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I use a present value framework to explore the effects of news (or noisy information) on

stock prices and drive theoretical restrictions that link price volatility to noise and in-

formation. In particular, I show that market efficiency implies that noise cannot explain

more than half of price fluctuations. I propose a novel methodology to decompose stock

prices into a value component, related to information about future economic fundamen-

tals, and a noise component. The key observation is that noise by construction cannot

change future economic fundamentals, but affects stock prices. The advantage of my

approach is that it does not require any particular assumptions on unobserved discount

rates and econometricians’ information set. Consistent with the predictions of the model,

my estimates show that in the prewar period noise explains up to 28% of the S&P 500

index, and 36% in the postwar period. Finally, I find that the U.S. stock market was

undervalued during the 1970s and overvalued during the 1990s, but there is no evidence

that the market was overvalued before the crash of 1929.
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1 Introduction

There is extensive evidence that stock markets react to news about future economic or

political events. Obviously, investors ability to interpret the news is constrained by its

accuracy. Sometimes news provides precise information, but very often it is imprecise

(say, noisy). Based on this noisy information, market participants trade with each other

and prices are determined. Due to this ubiquitous role, Fischer Black (1986) dedicated

his AFA presidential address to emphasize the role of noise in the financial markets and

argued that noise ought to be contrasted with information. But, why stock prices are

noisy? How can we measure noise in the stock market? And what are the theoretical

restrictions that link price volatility to noise? This paper provides an answer to these

questions through the lens of a present value model.

Financial markets react to uncertain news, including public release of information

such as macroeconomic forecasts, economic surveys, news about technological innovations,

and policymakers’ statements. As an example, when Alan Greenspan warned about the

irrational exuberance on December 5, 1996, global stock markets declined: Japan’s Nikkei

dropped 3.2%; Hong Kong’s Hang Seng dropped 2.9%; in Germany’s DAX dropped 4%,

London’s FTSE 100 index dropped 4%, and in the United States, the Dow Jones Industrial

Average dropped 2.3%. The global markets declined because investors took Greenspan’s

speech as a signal that the FED might increase the real interest rate to bring down the

bullish stock market.1 In the following weeks, however, stock markets gained back all

those loses when there was no sign of tightening monetary policy.

Using a simple Present Value (PV) model, this paper investigates the effects of news

on the stock prices and the extent of price changes due to noise and information. Fol-

lowing Blanchard et al. (2013) and Forni et al. (2016), I formalize news by introducing a

noisy signal about the future economic fundamentals into a standard PV model. Not dis-

1See “Greenspan Asks a Question And Global Markets Wobble”, by Floyd Norris, Dec 7, 1996. The
New York Times.
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tinguishing noise from information, market participants react to both on impact. But ex

post agents2 observe the economic fundamentals and distinguish noise from information,

and prices adjust gradually to a new level. Therefore, noise generates temporary price

fluctuations.

Then, I drive the theoretical restrictions that the Efficient Market Hypothesis (EMH)

imposes on the contribution of noise to price volatility.3 In particular, I show that market

efficiency implies that noise cannot explain more than half of price fluctuation. I will show

that it is possible to assess this restriction by testing whether the R2 of a forward-looking

regression is bigger than or equal to 0.5. The advantage of my proposal is that it does

not rely on any specific assumptions on unobserved discount rates and econometricians’

information set. Consistent with the predictions of the model, my estimates show that in

the prewar period noise explains up to 28% of the annual Standard and Poor (S&P) 500

index, and 36% in the postwar period.

As a byproduct of the analysis, I propose a novel methodology to decompose stock

prices into a value component, related to information about future economic fundamen-

tals, and a noise component.4 The decomposition relies critically on the fact that noise by

construction cannot change the future economic fundamentals, but affects stock prices.

