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Abstract

The algorithmic trading revolution has had a dramatic effect upon markets. Trading

has become faster, and in some ways more efficient, though potentially at the cost higher

volatility and increased uncertainty. Stories of predatory trading and flash crashes constitute

a new financial reality. Worryingly, highly capitalised stocks may be particularly vulnerable

to flash crashes. Amid fears of high-risk technology failures in the global financial system we

develop a model for flash crashes. Though associated with extreme forms of illiquidity and

market concentration flash crashes appear to be unpredictable in advance. Several measures

may mitigate flash crash risk such as reducing the market impact of individual trades and

limiting the profitability of high-frequency and predatory trading strategies.

JEL Classification: C1 F3 G1 K2

Keywords: Flash Crashes; Flash Rallies; Econophysics; Regulation

1 Introduction

Algorithmic Trading (AT) incorporates a range of high speed and predatory strategies termed

Flash Trading Strategies by Lewis (2014) in recognition of the sheer speed involved – orders of

magnitude faster than the blink of a human eye. Searching for a competitive edge the need for

speed even led to the construction of new optic fibre tunnels to shorten the network distance

between New York and Chicago to save crucial milliseconds. This was later rendered obsolete

by the construction of special towers to enable the transmission of orders between New York

and Chicago via microwaves. Algorithmic Traders (ATs) now dominate financial markets and

are currently thought to constitute between 40-55% of the trading volume on European and US

equity markets respectively. For futures markets these figures could be as high as 80% (Miller

and Shorter, 2016). As speed and latency continue to develop AT has profound implications for

global financial markets.

Flash crashes first came to prominence during the Flash Crash of May 6th 2010. Around

2.30-3.00pm EST saw dramatic upheaval on US future and equity markets with the Dow Jones

Industrial Average (DJIA) losing around 10% of its value before recovering. Official reports cite

over-activity by ATs as being responsible for a liquidity crisis that caused the crash (CFTC and
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the SEC, 2010). Potentially only the timing of the event, away from the market close, averted

Armageddon (Cliff and Northrop, 2012). Despite recent legislation fears over flash crashes

persist. For instance, SEC Rule 201 (known as the Alternative Uptick Rule) of Regulation SHO

(for short-selling) was introduced to limit short-selling of National Markets System securities

that suffer a 10% intraday decline. However, academic research suggests that this has not

reduced short-selling activity (Jain et al., 2012) amid fears that the rule would not prevent

future flash crashes.

Though significant intraday volatility has long been a feature of global financial markets

(Aldridge and Manciw, 2017) flash crashes are a modern phenomenon. However, flash crashes

are reminiscent of a more extreme version of the intra-day price falls during the 1987 stock

market crash that were exacerbated by automated sales orders triggered by portfolio insurance

strategies. Perhaps finance has always needed time to adjust to new technology. The first major

flash crash identified in the literature occurred on the USD/JPY currency pair on August 16th

2007 (Chaboud et al., 2014). On that day the U.S. Dollar dropped sharply (approximately 5

percent) against the Japanese yen between 6 a.m. and 12 p.m. EST.

Selected major flash crash events are shown below in Table 1. The incidence of flash crashes

is alarming and has accelerated in recent years. As Table 2 shows flash crashes have affected

many of the major stocks listed on the NYSE and the Nasdaq. A logistic regression model

(Bingham and Fry, 2010; Chapter 7) gives formal evidence of a relationship between market

capitalisation and flash crash events (p=0.000). Worryingly, the implication is that AT makes

highly capitalised stocks particularly vulnerable to flash crashes (see Figure 1). This tallies with

the observation in Brogaard et al. (2013) that the profitability of AT increases in line with the

capitalisation of the stocks in question. With a diverse range of asset classes affected (including

stocks, bonds, currencies, futures, commodities, derivatives and bonds) recent warnings from

the Bank of England to “brace for future crashes” appears increasingly timely.

