negative, we have that σ(χ
(

qSt
)

−ξ
− 1) − µs

t ≥ 0, which in turn
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implies that ǫot ≥ 1 > 0. Thus, the terms of trade in the OTC market are such that the seller

just gets the outside option. Using the fact that qSt = φt

(

Mt−1 + atD
Bo

t

)

, qt = φtMt−1 and that

DM
t − DMs

t = −atD
Bo

t , it is easy to show that in equilibrium the price is such that at = 1. In

addition, in equilibrium, (DBo

t µs
t , µ

b
t) must satisfy the following conditions

(

Ms,t−1 −DBo

t

)

µs
t = 0, and DBo

t ≤ Ms,t−1,
(

Bb,t−1 −DBo

t

)

µb
t = 0, and DBo

t ≤ Bb,t−1,

σ
{

χ
(

qSt
)

−ξ
− 1
}

− µs
t − µb

t = 0.

There are three possible terms of trade that can be observed in equilibrium.

Case 1. The bond and fiat money payments bind in SM, which implies

µs
t > 0, and DBo

t = Ms,t−1,

µb
t > 0, and DBo

t = Bb,t−1,

σ
{

χ
(

qSt
)

−ξ
− 1
}

= µs
t + µb

t .

Case 2. Only the fiat money payment in SM is binding, which implies

µs
t = σ

{

χ
(

qSt
)

−ξ
− 1
}

> 0, and DBo

t = Ms,t−1,

µb
t = 0, and DBo

t < Bb,t−1.

Case 3. Finally, when only the bond payment in SM is binding, the terms of trade are such that

µs
t = 0, and DBo

t < Ms,t−1,

µb
t = σ

{

χ
(

qSt
)

−ξ
− 1
}

> 0, and DBo

t = Bb,t−1.

Having characterized all possible terms of trade, we can determine the properties of the SM

value function. An agent at the beginning of the period, before the preference shocks and trading

opportunities have been realized, has an expected SM value function that is given by

V SM(Mt−1, Bt−1) =
1

2

[

κ V DM
b,κ (Mt−1+atD

Bo

t , Bt−1−DBo

t ) + (1− κ) V DM
b,1−κ(Mt−1, Bt−1)

]

1

2

[

κ V DM
s,κ (Mt−1−atD

Bo

t , Bt−1+DBo

t ) + (1− κ) V DM
s,1−κ(Mt−1, Bt−1)

]

+
1

2
ǫot
[

V DM
s,κ − V DM

s,1−κ

]

+
1

2
µs
tφt

(

Ms,t−1 − atD
Bo

t

)

+
1

2
µb
tφt

(

Bb,t−1 −DBo

t

)

.

To be able to determine the optimal portfolio allocation, given by equations (11) and (12), we

need to calculate the marginal effect of bringing an additional unit of money and nominal bonds
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in SM. Using previous results, we have that

∂V SM(Mt−1, Bt−1)

∂Mt−1

= φt + φt

1

2
σ

[

κ

(

χ

qSt
ξ
− 1

)

+ (1− κ)

(

χ

qtξ
− 1

)

]

+
1

2
φtµ

s
t ,

∂V SM(Mt−1, Bt−1)

∂Bt−1

= φtRt−1 +
1

2
φtµ

b
t ,

which imply the following CM inter-temporal Euler equations

φt = βφt+1

{

1 +
1

2
σ

[

κ

(

χ

qSt+1
ξ
− 1

)

+ (1− κ)

(

χ

qt+1
ξ
− 1

)

]

+
1

2
µs
t+1

}

, (13)

φt = βφt+1

(

Rt +
1

2
µb
t+1

)

. (14)

5 Monetary Equilibrium

Given the policy rules (Rt = α0 + αΠt & τCM
t = γ0 + γφt−1Bt−1) public spending {G}∞t=0 and

initial conditions (M−1, B−1), a dynamic monetary equilibrium is a sequence of consumptions
{

xt, qt, q
S
t

}

∞

t=0
, assets and prices

{

Mt, Bt, D
Bo

t , φt+1, at, µb,t, µs,t

}

∞

t=0
satisfying market clearing and

agents’ problem, which imply the following conditions

xt = 1, (15)

qt = φtMt−1, (16)

qSt = φt(Mt−1 + atD
Bo

t ), (17)

at = 1, (18)

(

Ms,t−1 −DBo

t

)

µs
t = 0, and DBo

t ≤ Ms,t−1, (19)

(

Bb,t−1 −DBo

t

)

µb
t = 0, and DBo

t ≤ Bb,t−1, (20)

σ
{

χ
(

qSt
)

−ξ
− 1
}

− µs
t − µb

t = 0, (21)

φt = βφt+1

(

Rt +
1

2
µb
t+1

)

, (22)

φt = βφt+1

{

1 +
1

2
σ

[

κ

(

χ

qSt+1
ξ
− 1

)

+ (1− κ)

(

χ

qt+1
ξ
− 1

)

]

+
1

2
µs
t+1

}

, (23)
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τCM
t + φtMt + φtBt = G+ φtMt−1 + φtRt−1Bt−1. (24)

Depending whether agents, face market incompleteness, have the possibility to trade in SM,

and, if they do, whether the various multipliers are strictly positive or not, we are going to observe

different prices and interest rates. These various scenarios will result in vastly different inflation

and bond dynamics.

5.1 No Trading in Secondary Markets

Here we analyze two extreme situations that are consistent with agents not trading in secondary

markets for public debt.

Incomplete and Less Developed Financial Markets

Here we characterize a monetary equilibrium for an economy where agents are not able to trade

in SM; i.e, κ = 0.19 The resulting monetary equilibrium is described by the evolution of inflation,

Πt+1, and real bond holdings bt = φtBt. These are given by

Πt+1 = β(α0 + αΠt),

bt = G− γ0 +

(

1

β
− γ

)

bt−1 +
mt−1

Πt

−mt,

where mt = φtMt denotes real money balances that satisfy the following condition

1

2
σ

(

χ
Πξ

t+1

mt
ξ
− 1

)

= α0 + αΠt − 1.

As we can see, the evolution of future inflation is independent of real government bonds, as in

Leeper (1991), among others. For our environment, we find the following results. From now on,

we refer the reader to the Appendix for all the proofs.

Proposition 2 The stationary monetary equilibrium of an economy where agents cannot trade in

SM is unique. Traditional active/passive monetary and fiscal policy prescriptions deliver locally

determinate equilibria.

In an incomplete market economy where agents cannot trade in secondary markets, bonds are

priced fundamentally and Ricardian equivalence holds. As a result, the steady state inflation is

unique and equal to Π = βα0

(1−αβ)
. For comparison purposes, from now we denote such long run

inflation as Π0. For this equilibrium, we obtain the same stabilization policy prescription as in

19This environment would correspond to an economy with fewer financial innovations.
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Leeper (1991) or Woodford (1994, 1998); where traditionally active (passive) monetary policy

βα > 1 (βα < 1) together with passive (active) fiscal policy 1
β
− γ < 1 ( 1

β
− γ > 1) yield locally

determinate equilibria.

Complete Markets

Here we characterize an equilibrium for an economy where agents do not face market incomplete-

ness; i.e, σ = 0. The only goods market is CM and in such market, any medium of exchange is

available to agents. Note that in such environment, agents will decide not to carry real balances

across periods, as it is costly. As a result, agents will choose not to trade in secondary markets

for public debt. The resulting monetary equilibrium is given by

Πt+1 = β(α0 + αΠt),

bt = G− γ0 +

(

1

β
− γ

)

bt−1.