The decomposition can be used to date stamp and quantify the overvaluation and un-

dervaluation periods in the stock market. I define overvaluation as periods when price is

larger than value component (i.e., the noise is positive), and undervaluation as periods

when price is smaller than value component (i.e., the noise is negative). The decompo-

sition, however, is not useful in forming real-time market-timing strategies, given that it

is based on the information not available to agents at the time of investment. Although

one might think that it is easy to say ex post whether stock prices were overvalued or

2“market participants”, “agents”, and “investors” are all the same here.
3The EMH, articulated by Fama (1970) asserts that prices fully reflect all available information. See

Malkiel (2003) for a recent survey of the literature.
4I borrow the value-noise terminology from Black (1986).
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undervalued, the answer by no means clear at all. Take the Great Depression for ex-

ample. Many economists believe that the stock market crash of 1929 followed the burst

of a speculative bubble that had taken hold in the late 1920s. See, for instance, Shiller

(2014). In contrast, Donaldson and Kamstra (1996) and McGrattan and Prescott (2001)

argue that the market was not overvalued before the Wall Street Crash of 1929. Several

robustness checks confirm these empirical finding. My estimates support the later view.

On the other hand, I find that the U.S. stock market was undervalued by up to 10%

during 1970s and overvalued between 10− 20% during the 1990s.

Literature Review. By touching on the Present Value (PV) models and stock price

volatility, this paper connects to a voluminous literature on market efficiency. Closely

related are Campbell and Shiller (1987, 1988a,b). These papers argue that stock prices

are too volatile to be consistent with standard models of discount rates and to accord

with the EMH. The current paper, on the other hand, finds otherwise. The natural

question arises is why our conclusions are so different? The answer lies in the assumptions

made by Campbell and Shiller on the econometrician’s information set. They argue that

although agents information set in general exceeds the information set available to the

econometrician, but by including the price in the vector autoregression, the inequality

becomes an equality since the full information of the market is incorporated in the price.

In my framework, this is not the case. I show that news drives a wedge between

the information sets of agents and econometricians, with agents having more information

than the econometrician possess. By employing conventional econometric analyses, an

outside econometrician might find that stock prices are excessively volatile and wrongly

reject the cross-equation restrictions implied by the underlying economic model. Closely

connected in this regard is Kasa et al. (2014), who were the first to argue that information

heterogeneity can account for many of the PV’s apparent empirical shortcomings. They

consider a model with persistent heterogeneous beliefs which can give rise to a dynamic

4



equilibrium solution with decision makers “forecasting the forecasts of others”. An econo-

metrician who incorrectly imposes a homogeneous beliefs equilibrium, may find that asset

prices are excessively volatile and reject the null hypothesis of market efficiency.

This paper also adds to the growing macroeconomic literature on foresight and business

cycle fluctuations. The key feature in the foresight literature is structural shocks with

delayed effects, giving rise to equilibrium solutions with non-invertible moving Average

representations. See for instance Leeper et al. (2013), Schmitt-Grohé and Uribe (2012),

and Forni et al. (2014b), among others. Instead, in my framework, the key feature is

a signal (or news) that provides agents with some noisy information about the future

economic fundamentals, giving rise to a forward-looking representation.

This paper also builds on and extends Blanchard et al. (2013) and Forni et al. (2014a)

who emphasized the key role of noisy news in business cycle fluctuations. Closely related

to this paper is the recent paper by Forni et al. (2016), who put forward the idea that

if rational agents cannot distinguish between noise and information, they would react to

both just the same way. They also propose a novel identification strategy to measure the

noise in stock prices. This paper goes beyond Blanchard et al. (2013) and Forni et al.

(2016) by driving theoretical and empirical restrictions that the market efficiency imposes

on the time series of the data and test those restrictions.

This paper also relates to a large and growing literature in statistical time series

on forward-looking (also known as non-causal) autoregressive processes (AR). It is well-

known that non-causal processes can display interesting dynamics observed in economic

and financial time series.5 However, to the best of my knowledge, no economic model has

been presented that gives rise to such a representation. Therefore, a key contribution of

this paper is to propose an economic model that gives rise to a non-causal equilibrium

5For instance, Gouriéroux and Zaköıan (2016) show that non-causal autoregressive processes allow for
local explosive behavior and dynamics that may look like GARCH to an outside econometrician. Lanne
and Saikkonen (2013) and Davis and Song (2012) propose estimation procedures for non-causal VAR
models.
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representation and proving that the optimal forecast of the forward-looking models is

nonlinear. In doing so, this paper complements Donaldson and Kamstra (1996) who show

that a nonlinear forecasting procedure can rationalize many stock price behaviors.