The importance of our contribution is threefold. Firstly, we contribute to the literature

modelling flash crashes (Filimonov and Sornette, 2012; Hardiman et al., 2013). Inter alia our

model builds on previous works that have used methods originating from the physical and

engineering sciences to understand high-frequency financial systems (Cliff and Northrup, 2012;

Shaw and Schofield, 2015). Secondly, our model leads to a new way of characterising flash crashes

and flash rallies tied to the incentive structures facing ATs. However, though associated with

extreme forms of illiquidity and market concentration flash crashes appear to be unpredictable

in advance. Thirdly, we contribute to on-going debates regarding regulation of high-frequency

financial systems. Though the merits of regulation are often hotly debated (Aı̈t-Sahalia and

Saǧlam, 2017; Aldridge and Krawciw, 2017) there is some suggestion that flash crash risk may be

mitigated by limiting the market impact of individual trades and the profitability of algorithmic

and predatory trading strategies (see Section 4).

The layout of this paper is as follows. An overview of flash crashes and algorithmic trading

is given in Section 2. Section 3 introduces the model used. Section 4 highlights policy im-
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Date Security Description

15/10/14 US Treasury futures Fall of 33 basis points to 1.86% before rising to 2.13%

15/01/15 EUR/CHF spot Frankenshock following the decision of the Swiss
National Bank to abandon its floor value for
the Euro. The Euro lost more than 20% of its value
between 4.30 and 4.33am EST before stabilizing at
5.10am EST.

18/03/15 EUR/USD spot and futures The Euro lost more than 3% of its value in less
than 3 minutes before recovering.

29/04/15 S&P 500 index (spot) The S&P 500 fell more than 5% in early trading.

07/10/16 GBP/USD The GBP fell 6.1% in two minutes during the
Asian trading session before recovering.

27/06/17 Gold futures Gold fell in value by 1.6% before recovering in
the wake of a massive surge in trading volume.

Table 1: Selected recent high-profile recent flash crashes.

Market Average No. of stocks No. of stocks Percentage of
Capitalisation capitalisation affected in category stocks affected

Mega cap. $321.84 billion 8 19 42.11%
(>$200 billion)

Large cap. $36.44 billion 60 589 10.19%
($10-200 billion)

Medium cap. $4.54 billion 51 1057 4.82%
($2-10 billion)

Small cap. $0.86 billion 55 1774 3.10%
($0.3-2 billion)

Micro cap. $0.15 billion 16 1360 1.18%
($0.05-0.3 billion)

Nano cap. $0.01 billion 2 994 0.20%
(<$0.05 billion)

Table 2: Flash crash events for stocks listed on the NYSE and Nasdaq (March 2011-June 2014)
by market capitalisation. (Market capitalisation correct as of 29/7/2016).

plications. An empirical application to the flash crash of May 6th 2010 is outlined in Section

5. Section 6 concludes and discusses future work. Widely documented predatory algorithmic

trading strategies are outlined in an Appendix at the end of the paper.
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Figure 1: Probability of a flash crash event by market capitalisation for NYSE and Nasdaq listed
stocks.

2 Background

2.1 Flash Crashes and algorithmic trading

ATs play a sometimes controversial role in markets. ATs are clearly part of the modern financial

reality (see above) and can play a valid financial function via such things as execution of trades,

market-making, statistical arbitrage and liquidity rebates. The SECs own regulations allow for

a sense of financial fair play so that ATs can reasonably profit from their technological edge so

long as this is restricted to publicly available information. As an illustration the profits from

latency arbitrage, for example, can be substantial. Such a highly competitive environment may

place intense evolutionary pressures upon human traders (Serbera and Paumard, 2016) but is

not in itself unfair. Controversy arises when ATs use their super-human capacities (latency,

high speed, data processing power etc.) to distort markets. Such predatory strategies even

have their own popularly used names e.g. algorithm sniffing, spoofing, quote stuffing, liquidity

anticipation, latency arbitrage, liquidity re-direction, marking the close etc. A description of

widely documented predatory algorithmic trading strategies is given in the Appendix at the end

of this paper.
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The recent growth in algorithmic trading has dramatically affected market microstructure

(Menkveld, 2014). Much of AT performs valid economic functions e.g. market-making and

arbitrage (Serbera and Paumard, 2016). In Hagstromer and Norden (2013) market-making is

attributed to 65-71% of all high-frequency trading activity. However, there is increasing concern

that market-making ATs may withdraw in times of market stress when liquidity is sparse – thus

amplifying shocks throughout the system (Schlepper, 2016). Other aspects of AT (including

predatory strategies) are more controversial. In particular, predatory trading has intensified

competition between algorithmic traders, reducing overall levels of profitability (Serbera and

Paumard, 2016).

