

# **On the diversification benefit of reinsurance portfolios**

Limani, Jeta and Bettinger, Régis and Dacorogna, Michel M

Finma, Axis, DEAR-Consulting

30 October 2017

Online at <https://mpra.ub.uni-muenchen.de/82664/> MPRA Paper No. 82664, posted 19 Nov 2024 22:41 UTC

#### <span id="page-1-0"></span> $\mathbb{Z}$  II, the Market Value Market Va is a Contring diversification ber proach. In the background lies the Market Consis-Jeta Limani, Régis Bettinger, Michel Dacorogna it of reinsurance nortfolios " On the diversification benefit of reinsurance portfolios balance sheet to a fair value of liabilities at the end

SCOR, General Guisan-Quai 26, 8002 Zürich, Switzerland

October 30, 2017

#### **Abstract**

tion is not crucial by deriving analytical formulas in the case of treaties with i.i.d. exponentially distributed original losses. Finally we perform the comparison in the more general setting of arbitrary continuous joint loss distributions and observe in that case that a finite cover leads to abilitary continuous joint loss distributions and observe in that case that a finite cover leads to opposite results, i.e. a portfolio of  $n$  quota-share treaties diversifies better than a comparable portfolio of *n* excess-of-loss treaties at high quantile levels. ded to be able to run-off the business. In this paper we compare the diversification benefit of portfolios containing excess-of-loss treaties and portfolios containing quota-share treaties, when the risk measure is the (excess) Value-at-Risk or the (excess) Expected Shortfall. In a first section we introduce the set-up under which we perform our investigations. Then we show that when the losses are continuous, independent, bounded, the cover unlimited and when the risk measure is the Expected comparable portfolio of *n* quota-share treaties. This result extends to the other risk measures under additional assumptions. We further provide evidence that the boundedness assumpopposite results, i.e. a portfolio of *n* quota-share treaties diversifies better than a comparable<br>neathelia of a success of less treaties at high quoratile laugh Shortfall at a level *κ* close to 1, a portfolio of *n* excess-of-loss treaties diversifies better than a

# **Contents**



## <span id="page-3-0"></span>1 Introduction

A proper diversification provides a powerful file and offer good value to its costumers. The business proposition of reinsurers is to offer a more diversified portfolio to its customers in order to reduce their capital cost of carrying it (see for in-stance, [Dacorogna and Hummel](#page-27-0) [\[2005\]](#page-27-0)). Thus it is fundamental for such business to understand the extent of diversification that it can achieve with various forms of contracts. In this paper we aim Solvency II seeks to achieve: a fair valuation of risks. The fair value of risks. The fair value of risks. The fair value of  $\alpha$ A proper diversification provides a powerful mechanism for a financial institution to manage its risks the extent of diversification that it can achieve with various forms of contracts. In this paper, we aim at contributing to a better understanding of the diversification benefit of certain reinsurance portfolios. More specifically, we establish a framework in which we can compare, from the perspective of a reinsurer, the diversification benefit of portfolios containing quota-share contracts to the diver-**Cost of Capital approach** issuer (reinsurer) assumes a share *α* ∈ (0, 1) of the client's loss *L* to which we refer as the *original* loss. These contracts are aggregated into portfolios to which we refer as "proportional portfolios". On the other hand, the set-up of an excess-of-loss treaty is slightly more involved. In this case, the  $\overline{D}$  and now the eligible the business. issuer covers the loss of the client that exceeds a pre-agreed amount  $D$  and pays the client up to a pre-determined amount *C*. These treaties are commonly referred to as "*C* excess *D* ", or more simply *C* xs *D*. We refer to *D* as the *deductible* of the contract and to *C* as the *cover (limit)* of the contract. These treaties are pooled into portfolios to which we refer as "non-proportional portfolios". The *diversification benefit* of a portfolio covering *n* losses  $L_1, \ldots, L_n$  is defined as in [Bürgi et al.](#page-27-1) sification benefit of portfolios containing excess-of-loss contracts. In a quota-share contract, the [\[2008\]](#page-27-1) by

<span id="page-3-2"></span>
$$
DB(S, \rho) = 1 - \frac{\rho(\sum_{i=1}^{n} L_i)}{\sum_{i=1}^{n} \rho(L_i)},
$$
\n(1)

with  $S = \sum_{i=1}^n L_i$  and  $\rho$  a given risk measure. For subadditive risk measures (as defined in Artzner [et al.](#page-27-2) [\[1999\]](#page-27-2)), the function  $DB(\cdot)$  takes values in [0,1]. A non-proportional portfolio and its proportional counterpart, which form the subject of our comparison, are chosen such that they cover via with  $S = \sum_{i=1}^{n} L_i$  and  $\rho$  a given risk measure. For subadditive risk measures (as defined in [Artzner](#page-27-2) their respective contracts the same original losses  $L_1, \ldots, L_n$  (client's losses). A thorough comparison allows then to identify conditions under which one portfolio outperforms the other in terms of diversification benefit. We mainly focus on assessing the diversification benefit with the Expected Shortfall. However, for completeness discussions are also provided for DB(·) measured with the  $m \geq m$  and  $m \geq m$  requirements;  $m \geq m$  ,  $m \geq m$ Value-at-Risk and the corresponding capital (see [Busse et al.](#page-27-3) [\[2013\]](#page-27-3)), which is defined as the devi-<br>stime to the sume station 1 ation to the expectation.<sup>[1](#page-1-0)</sup>

Our paper is organized as follows: we present in Section [2](#page-3-1) the modelling of the quota-share and the excess-of-loss contracts, together with the corresponding portfolios. Then we proceed in Section [3](#page-7-0) by comparing the diversification benefit between these portfolios for excess-of-loss treaties with an infinite cover. The original losses in Section [3.1](#page-7-1) are assumed to be independent bounded and in Section [3.2](#page-13-0) to be independent exponential. The comparison is further performed in Section [4](#page-18-0) for excess-of-loss treaties with a finite cover, where we can remove the independence and boundedness assumptions of the original losses. Conclusions are drawn in Section [5.](#page-25-0)

<span id="page-3-1"></span><sup>&</sup>lt;sup>1</sup> In this paper we discuss the deviation of Value-at-Risk and Expected Shortfall to the expectation (xVaR and xES).

# 2. Modelling of reinsurance portfolios

Let  $L$  be a non-negative, (absolutely) community the loss distribution of a client (original loss), e.g. of an insurance company. The reinsurer offers a contract that covers a part of this loss *L* in return for a premium. Let us observe what happens in the cases of quota-share and excess-of-loss contracts. tent economic balance sheet which reflects what Let *L* be a non-negative, (absolutely) continuous and integrable random variable (rv) representing bility side of the economic balance sheet, how the  $\epsilon$  funded at time the  $\epsilon$ 

### **Quota-share**

The loss that a reinsurer bears in a quota-share contract with a pre-agreed percentage  $\alpha \in (0,1)$  is

<span id="page-4-2"></span><span id="page-4-1"></span>
$$
L^{\mathcal{P}} = \alpha L,\tag{2}
$$

 $T_{\rm eff}$  The cock approach takes the personal take where  $L$  denotes the original loss of the client. We keep the notation  $L^{\text{P}}$  to refer to the reinsurer's loss arising from a single quota-share contract (proportional business).

### **Excess-of-loss**

 $\cos C$  the reingure hears the Having issued an excess-of-loss treaty with a deductible *D* and a cover *C*, the reinsurer bears the following loss,

$$
L^{\text{NP}} = \begin{cases} 0, & \text{if } L \le D; \\ L - D, & \text{if } D < L \le D + C; \\ C, & \text{if } L > D + C. \end{cases} \tag{3}
$$

The random variable  $L^{\text{NP}}$ , modelling the loss arising from an excess-of-loss treaty, is a mixed random variable with positive mass at zero and at the cover  $C$ . We first compute in Lemma [2.1](#page-4-0) The random variable  $L^{\text{NP}}$ , modelling the loss arising from an excess-of-loss treaty, is a mixed the distribution function (df) of an excess-of-loss treaty  $L^{\text{NP}}$  (as defined in [\(3\)](#page-4-1)), and then derive in Corollary [2.2](#page-5-0) analytical formulas for the risk measures of  $L^{\text{NP}}$ . In all what follows we will denote the positive part of a real number *x* by

$$
(x)^+ = \max(x, 0).
$$

<span id="page-4-0"></span>Lemma 2.1. *(Distribution function of an excess-of-loss treaty.) Let L be a non-negative, continuous* and integrable random variable on  $[0, \infty)$  with df  $F_L$  and let  $D, C \in (0, +\infty)$ . Let  $L^{\text{NP}} = (L - D)^+ -$ (*L* − *D* −*C*) <sup>+</sup> *be the loss borne by the reinsurer as defined in* [\(3\)](#page-4-1)*. Then,* ∀*x* ∈ R *the distribution function of L* NP *satisfies*

$$
F_{L^{NP}}(x) = \begin{cases} 0, & \text{if } x < 0; \\ F_L(x+D), & \text{if } 0 \le x < C; \\ 1, & \text{if } x \ge C. \end{cases}
$$
 (4)

The proof is given in Appendix [A.1.](#page-29-1) It is important to note that  $F_{L^{\rm NP}}$  is not differentiable, hence  $L^{\rm NP}$ does not have a continuous probability density function. Figure [1](#page-5-1) illustrates the results of Lemma

 $\overline{4}$ 

<span id="page-5-1"></span>

Figure 1: On the left, generic df  $F_L$  of the original loss  $L$ ; on the right, df  $F_{L^{NP}}$  of the corresponding excessof-loss treaty with deductible *D* and cover *C*.

 $\mathcal{T}_\text{C}$  the cococach takes the person of  $\mathcal{T}_\text{C}$ [2.1](#page-4-0) by showing the shape of the df's of  $L$  and  $L^\text{NP}$ . It can be seen from the graph that  $F_{L^\text{NP}}$  has two jumps: one at zero with height  $w_0$  equal to P( $L$  ≤  $D$ ), and one at the cover  $C$  with height  $w_C$  equal to  $P(L \ge D + C)$ . Keeping Figure [1](#page-5-1) in mind, we continue further, by deriving the Value-at-Risk and  $t_{\text{reco}}$  is  $\frac{1}{2}$  value of  $F_{xx}$  at probability Expected Shortfall of  $L^{NP}$ . The *Value-at-Risk* of the rv (modelling losses) *X* with df  $F_X$  at probability level  $\kappa \in (0,1)$  is defined as

$$
VaR_K(X) = \inf\{x \in \mathbb{R}, F_X(x) \ge \kappa\}.
$$

in the literature, see e.g. Embrechts et al. [2002]. The Expected Shortfall of X with  $\mathbb{E}[|X|] < \infty$  at a probability level  $\kappa \in (0,1)$  is, at least 95% probability, the loss *L* will not exceed 371. It is important to note that VaR<sub>K</sub> is not always a subadditive risk measure and hence not always coherent; this topic is extensively studied in the literature, see e.g. [Embrechts et al.](#page-27-4) [\[2002\]](#page-27-4). The *Expected Shortfall* of *X* with  $\mathbb{E}[|X|] < \infty$  at Intuitively, the statement "The Value-at-Risk of *L* at 95% is 371" (VaR $_{95\%}(L) = 371$ ) means that with

$$
ES_{\kappa}(X) = \frac{1}{1-\kappa} \int_{\kappa}^{1} VaR_{u}(X) du.
$$

Expected Shortfall ES<sub>κ</sub> is a coherent measure of risk (see [Embrechts and Wang](#page-27-5) [\[2015\]](#page-27-5)). It can be interpreted as the average loss in the right tail of the distribution. By definition, it provides more information than Value-at-Risk, since it takes into consideration not only the frequency but also  $\frac{p}{p}$  and  $\frac{p}{p}$  insurer the position for  $\frac{p}{p}$  in  $\frac{p}{p}$  in  $\frac{p}{p}$  is  $\frac{p}{p}$  in  $\frac{p}{p}$ the severity of potential extreme losses. Estimating these risk measures contributes to a deeper understanding of the risk faced when holding portfolios and thus to a better management of this - The sum then gives the CoC risk margin. risk. The results are presented in the following corollary.

<span id="page-5-0"></span>**Corollary 2.2.** (VaR*<sup>κ</sup> and* ES*<sup>κ</sup> of an excess-of-loss treaty.) Let D and C be two positive real numbers,*  $L^{\text{NP}}$  *be defined as in Lemma [2.1](#page-4-0) and*  $\kappa \in (0,1)$ *. Then,* 

$$
VaR_{\kappa}(L^{NP}) = \min\{\max\{VaR_{\kappa}(L) - D, 0\}, C\},
$$
  
\n
$$
ES_{\kappa}(L^{NP}) = \begin{cases} \frac{\mathbb{E}[L^{NP}]}{1-\kappa}, & \text{if } \kappa \le w_0; \\ \frac{1}{1-\kappa} \int_{VaR_{\kappa}(L)}^{C+D} uf_L(u) du + (C+D) \frac{w_C}{1-\kappa} - D, & \text{if } w_0 < \kappa < 1 - w_C; \\ C, & \text{if } \kappa \ge 1 - w_C, \end{cases}
$$

*where*  $w_0 = F_L(D)$  *and*  $w_C = 1 - F_L(D + C)$ *.* 

generic original loss *L* and for the corresponding excess-of-loss treaty  $L^{\text{NP}}$  defined as in Eq. [\(3\)](#page-4-1). It is better visualized from this example how the Value-at-Risk of an excess-of-loss contract compares to the Value-at-Risk of the underlying original loss. Figure 2 is also a graphical representation of the The proof is given in Appendix [A.2.](#page-29-2) We present in Figure [2](#page-6-0) an illustration of the Value-at-Risk for a

<span id="page-6-0"></span>

pective that sufficient capital is nee-Figure 2: Value-at-Risk of the original loss *L* (left) and of the corresponding excess-of-loss contract with finite cover *C* and finite deductible *D* (right).

first result of Corollary [2.2.](#page-5-0) It can be seen that for  $\kappa \in [w_0, 1 - w_C]$ , the Value-at-Risk of  $L^{\rm NP}$  equals the Value-at-Risk of *L* shifted down by *D* units and that for  $\kappa \geq (1 - w_C)$ , the Value-at-Risk and the Expected Shortfall of  $L^{NP}$  are both equal to the cover *C*. These results will be further used in  $S_{\text{S}}$  $\mathbf{r}$  be carried out in  $\mathbf{r}$ Sections [3](#page-7-0) and [4](#page-18-0) when studying the diversification benefit of portfolios containing *n* excess-of-loss treaties.

an integrable random variable  $X$  as follows: Let us also introduce the *excess Expected Shortfall* and *excess Value-at-Risk* at level *κ* ∈ (0, 1) for

$$
xES_{\kappa}(X) = ES_{\kappa}(X) - \mathbb{E}[X], \qquad \text{and} \qquad xVaR_{\kappa}(X) = VaR_{\kappa}(X) - \mathbb{E}[X], \qquad (5)
$$

respectively,  $\frac{1}{2}$  in Russe et al.  $\frac{1}{2}$  [2013] respectively, which represents the capital as defined in [Busse et al.](#page-27-3) [\[2013\]](#page-27-3).