As we can see, we recover the same decoupled dynamic monetary equilibrium as in the friction-

less and cashless environments of Woodford (1998). Moreover, the evolution of future inflation is

independent of real government bonds, as in Leeper (1991) and Woodford (1998), among others.

Proposition 3 The stationary monetary equilibrium of a complete market economy where agents

do not trade in SM is unique. Traditional active/passive monetary and fiscal policy prescriptions

deliver locally determinate equilibria.

In this economy bonds are also priced fundamentally and Ricardian equivalence holds. Thus

inflation expectations generated in this monetary equilibrium are the same as those observed

when agents face incomplete markets but do not have access to secondary markets. The resulting

properties are also consistent with models with frictionless and perfect financial markets of Leeper

(1991) and others. We can conclude that not having a premium in bonds is key in delivering

traditional results, not the severity of the market incompleteness.

5.2 Trading in Secondary Markets

We now explore the implications for the resulting monetary equilibrium for economies with κ > 0

and σ > 0, so that agents can trade in SM. When characterizing the monetary equilibria, we

established that depending on the fundamentals of the economy, we can observe three different

types of monetary equilibria. Case 1 is consistent with a wide range of interest rates. In contrast,

Cases 2 and 3 occur only for a small measure of nominal interest rates. In what follows, we analyze
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the dynamic monetary equilibrium for Case 1, where agents trade SM and their corresponding

cash and bond constraints bind.20

This dynamic monetary equilibrium is given by the following evolution of inflation and bonds

Πt+1 = βα0 + βαΠt + βs̃t+1, (25)

bt =
1

2
(G− γ0) +

1

2

(

1

β
− γ +

(1− s̃t)

Πt

)

bt−1, (26)

where the liquidity premium s̃t+1 ≡ 1
2
µb
t+1 equals s̃t+1 = 1

2

(

θ̂t+1 + (1− σ)− (α0 + αΠt)
)

, with

θ̂t+1 =
1
2
σχ
(

Πt+1

2bt

)ξ
[

1 + κ+ (1− κ) 2ξ
]

. After repeated substitution, the dynamic monetary equi-

librium can be written as

Πt+1 =
β

2

(

α0 + αΠt + θ̂t+1 + 1− σ
)

, (27)

bt =
1

2
(G− γ0) +

[

1

β
−

1

2
γ +

1

2

(

1− θ̂t − (1− σ)
) 1

Πt

]

bt−1. (28)

Note that θ̂t+1 depends negatively on the ratio
(

bt
Πt+1

)

. We can then conclude that an economy

with market incompleteness and trading in secondary markets for debt can generate a premia on

bonds that depends on both bonds and inflation. We have thus provided some structure that

generate the properties we consider in the motivating example.21

As we can see, when buyers and sellers trade in SM and both of their payment constraints

bind, the evolution of inflation depends on the bond liquidity premium. As a result, inflation

dynamics are affected by real government bonds. Now, the fiscal authority has a direct impact on

the evolution of inflation through the amount of bonds that it issues.22 This is a direct consequence

of having an incomplete frictional goods market, where the only feasible trade is one where goods

are exchanged with fiat money. As a result, by previously trading government bonds, buyers can

expand their consumption possibilities in the incomplete and frictional goods market. Then, the

price that agents are willing to pay is above its fundamental value, thus delivering a liquidity

premium and breaking the Ricardian equivalence. Note that the fiscal authority, by changing the

amount of bonds that are issued, can directly affect the liquidity premium and therefore affect

the inflation dynamics. This in sharp contrast to cashless environments with frictionless financial

markets (Woodford (1998)) or even monetary economies with frictionless financial markets (Leeper

(1991), Woodford (1994) or Sims (1994), among others). In these different environments, the

20For this equilibrium, the cash constraint in DM binds even for those who traded in SM, i.e. λs

t
> 0. This

implies that bonds are scarce.
21We refer the reader to the Appendix for the details of the derivation found in the text.
22In environments with frictionless and complete financial markets, as in Leeper (1991), Woodford (1994), Sims

(1994) among others, bonds do not affect for inflation dynamics.
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implied open market operations required to implemented the Taylor rule are quite different.

Finally, as in Berensten and Waller (2016), when public bonds exhibit a liquidity premium, the

market value of government liabilities can fluctuate even though there are no changes to current

or future taxes or spending. Price dynamics can be driven solely by the liquidity premium on

public debt.

Given these equilibrium properties, it is not too surprising that in this non-Ricardian environ-

ment, the underlying wealth and substitution effects when revaluing public debt, through changes

in price levels, are drastically different to environments without a liquidity premium. Thus we ex-

pect that traditional active/passive monetary and fiscal policy prescriptions are unlikely to deliver

locally determinate equilibria.

Next we examine some of the properties of these monetary equilibria. We first consider the

implications for stationary monetary equilibria.

Lemma 2 Consider the monetary equilibrium where buyers and sellers in SM trade and are con-

strained. When monetary policy is traditionally passive (active), the steady state inflation, Π, is

higher (lower) than the one with no SM, Π0.

This result is independent of the underlying mechanism that leads to a positive government

debt premium. All is needed is that there exists such premium and that monetary policy follows

the Taylor rule. This finding then suggests that trading in secondary markets, consistent with the

Great Moderation, can further amplify the effectiveness of active monetary policies in reducing

steady state inflation. This has been an aspect that has not been highlighted by the literature

and is partly driven by the liquidity premium on public debt.

Proposition 4 The stationary monetary equilibrium of an economy where buyers and sellers in

SM trade and are constrained is generically not unique.

It is important to note that this multiplicity result is similar to the real indeterminacy found

in Benhabib et al. (2001) and Bassetto and Cui (2017). As in Benhabib et al. (2001), the

non-linearities in the inflation dynamics are key in delivering real indeterminacies. However,

the mechanism that generates the multiplicity of steady states in this paper is different. In our

environment, it is a direct consequence of the liquidity properties of government bonds. Given that

bonds are scarce, the liquidity premium is affected by bonds outstanding. This implies that the

nominal interest rate depends on the level of real bonds. As a result, the total interest payment on

bonds is non-linear, generating a relative bond seigniorage that is entirely driven by the liquidity

needs of DM buyers. In this equilibrium, buyers are willing to pay prices for government bonds

that are above their fundamental value.23 Now the government cannot only affect the relative

23This bond liquidity Laffer curve effect is also found in Gomis-Porqueras (2016).

21



bond seigniorage through inflation, now the actual size of the public debt also affects it. This new

fiscal environment critically alters the expectations about future inflation, as the fiscal backing

of bonds is different to an economy without a liquidity premium on government bonds. These

liquidity features have important implications for the evolution of inflation and public debt. In

this section we examine these consequences.

When multiple steady states are possible, we are faced with real indeterminacies. Moreover,

increased volatility can be observed as one can always construct sunspot equilibria between those

steady states.24 Are there any policies that can help rule-out real indeterminacies and reduce the

scope for additional volatility?

Proposition 5 When buyers and sellers in SM trade and are constrained, there exist adequate

monetary and fiscal policies ( 2
β
−α = 0, and 2−α+ γ = 0) that deliver a unique monetary steady

state.