The relative merits of HFT are open to debate. Perceived benefits of HFT include reduced

spreads (Bershova and Rakhlin, 2013) and increased efficiency (Nagata and Inui, 2014). Many

view HFT as a trade off between enhanced price discovery and excess volatility (Benos and

Sagade, 2012). This trade off can be particularly severe in times of market stress (Schlepper,

2016). Others doubt that HFT reduces transaction costs (Malinova et al., 2013; Brogaard et

al., 2012). Tokic (2015) even finds a link between HFT and increased transaction costs.

Flash Crashes emerge as part of wider debates around HFT (Boultana et al., 2014; Lewis,

2014). Hudson et al. (2015) find evidence of an association between increased use of algorithmic

trading and Flash Crash risk. The market regime is also hugely significant. Ordinarily HFT

facilitates market discovery but in times of market stress can be a catalyst for Flash Crashes

(Tokic, 2015). A common criticism is that HFTs supply liquidity when volatility is low but

often withdraw from markets when volatility rises. Precursory factors associated with Flash

Crashes include unusual options activity (Boultana et al., 2014) abnormally-high levels of inter-

market sweep orders (McInish et al., 2014), extreme illiquidity (Easley et al., 2011) and market

concentration (Bethel et al., 2011). Competition between algorithmic traders may also lead to

reduced liquidity under adverse market conditions (Madhavan, 2012). Interactions between low-

frequency and high-frequency traders can also generate volatility that can lead to Flash Crashes

(Leal et al., 2016).

2.2 Flash Crashes and regulation

The regulation of flash crashes poses major technical and administrative challenges. During the

flash crash of May 6th 2010 circuit breakers were not triggered in the DJIA because a 10% price

drop specified by Rule 80b was narrowly avoided. However, during the flash crash the price of

securities fell by more than 60%. In response, the SEC proposed new rules allowing stock and

options exchanges and Algorithmic Trading Systems to implement decentralised circuit breakers

for individual securities. However, since the initial rules were proposed market disruptions have

continued to occur. In response a new set of formal rules has been promulgated by the SEC to

try to improve the resilience of trading systems.

At the level of individual market participants automated trading is more regulated. In

the US, the CFTC Regulation Automated Trading (Regulation AT) Rule proposes pre-trade
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risk controls. It requires an identification of ATs on the basis of a daily volume threshold

(20,000 traded contracts), a registration as a floor trader and checks using anti-evasion measures.

In the UK under the Market in Financial Instruments Directive (MiFID) all high-frequency

firms need to be authorised by the financial conduct authority. Secondly, there will also be a

limit placed on the number of order messages that a market participant will be able to send

relative to the number of transactions they undertake (www.fca.org.uk). In Japan on the Tokyo

Stock Exchange, the Financial Services Agency recently added at-trade and post-trade checks to

existing pre-trade risk-control requirements. The at-trade checks occur at the moment an order

is submitted and include profit and loss limits, speed and order rejection limits, open orders

and positions. Post-trade checks are part of the back-office risk control and verify the overall

position limits including the entire portfolio at the firm level.

To complement the efforts of regulatory agencies private initiatives from the stock exchanges

themselves can increase the level of risk control. For example the Investor Exchange (IEX)

advertises on the implementation of a“speed bump” of 350-microsecond delay on orders (Lewis,

2014). This delay is sufficient to counter the speed advantage of HFT over retail investors. In

May 2017, the NYSE received a regulatory approval to implement an identical delay strategy

in its small and mid-cap trading venue (NYSE American). According to Manahov (2016) the

introduction of batch auctions once every 30 milliseconds might also be helpful in reducing

the speed advantage of ATs. However, there is some debate as to whether imposing time

delays, as above, may have unintended consequences (Aldridge and Krawkiw, 2017). Measures

proposed by Aı̈t-Sahalia and Saǧlam (2017), thought to have only a limited chance of success,

include a transaction tax, setting minimum time-limits before quotes can be cancelled, taxing

the cancellations of limit orders and replacing time priority with a pro rata or random allocation.

