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Abstract

In this paper we discuss an exactly soluble statistical model for soccer. By taking into

account key features of soccer matches (goals are rare, goal-scoring patterns are not well

understood) we arrive at a version of the classical Poisson model but with constraints on the

expected total number of goals in a game. Closed form expressions are derived for expected

scores and match outcomes. We are also able to reconstruct an empirically observed inverse

strike-back effect pertaining to teams scoring consecutive goals. We produce analytical results

for perfectly competitive soccer leagues where draws are tied to the average number of goals

in a game. An empirical application to the 2016 UEFA European Championships is also

discussed.

Keywords:Forecasting; Gaming; Sports; Stochastic Processes

1 Introduction

Soccer is the world’s most popular sport (Constantinou and Fenton, 2015). Mass participation

rates, soccer is played by an estimated 250m people across over 200 countries, are accompanied

by a global TV audience of billions. Viewing figures for soccer’s World Cup exceed even those

of the Olympics. The public’s fasicnation with soccer is reinforced by intense interest in sports

modelling in general (see e.g. Percy, 2009). Allied to the above the quantitative modelling

of soccer is particularly in vogue (see e.g. Anderson and Sally, 2015; Baker and McHale, 2015;
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Kuyper and Szymanski, 2014). As such our contribution is important for a number of theoretical

and practical considerations beyond considerable public interest.

The theoretical importance of our contribution is as follows. Our model reflects both a rich

history of Poisson modelling in football (Maher, 1982; Keller, 1994) and the fact that soccer’s

low scoring nature and high numbers of draws stands in sharp contrast to North American

sports (Maher, 1982; Wright, 2009). Soccer’s rigid league structures and well-defined promotion,

relegation, tournament qualification and winning targets also mean it is especially amenable to

the kind of analysis considered here. Further, our model abstracts from key features of soccer

matches such as the fact that goal-scoring patterns are not very well understood (Kuper and

Szymanski, 2014) amid other stylised empirical facts (Dixon and Robinson, 1998).

The practical importance of our contribution is three-fold. Firstly, we derive analytical

expressions for individual scores and match outcomes. This includes modifications to account

for complications like extra-time and penalties which may have some relevance to sports-betting

applications (see e.g. Fitt et al., 2006). We consider both a Mean-Variance approximation

and a higher-order Mean-Variance-Kurtosis approximation that leads to improved results in

empirical applications. Secondly, in a simplified version of the full model we undertake theoretical

analysis of perfectly competitive soccer leagues. Though an obvious simplification this enables

us to derive realistic performance benchmarks for several major competitions. We can recreate

versions of several rules of thumb that are well known throughout football. Inter alia our model

suggests teams target 41 points and 49 points to avoid relegation from the English Premier

League and the English Championship respectively (see the third section of this paper). Thirdly,

we apply the full version of our model to the recent UEFA 2016 European Championship and

show that some of the supposedly shock results are not the complete surprise they may at first

appear. We can thus demonstrate that our model is easy to apply in practice and can lead

to conclusions that are far from trivial. A further implication is that many fans and pundits

fundamentally under-estimate soccer’s inherent unpredictability. Our model makes efficient use

of the vast amount of historical information available in terms of the average number of goals

scored per match. This simple statistic both reflects the co-evolution of increasingly advanced

offensive and defensive strategies (Anderson and Sally, 2013) and, in showing marked variation
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between elite and non-elite leagues, is itself highly informative about the nature of individual

competitions. For major competitions the typical number of goals per game is around 2.4-2.75

per game with average values of less than 2 goals per game and more than 3.5 goals per game

thought to be exceptional and to usually be indicative of lower overall standards of play.

The layout of this paper is as follows. The second section outlines the model used and

highlights the key analytical results obtained. The third section discusses perfectly competitive

soccer leagues – an idealised setting that nonetheless has some interesting implications for the

setting of performance benchmarks in elite soccer leagues. The fourth section discusses an em-

pirical application to the 2016 UEFA European Championship finals. The final section concludes

and discusses further work. A mathematical appendix is included at the end of the paper.

The model

Suppose that, as a simplification, the number of goals scored in a match is distributed as

Poisson(λ) and that if a goal is scored then it is scored by team X with probability p and by

team Y with probability 1− p. Thus, in this model goals are rare events and occur at random.