#### **Aggregation into portfolios**

model the less of the underlying portfolio hy For a given set of original losses  $(L_1, L_2, \ldots, L_n)$ , we model the loss of the underlying portfolio by

$$
S_n = \sum_{i=1}^n L_i.
$$

We consider non-proportional and proportional portfolios that have the same set of original losses. More precisely, the non-proportional portfolio is modelled by

$$
S_n^{\rm NP} = \sum_{i=1}^n L_i^{\rm NP},
$$

where each  $L^{\mathrm{NP}}_i$  $i^{NP}$  is defined as in Eq. [\(3\)](#page-4-1) with a deductible  $D_i$ , cover  $C_i$  and original loss  $L_i$ . The corresponding proportional portfolio is modelled by

$$
S_n^{\rm P} = \sum_{i=1}^n L_i^{\rm P},
$$

compare under various assumptions the diversification benefit of  $S_n^*$  and  $S_n^{**}$ . where each  $L^{\rm P}_i$  is ap  $I_i^P$  is applied with a fixed share *α* on the original losses  $L_i$  (see Eq. [\(2\)](#page-4-2)). Next we compare under various assumptions the diversification benefit of  $S_n^{\rm P}$  and  $S_n^{\rm NP}$ .

#### <span id="page-7-0"></span>2 Comparison for indonendent trov and computed the Computed using the Computed using the Cost of Capital and Cost of Capital and Cost of Capital appearance of Capital and Cost of Capital and Capital appearance of Capital and Capital appearance of Capital a meaning that only "shocks" applied to the following the following to the following to the following the follow **3** Comparison for independent treaties and unlimited covers

proach. In the background lies the Market Consis-So far we have modelled original losses by non-negative, continuous and integrable rv's. In this section we also assume that the original losses are independent and that the excess-of-loss treaties have an unlimited cover. The *right endpoint* of a random variable X is defined as

$$
r_X = \sup\{x \in \mathbb{R}, \ F_X(x) < 1\}.\tag{6}
$$

In Section [3.1](#page-7-1) we assume additionally that original losses have a finite right endpoint and compare in this setting the diversification benefit of the proportional and non-proportional portfolios (Theorem [3.3\)](#page-9-1). This comparison is further complemented in Section [3.2](#page-13-0) by the case where the original losses have an infinite right endpoint, with the example of identical exponential distributions. This leads to analytical formulas.

# <span id="page-7-1"></span>**3.1 Original losses having a finite right endpoint**

For  $n \in \mathbb{N}$  ( $n \ge 2$ ), let the original losses  $L_i$ ,  $i = 1, ..., n$ , be independent with df  $F_i$  and a finite right endpoint *r<sup>i</sup>* , and let us assume w.l.o.g. that

$$
r_n - D_n \le \sum_{i=1}^{n-1} r_i - D_i.
$$
 (7)

Lot the non proportional portfolio of  $n$  executed to  $r$  $\text{Let } \mathbf{a} \text{ be the polynomial point of } \mathbf{b}$ uenoted by  $\mathbf{r}$ oss treaties  $L_i^{\text{NP}} = (L_i - D_i)^+$ ,  $i = 1, ..., n$ , be  $D_i$  is finite, positive and smaller than  $r_i$ . Then.  $\frac{1}{\pi}$  to  $\frac{1}{n}$ .  $s_n$  second, multiply all current and future  $s_n$  $L_i$  is a mixed random variable with mass only ition function of every  $L_i^{**}$  satisfies  $\forall x \in \mathbb{R},$ Let the non-proportional portfolio of  $n$  excess-of-loss treaties  $L_i^{\text{NP}}$  $i_i^{\text{NP}} = (L_i - D_i)^+$ ,  $i = 1, ..., n$ , be denoted by  $S_n^{\text{NP}} = \sum_{i=1}^n L_i^{\text{NP}}$  $i$ <sup>NP</sup>, where the deductible  $D_i$  is finite, positive and smaller than  $r_i$ . Then,  $L_1^{\rm NP}$  $I_1^{\rm NP},\ldots,L_n^{\rm NP}$  are also independently distributed with df  $F_{L_i^{\rm NP}}.$  Note that we now consider excess-of-loss contracts with an unlimited cover<sup>[2](#page-1-0)</sup>, i.e. every  $L_i^{\text{NP}}$ I<sup>NP</sup> is a mixed random variable with mass only at zero. From Lemma [2.1,](#page-4-0) it follows that the distribution function of every  $L_i^{\rm NP}$  $i^{\text{NP}}$  satisfies  $\forall x \in \mathbb{R}$ ,

<span id="page-7-3"></span><span id="page-7-2"></span>
$$
F_{L_i^{\text{NP}}}(x) = \begin{cases} 0, & \text{if } x < 0; \\ F_i(x + D_i), & \text{if } 0 \le x < r_i - D_i; \\ 1, & \text{if } x \ge r_i - D_i. \end{cases} \tag{8}
$$

On Figure [3](#page-8-1) we compare the df of the excess-of-loss contract with the one of the original loss, where it can be seen that each  $L^{\mathrm{NP}}_i$  $i^{\mathrm{NP}}_i$  has a jump at zero of height  $w_{0,i}$  =  $F_i(D_i)$  (right-hand side). Then, we show on Figure [4](#page-8-2) the Value-at-Risk of the original loss *L* and of the corresponding excess-of-loss  $L^{\rm NP}$ . Both graphs simply represent the generalized inverse of the corresponding functions in Figure [3.](#page-8-1) Having set the ground, we can now assess the risk of a non-proportional portfolio and use this result to compare its diversification benefit to the one of its proportional counterpart, when the risk measure is evaluated at a level *κ* close to 1.

<sup>&</sup>lt;sup>2</sup>It is sufficient that the cover is sufficiently high, precisely that ∀*i* = 1, ..., *n*,  $C_i$  >  $r_i$  −  $D_i$ .

<span id="page-8-1"></span> $L^{\text{NP}}$  with unlimited cover and deductible  $D$  (right). Figure 3: Distribution function  $F_L$  of the original loss  $L$  (left) and of the corresponding excess-of-loss contract



<span id="page-8-2"></span>The Coca approximation of the person the person of the **Figure 4:** Value-at-Risk of the original loss (left), and of the corresponding excess-of-loss treaty with de-<br>And the Detail is not the model of the original loss (left), and of the corresponding excess-of-loss treaty wit ductible *D* (right).



#### <span id="page-8-0"></span>**3.1.1 Measuring the risk of non-proportional portfolios** 1 in 200 event:

By means of induction, we can reveal the relationship between the distribution function of  $S_n^{\text{NP}}$  and S<sub>*n*</sub>, for values  $s \ge \sum_{i=1}^{n-1} (r_i - D_i)$ , in which an analogous formula to Eq. [\(8\)](#page-7-2) is derived. This is accomplished in Proposition [3.1.](#page-8-3)

<span id="page-8-3"></span>**Proposition 3.1.** *For a fixed*  $n \in \mathbb{N}$ , let  $L_i$ ,  $i = 1, ..., n$ , be independent, non-negative, continuous, - Third, discount everything to time 0;  $D_i$ <sup>+</sup>  $i = \{1, \ldots, n\}$  with  $D_i \in (0, r_i)$  Then *integrable rv's with df*  $F_i$ , with a finite right endpoint  $r_i < \infty$  and such that Eq. [\(7\)](#page-7-3) is satisfied. Let  $S_n = \sum_{i=1}^n L_i$  and  $S_n^{\text{NP}} = \sum_{i=1}^n L_i^{\text{NP}}$  $L^\mathrm{NP}_i$  where  $L^\mathrm{NP}_i$ *i*<sup>I</sup><sup>*NP*</sup> =  $(L_i - D_i)^+$ ,  $i = \{1, ..., n\}$  *with*  $D_i$  ∈  $(0, r_i)$ *. Then,*  $\forall s \in [\sum_{i=1}^{n-1} (r_i - D_i), \infty),$ 

$$
F_{S_n^{\rm NP}}(s) = F_{S_n}\Big(s + \sum_{i=1}^n D_i\Big).
$$

The proof is given in Appendix [A.3.](#page-30-0) For the purpose of risk quantification, one can derive the relation between the risk measures of  $S_n^{\text{NP}}$  and  $S_n$  when the level  $\kappa$  is close to 1. This is done for the Value-at-Risk and the Expected Shortfall in the next corollary.

<span id="page-8-4"></span>**Corollary 3.2.** (VaR<sub>K</sub> and ES<sub>K</sub> for a portfolio of *n* independent excess-of-loss treaties.) Let  $n \in \mathbb{N}$ 

and  $S^{\rm NP}_n$ ,  $S_n$  be defined as in Proposition [3.1.](#page-8-3) Then,  $\forall \kappa \in \left[ F_{S_n}\bigl(\sum_{i=1}^{n-1} r_i + D_n\bigr), 1 \right)$ ,

$$
VaRK(SnNP) = VaRK(Sn) - \sum_{i=1}^{n} Di,
$$

which yields also

$$
ES_{\kappa}(S_n^{\text{NP}}) = ES_{\kappa}(S_n) - \sum_{i=1}^n D_i.
$$

mate of Liabilities (BEL) and the MVM The proof follows similar steps as the one given in Appendix [A.2.](#page-29-2) This corollary enables us to one of its proportional counterpart. This is the main result of this section and is presented in compare the diversification benefit of a portfolio of *n* independent excess-of-loss contracts to the Theorem [3.3.](#page-9-1)

#### <span id="page-9-0"></span>ded to be able to run-off the business.  $\mathbf{H}$  the risk matrix matrix  $\mathbf{H}$  and  $\mathbf{H}$  the risk matrix  $\mathbf{H}$ **3.1.2 Main result: comparison of the diversification benefits**

The main result of Theorem [3.3](#page-9-1) is the comparison of the diversification benefit [\(1\)](#page-3-2) between the non- $\frac{c_1}{c_2}$  of  $\frac{c_2}{c_1}$  for  $\frac{c_1}{c_2}$  for  $\frac{c_2}{c_1}$  for  $\frac{c_1}{c_2}$  for  $\frac{c_2}{c_1}$ nonary proportional portions to proportional portfolio  $S^{\rm NP}_n$  and the proportional portfolio  $S^{\rm P}_n$ . Recall that the *proportional* portfolio is defined by  $S_n^P = \alpha \sum_{i=1}^n L_i$ , where  $\alpha \in (0, 1)$ .

<span id="page-9-1"></span>schematical lycetical cooperation of the MVM calculation of t *nite cover case.) For a fixed*  $n \in \mathbb{N}$ , let  $S_n^P$  and  $S_n^{NP}$  denote a proportional portfolio and its non-- First, project the expected SCR until all liabili-*proportional counterpart defined as in Proposition [3.1,](#page-8-3) respectively. Then* **Theorem 3.3.** *(Comparison of the diversification benefits, independent bounded losses and infi-*

$$
\forall \kappa \in \left[ F_{S_n^{\rm NP}}\left( \sum_{i=1}^{n-1} (r_i - D_i) \right), 1 \right) \cap (\kappa^*, 1),
$$

 $\epsilon$  where  $\kappa^* = \max_i F_i(D_i)$ , we have the following results (the function  $\text{DB}(\cdot)$  is defined in [\(1\)](#page-3-2)).

*• In the case of the Expected Shortfall,*

$$
DB(S_n^{NP}, ES_\kappa) \ge DB(S_n^P, ES_\kappa).
$$

*• In the case of the excess Expected Shortfall,*

$$
DB(S_n^{NP}, xES_\kappa) \ge DB(S_n^P, xES_\kappa).
$$

*• If the Value-at-Risk is subadditive for the given κ and the joint df of the original losses, i.e*  $\text{VaR}_{\kappa}\left(\sum_{i=1}^{n} L_{i}\right) \leq \sum_{i=1}^{n} \text{VaR}_{\kappa}\left(L_{i}\right)$ , then

$$
DB(S_n^{NP}, VaR_{\kappa}) \ge DB(S_n^P, VaR_{\kappa}).
$$

*• In the case of the excess Value-at-Risk:*

- $F_n$  and additionally either  $\sum_{i=1}^n \text{VaR}_{\mathcal{K}}(L_i) > \sum_{i=1}^n (\mathbb{E}[L_i^\text{NP}] + D_i)$  or  $\sum_{i=1}^n \text{VaR}_{\mathcal{K}}(L_i) < \sum_{i=1}^n \mathbb{E}[L_i],$  $\sigma$  $-$  *if the Value-at-Risk is subadditive for the given κ* and the joint df of the original losses,  $\sum_{i=1}^{NP}$ ] *+Di*) *or*  $\sum_{i=1}^{n}$  VaR<sub>*k*</sub>(*L*<sub>*i*</sub>) <  $\sum_{i=1}^{n}$   $\mathbb{E}[L_i]$ *, or*
- $\mu$  if the Value-at-Rick is superadditive for the given  $r$  and the joint df of the original losses and is the computation of  $\sum_l n_l$  and  $\sum_l n_l$ and additionally  $\sum_{i=1}^n \mathbb{E}[L_i] < \sum_{i=1}^n \text{VaR}_{\kappa}(L_i) < \sum_{i=1}^n (\mathbb{E}[L_i^{\text{NP}}] + D_i),$ year are considered. The graph depicts, on the lia-**–** *if the Value-at-Risk is superadditive for the given κ and the joint df of the original losses*  $\binom{NP}{i}$  + *Di*)*,*

tent economic balance sheet which reflects what *then*

$$
DB(S_n^{NP}, xVaR_{\kappa}) \ge DB(S_n^P, xVaR_{\kappa}).
$$

at  $S = \nabla h$  distribution that **Cost of Capital approach** *Proof.* Let  $n \in \mathbb{N}$  and  $\kappa \in \left[F_{S_n^{\text{NP}}}(\sum_{i=1}^{n-1}(r_i-D_i)),1\right] \cap (\kappa^*,1)$ . Let  $S_n = \sum_{i=1}^{n} L_i$ , then from the positive homogeneity of the Value-at-Risk and Expected Shortfall it follows

$$
VaR_{\kappa}\left(S_{n}^{P}\right)=\alpha VaR_{\kappa}\left(S_{n}\right) \text{ and } ES_{\kappa}\left(S_{n}^{P}\right)=\alpha ES_{\kappa}\left(S_{n}\right).
$$