In sum, this paper lies at the intersection of noisy news in macro-finance literature

and econometrics testing of present value models and market efficiency. The rest of the

paper is organized as follows. Section II presents a simple analytical example around

which the discussion is organized. Section III discusses the implications of the model

for the tests of the present value models proposed by Campbell and Shiller. In section

IV, I introduce a general model with time-varying discount rate and empirical results.

Section V provides some concluding comments. The Appendices provide the proofs,

several robustness checks, and a Monte Carlo study.

2 Analytical Example

This section presents a simple Present Value (PV) model with constant discount rates,

where the econometric issues can be exposited analytically. Results and conclusions

reached in this section extend to more general setups, as Section 4 discusses.

Let me begin with a simple PV model

pt − dt−1 =
κ

1− ρ
+

∞∑

j=0

ρjE(∆dt+j|It), (2.1)

where pt ≡ log(Pt), dt ≡ log(Dt), ρ ≡ 1/
(
1 + exp(dt − pt)

)
, and κ ≡ − log(ρ) − (1 −

ρ) log(1/ρ− 1). Moreover, E denotes expectation conditional on all available information

to the market participants at time t, denoted by It.

To find the price we need to know how dividends evolve, what investors know, and

how they make forecast. Here I make some assumptions. For the most part, I suppress

the constants to ease the exposition. For the dividends, I consider a typical unit root
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process

dt = dt−1 + ǫt, (2.2)

where the dividend change, ǫt, follows an independent and identically distributed (iid)

process with mean zero and variance σ2
ǫ , that is ǫt ∼ iid(0, σ2

ǫ ).

The information set of investors includes all relevant information about future eco-

nomic fundamentals. News is an important source of such information. To model news, I

assume that at the beginning of each period, agents observe some signals about K period

ahead dividend changes. But the signal is not perfect -it is contaminated with noise- as

in reality news is rarely perfect. In Black’s (1986) terminology, noise “makes our observa-

tions imperfect” and keeps agents from knowing future dividend changes. Following the

convention that st|t+k denotes the news about time t+ k dividend changes, we have

st|t+k = ǫt+k + νt+k, k = 0, 1, 2, · · · , K, (2.3)

where νt ∼ iid(0, σ2
ν) denotes the noise which is orthogonal to ǫt at all leads and lags.

Thus, the agents’ information set at the beginning of period t (say It), encompass the

signals as well as the history of prices and dividends. Notice that at each specific time,

agents only observe the signal and cannot distinguish noise from information. But since

the signal contains information, rational agents should not ignore it when they make

forecast.

Before continuing, I should briefly discuss the length of the signal. The empirical tests

and decompositions (discussed later) rely heavily on the assumption about K. Using

annual data, I assume K ≤ 10 to be consistent with the empirical evidence of dividend

grwoth (and return) predictability which usually does not extend beyond 10 years.6 The-

oretically, we need an upper bound on K to eliminate issues with perfect signal extraction

6Moreover, in the real world, news rarely go beyond 10 years. At the time of writing this paper,
President Trump is proposing “the largest tax cut in the history of the US”, and as a result, the stock
market is booming. He has at most two terms (totaling 8 years) to do it.
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by ageents using standard filtering techniques.

How agents make forecast? I assume that agents’ optimal forecast is linear. The linear

optimal forecast is the standard assumption in the literature. See, for instance, Campbell

and Shiller (1987, 1988a,b).7 To see how it works, consider the optimal forecast of future

dividend growth E[∆dt+j|It], which is simply the projection of ∆dt+j onto the agents

information set It

E[∆dt+j|It] = γst|t+j,

= γ(ǫt+j + νt+j), j = 0, 1, 2, · · · , K, (2.4)

where γ = σ2
ǫ

σ2
ǫ+σ2

ν

, is a particularly important constant in our analysis. Notice that, agents

discount news by the parameter γ ≤ 1, since σ2
ν ≥ 0. Intuitively, because agents do not

know exactly which part of the news is noise, they are cautions and discount the news by

the parameter γ ≤ 1, and they discount the news more if the signal is more noisy, that is

σ2
ν is big.