This shares qualitative features of football matches discussed in Anderson and Sally (2013) and

Kuper and Szymanski (2014) with the nature of real goal-scoring patterns not necessarily very

well understood. Our model thus abstracts key details like overall team strengths and soccer’s

low-scoring nature. Further modifications to take into account the effect of home advantage are

discussed in the fourth section of this paper. More detailed effects such as short-term form, time

of the season, managerial changes, fatigue, psychological judgements, bookmakers information

and subjective judgements have been discussed in recent applied work (see e.g. Owen, 2011;

Constantinou et al., 2012; Constantinou and Fenton, 2017) but have not been included in our

theoretical model here.

Set up in this way our model arises as a special case of the classical model of Maher (1982)

but with an additional constraint concerning the expected total number of goals scored in a

game. As discussed above this reflects both the wealth of statistical information that has only

relatively recently been made available combined with the important league-specific information

that this simple statistic encodes.
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Proposition 1 Let (X = x, Y = y) denote the event that Team X scores x goals and Team Y

scores y goals. We have that

Pr(X = x, Y = y) =
e−λ(λp)x(λ(1− p))y

x!y!
. (1)

Proof.

Pr(X = x, Y = y) =
e−λλx+y

(x+ y)!
.
(x+ y)!px(1− p)y

x!y!
=

e−λλx+ypx(1− p)y

x!y!
.

�

As a simple corollary we have:

Proposition 2 (Expected score) We have the following results for the expected final score:

(i) The expected final score is given by

E[X] = λp, E[Y ] = λ(1− p).

(ii) If the score is X = x, Y = y after M minutes the expected final score is given by

E[X] = x+

(

1−
M

90

)

λp, E[Y ] = y +

(

1−
M

90

)

λ(1− p).

In addition to individual match scores we can write down and solve the probabilities of individual

match outcomes:

Proposition 3 (Probability of match outcomes.) We have the following results for overall

match outcomes

(i) The probability of a drawn is given by e−λI0(2λ
√

p(1− p)),

(ii) The probability that Team X wins is given by Q0(
√
2λp,

√

2λ(1− p)),

(iii) The probability that Team Y wins is given by Q0(
√

2λ(1− p),
√
2λp),

where where Ik denotes the modified Bessel function of the first kind (Abramowitz and Stegun,

1968) and Q0(·) denotes the Marcum Q-function (Nuttall, 1975).
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Proof.

See the Appendix.

The probabilities calculated in Proposition 3 can be evaluated numerically using simulation

techniques (see e.g. Weinberg, 2006). However, using the recursion formula in Annamalai and

Tellambura (2008) it can be shown that the Marcum Q-function can be written as

Q0(α, β) = 1− F2,α2(β2)− e−
α2+β2

2 I0(αβ),

where F2,α2(·) denotes the Cumulative Distribution Function (CDF) of the non-central χ2 dis-

tribution with 2 degrees of freedom and non-centrality parameter α2. Motivated by empirical

implied probabilities obtained from bookmakers’ odds we have the following extension to Propo-

sition 3 for one-off matches in knock-out competitions:

Proposition 4 (Outcomes in one-off knock-out matches.) Assume that in a penalty shoot-

out each team is equally likely to win. Suppose a knock-out game goes to extra-time

(i) The conditional probability that team X wins after extra time (aet) is given by

Pr (X aet) =
1

2
Q0

(

√

2λp

3
,

√

2λ(1− p)

3

)

+
1

2

(

1−Q0

(
√

2λ(1− p)

3
,

√

2λp

3

))

. (2)

(ii) The conditional probability that team Y wins after extra time (aet) is given by

Pr(Y aet) =
1

2
Q0

(
√

2λ(1− p)

3
,

√

2λp

3

)

+
1

2

(

1−Q0

(

√

2λp

3
,

√

2λ(1− p)

3

))

. (3)

(iii) The probability that team X wins the knockout match is given by

Pr (X wins) = Q0

(

√

2λp,
√

2λ(1− p)
)

+ e−λI0(2λ
√

p(1− p))Pr(X aet). (4)

(iv) The probability that team Y wins the knockout match is given by

Pr (X wins) = Q0

(

√

2λ(1− p),
√

2λp
)

+ e−λI0(2λ
√

p(1− p))Pr(Y aet). (5)

Proof
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See the Appendix.

Dixon and Robinson (1998) find that the following stylised empirical facts are associated

with soccer matches.