Corollary [3.2](#page-8-4) then implies that

$$
VaR_{\kappa}(S_n^{NP}) = \frac{VaR_{\kappa}(S_n^P) - \alpha \sum_{i=1}^n D_i}{\alpha}
$$
 and 
$$
ES_{\kappa}(S_n^{NP}) = \frac{ES_{\kappa}(S_n^P) - \alpha \sum_{i=1}^n D_i}{\alpha}.
$$

Finally, applying Corollary [3.2](#page-8-4) with  $n = 1$  (recall that  $\kappa \geq \kappa^*$ ) and plugging into the above equations, we obtain

$$
DB(S_n^{NP}, VaR_{\kappa}) = 1 - \frac{VaR_{\kappa}(S_n^{NP})}{\sum_{i=1}^n VaR_{\kappa}(L_i^{NP})} = 1 - \frac{VaR_{\kappa}(S_n^{P}) - \alpha \sum_{i=1}^n D_i}{\sum_{i=1}^n VaR_{\kappa}(\alpha L_i) - \alpha \sum_{i=1}^n D_i} \ge DB(S_n^{P}, VaR_{\kappa}),
$$

 $s_{\rm eff}$  that the Capital shows that the Capital shows that the sufficient to restore  $\alpha$  $t$  and  $\theta$  fair value of  $\theta$  fair value of  $\theta$  fair value of  $\theta$  after a function  $\theta$  after a function  $\theta$  after a function  $\theta$  fair value of  $\theta$  fair value of  $\theta$  fair value of  $\theta$  fair value of  $\theta$  fair valu and

$$
DB(S_n^{NP}, ES_\kappa) = 1 - \frac{ES_\kappa(S_n^{NP})}{\sum_{i=1}^n ES_\kappa(L_i^{NP})} = 1 - \frac{ES_\kappa(S_n^{P}) - \alpha \sum_{i=1}^n D_i}{\sum_{i=1}^n ES_\kappa(\alpha L_i) - \alpha \sum_{i=1}^n D_i} \ge DB(S_n^{P}, ES_\kappa),
$$

factor that the insurer selection  $a-x$  to comwhere the last inequality comes in both cases from the fact that the function  $x \mapsto \frac{a-x}{b-x}$  is nonincreasing on  $[0, b)$  if  $b \ge a$  (here  $x < b$  because we assumed  $\kappa > \kappa^*$ ). Recall in the VaR case the additional assumption of subadditivity.

In the xES case, the previous argument still holds since

$$
\sum_{i=1}^{n} (\mathbb{E}[L_i] - D_i) \le \sum_{i=1}^{n} \mathbb{E}[L_i^{\text{NP}}] \le \sum_{i=1}^{n} (\text{ES}_{\kappa}[L_i] - D_i),
$$

where the first inequality follows the definition of  $L_i^{\text{NP}}$  $i_i^{NP}$  and the second comes from the fact that *κ* ≥ *κ* ∗ . The result for the xVaR is obtained by direct comparison.  $\Box$ 

To sum things up, we have proved that the diversification benefit of a portfolio of *n* independent excess-of-loss treaties is higher or equal than the diversification benefit of a portfolio of *n* independent quota-share treaties, under some conditions given in Theorem [3.3.](#page-9-1)

scribe a vast amount of portfolios held in practice. To the best of our knowledge, however, Theorem [3.3](#page-9-1) contributes to the actuarial literature as being the first analytical result on the comparison between the diversification benefit of non-proportional and proportional contracts. A potential path for future studies is the introduction of dependence between the original losses, or the restriction to provide the background in the background of the Constantine Consistent Constitution of the economic balance is<br>A particular distribution functions. Extensions of this framework are further discussed in Section 3.2 tent economic balance sheet which reflects which reflects which reflects which reflects which reflects which re where we consider explicit distribution functions for the original losses. Contracts with a finite cover particular distribution functions. Extensions of this framework are further discussed in Section [3.2](#page-13-0) are considered in Section [4,](#page-18-0) since those are the types of contracts that are encountered most often in practice. In the next section we derive closed-form formulas for  $S_2^{\text{NP}}$  in the case of independent, identical and uniformly distributed original losses. This enables us to obtain a graphical illustration We are aware that the assumption of independent contracts is restrictive and hence does not de- $2^{\text{NP}}$  in the case of independent, of our main result.

### <span id="page-11-0"></span>**3.1.3 Example of uniform losses**

In this section we derive closed-form formulas for the comparison between the diversification benefit of a non-proportional and a proportional portfolio with two i.i.d. uniformly distributed original losses  $t_{\text{tot}}$  and the expected of the expected value of the expected value of  $t_{\text{tot}}$ L. First, we compute the diversification benefit of the proportional portfolio. Second, we derive the diversification benefit of the non-proportional portfolio and last, we compare the diversification benefit of these two portfolios when the proportional and non-proportional treaties have the same Section 2.4, in order to compare proportional and non-proportional contracts in the framework of expectation. Note, this condition on the mean is also imposed in [Rees and Wambach](#page-28-0) [\[2008\]](#page-28-0), utility theory.

#### **Portfolio of 2 quota-share contracts**

shows that the Capital should be sufficient to restore Let the original losses  $L_1$ ,  $L_2$ , be independent uniformly distributed on the interval  $[a, b]$  with  $a, b$  > 0. The quot  $\sum_{i=1}^{n}$  school of the mortal  $\lfloor u, v \rfloor$  with  $u, v \neq 0$  $\tau_{\text{c}}$  =  $\alpha$   $\iota$  = - Second, multiply all current and future SCR by all current and future SCR by all current and future SCR by a ormulas below (the derivations are included in 0. The quota-share contracts are modelled by  $L_i^{\text{P}}$  $\sum_i^{\text{P}} = \alpha L_i$ ,  $i = 1, 2$ , and the proportional portfolio by  $S_2^P = L_1^P + L_2^P$  $_2^{\rm P}$ . Then, the diversification benefit of  $S_2^{\rm P}$  $2<sub>2</sub>$ , measured with the Expected Shortfall and with the Value-at-Risk, can be expressed by the formulas below (the derivations are included in Appendix [A.4\)](#page-31-0).

<span id="page-11-1"></span>
$$
DB(S_2^P, ES_\kappa) = \begin{cases} \frac{(b-a)\kappa^{\frac{3}{2}}(2\sqrt{2}-3\sqrt{\kappa})}{3(\kappa-1)(a(\kappa-1)-b(\kappa+1))}, & \text{if } 0 < \kappa < \frac{1}{2};\\ \frac{(b-a)(3(1-\kappa)-\sqrt{8(1-\kappa)})}{3(a(\kappa-1)-b(\kappa+1))}, & \text{if } \frac{1}{2} \le \kappa < 1. \end{cases}
$$
(9)

$$
DB(S_2^P, VaR_{\kappa}) = \begin{cases} \frac{(b-a)(2\kappa - \sqrt{2\kappa})}{2(a + (b-a)\kappa)}, & \text{if } 0 < \kappa < \frac{1}{2};\\ \frac{(b-a)(2\kappa - 2 + \sqrt{2(1-\kappa)})}{2(a + (b-a)\kappa)}, & \text{if } \frac{1}{2} \leq \kappa < 1. \end{cases}
$$
(10)

The diversification benefit of  $S^{\rm P}_2$  measured with  $\mathrm{xES}_{\bm{k}}$  and  $\mathrm{xVaR}_{\bm{k}}$  writes

<span id="page-11-3"></span><span id="page-11-2"></span>
$$
DB(S_2^P, xES_\kappa) = \begin{cases} \frac{\sqrt{8\kappa} - 3\kappa}{3(1-\kappa)}, & \text{if } 0 < \kappa < \frac{1}{2};\\ 1 - \frac{1}{\kappa} + \frac{\sqrt{8(1-\kappa)}}{3\kappa}, & \text{if } \frac{1}{2} \le \kappa < 1. \end{cases}
$$
(11)

<span id="page-11-4"></span>
$$
DB(S_2^P, xVaR_\kappa) = \begin{cases} \frac{2\sqrt{\kappa}}{\sqrt{2} + 2\sqrt{\kappa}}, & \text{if } 0 < \kappa < \frac{1}{2};\\ \frac{2(\kappa - 1) + \sqrt{2 - 2\kappa}}{2\kappa - 1}, & \text{if } \frac{1}{2} \le \kappa < 1. \end{cases}
$$
(12)

two independent identical uniformly distributed original losses. It is worth noting that the simplicity of the expressions is due to the set-up that we consider, namely

### **Portfolio of 2 excess-of-loss contracts**

The excess-of-loss treaties are modelled by  $L_1^{\text{NP}}$  and  $L_2^{\text{NP}}$ , such that  $L_i^{\text{NP}} = (L_i - D)^+$ ,  $i = 1, 2,$ where the original losses are independent uniformly distributed on  $(a, b)$ . The portfolio containing Solvence the angular research interpretation allowing distinguished of  $(v, z)$ . The personal containing<br>these two average of loss contracts is modelled by  $SNP = INP + INP$ . We take a  $h > 0$  and agguine  $\frac{1}{2}$  -  $L_1$  +  $L_2$  where the both the Best Estimate Best Est e each a positive mass  $w_0$  at 0,  $L_1^{\text{NP}}$  and  $L_2^{\text{NP}}$  $_2^{\rm NP},$  such that  $L_i^{\rm NP}$  $i_i^{\text{NP}} = (L_i - D)^+$ ,  $i = 1, 2$ , these two excess-of-loss contracts is modelled by  $S_{2}^{\mathrm{NP}} = L_{1\mathrm{m}}^{\mathrm{NP}} + L_{2}^{\mathrm{NP}}$  $_{2}^{\text{NP}}$ . We take  $a, b > 0$  and assume that  $D \in (a, b)$ , to avoid the trivial cases. The rv's  $\overline{L}^{\text{NP}}_1$  $L_1^{\text{NP}}$ ,  $L_2^{\text{NP}}$  $_{2}^{\text{NP}}$  have each a positive mass  $w_{0}$  at 0, where

<span id="page-12-0"></span>
$$
w_0 = P(L_1^{\text{NP}} = 0) = P(L_1 < D) = \frac{D - a}{b - a} > 0.
$$

**Colomocy** Cost of Capital Cost of Caption as in Eq. [\(1\)](#page-3-2) using VaR<sub>κ</sub>, ES<sub>κ</sub>, xES<sub>κ</sub> and xVaR<sub>κ</sub>. For  $T_{\text{max}}$ ,  $T_{\text{max}}$  and  $T_{\text{max}}$ . The person of example, the diversification benefit of  $S_2^{\text{NP}}$  measured with VaR<sub>K</sub> writes (see Appendix [A.5](#page-32-0) for the proof and the result for all four risk measures), p

$$
DB(S_2^{NP}, \text{VaR}_\kappa) = \begin{cases} \frac{2bx - 2a\kappa - \sqrt{2}\sqrt{(a-D)^2 + (a-b)^2\kappa}}{2(\kappa(b-a) - (D-a))}, & \text{if } w_0 < \kappa \le F_{S_2^{NP}}(b-D);\\ \frac{(b-a)(2(\kappa-1) + \sqrt{2}\sqrt{1-\kappa})}{2(\kappa(b-a) - (D-a))}, & \text{if } F_{S_2^{NP}}(b-D) < \kappa < 1. \end{cases}
$$
(13)

We note that for  $\kappa < w_0$ ,  $DB(S_2^{\text{NP}}, \text{VaR}_\kappa)$  is not defined since in this case  $\text{VaR}_{\kappa}(L_1^{\text{NP}}) = 0$  (division Schematically, the MVM calculation  $_{2}^{\mathrm{NP}},\mathrm{VaR}_{\kappa})$  is not defined since in this case  $\mathrm{VaR}_{\kappa}(L_{1}^{\mathrm{NP}})$  $_1^{\text{NP}}$ ) = 0 (division by zero). Next we compare the diversification benefits of the two portfolios.

#### can be carried out in 4 steps:  $\overline{D}$ Comparison of the diversification benefits for  $S_{2}^{\mathrm{NP}}$  and  $S_{2}^{\mathrm{P}}$  $S_2^{\text{NP}}$  and  $S_2^{\text{P}}$ 2

Finally, we compare the diversification benefit of  $S_2^{\text{NP}}$  and  $S_2^{\text{P}}$  for quota-share and excess-of-loss contracts having the same expectation. This is a D such that  $\mathbb{E}[I^{NP}] - \mathbb{E}[I^{P}]$   $i = 1, 2, i \in \mathbb{R}$  $\overline{D}$  babit that: Finally, we compare the diversification benefit of  $S_2^{\text{NP}}$  and  $S_2^{\text{P}}$  for quota-share and excess-of-loss nplished by choosing an appropriate deductible  $_2^{\text{NP}}$  and  $S_2^{\text{P}}$  $_2^P$  for quota-share and excess-of-loss contracts having the same expectation. This is accomplished by choosing an appropriate deductible *D* such that  $\mathbb{E}[L^\text{NP}_i]$  $\binom{\text{NP}}{i}$  =  $\mathbb{E}[L_i^{\text{P}}]$  $_{i}^{\mathrm{P}}$ ],  $i = 1, 2$ , i.e.

<span id="page-12-1"></span>
$$
\frac{\alpha(a+b)}{2} = \frac{(b-D)^2}{2(b-a)} \quad \Rightarrow D = b - \sqrt{\alpha(b^2 - a^2)},
$$
\n(14)

 ${\rm st}$  . The diversification benefit of  $S_{\rm r}^{\rm P}$  is derived in tion bonofit of  $\epsilon^{NP}$  is derived in equations (19)  $\frac{1}{2}$  is defined in equal reduced reports  $\frac{1}{2}$ and [\(30\)](#page-32-1). For a given interval  $(a, b)$  of the original losses, the difference in diversification benefit where  $\alpha$  is the parameter of the quota-share contract. The diversification benefit of  $S_2^{\rm p}$  $_2^P$  is derived in equations [\(9\)](#page-11-1), [\(10\)](#page-11-2), [\(11\)](#page-11-3) and [\(12\)](#page-11-4), and the diversification benefit of  $S_2^{\text{NP}}$  $2^{NP}$  is derived in equations [\(13\)](#page-12-0)

$$
\Delta \text{DB}(\rho) = \text{DB}(S_2^{\text{NP}}, \rho) - \text{DB}(S_2^{\text{P}}, \rho)
$$

is then evaluated. On Figure [5](#page-13-2) we plot ∆DB versus *α* (on the left) and versus *κ* (on the right), for given fixed values of *a* and *b*. From the plot on the left it can be seen that for  $\kappa = 0.99$  the difference in diversification benefit is positive for all values of  $\alpha$ , which implies that the non-proportional portfolio offers a higher diversification benefit. On the right, we plot the diversification benefit measured with xES*<sup>κ</sup>* and ES*<sup>κ</sup>* versus *κ*. For *κ* close to zero, the proportional contracts give a higher diversification and for *κ* close to 1 the non-proportional portfolio diversifies better. The graph confirms the results of Theorem [3.3,](#page-9-1) namely that ∆DB(ES*κ*) ≥ 0 for *κ* on the right of the vertical dashed line which corresponds to  $\kappa \geq F_{S^{\text{NP}}_2}(b - D)$ . In the next chapter we provide an extension of this comparison to original losses with infinite right endpoints.