As we can see, a traditional aggressive monetary policy (α > 2
β
) alone or an aggressive monetary

coupled with an adequate fiscal policies (α = 2+γ) are able to rule-out real indeterminacies. These

results also imply, cetirus paribus, that aggressive monetary policies are more likely to generate

a unique monetary steady state. This finding then suggests that having an aggressive monetary

policy is even more important during the Great Moderation, which was characterized by increased

trading in secondary markets.

Lemma 3 Traditional monetary and fiscal active/passive policy prescriptions are not useful in

delivering locally determinate equilibria.

It is easy to check that the values outside of the main diagonal in the Jacobian may not be

zero. In addition, the values in the main diagonal are very different to the ones found when there

was no trade in SM. Both results are a direct consequence of the liquidity premium on public debt,

as it affects both inflation dynamics and the tax burden. This feature creates a link between the

path of government debt, taxes and inflation. As a result, the effectiveness of government policies

cannot be independent of each other as both fiscal and monetary policies simultaneously affect the

monetary and fiscal eigenvalue. This is in sharp contrast to environments where financial markets

are complete and frictionless.

Lemma 4 The specifics of the monetary and fiscal rules (α0, α, γ0, γ) critically affect the steady

state values for inflation and real debt, which ultimately affect the effectiveness of traditional active

and passive policies (α, γ) in delivering locally determinate equilibria.

24We refer the reader to Azariadis (1981) and Cass and Shell (1983), among others, for more detailed discussion
on sunspot equilibria.
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In our environment, the steady state levels of inflation and real debt affect the nature of the

stabilization policies that rule out indeterminate equilibria. This is the case as the values of the

specific parameters of the monetary and fiscal rules (α0, α, γ0, γ) affect the position of the economy

in the bond liquidity Laffer curve. This in turn changes the potential for self-fulfilling values of real

bonds that are consistent with a balanced government budget constraint. More precisely, when a

liquidity premium exists, both inflation and the level of real debt affect the real rate of return on

public debt. As a result, there are different combinations of steady state inflation rates and real

debt that are consistent with the same total seignorage. This is sharp contrast with environments

with complete financial markets and flexible prices, where the steady state levels of inflation and

real debt do not affect the local stability properties of the monetary equilibrium.25 Thus it is

not surprising that the traditional prescriptions of active/passive monetary and fiscal policies that

deliver locally determinate equilibria are not going to be operative in economies where agents

trade in secondary markets.

Spread-Adjusted Taylor Rules

In this section we explore the usefulness of alternative Taylor rules in eliminating real indetermi-

nacies. The monetary equilibrium is such that buyers are willing to buy public debt above their

fundamental value. This is the case as trading them for fiat money in secondary markets can help

expand their consumption possibilities when trading in DM. This additional value is captured

by the interest spread between the natural rate in the economy and the total return (takes into

account the store of value and liquidity services) on government debt.

Within the spirit of Cúrdia and Woodford (2010) and Canzoneri and Diba (2005), here we

consider a spread-adjusted Taylor Rule. However, in contrast to Cúrdia and Woodford (2010),

the equilibrium spread in this environment does not reflect any differential risk properties, as in

Canzoneri and Diba (2005). In our setting, we consider the following spread-adjusted Taylor rule

Rt = α0 + αΠt − s̃t+1. (29)

Under this new monetary rule, the dynamic monetary equilibrium is given by

Πt+1 = β (α0 + αΠt) , (30)

2bt = G− γ0 +

(

1

β
− γ +

1− s̃t
Πt

)

bt−1. (31)

As we can see, with this spread-adjusted Taylor rule, public debt does not affect inflation. We

25Ascari and Ropele (2009) show that in the standard New Keynesian model the Taylor principle remains valid
in its more general formulation; however, its implications are radically different as the level of inflation affects the
local stability properties.
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can now establish the following results.

Proposition 6 Under the spread-adjusted Taylor rule (29), the monetary steady state is unique

and the steady state inflation is identical to the one where there is no SM. However, traditional

active/passive policy prescriptions may not yield locally determinate equilibria.

Proposition 6 highlights that once the monetary authority explicitly takes into account the

additional value that public debt gives to buyers, it can then internalize the bond liquidity Laffer

curve. In other words, the central bank takes into account that agents are willing to purchase bonds

above their fundamental value. As a result, the central bank is able to rule out self-fulling beliefs

regarding interest rates and public debt that deliver the same revenue, effectively eliminating real

indeterminacies.

Even though public debt does not affect inflation, traditional policies that deliver local deter-

minacy based on frictionless financial markets are not operative. While the monetary eigenvalue is

the standard one, the fiscal eigenvalue depends on the spread-adjusted Taylor rule (α0 and α), on

the over the counter market conditions (κ and σ) as well as on the fiscal stance (γ0 and γ). This

implies that in order to rule out dynamic sunspot equilibria, the level of inflation and real debt

need to be taken into account. This is the case as they critically depend on the specifics of the

monetary and fiscal rules (α0 , α, γ0 and γ). However, in general it is unclear how this augmented

Taylor rule can be used to rule out locally indeterminate equilibria.

6 A Numerical Exploration

In this Section, we resort to numerical analysis to determine when the monetary equilibria is

locally determinate and unique. To do so, we need to parametrize the model. As a benchmark, we

consider an economy with incomplete markets (σ 6= 0) and no trade in secondary markets (κ = 0).

This scenario roughly captures the era before the Great Moderation, which we take to be from

1960 to 1984. Then we explore what are the consequences for monetary equilibria if agents in the

economy are able to trade in the secondary market for government debt. We do so for a variety

of monetary and fiscal stances.

To provide some discipline when deciding the parameter values, we proceed as follows. To

determine the underlying discount factor, we compute the average annual real interest rate from

1960 to 1984, which is 2.5%. This results in β = 0.9758. To pin down preferences parameters for

the DM utility, we calibrate ξ and χ to yield the ratio of M1 to GDP at two different interest rates.

Specifically, we consider the ratios equal to 22% and 40%, which correspond to interest rates equal

to 5% and 2.5%, respectively.26 To determine G, γ0 and α0, we match the long-run average from

26In terms of CM output, these ratios are equivalent to 23% and 42% respectively. The money demand data is
taken from Berentsen et al. (2014) for the period 1950-1989.
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1960-1984 of government spending to GDP, government debt to GDP and the annual CPI inflation

rate to be 20%, 34% and 5.27%, respectively.27 Finally, to be closer to the previous literature,

we consider an environment without stochastic trading opportunities, which imply σ = κ = 1.

We also analyze alternative parametrizations that allow the possibility of not always finding a

counter-party in DM and SM so that σ 6= 1 and κ 6= 1.

To analyze the consequences for inflation dynamics when changing the aggressiveness of mon-

etary and fiscal rules, we consider a range of values for α and γ. To further discipline the model

and to provide a meaningful comparison, for each pair of α and γ, the policy parameters α0 and γ0

are re-calibrated so that, without secondary markets, they deliver the same steady state values for

real bonds and inflation. We refer to this inflation Π0 as the inflation target. Table 1 summarizes

our calibration and targets.

Table 1: Calibration Targets

Parameter Target

β = 0.9758 Annual real interest rate of 2.5 %

χ and ξ Real money holdings of 23 (41.8) %

of CM GDP when R− 1 is 5 (2.5) %

G = 0.21 Government spending of 21 % of CM GDP

γ0 Government debt of 35.7 % of CM GDP

α0 Inflation rate of 5.27 %

With this benchmark calibration, we first explore the effects of active and passive monetary

policies on the long-run characteristics of the monetary equilibrium in economies with and without

secondary markets for public debt. We then study the robustness of active monetary policies in

delivering a unique steady state and locally stable equilibria for a wide range of fiscal policies and

changes in the economic environment. Finally, we analyze the equilibrium properties for economies

that have a spread-adjusted Taylor rule.