1. The scoring rate increases as soon as the first goal is scored.

2. The scoring rate depends on the score.

3. The scoring rate for both teams is non-decreasing over time.

4. The inverse strike-back effect. It is not the case that a team is never more vulnerable than

after they have just scored a goal. The opposite effect is more likely.

5. If the home team is leading the home and away goalscoring rates generally decrease and

increase respectively.

Whilst our simple model is unable to account for time-varying scoring rates our model is able

to provide a theoretical description of the empirically observed inverse strike-back effect.

Proposition 5 (The inverse strike-back effect.) The team that has just scored is also more

likely to score the next goal.

Proof

See the Appendix.

Perfectly competitive sports leagues

The study of competitive balance in sports leagues has a long history dating back to the work

of Rottenberg (1956). Analysing the competitive balance of national leagues is of enduring

interest (Jessop, 2006; Lee and Fort, 2012). Moreover, evidence suggests that elite soccer teams

are already operating at very high levels of efficiency (Espitia-Escuer and Garćıa-Cebrián, 2010)

and suggests that such leagues may be becoming increasingly competitive. As an idealised

model for a perfectly competitive sports league we take p = 1− p = 1/2 in the above. Inter alia

this mirrors the way in which in finance (via the Efficient Markets Hypothesis) unpredictability
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emerges as a consequence of very high levels of competition (see e.g. Campbell et al., 1997). It

follows from Proposition 3 that in this case we have

Pr(Win) = Pr(Lose) =
1− e−λI0(λ)

2
= w,

Pr(Draw) = e−λI0(λ) = 1− 2w. (6)

A similar formulation and related formulae can be found in Keller (1994). Here, we link this

approach to a theoretical model for perfect competition in Cain and Haddock (2006) as the

probability of a draw can be explicitly linked to the typical number of goals in a game. This

suggests that around a quarter of all games will end in a draw (see the next subsection). This is

in marked contrast for classical models of competitive balance in North American competitions

which, excluding the possibility of draws, can be obtained for w = 1/2. Using the model we can

both refine the discussion of relegation in Gandy (2016) and provide extensions covering various

different performance objectives. Inter alia our approach may also enable us to compare and

contrast the performance of teams from different eras (see e.g. Baker and McHale, 2015).

Consider a soccer league of n teams who play each other home and away once only. Each

team thus plays 2(n−1) games over the course of a season. Three points are awarded for a win,

one point for a draw and 0 points for a defeat. The objective for team X is to secure enough

points over an entire league season so that X defeats a randomly chosen opponent, team Y say,

with probability q. For example, the English Premier league consists of n = 20 teams. The

target to avoid relegation is to defeat at least 3 teams thus finishing 16+1=17th place or higher.

This gives q = (3 defeated teams)/(19 rival teams). Let Xi denote the number of points scored

by team X in game i. We have that Pr(Xi = 3) = Pr(Xi) = 0 = w, Pr(Xi = 1) = 1− 2w. It

follows that E[Xi] = 3w + 1− 2w + 0w = 1 + w. The expected season total for team X is then

given by

E[X] =
∑

i

E[Xi] = 2(n− 1)(1 + w). (7)
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The number of points scored by team X compared to team Y is given by

X − Y =

2n−4
∑

i=1

Xi − Yi + Z2n−3 + Z2n−2, (8)

where the Zi represent direct head-to-head matches between the two teams and take the values

±3 with probability w and 0 with probability 1 − 2w, the distribution of the Xi and Yi is as

described above and all the random variables in equation (8) are mutually independent. The

representation in equation (8) suggests that we can set points targets for Team X to achieve a

given objective by setting

Target = E[Y ] + F−1
X−Y (q), (9)

where F−1(·) denotes the inverse CDF of the random variable X − Y and q denotes the proba-

bility q that Team X defeats a randomly chosen opponent (see above). We have the following

approximation formulae for the end-of-season points targets in perfectly competitive leagues.