<span id="page-13-2"></span>For Solvency II, the Solvency Capital Report Formation of und amplitude in an promodule model worker value of the Market Value of the Minister Market Value Market Value against the level of the risk measures  $\kappa$  for fixed  $a = 1$ ,  $b = 10$  and  $\alpha = 0.25$  (right). The vertical dashed line corresponds to  $F_{S_2^{\text{NP}}}(b-D)$ . Each portfolio contains two i.i.d. treaties with uniformly distributed original losses where  $D$  is calibrated as in [\(14\)](#page-12-1). A positive value indicates that the non-proportional contracts diversify  $\theta$  better. and difference in diversification benefit between the non-proportional and the proportional portfolios plotted Figure 5: Difference in diversification benefit between the non-proportional and the proportional portfolios plotted against the parameter of the proportional contracts  $\alpha$  for fixed  $a = 1$ ,  $b = 10$  and  $\kappa = 0.99$  (left), better.



# <span id="page-13-0"></span>3.2 Original losses with an infinite right endpoint: case of n i.i.d. contracts with exponentially distributed original losses

Theorem 3.3 states that the diversification benefit measured at  $\kappa$  close to 1 is higher for nondone in the rest of the following graph in the rest of proportional than for proportional portfolios, under the assumption that these portfolios originate from losses which are independent and continuous, with finite right-endpoints. The aim of the current section is to carry out this comparison when the assumption of the original losses having a Theorem [3.3](#page-9-1) states that the diversification benefit, measured at *κ* close to 1, is higher for nonfrom losses which are independent and continuous, with finite right-endpoints. The aim of the current section is to carry out this comparison when the assumption of the original losses having a - Secondar coperantially all current and future losses. First we assess the risk of the non-proportional portfolio, from which the risk of the proportional portfolio follows directly (by taking the limit as *D* goes to zero and multiplying by *α*). For the comparison we assume the "fair" calibration criterion (i.e., that the underlying proportional and  $m$ . finite-right endpoint is challenged. For this we consider identical exponentially distributed original non-proportional treaties have the same expectation).

### <span id="page-13-1"></span>**3.2.1 Derivation of the risk measures**

Let the original losses  $L_1, L_2, \ldots, L_n$  ( $n \in \mathbb{N}$ ) be i.i.d. random variables following the exponential distribution with df  $F_L(x) = 1 - e^{-\lambda x}$ ,  $\forall x \in [0, +\infty)$ . Moreover, let  $L_1^{\text{NP}}$  $L_1^{\text{NP}}, L_2^{\text{NP}}$  $L_{2}^{\text{NP}},...,L_{n}^{\text{NP}}\thicksim F_{L^{\text{NP}}}$  be the *n* i.i.d. random variables modelling the excess-of-loss contracts given by  $L_i^{\text{NP}}$  $i_i^{\text{NP}} = (L_i - D)^+$ , with a finite deductible  $D \in (0, +\infty)$ . From Eq. [\(8\)](#page-7-2) it follows that the distribution function  $F_{L^{\rm NP}}$  is given by

$$
F_{L^{NP}}(x) = \begin{cases} 0, & \text{if } x < 0; \\ 1 - e^{-\lambda(x+D)}, & \text{if } 0 \le x < \infty. \end{cases}
$$
 (15)

which we apply the theory of Laplace transforms. For some non-negative random variable *X* with df  $F_X$ , the Laplace-Stieltjes transform of its distribution function  $F_X$  is given for every  $t \in [0, +\infty)$ , is meant to bring technical provisions to bring the fair value,  $\alpha$  fair value,  $\alpha$ We aim at assessing the risk of the non-proportional portfolio  $S_n^{\rm NP}.$  First, we derive the df of  $S_n^{\rm NP},$  for by

$$
\mathfrak{L}\{F_X\}(t) = \int_0^{+\infty} e^{-tx} dF_X(x) = \mathbb{E}\left[e^{-tX}\right].
$$
 (16)

Solvency II seeks to achieve: a fair valuation of risks. Recall that the *Laplace transform* of a function *f* defined on  $[0, \infty)$  is given,  $\forall t \in [0, +\infty)$  by

<span id="page-14-1"></span><span id="page-14-0"></span>
$$
f^*(t) = \int_0^{+\infty} e^{-tx} f(x) dx.
$$
 (17)

The link between the Laplace-Stieltjes transform in Eq. [\(16\)](#page-14-0) and the Laplace transform in Eq. [\(17\)](#page-14-1) re Concretely - Concretely is useful to retrieve the distribution of the portfolio from its Laplace-Stieltjes transform. Concretely,<br>for a random variable X with df E for a random variable  $X$  with df  $F_X$ ,

$$
\mathfrak{L}{F_X}(s) = sF_X^*(s), \quad \forall s \in [0, \infty),
$$

function *f* with a Laplace transform  $f^*$  (see Eq. [\(17\)](#page-14-1)), the inverse Laplace transform is implicitly defined by  $\overline{a}$  and  $\overline{b}$  and  $\overline{c}$  and  $\overline{d}$  and  $\overline{b}$  and  $\over$ cost of current and future SCRs for the where  $F_X^*$  is the Laplace transform of the df  $F_X$  and  $\mathfrak{L}\{F_X\}$  its Laplace-Stieltjes transform (see [Pfeiffer](#page-28-1) [\[1990,](#page-28-1) pp. 423-425]). Hence, having obtained  $\mathfrak{L}\{F_{S^{\text{NP}}_n}\}$ , one can retrieve  $F_{S^{\text{NP}}_n}$  by applying the distribution of a random variable [\[Feller,](#page-27-6) [1971,](#page-27-6) pp. 430-431]. We do not provide an explicit definition for the inverse Laplace transform since it is not directly needed for the next steps. For a  $\mathbf{f}$  $\frac{x}{X}$  is the Laplace transform of the df  $F_X$  and  $\mathfrak{L}\{F_X\}$  its Laplace-Stieltjes transform (see the inverse Laplace transform on  $s^{-1}\mathfrak{L}\{F_{\mathcal{S}^\text{NP}_n}(s)\},$  since the Laplace-Stieltjes transform characterizes

$$
\mathfrak{I}\big(f^*\big)=f.
$$

the balance sheet to a fair value of liabilities after a inverse trans Inverse transform tables or symbolic software can be used for a closed-form derivation of the inverse time t=n; Laplace transforms. Alternatively, numerical methods can be applied.

The Laplace-Stieltjes transform of the random variable  $S_n^{\text{NP}}$ , corresponding to the sum of  $n$  i.i.d. the Cost of Capital rate (c or CoC). This captures the factor that the insurer selling the portfolio has to comexcess-of-loss treaties is given by (see [Limani](#page-28-2) [\[2015\]](#page-28-2))

$$
\mathfrak{L}\left\{F_{S_n^{\rm NP}}\right\}(s) = \left(w_0 + \frac{\lambda}{\lambda + s}e^{-\lambda D}\right)^n, \quad \forall s \in [0, \infty),
$$

where  $w_0 = P(L^{\text{NP}} = 0) = 1 - e^{-\lambda D}$ . Applying the binomial theorem, we obtain

$$
\mathfrak{L}\left\{F_{S_n^{\rm NP}}\right\}(s) = \sum_{k=0}^n \frac{\binom{n}{k} w_0^{n-k} \lambda^k e^{-\lambda Dk}}{(\lambda + s)^k}, \quad \forall s \in [0, \infty).
$$

This completes the derivation of the Laplace-Stieltjes transform of  $F_{\mathcal{S}^{\mathrm{NP}}_n}.$  In this particular case a closed-form solution of the inverse Laplace transform  $\mathfrak{I}\left(s^{-1}\mathfrak{L}\{F_{S^{\mathrm{NP}}_n}(s)\}\right)$  is attainable using the upper and lower *incomplete Gamma functions*, defined respectively by

$$
\Gamma(a, x) = \int_{x}^{+\infty} r^{a-1} e^{-r} dr, \text{ and } \gamma(a, x) = \int_{0}^{x} r^{a-1} e^{-r} dr,
$$
 (18)

function of  $S_n^{\text{NP}}$  is derived  $\forall$   $t \in [0,+\infty)$  as follows: for  $a \ge 0$  and  $\alpha > 0$  (see [Gradshteyn and Ryzhik](#page-27-7) [\[2007,](#page-27-7) pp. 899-902]). Then, the distribution

$$
F_{S_n^{\text{NP}}}(t) = \Im \left\{ \frac{\mathfrak{L} \left\{ F_{S_n^{\text{NP}}} \right\}(s)}{s} \right\}(t) = \Im \left\{ \sum_{k=0}^n \frac{\binom{n}{k} w_0^{n-k} \lambda^k e^{-\lambda D k}}{s(\lambda + s)^k} \right\}(t)
$$
  

$$
= w_0^n + \sum_{k=1}^n \binom{n}{k} w_0^{n-k} \lambda^k \frac{e^{-\lambda D k}}{(k-1)!} \left( \Gamma(k, 0) - \Gamma(k, \lambda t) \right) \lambda^{-k}
$$
  

$$
= w_0^n + \sum_{k=1}^n \binom{n}{k} w_0^{n-k} \frac{e^{-\lambda D k}}{(k-1)!} \gamma(k, \lambda t).
$$
 (19)

<span id="page-15-1"></span>In the third equality we use the linearity of the inverse Laplace transform and the formulas given in [Abramowitz and Stegun](#page-27-8) [\[1972,](#page-27-8) p. 1020]. The derivation of the df of  $S_n^{\text{NP}}$  is hence accomplished. We note that as *D* goes to zero, the limit of [\(19\)](#page-15-1) equals  $\gamma(n,\lambda s)/(n-1)!$ , the df of an Erlang( $n,\lambda$ )  $\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1$ distributed random variable corresponding to the sum of *n* i.i.d. exponential random variables with rate  $\lambda$  (see [Lakatos et al.](#page-27-9) [\[2013,](#page-27-9) p. 41]).

The Expected Shortfall of  $S_n^{\text{NP}}$  follows directly. Let  $\kappa \in (0,1)$ , then using [\(19\)](#page-15-1) the Expected Shortfall of  $S_n^{\rm NP}$  is given by

$$
ES_{\kappa}(S_{n}^{NP}) = \frac{1}{1-\kappa} \int_{VaR_{\kappa}(S_{n}^{NP})}^{+\infty} x dF_{S_{n}^{NP}}(x) dx = \frac{1}{1-\kappa} \sum_{k=1}^{n} {n \choose k} w_{0}^{n-k} \lambda^{k} \frac{e^{-\lambda D k}}{(k-1)!} \int_{VaR_{\kappa}(S_{n}^{NP})}^{+\infty} e^{-\lambda x} x^{k} dx
$$
  
= 
$$
\frac{1}{1-\kappa} \sum_{k=1}^{n} {n \choose k} w_{0}^{n-k} \frac{e^{-\lambda D k}}{(k-1)!} \frac{\Gamma(k+1, \lambda \text{VaR}_{\kappa}(S_{n}^{NP}))}{\lambda}.
$$

Equipped with this formula, we are able to derive and compare the diversification benefits between proportional and non-proportional portfolios, for all of the four risk measures of interest. Equipped with this formula, we are able to derive and compare the diversification benefits between<br>served with a large served with the decentation for all of the formulations course of interest.

### <span id="page-15-0"></span>**3.2.2 Comparison of the diversification benefits**

 $t_{\rm eff}$  or  $t_{\rm eff}$  or  $\tau_{\rm eff}$  rate (c or  $\tau_{\rm eff}$  ). This capture the cococ Finally, we investigate in the current set-up how the diversification benefit of proportional and nonproportional portfolios differ. Recall that the formulas for the proportional portfolio  $S_n^{\rm P}$  are obtained directly by taking the limit of the formulas for the non-proportional one  $S_n^{\text{NP}}$ , letting the deductible  $D$  tend to zero. In order to guarantee a "fair" comparison, the deductible  $D$  of the excess-of-loss treaties is again chosen such that the means of proportional and non-proportional treaties are equal, i.e.  $\mathbb{E}[L^\text{NP}_i]$  $\binom{\text{NP}}{i}$  =  $\mathbb{E}[L_i^{\text{P}}]$  $\binom{\text{P}}{i}$ ,  $i = 1, 2$ , which gives

<span id="page-15-2"></span>
$$
\frac{\alpha}{\lambda} = \frac{e^{-\lambda D}}{\lambda} \quad \Rightarrow \quad D = -\frac{\log \alpha}{\lambda}.\tag{20}
$$

As a side effect, this causes the diversification benefit to depend only on *κ* and *α*. Note that the parameter of the exponential distribution *λ* does not appear in the final formulas, since the term  $λD$  in Eq. [\(19\)](#page-15-1) becomes  $-\log(α)$  after applying [\(20\)](#page-15-2). The difference in the diversification benefit measured with ES*<sup>κ</sup>* between the non-proportional and proportional portfolios,

$$
\Delta \text{DB}(\text{ES}_{\kappa}) = \text{DB}(S_n^{\text{NP}}, \text{ES}_{\kappa}) - \text{DB}(S_n^{\text{P}}, \text{ES}_{\kappa}),
$$

indicates that the non-proportional portfolio diversifies better. is plotted against  $\kappa$  in Figure [6](#page-16-0) for different values of  $\alpha$ , where a positive value of the difference

<span id="page-16-0"></span> $\mathbf{F}_{\text{intra}}$   $\mathbf{c}$ , ADD measured with  $\mathbf{E}$  is pletted expiret the lovel  $\epsilon$  for pertelies of  $\mathbf{r}$  i.i.d., expensatiolly  $\frac{1}{2}$  is proticed using the cost of  $\frac{1}{2}$  of provided buginal losses and varying the number original losses is  $\lambda = \frac{1}{3}$  and the deductible is set to I  $\alpha = 0.5$  (bottom). **Figure 6:** ∆DB measured with ES<sub>*κ*</sub> is plotted against the level *κ* for portfolios of *n* i.i.d. exponentially ontracts  $n \in \{2, 4, 8, 16, 32\}$ . The parameter of the  $\frac{\log(\alpha)}{2}$ , where  $\alpha=0.25$  (top),  $\alpha=0.35$  (middle) and distributed original losses and varying the number of contracts  $n \in \{2, 4, 8, 16, 32\}$ . The parameter of the original losses is  $\lambda = \frac{1}{3}$  $\frac{1}{3}$  and the deductible is set to  $D = -\frac{\log(\alpha)}{\lambda}$  $\frac{g(a)}{\lambda}$ , where  $\alpha = 0.25$  (top),  $\alpha = 0.35$  (middle) and



[3.3,](#page-9-1) given that now the original losses have an infinite right endpoint. Moreover, obtaining a formula for  $n \in \mathbb{N}$  allows us to study if the result of the comparison depends on the number of contracts and  $i$  how. As mentioned earlier, this comparison is particularly important since it is not covered by Theorem how.