3 The model

Let Pt denote the price of an asset at time t and let Xt = log Pt. Based on theoretical models

in Fry (2012) and Aldridge (2014) the set up of the model is as follows:

Assumption 1 (Intrinsic Rate of Return) The intrinsic rate of return is assumed constant

and equal to µ:

E[Xt+∆ −Xt|Xt] = µ∆+ o(∆). (1)

Assumption 2 (Intrinsic Level of Risk) The intrinsic level of risk is assumed constant and

equal to σ2:

Var[Xt+∆ −Xt|Xt] = σ2∆+ o(∆). (2)
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Adapting the original approach in Johansen et al. (2000) we postulate the following model

P (t) = eX(t)(1 + κ)j(t), (3)

j(t) is a jump process describing the post Flash Crash market recovery satisfying

j(t) =

{

0 before the recovery

1 after the recovery.
(4)

During the Flash Crash Xt satisfies the Stochastic Differential Equation

dXt = b[dBt − dSt] + vdj(t), (5)

where v = ln[1 + κ]≥0, b describes the market impact of individual trades, Bt and St denote

the number of buyers and numbers of sellers respectively and are independent inhomogeneous

Poisson processes with rates λB(t) and λS(t) respectively. Inter alia this formulation reflects the

conjecture in Luckock (2003) that in a market of rational and well-informed traders the two sides

of the order book should be independent. Equations (3-5) thus describe a modified version of

the negative bubble model described in Fry and Cheah (2016) with the Gaussian noise replaced

by a Poisson difference or Skellam Distribution (Karlis and Ntzoufras, 2003). Replacing v by −v

in the above gives a modified version of the speculative bubble model in Cheah and Fry (2015)

leading to a model for Flash Rallies (Cui and Gozluzku, 2016) where, rather than crashing, prices

rise dramatically in the short-term before quickly returning to normal levels. According to this

model Flash Crashes occur as high-frequency traders drive down the price before profiting as the

price instantaneously recovers. Hence this model reconstructs qualitative aspects of predatory

algorithmic trading practices (see e.g. Lewis, 2014; Serbera and Paumard, 2016; Aldridge and

Krawciw, 2017) and mirrors the way that Flash Crashes have led to a collapse in the bid prices

of certain stocks (see Section 5).

From Assumption 1 it follows that

b[λB(t)− λS(t)] + vh(t) = µ; b[λB(t)− λS(t)] = µ− vh(t). (6)

Thus, equation (6) shows that the Flash Crash depresses the price. Moreover, the implication

is that the effects will be sufficiently strong as to be essentially unpredictable in advance. From

Assumption 2 it follows that

b2[λB(t) + λS(t)] + v2h(t) = σ2. (7)

The simultaneous equations (6-7) can be solved to give

λB(t) =
σ2 + bµ

2b2
−

(vb+ v2)h(t)

2b2
; λS(t) =

σ2 − bµ

2b2
+

(vb− v2)h(t)

2b2
. (8)
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3.1 Market distortion

In the sequel we consider a model without Flash Crash risk (v = 0). In this case equation (8)

reduces to

λB(t) =
σ2 + bµ

2b2
; λS(t) =

σ2 − bµ

2b2
. (9)

The importance of equation (9) is threefold. Firstly, equation (9) emphasises that some level

of price risk σ2 is essential for the proper functioning of the market. Secondly, equation (9)

generalises a model for high-frequency returns in Alzaid and Omair (2010). Thirdly, equation

(9) is stylistically similar to practitioner models of latency-sensitive trading briefly discussed

in Schlepper (2016). Following Fry and Cheah (2016) define the fundamental value to be the

expected price when v = 0:

PF (t) := E[Pt] =
P (0)E[ebBt ]

E[ebSt ]
= P (0)e(λB−λS)t(e

b
−1) = P0e

µ
b
t(eb−1), (10)

since if X∼Po(λ) then

E[etX ] = eλ(e
t
−1)

(Grimmett and Stirzaker 2003).

During the Flash Crash (v 6=0) we have that

PNB(t) := E[Pt] = P (0) exp
{(µ

b
t−

v

b
H(t)

)

(eb − 1)
}

.