Proposition 6 We have the following approximation formulae for points targets in perfectly

competitive leagues:

i) Mean-Variance (MV) approximation:

Target = (1 + w)2(n− 1) +
√

w2[8− 4n] + w[20n− 4]Φ−1(q). (10)

ii) Cornish-Fisher Mean-Variance-Kurtosis (MVK) approximation:

Target = (1 + w)2(n− 1) +
√

w2[8− 4n] + w[20n− 4]

(

(

1−
γ2
8

)

Φ−1(q) +
γ2[Φ

−1(q)]3

8

)

, (11)

where Φ−1(·) denotes the inverse CDF of the normal distribution and γ2 denotes the excess

kurtosis of the random variable X − Y where,

γ2 =
188 + 68n+ w(1988n− 5320) + w2(3600n− 6000) + w3(1800n− 3000)

w((8− 4n)w + (20n− 4))2
.

Proof
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See the Appendix.

Equation (10) in Proposition 6 gives the familiar mean-variance approximation. This formula

gives reasonable answers for low values of q but begins to get markedly less-accurate as q becomes

larger – in effect becoming less accurate higher up the league table. Equation (10) can be

obtained as a special case of equation (11) with γ2 = 0. Further, as we see in the next subsection,

the Cornish-Fisher expansion in equation (11) can be seen to lead to empirically meaningful

increases in accuracy.

Numerical example

As an illustration we apply equation (11) to the English Premier league with n = 20 teams.

In the most recent fully completed season, 2015/16, the average Premier League match had

on average 2.7 goals per game. Taking λ = 2.7 equation (6) thus gives Pr(Draw) = 0.258,

w = Pr(Win) = Pr(Lose) = 0.371. Further calculations give

Mean = (1 + w)2(n− 1) = 52.095

Variance = w2[8− 4n] + w[20n− 4] = 136.975

1. Winning the league. This involves defeating all 19 rivals. The method recommended by

Hyndman and Fan (1996) suggests taking q = (19− 1/3)/(19 + 1/3) = 0.966. In this case

equation (10) gives

x = 52.095 +
√
136.975Φ−1(0.966) = 73.379.

This suggests that in order to win the League title teams should aim to achieve a minimum

total of 74 points. In contrast application of equation (11) suggests a winning target of 77

points. In view of the comparison of teams from different eras (see e.g. Baker and McHale,

2015) the suggestion is that once teams exceed 77 points in a Premier League season they

can reasonably be viewed as potential Premier League Champions.

2. Champions League Qualification. Qualifying for the Champions League via the domestic

football competitions entails finishing in the top four. (Since the 2014/15 season winners of
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the Europa League (formerly the UEFA Cup) have also qualified for the Champions League

Group stages though we do not account for this second qualification route here.) Since

finishing in the top four involves defeating 16 randomly chosen rivals taking q = 16/19 in

the above and using equation (10) gives

x = 52.019 +
√
136.294Φ−1(16/19) = 63.835.

This suggests that in order to achieve Champions League qualification teams need to aim

to achieve a minimum of 64 points. In this case equation (11) also gives the same answer.

3. Avoiding relegation. Avoiding relegation entails finishing in the top 17 places in the league

or, equivalently, defeating 3 randomly chosen rivals. As such taking q = 3/19 and using

equation (10) gives

x = 52.019 +
√
136.294Φ−1(3/19) = 40.354.

This suggests that in order to avoid relegation teams need to aim to achieve a minimum

total of 41 points. This appears in remarkably good agreement with the well-established

rule of thumb that states that Premier League teams typically need to aim to achieve 40

points to avoid relegation. In this case equation (11) also gives the same answer.

As a further illustration of our method Table 1 shows the application of our model through-

out the English football pyramid and the suggested points totals required for winning the league

championship, achieving automatic promotion, qualifying for the promotion playoffs and avoid-

ing relegation in each case. Once again our projected totals appear in remarkably good agreement

with several well-known rules of thumb. In particular, our model suggests that teams need to

target around 50 points (to be precise actually 49 points) to avoid relegation from the English

Championship. Generally the Mean-Variance (MV) approximation under-estimates the points

targets for winning the league and for gaining automatic promotion but the differences between

the two methods for qualifying for the playoffs or avoiding relegation are very small. However,

the increased accuracy of the Mean-Variance-Kurtosis (MVK) Cornish-Fisher approximation

clearly has empirical relevance. Generally, the average number of goals per game increases as
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the standard of football decreases although the Championship has fewer goals per game than the

Premier League. Similar patterns (where the second tier has a fewer number of goals per game

than the top tier league) can also be seen in other European countries and may reflect a more

defensive overall style of play. Since the structure of the English football league pyramid is so

close to uniform – most divisions consisting of 24 teams – projected points totals are broadly the

same throughout. However, there are slight differences lower down the pyramid due to different

league structures and declining levels of quality – as reflected by generally higher numbers of

goals per game.