It is observed that for *κ* close to 1, the non-proportional portfolio diversifies better than the proprovide the background market consistent of the proportional persons and consistent that the pro-<br>bility side of the market consistent contracts increases (from number to red lines), the tent entry the material contracts when the sheet who has been the sheet who has been the sheet who has been the difference between the diversification benefits increases, as well as the interval of  $\kappa$  values for portional one. Furthermore, as the number of contracts increases (from purple to red lines), the which this difference is positive. In addition, as  $\alpha$  increases, the absolute difference in the diversification benefits decreases. This is due to the fact that the contracts become more and more similar as *D* reaches 0, or equivalently as  $\alpha$  reaches 1, see [\(20\)](#page-15-2). Above all, it is interesting to observe that the shape of ∆DB(ES*κ*) is identical to the plot on the right-hand side of Figure [5.](#page-13-2)

**Cost of Capital approach** The difference in diversification benefit measured with VaR*κ*, xES*<sup>κ</sup>* and xVaR*<sup>κ</sup>* is plotted against *κ* on Figure [7.](#page-18-1) It is observed that the non-proportional portfolio diversifies better for *κ* close to 1. For VaR<sub>κ</sub> (and for ES<sub>κ</sub> as seen on Figure [6\)](#page-16-0) the difference becomes more pronounced as the number of  $\frac{1}{2}$ contracts increases. However, for xES<sub>κ</sub> and xVaR<sub>κ</sub> the relationship is not that straightforward. For example, when  $\kappa$  is close to 1 the difference is higher for portfolios of 8 contracts than for portfolios of 16 contracts, and lower for portfolios of 2 contracts than for portfolios of 4 contracts. Note that orresponds to  $\kappa=1-e^{-1}\approx 0.63$ the discontinuity observed in the case of xVaR<sub>*κ*</sub> (bottom graph) corresponds to  $\kappa = 1 - e^{-1} \approx 0.63$ , for which VeB, (L) – ELL] for which  $VaR_K(L) = E[L]$ .

<span id="page-18-1"></span> $F = \frac{1}{2}$  $\alpha - 0.5$  $u = 0.5$ .  $\frac{1}{\log(a)}$  is the Solvence Capital Republic Capital Requirement Capital Requirement Capital Requirement Capital Republic Capital Requirement Capital Republic Capital Republic Capital Republic Capital Republic Capital Rep  $\{2, 4, 8, 16, 32\}$ . The parameter of the original losses is  $\lambda = \frac{1}{3}$  and the deductible is set to  $D = -\frac{\log(\alpha)}{\lambda}$ , where **Figure 7:**  $\triangle$ DB measured with VaR<sub>K</sub> (top), xES<sub>K</sub> (middle) and xVaR<sub>K</sub> (bottom), plotted against the level *κ* for portfolios of *n* i.i.d. exponentially distributed original losses and varying the number of contracts *n* ∈  $\frac{1}{3}$  and the deductible is set to  $D = -\frac{\log(\alpha)}{\lambda}$  $\frac{g(a)}{\lambda}$ , where  $\alpha = 0.5$ .



<span id="page-18-0"></span>To conclude, we have seen that the diversification benefit of a non-proportional portfolio is higher than the one of a proportional portfolio for *κ* close to 1, when the contracts have the same expectation and the original losses are i.i.d. exponentially distributed. So far, we have studied the difference in diversification benefit between proportional and non-proportional portfolios assuming excess-ofloss treaties with an unlimited cover. In the next section we challenge this last assumption and carry out the comparison for non-proportional treaties with a finite cover *C*.

# 1. Background **<sup>4</sup> Comparison for excess-of-loss treaties with a finite cover**

LET US NOW CONSIDER BACESS-OFFICES CONTRACTS I distribution  $L^{\text{NP}} = (L - D)^+ - (L - C - D)^+$ . We study first a simplified example with two independent and identically distributed exponential original losses, and derive closed-form formulas. Then, we finalize the section by extending our discussion to a more general framework. For Solvency II, the Solvency Capital Requirement Let us now consider excess-of-loss contracts with a finite cover  $C$ , which gives us the modified loss capital funded at time to restore the dependence of  $\alpha$ 

#### <span id="page-19-0"></span>**4.1 Case of 2 contracts with identically distributed independent exponential** mate of Liabilities (BEL) and the MVM **original losses**

assess the risk of the proportional and non-proportional portfolios and then compare their diversifi-The CoC approach takes the person of the Let the original losses  $L_1$ ,  $L_2$  be i.i.d. with distribution function  $F_L(s) = \left(1-e^{-\lambda s}\right) \mathbb{1}_{\{s\geq 0\}}$ . We first cation benefits.

### <span id="page-19-1"></span>**4.1.1 Derivation of the risk measures**

#### **Proportional Portfolio** *S* P 2

non-hedgeable risks to support the It can be easily shown (see e.g. [Cruz et al.](#page-27-10) [\[2015,](#page-27-10) p. 119]) that the risk measures of the proportional contracts [\(2\)](#page-4-2) are given by

$$
VaR_{\kappa}(L_1^P) = VaR_{\kappa}(L_2^P) = -\frac{\alpha}{\lambda} \log(1 - \kappa),
$$
  
\n
$$
ES_{\kappa}(L_1^P) = ES_{\kappa}(L_2^P) = \alpha \left( \frac{1 - \log(1 - \kappa)}{\lambda} \right).
$$

We can then derive the risk measures of the n  $t_{\rm eff}$  to a fair value of liabilities after a and undertaking the policy the portfolio has to put the portfolio has to put the put of  $P$ We can then derive the risk measures of the proportional portfolio  $S^{\rm P}_2$  =  $\sum_{i=1}^2 L^{\rm P}_{i}$ , given by  $\mathbf{v}_i^{\text{P}}$ , given by

$$
VaRK(S2P) = -\alpha \frac{1 + W\left(\frac{\kappa - 1}{e}\right)}{\lambda},
$$
  
\n
$$
ESK(S2P) = \frac{\alpha}{\lambda(1 - \kappa)} e^{1 + W\left(\frac{\kappa - 1}{e}\right)} \left(1 + W^2 \left(\frac{\kappa - 1}{e}\right)\right),
$$

where *W* is the Lambert function, which satisfies

<span id="page-19-2"></span>
$$
W(x)e^{W(x)} = x, \quad x \in \mathbb{C},\tag{21}
$$

see [Corless et al.](#page-27-11) [\[1996\]](#page-27-11) for more details. The formulas of the corresponding diversification benefit measured with VaR*κ*, xVaR*κ*, ES*κ*, and xES*<sup>κ</sup>* are provided in Appendix [A.6.](#page-33-0) We show on Figure [8](#page-20-0) the diversification benefits plotted against the level *κ*. It is interesting to observe that in all these cases  $\mathrm{DB}(S_2^{\mathrm{P}})$  $_2^P$ , *ρ*) is independent of *λ* and *α*. It is observed on Figure [8](#page-20-0) that the diversification benefit measured with xVaR*<sup>κ</sup>* has a discontinuity at *κ* = 1−*e* −1 (vertical dashed line), for which the denominator of [\(33\)](#page-33-2) becomes zero. Moreover, the diversification benefit measured with VaR*<sup>κ</sup>* is negative for e.g. *κ* = 0.7 and positive for e.g. *κ* = 0.95, due to lack of subadditivity and subadditivity of VaR*<sup>κ</sup>* for these values of *κ*, respectively. This observation is in line with the example in [McNeil](#page-28-3) [et al.](#page-28-3) [\[2015,](#page-28-3) pp. 297-299]. Next we calculate the diversification benefit of the non-proportional portfolio  $S_2^{\rm NP}$  $\frac{NP}{2}$ 

<span id="page-20-0"></span>**Fair Valuation of risks**  For Solvency II, the Solvency Capital Requirement original losses are exponentially distributed. The shapes of the graphs are not affected by *λ* or *α*. **Figure 8:** Diversification benefit of  $S_2^P$  for each risk measure indicated in the legend, plotted against *κ*. The



#### **Non-proportional portfolio**  $S_2^{\text{NP}}$ 2

non-hedgeable risks to support the Applying Lemma [2.1](#page-4-0) and performing a direct integration, we obtain the df of  $S_2^{\rm NP}$  (see Limani [201  $\frac{2}{2}^{\text{NP}}$  (see Limani [\[2015\]](#page-28-2) for the details),

$$
F_{S_2^{\text{NP}}}(s) = \begin{cases} 0, & \text{if } s < 0; \\ F_L(s+D)w_0 + \int_D^{s+D} F_L(s+2D-u) f_L(u) du, & \text{if } s \in [0, C); \\ F_L(s+D-C)(1+w_C) + \int_{s+D-C}^{C+D} F_L(s+2D-u) f_L(u) du, & \text{if } s \in [C, 2C); \\ 1, & \text{if } s \ge 2C, \end{cases} \tag{22}
$$

where  $w_0 =$ SCR(n‐1) until the portfolio has run-off completely at where  $w_0 = F_L(D)$  and  $w_C = 1 - F_L(D + C)$ . Note that the distribution function of a portfolio of two a jump at zero or size  $w_0$ , a jump or size  $\text{cover}^{\sim}$  2C. i.i.d. excess-of-loss treaties  $S_2^{\rm NP}$  $_2^{\rm NP}$  has three jumps. It has a jump at zero of size  $w_0^2$  $v_0^2$ , a jump of size  $2w_0w_C$  at the cover  $C$  and of size  $w_C^2$  $\frac{d^2}{C}$  at the "double cover" 2*C*.

In the exponential case under consideration, the df of  $L^{\text{NP}}$  (modelling the loss arising from an excess-of-loss treaty with deductible  $D$  and cover  $C$ ) is given by

$$
F_{L^{NP}}(s) = \begin{cases} 0, & \text{if } s < 0; \\ 1 - e^{-\lambda(s+D)}, & \text{if } 0 \le s \le C; \\ 1 & \text{if } s \ge C, \end{cases}
$$

see Lemma [2.1,](#page-4-0) and a straightforward calculation shows that

$$
\mathbb{E}\left[L^{\rm NP}\right] = \frac{e^{-\lambda D}}{\lambda} \left(1 - e^{-\lambda C}\right).
$$

The corresponding risk measures are derived from Corollary [2.2:](#page-5-0)

$$
VaR_{\kappa}(L^{NP}) = \min\left\{\max\left\{\frac{-\log(1-\kappa)}{\lambda} - D, 0\right\}, C\right\},\tag{23}
$$

<span id="page-20-1"></span>mobilizing future capital requirements;

$$
ES_{\kappa}(L^{NP}) = \begin{cases} \frac{e^{-\lambda D}(1 - e^{-\lambda C})}{\lambda(1 - \kappa)}, & \text{if } \kappa \le w_0; \\ \frac{1}{\lambda} \left[ 1 - \log(1 - \kappa) - \frac{e^{-\lambda(C + D)}}{1 - \kappa} \right] - D, & \text{if } w_0 < \kappa < 1 - w_C; \\ C, & \text{if } \kappa \ge 1 - w_C, \end{cases}
$$
(24)

with  $w = D(I^{\text{NP}} - 0) - 1 - e^{-\lambda D}$  and  $w_i = D(I^{\text{NP}} - C) - e^{-\lambda(C+D)}$ . Now we can derive from (22) with  $w_0 - 1$  ( $E = 0$ )  $-1$  c and  $w_0 - 1$ the df and the risk measures of the non-proportional portfolio  $S_{2}^{\mathrm{NP}}$  in the exponential case, with  $w_0 = P(L^{NP} = 0) = 1 - e^{-\lambda D}$  and  $w_C = P(L^{NP} = C) = e^{-\lambda(C+D)}$ . Now we can derive from [\(22\)](#page-20-1)  $2^{\text{NP}}$  in the exponential case,

$$
F_{S_2^{\rm NP}}(s) = \begin{cases} 0, & \text{if } s < 0 \\ 1 - e^{-\lambda(s+2D)} \left(\lambda s - 1 + 2e^{\lambda D}\right), & \text{if } 0 \le s < C \\ 1 - e^{-\lambda(s+2D)} + \lambda e^{-\lambda(s+2D)} \left(s - 2C\right), & \text{if } C \le s < 2C \\ 1, & \text{if } s \ge 2C, \end{cases} \tag{25}
$$

<span id="page-21-2"></span>(see [Limani](#page-28-2) [\[2015\]](#page-28-2) for the details of the derivation). Closed-form expressions can then be derived for the (excess) Value-at-Risk and (excess) Expected Shortfall of  $S_2^{\text{NP}}$  (see Appendix A.7), and consequently for the corresponding diversification benefits. Hence we are ready to compare the here, the risk margin is estimated by the risk margin is estimated by the state of the state of the state of the diversification benefit of  $S^{\text{NP}}_{2}$  and of  $S^{\text{P}}_{2}$ , which is the subject of the next section.  $2^{N}$  (see Appendix A.7), and  $_2^{\rm NP}$  and of  $S_2^{\rm P}$  $2<sub>1</sub>$ , which is the subject of the next section.

### <span id="page-21-0"></span>**4.1.2 Comparison of the diversification benefits**

Limitian in the case of an entimated cover and *C*, relative to *α*. We fix *α* and set  $D = \frac{p}{\lambda}$  for some  $p > 1$ .<sup>3</sup> Then the mean condition writes pendix [A.6](#page-33-0) and [A.7.](#page-33-1) For this purpose we adopt the "fair" calibration condition, imposing the same mean of the proportional and non-proportional contracts. The current set-up is slightly more involved than in the case of an unlimited cover since now we have to calibrate two parameters, *D* Finally, we can compare the diversification benefit of  $S_2^{\text{NP}}$  $_2^{\text{NP}}$  and  $S_2^{\text{P}}$  $2<sup>P</sup>$  using the formulas given in Ap- $\frac{p}{\lambda}$  for some  $p$  >  $1.^3$  Then the mean condition writes

$$
\frac{\alpha}{\lambda} = \frac{e^{-\lambda D}}{\lambda} \left( 1 - e^{-\lambda C} \right) \quad \Rightarrow \quad C = -\frac{\log(1 - \alpha e^{\lambda D})}{\lambda},\tag{26}
$$

complete run-off of all liabilities.