We can now find equilibrium stock prices. Substituting (2.4) into (2.1), we have

pt − dt−1 =
∞∑

j=0

ρjE(∆dt+j|It),

= γst|t + ργst|t+1 + · · ·+ ρKγst|t+K . (2.5)

Equation (2.5) illustrates an important point: If agents cannot distinguish between noise

and information in the signal, noise affects stock prices. This effect, however, is temporary

because when agents observe ∆dt+k = ǫt+k, k = 0, 1, 2, · · · , K, they distinguish the noise

in the signal and prices adjust.

The next step is to think about how to define noise in stock prices and derive theoretical

restrictions that link price price-dividend ratio fluctuations to noise. As (2.2) clearly

7For more details, the reader should consult Hamilton (1994), Ch. 4.
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shows, noise cannot affect dividends, but it affects stock prices. Noise then is then defined

as the component of stock prices that is orthogonal to future dividend changes.

To what extent price changes can be attributed to noise? From (2.5) we see that prices

can be decomposed into two components, a Value Component (VC) defined as

VC = γǫt + ργǫt+1 + · · ·+ ρKγǫt+K ,

associated with the information about future dividends growth, and a Noise Component

(NC) associated with the noise

NC = γνt + ργνt+1 + · · ·+ ρKγνt+K .

The size of the NC is determined by σ2
ν . This is because noise variance affects not only the

volatility of the noise shocks, but also the inference problem of investors. In particular,

when σ2
ν is either too small or too large, noise generates small price fluctuations. In

the first case, news is precise. In the second case, news is very imprecise and investors

disregard them in their inference.8

To see this point, lets consider two interesting limit cases. First consider the case

where σ2
ν → 0. Then one can show that there is no noise in stock prices as the variance of

the NC, 1−ρ2(K+1)

1−ρ2
σ4
ǫσ

2
ν

(σ2
ǫ+σ2

ν)
2 , vanishes. The intuitive explanation for this result is that when

σ2
ν → 0, the signal is precise and agents know the future dividend changes. As a result,

there is no noise in stock prices. Interestingly, the NC disappears even in the opposite

case, when σ2
ν → ∞. Intuitively, when σ2

ν is very large, the signal is not informative, so

that rational agents should ignore it.

The variance of NC is largest for intermediate values of noise variance. For a given

value of ρ and σ2
ǫ the variance of the NC is maximized at σ2

ν = σ2
ǫ , and explains half

8See also Lorenzoni (2009), Forni et al. (2014a) and Forni et al. (2016).
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of price fluctuations. Therefore, market efficiency implies that NC can not explain more

than 50% of price fluctuations.

3 Campbell-Shiller Tests of Present Value Models

As noted in the introduction, Campbell and Shiller (1987, 1988a,b) reject the restrictions

that PV models with standard discount rates impose on the data. The PV model with

constant discount rate presented in Section 2 is useful to show why Campbell-Shiller

(henceforth CS) procedure is based on an assumption which is hard to justify. I use this

simple environment in order to make my point, but it is straightforward to extend the

specification to allow for time-varying discount rates. Since this does not add any new

insight, I do not entertain this idea in this section.

3.1 Volatility Bounds

Volatility tests of market efficiency examine whether stock price movements is justified

by subsequent changes in discounted future dividend growth. The basic idea of the CS

procedure is most easily explained in the context of the model (2.1). More specifically,

CS propose to test the restriction

var(δt)

var(δ′t)
= 1, (3.1)

where δt ≡ pt − dt−1 is stationary, and

δ′t ≡ E[
∞∑

j=0

ρj∆dt+j|Ht],

is the unrestricted VAR forecast of the future changes in dividends, conditional on the

econometrician’s information set, denoted byHt. Using the US stock market data, CS find
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that var(δt)
var(δ′

t
)
is considerably larger than unity and conclude that stock prices are excessively

volatile.

The key assumptions underlying the CS testing procedure can be summarized as

follows:

(CS1) The transversality condition is satisfied, i.e., lim
i→∞

ρiδt+i = 0.

(CS2) An assumption about the unobserved discount rates.

(CS3) Both agents and investors use linear projection when they make forecasts.

(CS4) The agents and econometrician’s information sets are equivalent.