= PF (t) exp
{

−
v

b
H(t)(eb − 1)

}

, (11)

where PF (t) is given by equation (10) and H(t) =
∫ t

0 h(u)du. Following Fry and Cheah (2016)

we can estimate the size of the effect in terms of the average distance between observed and

fundamental prices:

M :=
1

T

∫ T

0

(

1−
PF (t)

PNB(t)

)

dt = 1−
1

T

∫ T

0
exp

{v

b
H(t)(eb − 1)

}

dt (12)

4 Policy implications

During a Flash Crash the level of market distortion is given by equation (12). Differentiating

(12) with respect to b it follows that

∂M

∂b
= −

1

T

∫ T

0
vH(t)

(

1− eb + beb

b2

)

exp
{v

b
H(t)(eb − 1)

}

dt≤0. (13)
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Thus, equation (13) suggests reducing Flash-Crash risk by limiting the market impact of in-

dividual trades (e.g. by spreading out high-frequency transaction orders over longer periods

of time; Lewis, 2014). There is a suggestion that Flash Crashes are associated with extreme

forms of market illiquidity (Easley et al., 2011) and market concentration (Bethel et al., 2011).

Maintaining liquidity, especially in times of market stress, is hugely significant (Schlepper, 2016).

Similarly, differentiating (12) with respect to v it follows that

∂M

∂v
= −

(eb − 1)

bT

∫ T

0
H(t) exp

{v

b
H(t)(eb − 1)

}

dt≤0. (14)

Thus, equation (14) suggests that as v increases then the effects of the Flash Crash become more

extreme. Similarly, M also decreases (“gets worse”) as H(t) increases. Both results suggest we

may reduce the severity of Flash Crashes by limiting the profitability of predatory trading and

AT more generally. From a theoretical perspective various authors have previously made a link

between AT and Flash-Crash risk (see e.g. Brandt and Neumann, 2015; Hudson et al., 2015; Leal

et al., 2016). Practical steps limiting the effects of flash trading include the development of time

delays on the IEX exchange (Lewis, 2014). Schlepper (2016) suggests reducing the attractiveness

of predatory trading strategies by incentivising ATs to generate more informational trades (e.g.

by imposing Order to Trade Ratio (OTR) limits). Aı̈t-Sahalia and Saǧlam (2017) consider the

effect of time delays and transaction taxes to limit the profitability of high-frequency trading.

5 Empirical application

Following Shaw and Schofield (2015) we consider an empirical application to the Flash Crash of

May 6th 2010. A plot of the Accenture stock price is shown in Figure 2. The speed and scale of

the crash is dramatic – the bid price of Accenture almost completely collapses within less than

1 minute. Following Cheah and Fry (2015) we use choose

h(t) =
βtβ−1

αβ + tβ
. (15)

Under this specification the estimated market distortion given by equation (12) reduces to

M = 1−
1

T

∫ T

0

(

αβ + tβ
)

v
b
(eb−1)

dt. (16)

In the sequel we fit the Flash Crash model shown in equation (8) to this data. A likelihood ratio

test of the null hypothesis v = 0 shows that the derived model offers a statistically significant

description of historical data (χ2 = 296.0588, p = 0.000). Further, numerical evaluation of the

integral shown in equation (16) shows that the overall level of market distortion is substantial.

The clear implication is that Flash Crashes may present hugely profitable opportunities for rogue

traders (Aldridge and Krawciw, 2017).
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Figure 2: Stock price of Accenture 14:47-14.48 EST May 6th 2010. Source: www.dxfeed.com.

6 Conclusions and further work

Algorithmic trading represents a new financial reality and has had a dramatic impact upon global

financial markets. Throughout financial history the transition to new technologies has rarely

run smoothly (Reinhart and Rogoff, 2009). The flash crash of May 6th 2010 brought into sharp

focus the threat that high-frequency traders may pose to the global financial system. Though

associated with extreme forms of liquidity and market concentration flash crashes appear to be

essentially unpredictable in advance. The sinister threat posed by flash crashes is exacerbated

by uncomfortable questions about the sometimes perverse incentives facing Algorithmic Traders.

Highly capitalised stocks appear particularly prone to flash crashes. Moreover, as our model

shows, the potential clearly exists for Algorithmic Traders to profit handsomely from dramatic

price oscillations.

In this paper we provide a new way of characterising both flash crashes and flash rallies. This

tractability builds on a burgeoning literature that has sought to model flash crashes (Aı̈t-Sahalia

and Saǧlam, 2017; Cliff and Northrup, 2012; Hardiman et al,. 2013; Shaw and Schofield, 2015).

Further, we contribute to on-going debates regarding the regulation of Algorithmic Trading and

flash crashes. Regulation is a vexed issue and the efficiency of various proposals is often hotly

debated (Aı̈t-Sahalia and Saǧlam, 2017; Aldridge and Krawciw, 2017). However, the implication
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of our model is that some degree of flash crash mitigation is possible by placing limits on the

profitability of predatory trading, and of Algorithmic Trading more generally, and by reducing

the market impact of individual trades.