<span id="page-21-1"></span>provided that  $e^{-p} > \alpha$ . In Figure [9](#page-22-1) we show the plot of  $\triangle DB(xES_{\kappa})$  and  $\triangle DB(ES_{\kappa})$  against  $\kappa$  for  $\alpha$  = 0.25,  $p$  = 1.1 and  $\lambda$  = 0.5. Starting from the left, the first vertical dashed line corresponds the Cost of Cost of Capital rate (coch). The Cost of Contract of Contract or Contract of Contract or Contract of Contract or C to  $F_{S^{\rm NP}_2}(2D)$ . In the region before this line the proportional portfolio diversifies better. The second vertical dashed line corresponds to  $\kappa = F_{S_2^{\text{NP}}}(C-)$ , the probability that the loss of the portfolio is less than the amount of the cover *C*. In other words, none of the contracts exhausts their cover. The third vertical dashed line corresponds to  $\kappa = F_{S_2^{\text{NP}}}(C)$ , the probability that the loss of the portfolio reaches at most the amount of the cover *C*. For  $\chi^2$  in the interval ( $F_{\mathcal{S}_2^{\text{NP}}}(C-)$ ,  $F_{\mathcal{S}_2^{\text{NP}}}(C)$ ), the difference is positive, hence the non-proportional portfolio diversifies better. Finally, the most important result is that for *κ* close to 1 we observe negative values, which indicates that the proportional portfolio *S* P  $_2^P$  diversifies better.

We have seen in Section [3](#page-7-0) that for portfolios of independent bounded contracts and unlimited covers the non-proportional portfolio offers a better diversification for *κ* close to 1. However, for *κ* close to 1, when considering an example of contracts with finite cover *C*, our results are reversed and we observe that the proportional portfolio offers a higher diversification. The reason for this is relatively simple and is discussed in the next section.

<sup>&</sup>lt;sup>3</sup>A reinsurer tries to set the deductible *D* such that it is higher than the expected loss, hence we choose  $p > 1$ .

<span id="page-22-1"></span>0.25,  $D = 2.2$  and *C* defined as in Eq. [\(26\)](#page-21-1). Each portfolio contains two treaties from i.i.d. exponential  $U = E_{\text{eff}}(Q)$  in this arder. A neglitive difference indice  $\kappa = F_{S_2^{\text{NP}}}(C)$ , in this order. A positive difference indicates that the non-proportional portfolio diversifies better. For Solvency II,  $\frac{2}{\pi}$   $E_q(Q_1)$ original losses with parameter  $\lambda = 0.5$ . The vertical dashed lines correspond to  $\kappa = w_0^2$ ,  $\kappa = F_{S_2^{\text{NP}}}(C-)$  and **Figure 9:** Difference in diversification benefit measured with xES<sub>*κ*</sub> and ES<sub>*κ*</sub> plotted against *κ* for fixed  $\alpha$  =



## <span id="page-22-0"></span>**4.2 Extension and Discussion**

ate random vector  $(L_1, ..., L_n)$  is distributed according to some continuous multivariate df F with the above mentioned margins. We emphasize that so far we have studied portfolios of independent original losses, whereas now we take a step that widely generalizes our investigative framework by considering non-identical contracts with some continuous multivariate distribution function *F*. Recall that each original loss is modelled by a continuous, integrable and non-negative rv. We consider in this section  $n$  original losses modelled by random variables  $L_1, \ldots, L_n$  with corresponding continuous distribution functions  $F_1, F_2, \ldots, F_n$ . Moreover, we assume that the multivarioriginal losses, whereas now we take a step that widely generalizes our investigative framework<br>he sensitively associated in the step to with a sure sentiments multiprejete distribution function  $F$ The non-proportional portfolio  $S_n^{\text{NP}}$  is given by  $S_n^{\text{NP}}$   $=$   $\sum_{i=1}^n L_i^{\text{NP}},$  where  $\binom{NP}{i}$ , where

$$
L_i^{\rm NP} = (L_i - D_i)^+ - (L_i - D_i - C_i)^+,
$$

with positive finite deductible  $D_i$  and finite cover  $C_i$ ,  $i = 1,...,n$ .

First, we derive the diversification benefit [\(1\)](#page-3-2) for the non-proportional portfolio  $S_n^{\text{NP}}$  and  $\kappa$  close to 1, and then provide a discussion on how this compares to a portfolio of proportional contracts. We note that  $F_{S_n^{\text{NP}}}$  has a jump at zero with height  $w_0 = F(D_1, \ldots, D_n)$ , which equals the probability that none of the original losses exceeds the corresponding deductible  $D_i$ . If the original losses are independent, the mass at zero  $w_0$  can be written

$$
w_0 = \prod_{i=1}^n F_i(D_i).
$$

The highest value where  $F_{S_n^{\rm NP}}$  has a jump occurs at  $C\!:=\sum_{i=1}^n C_i$  with a height

$$
w_C = P(L_1 \ge D_1 + C_1, ..., L_n \ge D_n + C_n).
$$

Again, for independent original losses  $w_C$  simply equals

$$
w_C = \prod_{i=1}^n (1 - F_i(D_i + C_i)).
$$

An illustration of the df and Value-at-Risk of  $S_n^{\text{NP}}$  are shown on Figure [10,](#page-23-0) to help us better explain the implications of the shape of  $F_{\rm cMB}$  for risk n  $S_n$  is a fair value of  $S_n$  $\frac{1}{2}$  fund at time to  $\frac{1}{2}$  is added at time to restore the  $\frac{1}{2}$  is added. the implications of the shape of  $F_{\mathcal{S}^{\rm NP}_n}$  for risk measurement purposes. It is seen from the Value-at-

<span id="page-23-0"></span>**Figure 10:** Distribution function of the non-proportional portfolio  $F_{S_n^{\text{NP}}}$  (left), and of the corresponding nonproportional one  $\text{VaR}_{\kappa}(S^{\text{NP}}_{n})$  (right).



Risk plot (right-hand side) that for  $\kappa \in [1 - w_C, 1)$ ,

$$
VaRK(SnNP) = \sum_{i=1}^{n} C_i.
$$

the balance sheet to a fair value of liabilities after a 1 nis implies This implies also that the Expected Shortfall of  $S_n^{\rm NP}$  equals  $\sum_{i=1}^n C_i$ , for  $\kappa \in [1-w_C,1)$ . Intuitively this implies also that the Expected Shortan of  $\sigma_n$  equals  $\sum_{i=1}^{n} \sigma_i$ , is  $k \in [1 - w_C, 1)$ , we are in the region where all speaking, when measuring risk at the probability level  $\kappa \in [1 - w_C, 1)$ , we are in the region the covers are exhausted. Hence, for a sufficiently high probability level, for example for an extreme  $t_{\rm C}$  of  $\epsilon$  or  $\epsilon$  or event, both Value-at-Risk and Expected Shortfall deliver the sum of all the individual covers of the treaties in the portfolio. Note that the higher the tail dependence between the underlying original losses, the larger the interval  $[1 - w_C, 1]$ .

Let us denote by  $\tilde{\kappa}^* = \max_i F_i(D_i + C_i)$  the lowest probability level at which the Value-at-Risk and Expected Shortfall of each individual contract equals their cover. The following theorem summarizes the results in the case of a finite cover and is the counterpart of Theorem [3.3](#page-9-1) where the losses are independent, bounded and the cover infinite. The inequalities are reverted.

<span id="page-23-1"></span>**Theorem 4.1.** *(Comparison of the diversification benefits, finite cover case.) Under the assumptions and notations from Section [4.2,](#page-22-0)* ∀*κ* ∈ [max(*κ*˜ ∗ , 1− *w<sup>C</sup>* ), 1) *we have the following results (the function* DB(·) *is defined in* [\(1\)](#page-3-2)*).*

*• In the case of the Expected Shortfall,*

$$
DB(S_n^P, ES_\kappa) \ge DB(S_n^{NP}, ES_\kappa).
$$

• In the case of the excess Expected Shortfall,

$$
DB(S_n^P, xES_\kappa) \ge DB(S_n^{NP}, xES_\kappa).
$$

 $\mu$  is the Velue at Diek is subedditive for the given  $\nu$  and the joint die of the exiginal legace is a  $\sum_{i=1}^{n}$  in the balue-at-mon is subdullible for the  $\text{VaR}_{\kappa}\left(\sum_{i=1}^{n}L_{i}\right) \leq \sum_{i=1}^{n} \text{VaR}_{\kappa}\left(L_{i}\right)$ , then • If the Value-at-Risk is subadditive for the given *κ* and the joint df of the original losses, i.e

$$
DB(S_n^P, \text{VaR}_\kappa) \ge DB(S_n^{\text{NP}}, \text{VaR}_\kappa).
$$

- *• In the case of the excess Value-at-Risk:*
	- The CoC approach takes the pers-**–** *if the Value-at-Risk is subadditive for the given κ and the joint df of the original losses and additionally*  $\sum_{i=1}^{n} \mathbb{E}[L_i] < \sum_{i=1}^{n} \text{VaR}_{\kappa}(L_i)$ , or
	- ded to be able to run-off the business. – *if the Value-at-Risk is superadditive for the given κ and the joint df of the original losses and additionally*  $\sum_{i=1}^{n} \mathbb{E}[L_i] > \sum_{i=1}^{n} \text{VaR}_{\kappa}(L_i)$ ,

*then*

$$
DB(S_n^P, xVaR_\kappa) \ge DB(S_n^{NP}, xVaR_\kappa).
$$

 $\mathcal{S}_{\mathcal{S}}$ *Proof.* By definition of  $\tilde{\kappa}^*$ ,  $\forall \kappa \in [\tilde{\kappa}^*, 1]$  and  $\forall i \in \{1, ..., n\}$ , we have

$$
VaR_{\kappa}(L_i^{NP})=C_i \text{ and } ES_{\kappa}(L_i^{NP})=C_i.
$$

Thus for  $\kappa \in [\max(\tilde{\kappa}^* \ 1 - u_{\alpha}) \ 1]$ Thus for  $\kappa \in [\max(\tilde{\kappa}^*, 1 - w_C), 1],$ 

<span id="page-24-0"></span>
$$
DB(S_n^{\text{NP}}, \text{ES}_\kappa) = 1 - \frac{\sum_{i=1}^n C_i}{\sum_{i=1}^n C_i} = 0.
$$
 (27)

 $\kappa \in [m\text{ev}(v^* \ 1-u_{\infty}) \ 1]$ Similarly in the case of the other risk measures, for  $\kappa \in [\max(\kappa^*, 1 - w_C), 1)$ ,

$$
DB(S_n^{NP}, xES_\kappa) = DB(S_n^{NP}, VaR_\kappa) = DB(S_n^{NP}, xVaR_\kappa) = 0.
$$

For the proportional portfolio, we obtain from the subadditivity of the Expected Shortfall that for all  $\kappa \in (0,1),$ 

<span id="page-24-1"></span>
$$
DB(S_n^P, ES_\kappa) \ge 0. \tag{28}
$$

Hence [\(27\)](#page-24-0) and [\(28\)](#page-24-1) imply that  $\forall \kappa \in [\max(\tilde{\kappa}^*, 1 - w_C), 1)$ ,

$$
DB(S_n^P, ES_\kappa) \ge DB(S_n^{NP}, ES_\kappa). \tag{29}
$$

The results for the other risk measures are easily checked as well.  $\Box$   $\kappa \in [\max(\tilde\kappa^*, 1 - w_C), 1)$  for a portfolio of non-proportional contracts  $S_n^{\text{NP}}$ . The length of this interval increases for a random vector of original losses with a high tail dependence. This implies that for *κ* sufficiently high, the diversification benefit of a non-proportional portfolio is not affected by the subadditivity features of the Value-at-Risk of the random vector modelling the original losses.  $\frac{1}{2}$  process the matrix is the matrix of the Market Construction in the end of the equal to  $\frac{1}{2}$  Second for  $\frac{1}{2}$  sufficiently bigh both the Value-at-Risk and Expected Shortfall deliver the same the control of the control of the sheet which reflects which reflects which reflects who are the control of the contr number. Third, it was observed that for *κ* close to 1 the diversification benefit of the proportional Second, for *κ* sufficiently high both the Value-at-Risk and Expected Shortfall deliver the same portfolio measured with ES<sub>κ</sub> and xES<sub>κ</sub> is greater or equal than the diversification benefit of the non-proportional portfolio. When measured with the Value-at-Risk, the comparison depends on the To summarize, we note that the Value-at-Risk and Expected Shortfall are additive at any level subadditivity of VaR*κ*.

# <span id="page-25-0"></span>**5 Conclusion**

A financial institution can mitigate its exposure to the various downside risks by holding welldiversified portfolios. Diversification is important not only at the individual level, but also for the overall stability of the financial system. Our study in the first part of this paper was motivated by the  $\epsilon$  and paper mad modification by the following question: *"How does the diversification gain of a portfolio of quota-share treaties compare* complete run-off of all liabilities. The complete run-off of all liabilities  $\alpha$ *to the diversification gain of a portfolio of excess-of-loss treaties?"*

Limitian of the risk of the quota-share treaties which have the same underlying original loss *L* (modelled as a continuous, integrable and non-negative rv). Our first major result is presented in Theorem [3.3,](#page-9-1) where we show that the diversification benefit of a portfolio of  $n$  excess-of-loss treaties with unlimited cover, measured with ES<sub>κ</sub> and xES<sub>κ</sub> at *κ* close to 1 is higher than the diversification benefit of a portfolio of *n* [et al.](#page-27-12) [\[2015\]](#page-27-12). In the present paper, we establish through a theoretical analysis a framework where we can compare, from the point of view of a reinsurer, the diversification benefit between portfolios of quota-share and excess-of-loss treaties. For this comparison we take excess-of-loss and that the diversification benefit of a portfolio of *n* excess-of-loss treaties with unlimited cover, meaquota-share treaties, when the underlying losses are independent and bounded. This result holds for the Value-at-Risk as well if it is in addition subadditive at the probability level *κ*. For the xVaR additional conditions are needed. Note that the independence assumption is restrictive and it would be interesting to study the effect of a dependency between losses. To the best of our knowledge, this question was first tackled via a simulation study in [Bettinger](#page-27-12)

As an application, we derive formulas for the diversification benefit of a toy model with two i.i.d. The air approation, we derive formated for the arreformed for boront or a tey meder that the mating the mon-<br>uniformly distributed original losses, where we observe that for values of *κ* close to 1, the non-proportional portfolio offers a better diversification, confirming the result of Theorem [3.3](#page-9-1) (see Fig. [5\)](#page-13-2). Departing from the assumption of bounded original losses we derive in Section [3.2](#page-13-0) an analytical formula for the diversification benefit of portfolios of i.i.d. treaties with exponentially distributed original losses. For *κ* close to 1, we find that the non-proportional portfolio diversifies better as well (see Fig. [6\)](#page-16-0). In these two examples we assumed that the proportional and non-proportional contracts have the same expectation, in order to ensure a fair comparison.