Assumptions (CS1)-(CS3) have been discussed extensively in the literature. The ra-

tional bubble literature, including Blanchard and Watson (1982) and Tirole (1985), ar-

gue that the variance bounds may be violated due to the violation of the transversality

condition.9 Assumption (CS2) has elicited the greater attention in the Macro-Finance

literature.10 Since the discount rate is not directly observable, one must use some proxy

for the discount rate to test the restriction (3.1). Campbell and Shiller (1987) made the

assumption that the real discount rate is constant. In a subsequent work, Campbell and

Shiller (1988a) find similar results when dividends are discounted by a consumption-based

discount rate, or by an interest rate. Therefore, CS testing procedure is a joint test of

market efficiency and a discount rate model, and a rejection should not be interpreted

as evidence against market efficiency and rationality. By relaxing (CS3), Donaldson and

Kamstra (1996) argue that a nonlinear dividend forecasting model can rationalize the

stock price behavior during the 1930s, but they do not provide any formal argument why

a nonlinear forecast performs better.

9There is a vast literature providing evidence against explusive bubbles. See for instance Diba and
Grossman (1988), West (1988) and Giglio et al. (2016).

10See Cochrane (2011) for a comprehensive review of the litereture.
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Assumption (CS4), however, has not received much attention, which is surprising

because the restriction (3.1) is completely derived under this assumption. To see this, lets

assume that (CS1)-(CS3) are all satisfied. Then, from elementary statistics we know that

var(δt)

var(δ′t)
≥ 1, if It ⊆ Ht, (3.2)

var(δt)

var(δ′t)
= 1, if Ht = It, (3.3)

var(δt)

var(δ′t)
≤ 1, if Ht ⊆ It. (3.4)

Intuitively, whoever has more information makes better forecasts. The natural and im-

portant question is which assumption is more realistic. (3.2) is not a realistic assumption,

as agents’ information set can have a variety of sources, not all of them observed by

econometricians. CS acknowledge that the agents information set in general exceeds the

econometricians information set, but argue that:11

“even though we do not observe everything that market participants do, we do

observe the log dividend-price ratio, and that variable summarizes the market’s

relevant information.” Campbell and Shiller (1988a, p. 207)

Interestingly, this is not the case here. To see how news about future economic funda-

mentals breaks down (CS4), consider the limit case when agents know exactly all future

dividend changes. Suppressing the constant, we can rewrite (2.5) as

δt = ǫt + ρǫt+1 + ρ2ǫt+2 + · · · . (3.5)

To see how the information sets of investors and econometricians relate to each other,

first consider the perspective of a rational agent. The agents’ information set is the linear

space generated by current and future dividend changes ǫt, which is equivalent to the

11Similar arguments can be found in Campbell and Shiller (1987, p. 1064) and Campbell and Shiller
(1988b, p. 669).
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linear space generated by current and future δt. To see this point, note that (3.5) is

invertible in current and future δt

(1− ρF )δt = ǫt, (3.6)

where F is the forward operator (i.e., FXt = Xt+1). In the time series literature, (3.6) is

usually written as

(1− ρ−1L)δt = ǫt, (3.7)

where L is the backward operator (i.e., LXt = Xt−1). Since the AR polynomial vanishes

for |ρ| < 1, (3.7) has a stationary forward-looking representation.12 Therefore, recovering

ǫt requires not only current and past but also future values of δt.

Now consider the perspective of an outside econometrician. By estimating a conven-

tional VAR model, the econometrician “in effect” estimates

(1− ρL)δt = ǫ∗t , (3.8)

where ǫ∗t = 1−ρL

1−ρ−1L
ǫt. This representation is obtained by applying the Blaschke factor

1−ρL

1−ρ−1L
to both sides of (3.7). See Hansen et al. (1981) and Lippi and Reichlin (1994) for

more details. From (3.8) we see that the information set of the econometrician is the linear

space generated from current and past values of δt, which from the Wold representation

is equivalent to the linear space generated by current and past values of ǫ∗t . But since

the Blaschke factor is a two sided filter, recovering ǫt requires not only current and past

but also future values of ǫ∗t . Therefore, the linear space generated by current and past

values of ǫt is at least as large as the linear space generated by current and past ǫ∗t (or

equivalently δt). Thus, Ht ⊆ It.