6.1 Active and Passive Policies

In this section, for our benchmark calibration, we analyze the resulting monetary equilibria for a

combination of active and passive monetary policies (MP) and fiscal policies (FP).

Table 2 reports real money balances, real bond holdings, the interest spread (s̃), and the

monetary and fiscal eigenvalues, which are denoted by λM and λF , respectively.
28 We show the

corresponding values for an economy with no SM and for Case 1. In particular, we consider an

active monetary policy, α = 1.50, and a passive one, α = 0.90. For fiscal policy, we consider an

active one policy, γ = 0.024, and a passive one, γ = 0.030.

27In terms of CM output, the first two correspond to 21% and 36%.
28We name the monetary eigenvalue as the one that would be commonly the monetary one. Similarly, we denote

the other eigenvalue as the fiscal one.
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Table 2: Active/Passive MP and FP
No SM SM

Active MP Passive MP Active MP Passive MP
Active FP Passive FP Active FP Passive FP Active FP Passive FP Active FP Passive FP

Π 1.0527 1.0527 1.0527 1.0527 1.0090 1.0298 1.1172 1.1644
b 0.3569 0.3569 0.3569 0.3569 0.1986 0.1755 0.0669 0.0373
s̃ 0 0 0 0 0.0208 0.0109 0.0080 0.0141

λM 1.4638 1.4638 0.8782 0.8782 0.7596 0.7599 0.4567 0.4567
λF 1.0008 0.9948 0.9948 1.0008 1.0265 1.0174 0.9791 0.9615

Benchmark parameters: σ = 1.00, and κ = 1.00. MP active: α = 1.50, passive: α = 0.90. FP active: γ = 0.24, passive: γ = 0.30.

As we can see from Table 2, there exists a unique steady state regardless whether agents trade

in SM or not. This is the case across all policies considered. When there is no trade in SM, and

consistent with Lemma 2, an active (passive) monetary policy induces a lower (higher) steady

state inflation relative to an economy with SM trade.

For an active MP and passive FP, our benchmark delivers a steady state inflation equal to

2.98%, which is close to the annual average inflation observed between 1985 and 2006 (3.06%),

when there was trade in secondary markets for public debt. The resulting equilibrium interest

rate spread is equal to 1.09%, which is less than half of the one experienced during the Great

Moderation (2.48%).29 This difference is not surprising as our spread is solely driven by the

buyer’s liquidity needs in DM and does not consider any potential differential risk among assets.

In contrast, when the fiscal policy is active, γ = 0.024, we find that inflation is further reduced

and spreads are higher.

In the literature, passive monetary policy has been widely suggested as a culprit for the inflation

episodes and great volatility before the Great Moderation.30 Consistent with this conventional

wisdom, Table 2 shows that with a passive monetary policy and regardless of the fiscal stance,

steady state inflation is higher when there is trade in SM relative to an economy when there is no

trade. When this passive monetary policy is paired with active fiscal policy, steady state inflation

and spreads are lower than when paired with a passive fiscal policy.

In terms of local stability, Table 2 highlights that an active monetary policy induces stability

in all steady states regardless of the stance of fiscal policy. Against conventional wisdom, an

active monetary policy paired with an active fiscal policy does not necessarily lead to locally

indeterminate equilibria. When agents trade in SM, the liquidity premium reduces the monetary

eigenvalue, λM , while strengthens the fiscal one, λF , enough to deliver determinacy. This is not

the case when agents do not trade in SM, as such policies always deliver indeterminate equilibria.

29The interest rate spread data has been calculated as the difference between the AAA corporate bond yield and
the 1-year treasury constant maturity rate.

30We refer to by Clarida et al. (1999) and Lubik and Schorfheide (2004), among others, for more on this issue.
Eusepi and Preston (2017), on the other hand, emphasize the role of learning and the maturity of structure in
delivering the inflation experiences during the Great Moderation. More in line with this paper is De Blas (2009)
who emphasizes the role of financial frictions.
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Table 2 also points out that regardless of the fiscal stance, a passive monetary policy dampens

both the fiscal and the monetary eigenvalues. With passive monetary and fiscal policies, the

equilibrium is always indeterminate regardless whether agents trade in SM or not. However, even

when the fiscal policy is active, a passive monetary policy leads to indeterminate equilibria.31 These

results highlight the importance of explicitly modeling the liquidity services that bonds provide.

When the economy has a premium on public debt, the Ricardian equivalence breaks down. This

ultimately alters the fiscal backing of bonds drastically changing inflation expectations relative to

a model without a premium. In the Appendix, we illustrate that our qualitative results are robust

to changes in search frictions in DM (σ) and SM (κ).

Are steady states unique regardless of the particulars of the Taylor rule? Does an active mon-

etary policy always lead to a unique locally determinate equilibria? Does a passive monetary

policy always deliver local instability? Figure 1 illustrates the existence, stability and uniqueness

of monetary equilibria for a range of fiscal and monetary policies when agents trade in SM. These

include both active and passive policies. Following the traditional policy prescriptions and the

nomenclature used in Leeper (1991), Area I in Figure 1 represents the parameter space consistent

with traditionally active monetary and passive fiscal policies. Area II corresponds to a tradition-

ally passive monetary policy paired with a traditionally active fiscal policy. Area III captures

traditionally passive fiscal and monetary policies. Finally, Area IV represents traditionally active

monetary policy paired with traditionally active fiscal policy.

Figure 1: Uniqueness and Stability of Steady States
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Benchmark parameters: σ = 1.00, and κ = 1.00.

As we can see from Figure 1, the possibility of real indeterminacy is observed when monetary

and fiscal polices are passive. When there are multiple steady states, one of them is locally

31This result is in sharp contrast to Canzoneri and Diba (2005), who find that their exogenous liquidity premium
makes the equilibrium determinate when monetary policy is passive. This is the case even when monetary policy
follows an interest rate peg.
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determinate and the other one is unstable. Moreover, under a passive monetary policy, if there

exist a unique steady state, it is indeterminate. This is the case irrespective of the fiscal stance.

On the other hand, real determinacy is observed when the central bank follows an active monetary

policy. The unique steady state can be stable or unstable, depending on the fiscal stance. There

seems to be a threshold level of fiscal policy, γ, above which passive monetary policy leads to

multiple steady states and active monetary policy leads to either non-existence of equilibrium or

uniqueness of equilibrium where agents trade in SM.

These real indeterminacy findings are robust to alternative parameterizations, as shown in

Figure 9, which can be found in the Appendix. Different structural parameters modify the degree

of passiveness of fiscal policy for which multiple steady states may exist. In a later part of the

paper, we also explore the sensitivity of these results to alternative inflation targets. Finally, Table

3 illustrates the results obtained in Proposition 1 under passive monetary policy.

Table 3: Changes in MP Stance and Multiplicity of Equilibria
No SM Case 1

α = 0.00 α = 0.95 α = 2
β

α = 0.00 α = 0.95 α = 2
β

One SS One SS One SS SS1 SS2 SS1 SS2 One SS

Π 1.0527 1.0527 1.0527 1.0534 1.0733 1.0540 1.0900 1.0346
b 0.3569 0.3569 0.3569 0.1507 0.0936 0.1508 0.0964 0.1507

R̃−R 0 0 0 0.0007 0.0211 0.0001 0.0028 0.0186
λM 0 0.9270 2.0000 0 0 0.4815 0.4819 1.0408
λF 0.9914 0.9914 0.9914 1.0084 0.9904 1.0084 0.9908 1.0079

Benchmark parameters: γ = 0.0333, σ = 1.00, and κ = 1.00.