The second major finding of this paper is obtained by extending the investigation to non-proportional portfolios of excess-of-loss treaties with a finite cover. Contrary to our expectations, in Section [4](#page-18-0) we observe that the results are in opposition to those given in Theorem [3.3](#page-9-1) and that the diversification benefit measured with ES*<sup>κ</sup>* at *κ* close to 1 is higher for proportional treaties than for their

additive at the level *κ*. These results are summarized in Theorem [4.1.](#page-23-1) We emphasize that these findings are obtained by relaxing the assumption of independent original losses (see Section [4.2\)](#page-22-0). Future research could be directed towards considering portfolios of both quota-share and excessof-loss contracts, which is a more realistic representation of the portfolios held in practice, and processes the background of the Background Lies the Market Consistence and provided in processes, and tent ying their to determine the maights derived such that an optimal diversification is attained. studying how to determine the weights between these non-proportional and proportional treaties non-proportional counterpart. The same finding is valid for the Value-at-Risk provided that it is sub-

her review of the naner Acknowledgement The authors warmly thank Kati Nisipasu for her review of the paper.

# 1. Background **References**

- <span id="page-27-8"></span> $W<sub>1</sub>$ , Abramowitz and I. A. Stegun. *Harlabook of* tions, 1972. URL [http://people.math.sfu.ca/~cbm/aands/abramowitz\\_and\\_](http://people.math.sfu.ca/~cbm/aands/abramowitz_and_stegun.pdf) stegun.pdf. For Solvency II, the Solvency Capital Requirement M. Abramowitz and I. A. Stegun. *Handbook of Mathematical Functions*. Tenth Printing, with correc-
- <span id="page-27-13"></span><span id="page-27-12"></span><span id="page-27-2"></span>P. Artzner, F. Delbaen, J. M. Eber, and D. Heath. Coherent measures of risk. *Mathematical Finance*, 9(3):203–228, 1999.
	- R. Bettinger, M. Dacorogna, T. Domergue, and M. Topuzu. Group Internal Model or Solvency II are subject to a distressed scenario. Standard Formula. What is best to represent the risk of a reinsurer? SCOR Working Paper, 2015.
	- D. M. Bradley and C. R. Gupta. On the distribution of the sum of n non-identically distributed uniform random variables. *Ann Inst Stat Math*, 54(3):689–700, 2002.
	- R. Bürgi, M. Dacorogna, and R. Iles. Risk aggregation, dependence structure and diversification  $\alpha$  for Eineneial Inetitutions, nages benefit. In D. Rösch and H. Scheule, editors, *Stress Testing for Financial Institutions*, pages<br>225, 222, Pittherity of the Maria Institute of 222 265–306. Riskbooks, Incisive Media, London, 2008.
	- M. Busse, M. Dacorogna, and M. Kratz. Does risk diversification always work? The answer through simple modelling. SCOR Paper No. 24. 2013. URL [http://www.scor.com/en/sgrc/](http://www.scor.com/en/sgrc/scor-publications/scor-papers.html)  $\mathbf{u}$  be carried out in  $\mathbf{u}$  steps: [scor-publications/scor-papers.html](http://www.scor.com/en/sgrc/scor-publications/scor-papers.html).
- <span id="page-27-11"></span><span id="page-27-3"></span><span id="page-27-1"></span>R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth. On the Lambert *W* done in the rest of the status, we will have, we come, which we will consider the fact the status of the fact the fact that the fact that the fact the fact that the f function. *Advances in Computational Mathematics*, 5:329–359, 1996.
- <span id="page-27-10"></span><span id="page-27-9"></span><span id="page-27-7"></span><span id="page-27-6"></span><span id="page-27-5"></span><span id="page-27-4"></span><span id="page-27-0"></span>M. G. Cruz, G. W. Peters, and P. V. Shevchenko. Fundamental Aspects of Operational Risk and Insurance Analytics and Advances in Heavy Tailed Risk Modeling: Handbooks of Operational M. G. Cruz, G. W. Peters, and P. V. Shevchenko. *Fundamental Aspects of Operational Risk and*  $\overline{a}$ Risk Set. Wiley Handbooks in Financial Engineering and Econometrics. Wiley, 2015.
	- $t \rightarrow C$  or  $C$  or  $C$  or  $C$  or  $C$ M. Dacorogna and C. Hummel. Capital at Risk. *Global Reinsurance*, pages 19–20, 2005.
	- pensate the insurer taking over the portfolio for im-P. Embrechts and R. Wang. Seven Proofs for the Subadditivity of Expected Shortfall. *Dependence Modeling*, 3:126–140, 2015.
	- P. Embrechts, A. J. McNeil, and D. Straumann. Correlation and dependency in risk management: properties and pitfalls. In M. A. H. Dempster, editor, *Risk Management: Value at Risk and Beyond*, pages 176–223. Cambridge University Press, 2002.
	- W. Feller. *An Introduction to Probability Theory and its Applications*, volume II. Wiley, 1971.
	- I. S. Gradshteyn and I. M. Ryzhik. *Table of Integrals, Series and Products*. Academic Press, 7th edition, 2007.
	- L. Lakatos, L. Szeidl, and M. Telek. *Introduction to Queueing Systems with Telecommunication Applications*. Springer, 2013.
- <span id="page-28-2"></span>J. Limani. On dependence modelling and risk diversification. Master's thesis, ETH Zurich, 2015.
- <span id="page-28-3"></span>**Fair Valuation Communisty Constitution Disk Measurement: Compating Tradegioners** Under Solvence University II, the Market Value Market Value Market Value Market Value of the Market Value of t and Tools. Princeton University Press, 2015. A. J. McNeil, R. Frey, and P. Embrechts. *Quantitative Risk Management: Concepts, Techniques*
- <span id="page-28-1"></span> $\overline{a}$   $\overline{c}$   $\overline{b}$   $\overline{c}$   $\overline{d}$   $\overline{d}$  and  $\overline{c}$   $\overline{d}$  and  $\overline{c}$   $\overline{d}$  and  $\overline{d}$  applications  $\overline{c}$   $\overline{c}$ P. E. Pfeiffer. *Probability for Applications*. Springer, 1990. bility side of the economic balance sheet, how the economic ba
- <span id="page-28-0"></span> $\mathbf{r}$  tent economic balance sheet which reflects which reflects which reflects which reflects when Solvency and A. Walling in the initiation infinity R. Rees and A. Wambach. The Microeconomics of Insurance. *Foundations and Trends in Microeconomics*, 4(1-2):1–163, 2008.

# <span id="page-29-0"></span>**A Technical Appendix**

# <span id="page-29-1"></span>**A.1 Proof of Lemma [2.1](#page-4-0)**

is meant to bring technical provisions to a fair value, It is clear given the excess-of-loss distribution [\(3\)](#page-4-1) that year are considered. The graph depicts, on the lia-

$$
F_{L^{\text{NP}}}(x) = 0, \forall x < 0,
$$
\n
$$
F_{L^{\text{NP}}}(x) = 1, \forall x \ge C,
$$

and

$$
F_{L^{\rm NP}}(0)=F_L(D).
$$

For the remaining case  $x \in (0, C)$ ,

$$
F_{L^{NP}}(x) = P(L^{NP} \le x)
$$
  
=  $P(L^{NP} = 0) + P(0 < L^{NP} \le x)$   
=  $F_L(D) + P(0 < L - D \le x)$   
=  $F_L(D) + P(D < L \le x + D)$   
=  $F_L(x + D)$ .

# <span id="page-29-2"></span>**A.2 Proof of Corollary [2.2](#page-5-0)**

Recall the notations  $w_0 = F_L(D)$  and  $w_C = 1 - F_L(C + D)$ . From Eq. (3) it is clear that Recall the notations  $w_0 = F_L(D)$  and  $w_C = 1 - F_L(C + D)$ . From Eq. [\(3\)](#page-4-1) it is clear that

$$
VaR_{\kappa}(L^{NP})=0, \forall \kappa \leq w_0,
$$

and

$$
VaR_{\kappa}(L^{NP})=C, \forall \kappa \geq 1-w_C.
$$

For the remaining case  $\kappa \in (w_0, 1 - w_C)$ ,

$$
VaR_{\kappa}(L^{NP}) = \inf\{x \in \mathbb{R}, F_{L^{NP}}(x) \ge \kappa\}
$$
  
= 
$$
\inf\{x \in \mathbb{R}, F_{L-D}(x) \ge \kappa\}
$$
  
= 
$$
\inf\{x \in \mathbb{R}, F_L(x) \ge \kappa\} - D
$$
  
= 
$$
VaR_{\kappa}(L) - D,
$$

which is increasing in  $\kappa$ , worth 0 when  $\kappa = w_0$  and *C* when  $\kappa = 1 - w_C$ . In summary,

$$
VaR_{\kappa}(L^{NP}) = \min\{\max\{VaR_{\kappa}(L) - D, 0\}, C\}.
$$

Turning now to the Expected Shortfall, it is clear using the above derivations that

$$
ES_{\kappa}(L^{\rm NP}) = \frac{\mathbb{E}[L^{\rm NP}]}{1-\kappa}, \forall \kappa \leq w_0,
$$

29

1. Background and

$$
ES_{\kappa}(L^{\rm NP}) = C, \forall \kappa \ge 1 - w_C.
$$

 $U_n$  is the marketing in the Marketin  $U_n$  (m)  $1 - m$ For the remaining case  $\kappa \in (w_0, 1 - w_C)$ ,

$$
ES_{\kappa}(L^{NP}) = \frac{1}{1-\kappa} \int_{\kappa}^{1} VaR_{u}(L^{NP}) du
$$
  
\n
$$
= \frac{1}{1-\kappa} \left( \int_{\kappa}^{1-w_C} VaR_{u}(L^{NP}) du + \int_{1-w_C}^{1} VaR_{u}(L^{NP}) du \right)
$$
  
\n
$$
= \frac{1}{1-\kappa} \left( \int_{\kappa}^{1-w_C} (VaR_{u}(L) - D) du + \int_{1-w_C}^{1} C du \right)
$$
  
\n
$$
= \frac{1}{1-\kappa} \left( \int_{\kappa}^{1-w_C} VaR_{u}(L) du - D(1-w_C - \kappa) + w_C C \right)
$$
  
\n
$$
= \frac{1}{1-\kappa} \int_{VaR_{\kappa}(L)}^{C+D} x dF_{L}(x) + \frac{1}{1-\kappa} [w_C C - D(1-w_C - \kappa)]
$$
  
\n
$$
= \frac{1}{1-\kappa} \int_{VaR_{\kappa}(L)}^{C+D} uf_{L}(u) du + (C+D) \frac{w_C}{1-\kappa} - D.
$$

# <span id="page-30-0"></span>**A.3 Proof of Proposition [3.1](#page-8-3)**

 $\omega$   $\varpi$ , the preparition: Under the assumptions of Proposition [3.1,](#page-8-3) denote by  $\mathscr{P}_k$  the proposition:

$$
F_{S_k^{\text{NP}}}(s) = F_{S_k}\Big(s + \sum_{i=1}^k D_i\Big), \ \forall \, s \in [\sum_{i=1}^{k-1} (r_i - D_i), +\infty).
$$

 $\tau$  in 200 event:  $\tau$  in  $\tau$  in 200 event:  $\tau$  completely at run-off completely at run-off completely at  $\tau$ low let us  $\geq \sum_{i=1}^{k} (r_i - D_i)$ , we obtain  $t - 1$ The fact that  $\mathscr{P}_1$  is true follows directly from [\(8\)](#page-7-2). Now let us assume that  $\mathscr{P}_k$  is true for a given *k* < *n*, and recall that  $w_{0,k+1} = F_{k+1}(D_{k+1})$ . Then, for  $s ≥ \sum_{i=1}^{k} (r_i - D_i)$ , we obtain

$$
F_{S_{k+1}^{\text{NP}}}(s) = \int_{0}^{\infty} F_{S_{k}^{\text{NP}}}(s-x) dF_{L_{k+1}^{\text{NP}}}(x) = \int_{0}^{r_{k+1}-D_{k+1}} F_{S_{k}^{\text{NP}}}(s-x) dF_{L_{k+1}^{\text{NP}}}(x)
$$
  
\n
$$
= \int_{0}^{r_{k+1}-D_{k+1}} F_{S_{k}^{\text{NP}}}(s-x) w_{0,k+1} d\delta_{0}(x) + \int_{0}^{r_{k+1}-D_{k+1}} F_{S_{k}^{\text{NP}}}(s-x) f_{k+1}(x+D_{k+1}) dx
$$
  
\n
$$
= w_{0,k+1} F_{S_{k}^{\text{NP}}}(s) + \int_{0}^{\min\{s,r_{k+1}-D_{k+1}\}} F_{S_{k}^{\text{NP}}}(s-x) f_{k+1}(x+D_{k+1}) dx
$$
  
\n
$$
\stackrel{(7)}{=} w_{0,k+1} + \int_{0}^{r_{k+1}-D_{k+1}} F_{S_{k}^{\text{NP}}}(s-x) f_{k+1}(x+D_{k+1}) dx
$$
  
\n
$$
= w_{0,k+1} + \int_{D_{k+1}}^{r_{k+1}} F_{S_{k}^{\text{NP}}}(s+D_{k+1}-u) f_{k+1}(u) du
$$
  
\n
$$
= w_{0,k+1} + \int_{D_{k+1}}^{0} F_{S_{k}^{\text{NP}}}(s+D_{k+1}-u) f_{k+1}(u) du + \int_{0}^{r_{k+1}} F_{S_{k}^{\text{NP}}}(s+D_{k+1}-u) f_{k+1}(u) du
$$

$$
= w_{0,k+1} + \int_{D_{k+1}}^{0} f_{k+1}(u) du + \int_{0}^{r_{k+1}} F_{S_k}(s + \sum_{i=1}^{k+1} D_i - u) f_{k+1}(u) du
$$
  

$$
= w_{0,k+1} - w_{0,k+1} + F_{S_{k+1}} \Big(s + \sum_{i=1}^{k+1} D_i\Big)
$$
  

$$
= F_{S_{k+1}} \Big(s + \sum_{i=1}^{k+1} D_i\Big),
$$

hence  $\mathscr{P}_{k+1}$  is also true. The result follows by induction.