Empirical application

As a numerical example we discuss the prediction of games in the recent 2016 UEFA European

Championship. Thus we follow Dyte and Clark (2000) and Suzuki et al. (2010) in considering

applications to recent international tournaments. Historical records show that prior to the 2016

championship there had been an average of 2.46 goals per game in European Championship

finals matches. We use data from FIFA’s Coca Cola world rankings (data correct as of June

2nd 2016) as a proxy measure of team quality to estimate the value of p in the above (see Table

2). This follows a similar approach using FIFA team ratings in Dyte and Clarke (2000) and also

shares some similarities with classical models of competitive balance (Andreff and Szymanski,

2006).

England’s elimination from EURO 2016 at the hands of Iceland has been described as a

“national sporting embarrassment” (McNulty, 2016). However, how does this supposedly shock

defeat compare to the output of our model? From Table 2 we take λ = 2.46 and that the relative

probability of an England goal is given by p = 1069/(1069 + 751) = 0.587. From equation (1)

the probability of various scores are shown below in Table 3. Results suggest that defeat to

Iceland may not quite be the national embarrassment many perceive. The most probable match

score prior to kick-off is 1-1. According to our model the probability of a draw after 90 minutes

is 0.265, the probability of an England win is 0.470, and the probability of an Iceland win is

0.265. Using equations (4-5) the probability of an overall England win (including extra time and

penalties) is estimated to be 0.616 and the probability of an overall Iceland win is estimated to
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Division Goals League title Automatic Promotion Avoid
per game (λ) winners promotion playoffs relegation

Champ’ship λ = 2.42 q = 0.971 q = 22/23 q = 18/23 q = 3/23
MV Target=87 MV Target=85 MV Target=73 MV Target=49
MVK Target=91 MVK Target=87 MVK Target=73 MVK Target=49

League 1 λ = 2.62 q = 0.971 q = 22/23 q = 18/23 q = 3/23
MV Target=87 MV Target=85 MV Target=73 MV Target=51
MVK Target=91 MVK Target=88 MVK Target=73 MVK Target=49

League 2 λ = 2.67 q = 0.971 q = 21/23 q = 17/23 q = 2/23
MV Target=88 MV Target=81 MV Target=72 MV Target=46
MVK Target=91 MVK Target=82 MVK Target=71 MVK Target=45

National λ = 2.64 q = 0.971 q = 0.971 q = 20/23 q = 4/23
League MV Target=88 MV Target=88 MV Target=78 MV Target=51

MVK Target=91 MVK Target=91 MVK Target=78 MVK Target=52

National λ = 2.79 q = 0.969 q = 0.969 q = 17/21 q = 3/21
League
North MV Target=81 MV Target=81 MV Target=69 MV Target=45
(n = 22) MVK Target=84 MVK Target=84 MVK Target=69 MVK Target=45

National λ = 2.92 q = 0.969 q = 0.969 q = 17/21 q = 3/21
League
South MV Target=81 MV Target=81 MV Target=69 MV Target=45
(n = 22) MVK Target=85 MVK Target=85 MVK Target=69 MVK Target=45

Isthmian λ = 3.07 q = 0.971 q = 0.971 q = 20/23 q = 4/23
Premier MV Target=89 MV Target=89 MV Target=79 MV Target=52
League MVK Target=92 MVK Target=92 MVK Target=79 MVK Target=52

Northern λ = 3.02 q = 0.971 q = 0.971 q = 20/23 q = 4/23
Premier MV Target=89 MV Target=89 MV Target=78 MV Target=52
League MVK Target=92 MVK Target=92 MVK Target=79 MVK Target=52

Southern λ = 2.87 q = 0.971 q = 0.971 q = 20/23 q = 4/23
Premier MV Target= MV Target=88 MV Target=78 MV Target=52
League MVK Target=92 MVK Target=92 MVK Target=78 MVK Target=52

Table 1: English football league titles and suggested points targets for the mean-variance (MV)
and mean-variance-kurtosis (MVK) approximations (n = 24 teams unless stated). Average
number of goals, league structures and performance targets taken from the last fully completed
league season (2015-2016).

be 0.384. Relatedly, results in Table 4 also suggest that Wales win over Belgium in the Quarter

Finals of Euro 2016 was perhaps also more likely than bookmakers (and others) had anticipated.