As we can see from Table 3, both a moderately passive, α = 0.95, or an interest rate peg,

α = 0, induces multiplicity of steady states. However, an adequate active monetary policy, as

those suggested in Proposition 1; i.e, α = (2/β), delivers a unique steady state when agents

trade in SM. Even though, the real indeterminacy has been ruled out, the corresponding unique

monetary equilibrium is locally undetermined.

Unless specific coordinated monetary and fiscal policies are considered, real indeterminacy

under passive monetary policies is a robust phenomena. This can generate another source of

volatility, as sunspot equilibria can be easily constructed. These results are in sharp contrast

to Canzeroni and Diba (2005), who find that passive monetary policy paired with passive fiscal

policy can lead to locally stable monetary steady states. This is the case even when the monetary

policy follows an interest peg, α = 0. Figure 1 shows that this only happens in combination

with the existence of multiple steady states, and therefore, the potential for real indeterminacy.

When unique, our numerical results show that a passive monetary policy leads to an unstable

equilibrium. These findings are consistent with the multiplicity of steady states generated by a

bond liquidity Laffer curve. One steady state is stable and the other one is unstable. In the stable
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steady state, the fiscal eigenvalue is above unity and provides local determinacy.

6.2 Exploring the Mechanism

Given the benchmark calibration, we now explore the mechanism driving the previous real and

local indeterminacy results.

Real Indeterminacies

In this section we examine how the liquidity premium on bond interacts with monetary and fiscal

policies in generating multiple stationary equilibria. Recall that a stationary equilibria when

buyers and sellers are constrained when trading in SM is given by

Π =
1

( 2
β
− α)

(

α0 + 1− σ + θ̂
)

, (32)

b =
(G− γ0) Π

(2− α + γ) Π− (1 + α0)
. (33)

We now explore whether there is a bond Laffer curve.32 Using (33), one can solve for Π
b
as

a function of only the inflation rate, Π. Plugging that ratio into θ̂ in (32), we get the following

expression in terms of the inflation rate

α0 + (1− σ) + θ̂ −

(

2

β
− α

)

Π = 0. (34)

Whenever this expression is equal to zero, we have a steady state solution for Π. Then through

(33), we can then determine the corresponding level for real bonds b. For G − γ0 > 0, the bond

premium, θ̂, increases in Π. Then the slope of (34) may be positive or negative. Differentiating

(34) with respect to inflation, we find that it is given by

(2 + γ − α)

(

ξθ̂ b
Π

(G− γ0)

)

−

(

2

β
− α

)

. (35)

It is easy to show that the second derivative is negative. Moreover, from the previous expression,

it is easy to see that the adequate monetary and fiscal policies of Proposition 3 eliminate one of

the possible stationary equilibria.

32Note that the real bonds implied by the government budget constraint, equation (33), directly depend on the
fiscal stance (γ0 or γ). This is the case as taxes are linked to bonds and the fact that the fiscal backing affects bond
issuance. Moreover, bonds are also affected by the inflation rate as they impact their real return.
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Figure 2 draws the fix point equation (34) for a passive monetary policy paired with two

different passive fiscal policies.

Figure 2: Bond Laffer Curve for Passive MP
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Benchmark parameters: σ = 1.00, and κ = 1.00. MP passive: α = 0.90.

As we can see from Figure 2, as fiscal policy becomes more passive, γ increases, we find two

inflation rates that are consistent with stationary equilibria. Under the benchmark calibration,

we can then conclude that a bond liquidity Laffer curve exists when traditional passive monetary

policies are implemented. Given the same passive fiscal policy, Figure 3 plots the bond Laffer

curve for both passive and active monetary policies.

Figure 3: Bond Laffer Curve for Active/Passive MP
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Benchmark parameters: σ = 1.00, and κ = 1.00. MP passive: α = 0.90. MP active: α = 1.50.

As we can see, with active and passive monetary policy the corresponding stationary equilibria

are located in different sides of the bond Laffer curve. In particular, with an active monetary

policy, the steady state is unique, locally stable and to the left of the Laffer curve. In contrast,

with passive monetary policies, the unique steady state is locally unstable and to the right of the

Laffer curve.
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Local Stability Properties

In our benchmark calibration, the value of the lower off diagonal term in the Jacobian tends to be

quite close to zero.33 This corresponds to a situation where changes in inflation do not affect much

seignorage, and therefore, government bonds. Under these circumstances, we can approximate the

eigenvalues by the diagonal elements of the Jacobian, which are given by

λM ≈ ω1βα + ω3 (1− ω2)
1

Π

b

Π
, & λF ≈

1

β
−

1

2
γ +

1

2

1

Π
(1− ω2) ,

where ω1 =
1

2−σ( β
Π)(

ξ
1−ξ )

and ω2 = 1−σ+(1− ξ) θ̂. Since we are considering equilibria with positive

nominal interest rates, if ξ ≤ 1
1+σ

, then ω1 dampens the monetary eigenvalue for both passive and

active monetary policies.34 This situation reflects the fact that when trading in secondary markets,

money and bonds co-move one to one. This co-movement in the nominal government liabilities

reduces the stabilizing effect of monetary policy.

Both fiscal and monetary eigenvalues are affected by the sign of (1− ω2), shown in Figure 4.

Note that −1
2
(1− ω2)

b
Π2 indicates how inflation affects bond issuance.

Figure 4: Sign of (1− ω2).
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Benchmark parameters: σ = 1.00, and κ = 1.00.

For an active monetary policy, we have that (1− ω2) > 0, while for passive monetary policy we

have that (1− ω2) < 0. This change of sign does not drastically affect the monetary eigenvalue,

as the effect of ω1 dominates. However, when the fiscal stance is such that γ is small, it does affect

33In our numerical exercises, C is smaller than 0.002 in absolute value. See Figure 8 in the Appendix.
34In our numerical simulations, there are parameter values for which ω2 ≈ 1 and where ξ ≤ 1

1+σ
.
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the fiscal eigenvalue. In such circumstances we have that this eigenvalue can be written as follows

λF ≈
1

β
− γ +

1

2

[

γ +
1

Π
(1− ω2)

]

.

For active monetary policies, we find that in general (1− ω2) > 0, and secondary markets

amplify the fiscal eigenvalue. While for passive monetary policies, γ + 1
Π
(1− ω2) is generically

negative and secondary markets dampen the fiscal eigenvalue. Thus according to our numerical

exercises, we can conclude that secondary markets tend to reduce the stabilizing effect of monetary

policy and depending on the stance of monetary policy, they strengthen or weaken the stabilizing

effect of fiscal policy.35

Inspecting the slope of the fix point equation, given by (35), we see that whether the equilibrium

is at the left or at the right of the peak of the Laffer curve depends on the stances of both monetary

and fiscal policies. Consider a passive monetary policy and/or moderately active one so that

(2 + γ − α) and
(

2
β
− α

)

are positive and approximately equal. For these policies, the economy

is at the left (right) of the peak of the Laffer curve whenever
(

ξθ̂ b
Π

(G−γ0)

)

> (<)1. By re-arranging

(33), one can easily show that λF > (<)1, which yields determinacy (indeterminacy), implies
(

ξθ̂ b
Π

(G−γ0)

)

> (<)1.