12But since |ρ−1| > 1, the backward-looking representation is explosive.
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Augmenting the econometrician’s information set by dividends does not solve the

information misalignment. To see this point, suppose the econometrician estimates a

VAR that includes the first difference of dividends ∆dt and δt. Then, the equilibrium

solution is given by






0 1

1−ρ−1L

γ
−1











δt

∆dt




 =






ǫt

νt




 ,

Φ(L)Zt = ηt, (3.9)

which is forward-looking since detΦ(z) = 1−ρ−1z

γ
vanishes for z = ρ. An outside econo-

metrician who estimates a conventional VAR model, effectively estimates the following

backward-looking model

B(L)WΦ(L)Zt = η∗t , (3.10)

where

B(L) =






ρ−1−L

1−ρ−1L
0

0 1




 W =






−1√
1+ρ2

ρ√
1+ρ2

ρ√
1+ρ2

1√
1+ρ2




 ,

and η∗t = B(L)Wηt. Representation (3.10) is obtained by finding Blaschke matrix B(L)

and orthonormal matrix W , such that B(L)B(L−1)′ = I and WW ′ = I, to flip the zero

of detΦ(L) outside of the unit circle, but do not alter the covariance generating function

of Zt.

From (3.1) it follows that the agents’ information set is the linear space generated

from current and past values of ηt, and the econometricians’ information set is the linear

space generated by current and past values of ǫ∗t . But since the Blaschke factor is a two

sided filter, recovering ηt requires not only current and past but also future values of η∗t .

Therefore, the space generated by ηt is not contained in the space spanned by current and

past values of η∗t (or equivalently Zt). As a result, Ht ⊆ It, which implies that the correct
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variance bound is given by the inequality (3.4). This is summarized in the following

proposition:

Proposition 3.1: Let δt ≡ E[
∑∞

j=0 ρ
j∆dt+j|It], δ′t ≡ E[

∑∞
j=0 ρ

j∆dt+j|Ht], and Ht ⊆ It.

Then the present value relation implies that

var(δ′t) ≤ var(δt)

3.2 Cross-Equation Restrictions

A distinguishing characteristic of rational expectations hypothesis is that the parameters

describing the stochastic environment that the agents confront appears in the equilibrium

solution. CS propose a convenient method for characterizing the cross-equation restric-

tions that the PV relation imposes on the data. To see how this approach works, consider

the PV model

δt =
∞∑

j=0

ρjE(∆dt+j|It). (3.11)

Testing (3.11) is not an easy task, because E(∆dt+j|It) is unobservable. To get around

this problem, CS propose to substitute it with the econometrician’s forecast obtained

from the following VAR model






δt

∆dt






︸ ︷︷ ︸

Zt

=






φ11 φ12

φ21 φ22






︸ ︷︷ ︸

Φ






δt−1

∆dt−1






︸ ︷︷ ︸

Zt−1

+






ǫt

νt






︸ ︷︷ ︸

ηt

.

The vector Zt has the useful property that to obtain it’s k-ahead period forecast, we

simply multiply Zt by the kth power of the matrix Φ:

E[Zt+j|Ht] = Φj+1Zt, for j = 0, 1, · · · , K. (3.12)
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CS derive the cross-equation restrictions by projecting (3.11) onto the econometrician’s

information set Ht, which gives

e1′Zt =
∞∑

j=0

ρje2′Φj+1Zt (3.13)

where e1′ = [1 0] and e2′ = [0 1]. It follows that (3.11) and (3.13) are the same, if and

only if (3.12) is satisfied (i.e., the optimal forecast is linear). Since equation (3.13) holds

for all realizations of Zt, we have that

e1′ =
∞∑

j=0

ρje2′Φj+1 = e2′Φ(I− ρΦ)−1 (3.14)

where the second equality follows by evaluating the infinite sum, which must converge

because the elements of Zt are stationary. Postmultiplying both sides of (3.14) by (I−βΦ),

we have

e1′(I− ρΦ)− e2′Φ = 0, (3.15)

which can be tested using a Wald statistics.