In the sequel we compare the predictions of our model with bookmaker predictions for each

of the EURO 2016 quarter final matches. First, we need to take into account the effects of home

advantage. Academic work (Clarke and Norman, 1995) and commercial betting models suggest

that in soccer home advantage equates to a net benefit of around 0.5 goals to the home team
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Team World Ranking Points Total

Belgium 2 1384
Wales 26 846
Portugal 8 1181
Poland 27 842
Italy 12 982
Germany 4 1310
France 17 925
Iceland 34 751
England 11 1069

Table 2: FIFA World Rankings and points totals (proxy for team strengths) for the last nine
teams to be eliminated from the 2016 UEFA European Championships.

Goals scored Iceland 0 Iceland 1 Iceland 2 Iceland 3

England 0 0.085 0.087 0.044 0.015

England 1 0.123 0.125 0.064 0.022

England 2 0.089 0.091 0.046 0.016

England 3 0.043 0.044 0.022 0.007

Table 3: Probability of various scores for England v. Iceland in EURO 2016

compared to playing away from home. This suggests that playing at home gives a net advantage

of around 0.25 goals to the home team compared to a match at a neutral venue. Thus, we

assume that playing at home increases the expected number of goals scored by the home team

by 0.125 and simultaneously reduces the number of goals scored by the away team by 0.125. In

order to retain appropriately normalised probabilities this suggests the adjustments

λphome = λp+ 0.125; phome = p+
0.125

λ
;

λpaway = λp− 0.125; paway = p−
0.125

λ
(12)

Incorporating the correction for home advantage suggested by (12) gives that the size of the

adjustment for the home nation France is 0.125/2.46 = 0.051. Using equation (4-5) we compare

the results of our model with implied market probabilities obtained from bookmakers’ odds. The

results are shown below in Table 4 and show reasonable agreement with market probabilities.

However, market probabilities arguably over-estimate the probability that hot favourites such

as Belgium and France will win their respective quarter-final matches. Note that this feature
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runs counter to the so-called favourite-longshot bias (see e.g. Cain et al., 2000).

Match outcome Poland win Portugal win

Model Probability 0.389 0.611
Market Probability 0.406 0.594

Match outcome Wales win Belgium win

Model Probability 0.342 0.658
Market Probability 0.298 0.702

Match outcome Germany win Italy win

Model Probability 0.595 0.405
Market Probability 0.602 0.398

Match outcome France win Iceland win

Model Probability 0.636 0.364
Market Probability 0.792 0.208

Table 4: Model probabilities for EURO 2016 quarter finals compared to implied probabilities
for bookmakers’ odds.

Conclusions and further work

Though observed scores typically show small systematic deviations from a Poisson distribution

(Boshnakov et al., 2015) Poisson modelling both offers a reasonable description of match out-

comes and is well-established (Dyte and Clark, 2000; Suzuki et al., 2010). In particular, by plac-

ing constraints on the expected total number of goals in a match, which reflects known features

of real soccer competitions, we can produce simple analytical formulae for match outcomes. In

empirical applications further modifications are possible to variously correct for differing team

strengths, the current score, home advantage and extra-time and penalties. Our model also

provides a theoretical explanation of the empirically observed inverse strike-back effect. We

thus provide a mathematical treatment of a serious practical problem. The elegance of our

approach is underscored by the realistic performance targets that can be constructed under the

simplifying assumption of perfect competition. In particular, our model reproduces versions of

well-known rules of thumb that in order to avoid relegation from the English Premier League

and the English Championship teams need to target around 41 points and 49 points respectively.

Similar comments also apply to other leagues around the world such as Ligue 1 in France. A

Mean-Variance-Kurtosis approximation is shown to offer marked improvements over a simple
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Mean-Variance approximation when calculating performance targets.

In this paper we have explored the hidden implications of the classical Poisson model for

soccer. Further work will extend will extend this model of perfect competition in Section 3

to other, more complicated, sports such as rugby and cricket. Amid much interest in sports

modelling (see e.g. Wright, 2009) future work will develop analytical models with non-constant

goal-scoring rates and adjusting for other important factors such as injuries, loss of form, psy-

chology, fatigue etc. – see e.g. related applied work in Owen (2011) and Constantinou et al.