How does fiscal policy stabilize a sudden increase in inflation? By looking at the inflation

dynamics equation (27), one can see that decreases in the ratio
(

bt
Πt+1

)

increase the term θ̂t+1

of the liquidity premium, which helps lower inflation. Differentiating the right hand side of the

bond dynamics equation (28) with respect to Πt we get −
1
2
(1− ω2)

b
Π2 , which is our term C in the

Jacobian. If future inflation is fixed, increases in inflation Πt lower (raise) the issuance of bonds bt

when (1− ω2) > (<) 0. In our numerical exercise, we find this at the left (right) of the peak of the

liquidity Laffer curve and when monetary policy is active (passive). Then active monetary policy

is stabilizing as it decreases bond issuance, which decreases the ratio bt
Πt+1

, which increases the

term θ̂t+1 in the liquidity premium, which in turns anchors inflation.36 When passive monetary

policy delivers two steady states, the stable one shares the same pattern of determinacy. The only

difference between a stable active monetary policy and a stable passive monetary policy is in the

premium dynamics. For both the term θ̂t+1 increases, but for active monetary policy the premium

decreases while for passive monetary policy it increases.

Summarizing, the endogenous liquidity premium can generate a liquidity Laffer curve, which is

35There are exceptions. When passive monetary policy induces multiplicity, one of the steady states displays
(1− ω2) > 0 so that γ+ 1

Π
(1− ω2) is positive in one of the associated eigenvalues and negative in the other. When

monetary policy is active but induces nominal indeterminacy, then the steady state is such that (1− ω2) < 0.
36This mechanism is similar to the one shown in Yun (2011). In our paper, nominal bonds make the premium

depend also on inflation. This generates the liquidity Laffer curve and make inflation have non-monotonic effects
on bonds. In our case and in contrast to Yun (2011), a stable equilibrium can also be found when monetary policy
is passive.
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critical for stability and is intimately connected with the source of multiplicity. Fiscal policy can

stabilize inflation through the effects of bond issuance on the liquidity premium. This stabilization

occurs only when the equilibrium is at the left of the peak of the liquidity curve. The stance of

monetary policy can help select that equilibrium

Importance of the Steady State Inflation Target

Here, we explore how sensitive our results are to different inflation targets. Thus, rather than

considering a long run inflation rate of 5.2%, as in the pre Great Moderation era, let us consider

a situation where the inflation target is 10% instead. Our findings are summarized in Figure 5.

Figure 5: Active and Passive FP/MP when Π0 = 1.10
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Benchmark parameters: σ = 1.00, and κ = 1.00.

As we can see, once the inflation target is higher, multiple steady states are possible even

with an active monetary policy, not just with passive ones. These real indeterminacy results are

consistent with our liquidity Laffer curve explanation. More precisely, with a higher inflation

target, the area for possible equilibria with an active monetary policy is larger, allowing for two

steady states. As we saw, the off diagonal term in the Jacobian is very close to zero and the

change in stability and multiplicity is connected to the sign of 1− ω2 as shown in Figure 6.

Figure 6: Sign of (1− ω2) when Π0 = 1.10
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Benchmark parameters: σ = 1.00, and κ = 1.00.

These results are in sharp contrast with those of Leeper (1991) and others, that consider a

flexible price environment where the steady state level of inflation does not affect the multiplicity

nor determinacy of monetary equilibria. As before, and consistent with Proposition 1, we find

that a very aggressive monetary policy can eliminate one of the steady states. Even though the

underlying frictions are different, our results are in line with Ascari and Ropele (2009), among

others. These authors find that in basic New Keynesian neither the Taylor principle nor the

generalized Taylor principle is a sufficient condition for local determinacy of equilibrium when the

long run inflation is positive.

6.3 Spread-Adjusted Taylor Rules

Here we analyze the monetary equilibria that one obtains when the monetary authority follows a

spread-adjusted Taylor rule. Table 4 reports our numerical findings for both passive and active

fiscal policies. Recall that in this environment the central bank internalizes the liquidity premium

on bonds when implementing their Taylor rule.

Table 4: A Spread-Adjusted Taylor Rule
No SM Case 1

α = 0.90 α = 1.50 α = 0.90 α = 1.50
γ = 0.024 γ = 0.030 γ = 0.024 γ = 0.030 γ = 0.024 γ = 0.030 γ = 0.024 γ = 0.030

Π 1.0527 1.0527 1.0527 1.0527 1.0527 1.0527 1.0527 1.0527

b 0.3569 0.3569 0.3569 0.3569 0.0248 0.0410 0.0248 0.0410

λM 0.8783 0.8783 1.4638 1.4638 0.8783 0.8783 1.4638 1.4638

λF 1.0008 0.9948 1.0008 0.9948 0.9301 0.9475 0.9301 0.9475
Benchmark parameters: σ = 1.00, and κ = 1.00.

As Table 4 shows, with a spread-adjusted Taylor rule, there is a unique steady state inflation

that is equal to the one when there no SM trade. In terms of stability, the monetary eigenvalue is
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identical to the one corresponding to an economy when there is no SM trade. The fiscal eigenvalue

however, is much lower, and below one. This is independent of whether fiscal policy is traditionally

active or not. Therefore, active monetary policies with a spread-adjusted Taylor rule deliver the

expected target inflation as well as real and nominal determinacy. These results are robust to

different parameterizations.37

These findings then suggest the potential benefits for real and dynamic determinacy of consid-

ering spread-adjusted Taylor rule when thinking about stabilization policies. Once the monetary

authority explicitly incorporates interest rate spreads in their decision making, it can help inter-

nalize the additional value that agents obtain when purchasing bonds, helping anchor inflation

expectations.

7 Conclusions

Using an environment where public debt is used not only as a store of value but also as an asset that

can help enlarge consumption possibilities in frictional markets, this paper provides new insights

on how active monetary policies can be useful in ruling out real and dynamic indeterminacies.

When agents trade in secondary markets, we can observe a liquidity premium on public debt.

When it exists, government bonds matter for inflation dynamics and the Ricardian equivalence

does not hold anymore. After a sudden increase in inflation, the fiscal authority can change

their bond issuance to affect the liquidity premium and, in turn, stabilize inflation. This liquid-

ity premium makes the total interest payment on governments bonds non-linear, generating a

bond liquidity Laffer curve. This allows for the possibility of real indeterminacies and drastically

changes inflation expectations and the appropriate monetary and fiscal policies that deliver locally

determinate equilibria.

To rule out real indeterminacies, we show that active monetary policy is more likely to deliver a

unique monetary steady states regardless of the fiscal stance. Moreover, a spread-adjusted Taylor

rule ensures a unique steady state. Our analytical and numerical results also show that trading

in secondary markets amplify steady state inflation when monetary policy is passive. In contrast,

it dampens steady state inflation when monetary policy is active. Moreover, trading in secondary

markets change the stability properties of the economy. Traditional policy prescriptions that rule

out local indeterminacy are no longer useful. Finally, we show that a spread-adjusted Taylor rule

can rule out real indeterminacies and with active monetary policies one can generate a locally

determinate equilibria.

Improved monetary policy or declining volatility of economic disturbances are unlikely to be

the sole contributors of delivering the inflation experiences of the Great Moderation in the US.