#### <span id="page-31-0"></span>**A.4 Diversification benefit of a proportional portfolio with two independent**  $T_{\rm eff}$  takes the person of  $\alpha$ pective that sufficient capital is nee**identically distributed uniform original losses**

-Rick is directly obtained from the  $\overline{\phantom{a}}$ We use here the same notation as in Section [3.1.3.](#page-11-0) The Value-at-Risk is directly obtained from the  $\frac{1}{2}$ inverse of  $F_{L_1^{\text{P}}}$ , namely  $\forall \kappa \in [0,1],$ 

VaR<sub>$$
\kappa
$$</sub>(L<sub>1</sub><sup>P</sup>) = F<sub>L<sub>1</sub><sup>-1</sup></sub>( $\kappa$ ) =  $\alpha$  ( $a + (b - a)\kappa$ ).

Similarly, the Expected Shortfall is obtained via

$$
ES_{\kappa}(L_1^P) = \alpha ES_{\kappa}(L_1)
$$
  
=  $\frac{\alpha}{1-\kappa} \int_{VaR_{\kappa}(L_1)}^{b} \frac{x}{b-a} dx$   
=  $\frac{\alpha (b^2 - VaR_{\kappa}(L_1)^2)}{2(1-\kappa)(b-a)}$ .

 $\tau$  to a fair value of liabilities after a fair value of liabilities after a fair value of  $\tau$ The df of  $L_1 + L_2$  is given, for every  $z \in \mathbb{R}$  by

$$
F_{L_1+L_2}(z) = \mathbb{1}_{[2a,a+b]}(z)\frac{(z-2a)^2}{2(b-a)^2} + \mathbb{1}_{(a+b,2b)}(z)\left(1-\frac{(z-2b)^2}{2(b-a)^2}\right) + \mathbb{1}_{[2b,+\infty)}(z)
$$

(this can be seen by integrating the density function given by

$$
f_{L_1+L_2}(z) = \mathbb{1}_{[2a,a+b]}(z)\frac{z-2a}{(b-a)^2} - \mathbb{1}_{(a+b,2b)}(z)\frac{z-2b}{(b-a)^2},
$$

see e.g. Theorem 1 of [Bradley and Gupta](#page-27-13) [\[2002\]](#page-27-13)). The formula of the Value-at-Risk is obtained by solving  $VaR_K(L_1 + L_2) = F^{-1}_{L_1}$  $L_1^{-1}$ <sup>*L*</sup><sub>*L*</sub> (*κ*), ∀*κ* ∈ (0, 1), which yields

$$
VaR_{\kappa}(L_1 + L_2) = \begin{cases} 2a + \sqrt{2\kappa(b - a)^2}, & \text{if } \kappa < \frac{1}{2}; \\ 2b - \sqrt{(1 - \kappa)2(b - a)^2}, & \text{if } \kappa \ge \frac{1}{2}. \end{cases}
$$

Then, for the Expected Shortfall we obtain by direct integration

$$
\text{ES}_{\kappa}(L_1 + L_2) = \begin{cases} \frac{1}{(1-\kappa)(b-a)^2} \left( \frac{b^3 - 2a^3 - \text{VaR}_{\kappa}^3(L_1 + L_2)}{3} + a \left( \text{VaR}_{\kappa}^2(L_1 + L_2) - ab \right) \right) + \frac{a+2b}{3(1-\kappa)} & \text{if } \kappa < \frac{1}{2};\\ \frac{1}{(1-\kappa)(b-a)^2} \left( \frac{4}{3}b^3 - \text{VaR}_{\kappa}^2(L_1 + L_2) \left( b - \frac{\text{VaR}_{\kappa}(L_1 + L_2)}{3} \right) \right) & \text{if } \kappa \ge \frac{1}{2}. \end{cases}
$$

After plugging the above formulas into [\(1\)](#page-3-2), we finally obtain Equations [\(9\)](#page-11-1)-[\(10\)](#page-11-2)-[\(11\)](#page-11-3)-[\(12\)](#page-11-4).

# <span id="page-32-0"></span>dent identically distributed uniform original losses A.5 Diversification benefit of a non-proportional portfolio with two indepen-

We use here the same notations as in Section 3 The mathematical expectation of  $L_1^{\text{NP}}$  satisfies We use here the same notations as in Section [3.1.3.](#page-11-0) The mathematical expectation of  $L_1^{\rm NP}$  $l_1^{\text{NP}}$  satisfies

$$
\mathbb{E}[L_1^{\rm NP}] = \frac{1}{b-a} \int_0^{b-D} s \, ds = \frac{(b-D)^2}{2(b-a)}.
$$

.

Becall that  $w_0 = \frac{D-a}{a}$  then from Corollary 2.2 (with  $C = \infty$ ) we obtain Recall that  $w_0 = \frac{D-a}{b-a}$ , then from Corollary 2.2 (with  $C = \infty$ ) we obtain *b*−*a* , then from Corollary [2.2](#page-5-0) (with *C* = ∞) we obtain

$$
VaR_{\kappa}(L_1^{NP}) = \begin{cases} 0, & \text{if } \kappa \leq w_0; \\ \kappa(b-a) - (D-a), & \text{if } \kappa > w_0, \end{cases}
$$

for the Value-at-Risk, and

$$
ES_{\kappa}(L_1^{\rm NP}) = \begin{cases} \frac{(b-D)^2}{2(1-\kappa)(b-a)}, & \text{if } \kappa \le w_0; \\ \frac{(b-D)+\text{VaR}_{\kappa}(L_1^{\rm NP})}{2}, & \text{if } \kappa > w_0, \end{cases}
$$

for the Expected Shortfall. For *s* ∈ [0, *b* − *D*), the distribution of the portfolio  $S_2^{\text{NP}}$  is given by  $2^{\text{NP}}$  is given by

<span id="page-32-1"></span>
$$
F_{S_2^{\text{NP}}}(s) = w_0^2 + 2w_0 \frac{s}{b-a} + \frac{s^2}{2(b-a)^2}.
$$

From the above equation and Corollary [3.2](#page-8-4) we derive the Value-at-Risk of  $S_2^{\text{NP}}$  $\frac{N}{2}$ ,

$$
\text{VaR}_{\kappa}(S_2^{\text{NP}}) = \begin{cases} 0, & \text{if } 0 < \kappa \le w_0^2; \\ 2(a-D) + \sqrt{2}\sqrt{(D-a)^2 + \kappa(b-a)^2}, & \text{if } w_0^2 < \kappa \le F_{S_2^{\text{NP}}}(b-D); \\ 2(b-D) - (b-a)\sqrt{2(1-\kappa)}, & \text{if } F_{S_2^{\text{NP}}}(b-D) < \kappa < 1. \end{cases}
$$

For the Expected Shortfall we then obtain

$$
\text{ES}_{\kappa}(S_{2}^{\text{NP}}) = \begin{cases} \frac{(b-D)^{2}}{(1-\kappa)(b-a)}, & \text{if } 0 < \kappa \leq w_{0}^{2};\\ \frac{w_{0}}{(1-\kappa)(b-a)}((b-D)^{2} - \text{VaR}_{\kappa}(S_{2}^{\text{NP}})^{2}) - \frac{\text{VaR}_{\kappa}(S_{2}^{\text{NP}})^{3}}{3(1-\kappa)(b-a)^{2}} + \frac{(b-D)^{3}}{(1-\kappa)(b-a)^{2}}, & \text{if } w_{0}^{2} < \kappa \leq F_{S_{2}^{\text{NP}}}(b-D);\\ \frac{(b-D)(4(b-D)^{2} - \text{VaR}_{\kappa}(S_{2}^{\text{NP}})^{2})}{(1-\kappa)(b-a)^{2}} - \frac{8(b-D)^{3} - \text{VaR}_{\kappa}(S_{2}^{\text{NP}})^{3}}{3(1-\kappa)(b-a)^{2}}, & \text{if } F_{S_{2}^{\text{NP}}}(b-D) < \kappa < 1. \end{cases}
$$

The diversification benefit [\(1\)](#page-3-2) is then computed with the risk measures  $\text{VaR}_\kappa, \text{xVaR}_\kappa, \text{ES}_\kappa$  and  $\text{xES}_\kappa.$ When  $\rho = xVaR_{k}$ , we have

$$
DB(S_2^{NP}, xVaR_{\kappa}) = \begin{cases} 1 - \frac{\mathbb{E}[S_2^{NP}]}{\mathbb{E}[S_2^{NP}]} = 0, & \text{if } 0 < \kappa \le w_0^2; \\ \frac{(b-a)\left(2(a-D)+\sqrt{2}\sqrt{(a-D)^2 + (a-b)^2\kappa}\right)}{(b-D)^2}, & \text{if } w_0^2 < \kappa \le w_0; \\ \frac{(a-b)\sqrt{2}\sqrt{(a-D)^2 + (a-b)^2\kappa} + 2\kappa(a-b)^2}{2(b-a)(\kappa(b-a)-(D-a)) - (b-D)^2}, & \text{if } w_0 < \kappa \le F_{S_2^{NP}}(b-D); \\ \frac{(b-a)^2(2\kappa-2+\sqrt{2-2\kappa})}{2(b-a)(\kappa(b-a)-(D-a)) - (b-D)^2}; & \text{if } F_{S_2^{NP}}(b-D) < \kappa < 1. \end{cases}
$$
(30)

Note that  $DB(S_2^{\text{NP}})$  $\frac{1}{2}$ <sup>NP</sup>, xVaR<sub>k</sub>) is not defined for  $\kappa = \frac{(b-D)^2}{2(b-a)^2}$  $\frac{(b-D)^2}{2(b-a)^2} + \frac{D-a}{b-a}$ *b*−*a* due to a division by zero. The expressions of DB( $S_2^{\text{NP}}$  $_{2}^{\text{NP}}$ , VaR<sub>*k*</sub>) [\(13\)](#page-12-0), DB( $S_{2}^{\text{NP}}$  $_{2}^{\mathrm{NP}},\mathrm{ES}_{\kappa}$ ) and  $\mathrm{DB}(S_{2}^{\mathrm{NP}})$  $2^{\text{NP}}$ , xES<sub>K</sub>) are obtained in a similar way.

# <span id="page-33-0"></span>**Fair III, the Solventer Solvence Capital Solvence Solventer Solventer Solventer Solventer Solventer Solventer S** A.6 Diversification benefit of a proportional portfolio with two independent

 $\mathcal{L}$ We present here the derivation of  $DB(S_2^P, \rho)$  for the four risk measures  $\rho$  of interest. Recall that  $W$ is the Lambert function [\(21\)](#page-19-2). We present here the derivation of  $DB(S^P_2)$  $P_2^P$ , $\rho$ ) for the four risk measures  $\rho$  of interest. Recall that  $W$ 

$$
DB(S_2^P, VaR\kappa(\cdot)) = 1 - \frac{1 + W(\frac{\kappa - 1}{e})}{2(\log(1 - \kappa))};
$$
\n(31)

<span id="page-33-2"></span>
$$
DB(S_2^P, ES_\kappa) = 1 - \frac{e^{1+W\left(\frac{\kappa-1}{e}\right)} \left(1 + W^2\left(\frac{\kappa-1}{e}\right)\right)}{2(1-\kappa)(1-\log(1-\kappa))};
$$
\n(32)

$$
DB(S_2^P, xVaR_\kappa) = 1 - \frac{3 + W\left(\frac{\kappa - 1}{e}\right)}{2(\log(1 - \kappa) + 1)};
$$
\n(33)

$$
DB(S_2^P, xES_\kappa) = 1 - \frac{1}{\log(1-\kappa)} \left[ 1 - \frac{e^{1+W(\frac{\kappa-1}{e})} \left( 1 + W^2 \left( \frac{\kappa-1}{e} \right) \right)}{2(1-\kappa)} \right].
$$
 (34)

These four functions of *κ* (only!) are plotted on Figure [8.](#page-20-0)

# <span id="page-33-1"></span>A.7 Value-at-Risk and Expected Shortfall of a non-proportional portfolio with two independent identically distributed exponential original losses.

Limiting ourselves to the reserve risk only – as will be *κ* ∈ (0, 1),  $c = c$  in  $(a + b)$   $\pm b$ Recall that  $w_0 = 1 - e^{-\lambda D}$  and *W* is the Lambert function [\(21\)](#page-19-2). Then from [\(25\)](#page-21-2) we obtain, for

$$
\text{VaR}_{\kappa}(S_2^{\text{NP}}) = \begin{cases} 0, & \text{if } 0 < \kappa \le w_0^2; \\ \frac{1 - 2e^{\lambda D} - W\left(e^{1 + 2D\lambda - 2e^{\lambda D}}(\kappa - 1)\right)}{\lambda}, & \text{if } w_0^2 < \kappa < 1 - e^{-\lambda(C + 2D)}(C\lambda - 1 + 2e^{\lambda D}); \\ C, & \text{if } 1 - e^{-\lambda(C + 2D)}(C\lambda - 1 + 2e^{\lambda D}) \le \kappa < F_{S_2^{\text{NP}}}(C); \\ \frac{1 + 2\lambda C - W\left(-e^{1 + 2\lambda(C + D)}(\kappa - 1)\right)}{\lambda}, & \text{if } F_{S_2^{\text{NP}}}(C) \le \kappa < 1 - e^{-2\lambda(C + D)}; \\ 2C, & \text{if } 1 - e^{-2\lambda(C + D)} \le \kappa \le 1, \end{cases}
$$

and, using the notation  $q_k = \text{VaR}_{\kappa}(S^\text{NP}_2)$  $_{2}^{\text{NP}}$ ),

$$
\text{ES}_{\kappa}(S_{2}^{\text{NP}}) = \begin{cases} \frac{2(e^{-\lambda D} - e^{-\lambda(D+C)})}{\lambda(1-\kappa)}, & \text{if } 0 < \kappa \le w_{0}^{2};\\ \frac{e^{-\lambda(C+2D+q_{\kappa})}\left(2(\lambda q_{\kappa}+1)e^{\lambda(C+D)+\lambda^{2}q_{\kappa}^{2}e^{\lambda C}-2e^{\lambda(D+q_{\kappa})}}\right)}{\lambda(1-\kappa)}, & \text{if } w_{0}^{2} < \kappa < 1 - e^{-\lambda(C+2D)}(\lambda C-1+2e^{\lambda D});\\ \frac{e^{-\lambda(2D+q_{\kappa})}\left(2C(1+\lambda q_{\kappa})-\lambda q_{\kappa}^{2}\right)}{1-\kappa}, & \text{if } P_{S_{2}}^{\text{NP}}(C) \leq \kappa < 1 - e^{-2\lambda(C+D)};\\ 2C, & \text{if } 1 - e^{-2\lambda(C+D)} < \kappa < 1. \end{cases}
$$

From this on it is possible to deduce the formulas of the diversification benefits, which are more complex than in [A.6](#page-33-0) and not reported here.