Algorithmic Trading, and its attendant risks, are undoubtedly here to stay. Future flash

crashes are inevitable. Future work will examine additional applications to algorithmic trading

and high-frequency finance (see e.g. Barndorff-Nielsen et al., 2012). Future work will also

examine the application of related methods to risk and failure in other complex social systems

(Chernov and Sornette, 2016).

Appendix: Widely documented predatory algorithmic trading

strategies

Algorithm sniffers are designed to detect the Volume-Weighted Average Price (VWAP) execution

algorithms typically used by large institutional investors to ensure that trades are conducted in

line with volumes actively being traded on the market. So-called “algo sniffers” typically “ping”

very small market orders to detect liquidity and hidden orders. Once the sniffer has detected,

say, a large buying order they can profit by front running. Simply buy the shares faster than

the VWAP and then sell the shares on to the VWAP at a profit.

Spoofing consists of a set of strategies specifically designed to fool other traders – especially

ATs. For example, bogus limit buy orders may be placed at fractions below the current market

price with the purpose of luring other participants, especially ATs specialised in tape reading,

into anticipating an upward price due to the presence of a large number of bids. The aim is to

incentivise other participants to post buying quotes above the large (spoof) buying order. In

the meantime the spoofers can cancel their buy order and sell their existing share holdings at

a higher price. However, as spoofing has become more high profile it has come under increased

scrutiny from regulatory agencies with the Commodity Futures Trading Commission (CFTC)

and the London Stock Exchange both issuing penalties for spoofing in recent years.

Quote stuffing consists of predatory arbitrage. It entails sending unusually and unexpected

high volumes of traffic orders. For example, 5000 quotes were sent in one second on May 6th

2010 during the Flash Crash and were directed to public and private exchanges, with the express

purpose of slowing down their data systems. Once systems are slowed by this manipulation ATs

can realize a profit by arbitraging artificially increased spreads. The generation of a sizeable

number of quotes, that rival ATs have to analyse and process, allows for substantial time gains

- especially given the super-human speed of trading involved. In addition, this strategy also

affects the National Best Bid and Offer (NBBO) prices, without any trades occurring, leading

to potentially highly profitable arbitrage opportunities.

Liquidity anticipation in flash trading is used to front-run large orders. Faster ATs can

detect, by posting small quantities of orders on all stocks, when bids are hit by large orders on a

specific market (such as BATS, the nearest exchange from Wall-Street). However, the non-filled
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quantities still have to be executed on other markets. The faster AT front-runs the execution

algorithm by buying the stocks which it can then sell on at a higher price when the rest of the

large buy order finally arrives a few microseconds later.

Latency arbitrage is facilitated by a loophole in market regulation in the face of continued

technological advancement. In terms of market microstructure the NBBO is determined by the

Securities Information Processor (SIP) which collects data from the fourteen official US stock

markets. The process takes time (milliseconds) to gather prices, devise a harmonised quote

and then disseminate the NBBO prices. The SIP depends mainly upon the technology used by

stock exchanges. These stock exchanges are not incentivised, e.g. by the Regulation National

Market System (Reg NMS), to update their technology regularly. When ATs have faster private

technologies, coupled with a direct feed to the exchange, they can effectively see the future prices

in advance (the prospective NBBO) and profit accordingly. The potential profits available from

latency arbitrage are substantial and have been estimated to be worth as much as up to $3

billion annually.

To ensure liquidity for large block trades several investment banks established private ex-

changes or dark pools - eschewing the clarity and transparency of public exchanges. Liquidity

re-direction allows ATs to manipulate the “best available price” rule. By using repeated pinging

of small orders (e.g. several 100-share orders), instead of executing the large orders all at once,

ATs signal activity and exhaust the supply of counterparties willing to trade at current prices.

The next best available price is then only available on the bank’s own internal dark pool which

channels investors’ funds there.

Marking the close involves the artificial manipulation of prices at the time of the market

close. A rush of orders can artificially inflate or depress the closing price of a security and

may have a particularly strong impact upon Imbalance Only Orders (IO) that come into effect

around the time of market close. Having been accused of such price manipulations an AT firm

in New York, Athena Capital, reached a $1 million settlement with the SEC in October 2014.
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