This paper shows the role of trading in secondary markets for public debt when bonds exhibit

37Changes in σ and κ have a small quantitative impact relative to the benchmark calibration.
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a premia in amplifying the effects of active monetary policy and the usefulness of having a low

inflation target. Our findings suggest that, with a more developed secondary market for public

debt, ceteris paribus, monetary policy does not need to be as aggressive to achieve lower inflation.

To anchor inflation expectations monetary policy must respond less aggressively to changes in

inflation, over and above adjustments prescribed by the Taylor principle relative to economies

without a liquidity premium for government debt.

Finally, in this paper we have considered government policies that are dictated by pre-determined

rules and have found that these rules have very different implications once individuals trade in

these markets. In future work, we plan to take a normative approach and study how the prop-

erties of optimal fiscal and monetary policies change once secondary markets provide a liquidity

premium.
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[7] Benhabib, J., S. Schmitt-Grohé and M. Uribe (2001). “Monetary Policy and Multiple Equilibria,”
American Economic Review, 91, 167-186.

[8] Berentsen, A. and C. Waller (2011). “Outside Versus Inside Bonds: A Modigliani-Miller Type Result
for Liquidity Constrained Economies,” Journal of Economic Theory, 146, 1852-87.

[9] Berentsen, A. and C. Waller (2016). “Liquidity Premiums on Government Debt and the Fiscal
Theory of the Price Level,” mimeo.

[10] Canzoneri, M. and B. Diba (2005). “Interest Rate Rules and Price Determinacy: The Role of
Transactions Services of Bonds,” Journal of Monetary Economics, 52, 329-343.

[11] Canzoneri, M., R. Cumby and B. Diba (2011). “The Interaction Between Monetary and Fiscal
Policy,” Handbook of Monetary Economics, 935-999.

36



[12] Canzoneri, M., R. Cumby and B. Diba (2016). “Optimal Money and Debt Management: Liquidity
Provision vs Tax Smoothing,” Journal of Monetary Economics, Forthcoming.

[13] Cass D. and K. Shell (1983). “Do Sunspots Matter?,” Journal of Political Economics, 91, 193-227.
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Appendix

Beginning of sub-period portfolios

An agent in period t enters CM with a portfolio of fiat money (M̃t−1) and nominal government

bonds (B̃t−1). In particular, we have that

φtM̃t−1 =































































φt

(

Mt−1 + atD
Bo

t

)

, if DM buyer has traded in SM but not in DM in t,

φt

(

Mt−1 + atD
Bo

t −DMs
t

)

, if DM buyer has traded in SM and in DM in t,

φt Mt−1, if DM buyer has not traded in SM nor in DM in t,

φt

(

Mt−1 −DM
t

)

, if DM buyer has not traded in SM but has in DM in t,

φt

(

Mt−1 − atD
Bo

t

)

, if DM seller has traded in SM but not in DM in t,

φt

(

Mt−1 − atD
Bo

t +DMs
t

)

, if DM seller has traded in SM but not in DM in t,

φt Mt−1, if DM seller has not traded in SM nor in DM in t,

φt

(

Mt−1 +DM
t

)

, if DM seller has not traded in SM but has traded in DM in t,

φtB̃t−1 =























φt

(

Bt−1 −DBo

t

)

, if DM buyer has traded in SM in t,

φt Bt−1, if DM buyer has not traded in SM in t,

φt

(

Bt−1 +DBo

t

)

, if DM seller has traded in SM in t,

φt Bt−1, if DM seller has not traded in SM in t.

An agent in period t enters DM with a portfolio of fiat money (M̂t−1) and nominal government

bonds (B̂t−1). In particular, we have that

φtM̂t−1 =























φt

(

Mt−1 + atD
Bo

t

)

, if DM buyer has traded in SM in t,

φt Mt−1, if DM buyer has not traded in SM in in t,

φt

(

Mt−1 − atD
Bo

t

)

, if DM seller has traded in SM in t,

φt Mt−1, if DM seller has not traded in SM in t,

φtB̂t−1 =























φt

(

Bt−1 −DBo

t

)

, if DM buyer has traded in SM in t,

φt Bt−1, if DM buyer has not traded in SM in t,

φt

(

Bt−1 +DBo

t

)

, if DM seller has traded in SM in t,

φt Bt−1, if DM seller has not traded in SM in t.

Note that DBo

t denotes the units of government bonds that sellers transfer to buyers in SM, at the

price per unit of bonds in SM, DMs
t the cash payment in DM for goods when the buyer traded in

the previous SM and DM
t the DM payment when the buyer did not trade in SM.
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Proof of Proposition 1

Imposing steady state conditions on equations (3) and (4), the equilibrium inflation rate and real

debt solves the following fixed point

Π = β [α0 + αΠ+ s̃(Π, b)] ,

b = G− γ0 +

(

1

β
− γ −

s̃(Π, b)

Π

)

b.

where s̃(Π, b) is a nonlinear function in both arguments. Note that generically a system of non-

linear equations will typically have more than one solution.

In terms of policies that deliver local determinacy, it is important to highlight that the bond

premia drastically changes the properties of the associated Jacobian. In particular, we have that

J =







1
(

1−β
∂s̃t+1

∂Πt+1

)

(

βα + β ∂s̃t+1

∂bt

(

s̃t − Π ∂s̃t
∂Πt

)

b
Π2

)

β
∂s̃t+1

∂bt
(

1−β
∂s̃t+1

∂Πt+1

)

(

1
β
− γ − s̃

Π
− b

Π
∂s̃t

∂bt−1

)

(

s̃t − Π ∂s̃t
∂Πt

)

(

b
Π2

)

1
β
− γ − s̃

Π
− b

Π
∂s̃t

∂bt−1






.

Thus the resulting policy prescriptions for stability are likely to be different from those obtained

with a constant premium as the economy is not dichotomous anymore. As a result, the underlying

eigenvalues are going to be very different from the ones implied by an economy with a constant

premium.

Proof of Proposition 2 and 3

After imposing stationarity, we have that the unique monetary steady state is given by

Π =
βα0

(1− βα)
, b =

1
(

1− 1
β
+ γ
)

{

(G− γ0) +

(

1

Π
− 1

)

m

}

,

where steady state real balances are given bym = Π
[

χσ

2(α0+αΠ−1)+σ

] 1

ξ

. The corresponding Jacobian

is given by

J =

[

βα 0

ω0
1
β
− γ

]

,

where ω0 =
∂bt
∂Πt

6= 0. Given that the dynamic system is decoupled, the corresponding eigenvalues

are λM = βα & λF = 1
β
− γ. For the results in Proposition 2 we just need to set σ = 0, which

implies that mt=0 ∀t.
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Derivation of Dynamic Monetary Equilibrium Case 1

When both constraints bind while trading in SM, the dynamic monetary equilibrium can be

characterized by the sequence
{

Πt+1, bt,mt, µ
s
t , µ

b
t

}

∞

t=0
satisfying the following equations

Πt+1 = β

(

α0 + αΠt +
1

2
µb
t+1

)

,

bt = G− γ0 +

(

1

β
− γ −

1

2

µb
t

Πt

)

bt−1 +
mt−1

Πt

−mt,

σ

[

κ

(

χ
Πξ

t+1

(2mt)
ξ
− 1

)

+ (1− κ)

(

χ
Πξ

t+1

mt
ξ
− 1

)]

+ µs
t+1 = 2 (α0 + αΠt − 1) + µb

t+1,

σ

(

χ
Πξ

t

(2mt−1)
ξ
− 1

)

− µs
t − µb

t = 0,

and bt = mt, since DBo

t+1 = mt and DBo

t+1 = bt. Solving for the Kuhn-Tucker multipliers, we get

µb
t+1 = σ

(

χ
Πξ

t+1

(2bt)
ξ
− 1

)

+ (1− κ)
1

2
σχ

Πξ
t+1

bt
ξ

(

1−
1

(2)ξ

)

− (α0 + αΠt − 1) ,

µs
t+1 = −(1− κ)

1

2
σχ

Πξ
t+1

bt
ξ

(

1−
1

(2)ξ

)

+ (α0 + αΠt − 1) .