(2012).

Appendix: The proofs

Proof of Proposition 3

Draws occur if both teams score n goals. The probability of a draw can thus be calculated as

∞
∑

n=0

e−λλ2n

2n!
.
2n!pn(1− p)n

n!n!
= e−λ

∞
∑

n=0

(

λ
√

p(1− p)
)2n

n!n!

= e−λI0(2λ
√

p(1− p))

The probability that team X wins by a margin of r goals can be calculated as

∞
∑

k=0

e−λλ2k+r

(2k + r)!
.
(2k + r)!pk+r(1− p)k

(k + r)!k!
= e−λ

(

p

1− p

)
r
2

Ir

(

2λ
√

p(1− p)
)

. (13)

The probability that Team X wins can then be obtained by summing equation (13) over r to

obtain

Pr(Team X wins) = e−λ

∞
∑

r=1

(

p

1− p

)
r
2

Ir(2λ
√

p(1− p))

= e−λeλQ0(
√

2λp,
√

2λ(1− p)),

using

Q0(α, β) = e−
α2+β2

2

∞
∑

k=1

(

α

β

)k

Ik (αβ) ,
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(see e.g. Proakis, 1983). �

Proof of Proposition 4

Parts (i-ii). From Proposition 3 the probability X wins outright in extra-time is given by

Pr(X wins outright in extra-time) = Q0(
√

2/3λp,
√

2/3λ(1− p)). (14)

From equation (14) it follows that Pr(X wins on penalties) is given by

1

2

[

1−Q0(
√

2/3λp,
√

2/3λ(1− p))−Q0(
√

2/3λ(1− p),
√

2/3λp)
]

. (15)

Equation (2) follows by summing equations (14-15). Parts (iii-iv) follow since

Pr(X wins) = Pr(X wins outright after 90 minutes) + Pr(X wins after extra-time)Pr(Draw).

�

Proof of Proposition 5

Suppose that a goal is scored at time M . The probability that the same team scores again next

is given by

[

p2 + (1− p)2
]

[

1− e−
λ[90−M ]

90

]

. (16)

The probability that the other team scores again next is given by

[2p(1− p)]
[

1− e−
λ[90−M ]

90

]

. (17)

The probability in equation (16) is higher than in equation (17) since

4p− 4p2≤1; 4p− 2p2≤1 + 2p2; 2p− 2p2≤1 + 2p2 − 2p.

�
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Proof of Proposition 6

Equation (10) is a mean-variance approximation. The mean follows from equation (7). The

variance can be calculated using

Var(X − Y ) =
2n−4
∑

i=1

Var(Xi − Yi) + 2Var(Zi) = (2n− 4)2(5w − w2) + 2(18w)

= [20n− 4]w + w2[8− 4n].

In the sequel we consider a higher-order Cornish-Fisher approximation (Fisher and Cornish,

1960). The form of equation (11) simplifies since from (8) the random variable X − Y is

symmetric and so has skewness zero. The excess kurtosis of the random variable X − Y can

be calculated as follows. Let Wi = Xi − Yi and let Zi be defined as above with Var(Wi) = σ2
1,

Var(Zi) = σ2
2. Since E[Wi] = E[Zi] = 0 the Excess Kurtosis (Ex Kurt) of X − Y can be

calculated as

Ex Kurt(X − Y ) =
E[(W1 + . . .+W2n−4 + Z2n−3 + Z2n−2)

4]

Var(W1 + . . .+W2n−4 + Z2n−3 + Z2n−2)
− 3

=
(2n− 4)E[W 4

i ] + 2E[Z4
i ] + 6

(

(2n−2)(2n−3)
2 σ4

1 + 2(2n− 4)σ2
1σ

2
2 + σ4

2

)

((2n− 4)σ2
1 + 2σ2

2)
2

− 3

=
(2n− 4)E[W 4

i ] + 2E[Z4
i ] + σ4

1[18n− 30]− 6σ4
2

((2n− 4)σ2
1 + 2σ2

2)
2

. (18)

We have that σ2
1 = 10w(1 + w), σ2

2 = 18w, E[Z4
i ] = 162w. Further, E[W 4

i ] = E[(Xi − Yi)
4] =

94w2 + 34w. Inputting these values into (18) the stated result follows. �
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