Substituting back these expressions we arrive to the dynamic equations found in the text.

Proof of Lemma 2

The Kuhn-Tucker multipliers in steady state are given by

µb = 2

[(

1

β
− α

)

Π− α0

]

,

µs = −
1

2
σχ

Πξ

bξ
(1− κ)

[

1−
1

(2)ξ

]

+ (α0 + αΠ− 1) .

Recall that when there is no trade in secondary markets, the steady state inflation equals α0β

1−βα
,

which is the bound in conditions (i) and (ii). For µb to be positive it requires that (i) if α0 ≥ 0

and αβ < 1, then Π ≥ α0β

1−βα
, or (ii) if α0 ≤ 0 and αβ > 1, then Π ≤ α0β

1−βα
. These two inequalities

are consistent with the statement in the Lemma.
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Proof of Proposition 4

After imposing steady state conditions, we have that the monetary steady state {Π, b,m} satisfy

b = m and the following non-linear equations

Π =
1

( 2
β
− α)

(

α0 + 1− σ + σχ
1

2

Πξ

bξ

[

1 + κ

(2)ξ
+ (1− κ)

])

,

b =
(G− γ0) Π

(2− α + γ) Π− (1 + α0)
.

Once we substitute the steady state bond equation into the equation that defines the steady state

inflation rate, we obtain the following

(

2

β
− α

)

Π− (α0 + 1− σ) = σχ
1

2

(

Π
2(G−γ0)Π

(2−α+γ)Π−(1+α0)

)ξ [

1 + κ

(2)ξ
+ (1− κ)

]

,

As can be seen, the resulting equation characterizing the steady state inflation is highly non-linear.

Thus multiple steady states can not be ruled out.

Proof of Proposition 5

Let us consider an economy where G > γ0, α0 < 0 and 2+ γ > α. When α = 2
β
, it is easy to show

that the steady state inflation is unique and given by

Π =
2 (G− γ0)
(

2− 2
β
+ γ
)





2 (σ − α0 − 1)

σχ
[

1+κ

(2)ξ
+ (1− κ)

]





1

ξ

+
(1 + α0)

(

2− 2
β
+ γ
) .

Let us consider an economy where G > γ0, α0 < 0 and αβ > 1. When α = 2 + γ, it is easy to

show that the steady state inflation is unique and given by

Π =
1

2
β
− α

[

(α0 + 1− σ) + σχ
1

2

(

−α0 − 1

2 (G− γ0)

)ξ
(

1 + κ

(2)ξ
+ (1− κ)

)]

.

Proof of Lemma 3

Given our derivation of the dynamic monetary equilibrium in Case 1, the Jacobian is given by:

J =

[

A B

C D

]

=

[

ω1βα + ω3 (1− ω2)
1
Π

b
Π

−ω3

[

1
β
− 1

2
γ + 1

2
1
Π
(1− ω2)

]

−1
2
(1− ω2)

1
Π

b
Π

1
β
− 1

2
γ + 1

2
1
Π
(1− ω2)

]

,
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with ω1 =
1

2

(

1−
β 1
2
ξθ̂

Π

) , ω2 = 1−σ+(1− ξ) θ̂, and ω3 = ω1
βξθ̂

b
, where θ̂ = 1

2
σχ Πξ

(2b)ξ

(

1 + κ+ (1− κ)(2)ξ
)

,

which can be written as θ̂ =
(

2
β
− α

)

Π− α0 − 1 + σ.

In contrast to the traditional case, the values outside of the main diagonal in the Jacobian are in

general not zero and, even if they were, the elements in the diagonal are different to the traditional

ones. Therefore, traditional active/passive policies are not going to be useful in delivering locally

determinate equilibria.

Proof of Proposition 6

Imposing stationarity on equation (24) yields a unique inflation rate. Given that steady state real

debt and the buyer’s Lagrange multiplier is linear in the inflation rate, we can then easily establish

uniqueness. From the dynamic monetary equilibrium with the spread adjusted Taylor rule, the

Jacobian is given by
[

βα 0

ωs
1

1
β
− γ + ωs

2

]

,

where ωs
1 = 1

2
(θs − 1) σ b

Π
1
Π
, ωs

2 = 1
2

[

γ + σ
Π
(1− θs)

]

, and θs = (1− ξ) 1
2
χ
(

Π
2b

)ξ [

(2− κ) + κ2ξ
]

.

While the monetary eigenvalue is the standard one, the fiscal eigenvalue is not. Therefore, tradi-

tional policy prescriptions may not be useful to induce determinacy.
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Additional Figures and Robustness Analysis

Table 5: Active/Passive MP and FP: σ = 0.75

No SM SM
Active MP Passive MP Active MP Passive MP

Active FP Passive FP Active FP Passive FP Active FP Passive FP Active FP Passive FP

Π 1.0527 1.0527 1.0527 1.0527 1.0100 1.0317 1.1175 1.1679
b 0.3569 0.3569 0.3569 0.3569 0.1973 0.1734 0.0673 0.0372
s̃ 0 0 0 0 0.0203 0.0100 0.0081 0.0144

λM 1.4638 1.4638 0.8782 0.8782 0.7594 0.7598 0.4571 0.4574
λF 1.0008 0.9948 0.9948 1.0008 1.0260 1.0167 0.9798 0.9617

Benchmark parameters: σ = 0.75, and κ = 1.00. MP active: α = 1.50, passive: α = 0.90. FP active: γ = 0.24, passive: γ = 0.30.

Table 6: Active/Passive MP and FP: κ = 0.75

No SM SM
Active MP Passive MP Active MP Passive MP

Active FP Passive FP Active FP Passive FP Active FP Passive FP Active FP Passive FP

Π 1.0527 1.0527 1.0527 1.0527 1.0019 1.0143 1.1343 1.1788
b 0.3569 0.3569 0.3569 0.3569 0.2265 0.2102 0.0592 0.0348
s̃ 0 0 0 0 0.00242 0.0182 0.0102 0.0157

λM 1.4638 1.4638 0.8782 0.8782 0.7594 0.7596 0.4567 0.4567
λF 1.0008 0.9948 0.9948 1.0008 1.0287 1.0219 0.9716 0.9560

Benchmark parameters: σ = 1.00, and κ = 0.75. MP active: α = 1.50, passive: α = 0.90. FP active: γ = 0.24, passive: γ = 0.30.

Figure 8: Values of C.
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Figure 9: Steady State Uniqueness and Stability in Region 1: Robustness Analysis

Figure 9a: Benchmark 1 Figure 9b: Benchmark 1 with κ = 0.75
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Figure 9c: Benchmark 1 with κ = 0.50 Figure 9d: Benchmark 1 with κ = 0.50 and σ = 0.25
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Figure 9e: Benchmark 1 with M = 0.35 at R = 1.025 Figure 9f: Benchmark 1 with b0 = 0.75
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