These restrictions are frequently rejected by the data, which has been interpreted as

evidence against standard discount rate models or sometimes against market efficiency and

rationality. However, note that these restrictions are derived by imposing the arbitrary

assumption (CS4). But if stock prices are forward-looking, the optimal forecast in general

is nonlinear. This is summarized in the following proposition.

Assumption 3.2. ηt ≡ (ǫt, νt)
′ are iid, strictly stationery process with a non-Gaussian

distribution such that (a+ 1)st moment finite with (a+ 1)st cumulant nonzero for some

a ≥ 2.

Proposition 3.3: Under assumption 1, the best predictor of a non-causal model is non-

linear. Therefore, standard cross-equation restriction tests that exclude forward-looking
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representations, can produce spurious rejections.

This proposition also provides the theoretical link between (CS3) and (CS4). If agents

and econometricians have the same information and agents use linear projections to make

optimal forecast, then the econometricin’s optimal forecast is also linear, i.e.,

L
[
L[Zt|It]|Ht

]
= L[Zt|Ht] = E[Zt|Ht],

where the first equality is always true by the law of iterated projections and the second

equality follows from the fact that conditional expectation is the best possible forecast

(in MSE sense).13 More important, the second equality asserts that the optimality is

preserved under (CS4). But, if stock prices are forward-looking, (CS4) will be violated

and the optimality disappears

L
[
L[Zt|It]|Ht

]
= L[Zt|Ht] 6= E[Zt|Ht].

In other words, if Ht ⊆ It, the econometricians’ optimal forecast is in general nonlinear,

even if agents’ optimal forecast is linear. This result also complements Donaldson and

Kamstra (1996), who show that nonlinear forecast outperforms the linear forecast obtained

from an unrestricted VAR.

Proposition 3.1 and 3.3 reveal the importance of the assumption (CS4), but do not

show whether it matters in practice. In Appendix E, I use the simple model of Section

2 as data generating process to quantify the inferential errors an econometrician might

make by imposing wrong assumptions on the econometricinas’ information set. Briefly,

the Monte Carlo exercise clearly shows that Campbell and Shiller procedure does not

control for the discrepancy between the econometricians’ and agents’ information sets,

leading to too frequent rejection of the correct null hypothesis.

13See Hamilton (1994, Ch. 4).
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4 Econometrics Analysis of News

So far, I have assumed that expected stock returns are constant. Although this assumption

is analytically convenient, the basic notion of market efficiency does not require constant

discount rate assumption. See LeRoy (1973), Rubinstein (1976), and Lucas Jr (1978),

among others. I now turn to the full model with time-varying discount rates.

Following the convention that logs of variables are denoted by the lowercase letters,

the log-linear approximate relation between prices, dividends, and returns proposed by

Campbell and Shiller (1988a) gives

δt =
κ

1− ρ
+ E

[ ∞∑

j=0

ρj
(
∆dt+j − rt+j

)
|It

]

, (4.1)

where δt ≡ pt − dt−1 is the log price-dividend ratio, ρ = 1/
(
1 + exp(−δ)

)
and κ =

− log(ρ) − (1 − ρ) log(1/ρ − 1) are a function of the long-run average log dividend-price

ratio δ.

To complete the description of the model, we must specify a process for dividends,

discount rates, and agents information set. Throughout, I assume that agents’ optimal

forecast is linear.

(A1) Dividends. Dividends follow a unit root process

dt = dt−1 + ǫt, (4.2)

for t = 1, 2, · · · , and ǫt ∼ iid(0, σ2
ǫ ).

(A2) Discount Rates. I assume that discount rates evolve according to a typical

random walk

rt = r + εt, (4.3)
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for t = 1, 2, · · · , and εt ∼ iid(0, σ2
ε).

(A3) Agents’ Information Set. At the beginning of each period, agents observe some

noisy signals about K1 period ahead dividend changes

sdt|t+k = ǫt+k + νt+k, k = 0, 1, 2, · · · , K1, (4.4)

where νt ∼ iid(0, σ2
ν) denotes the noise which is orthogonal to ǫt at all leads and lags.

Moreover, agents also observe some noisy signals about K2 period ahead returns

srt|t+k = εt+k + υt+k, k = 0, 1, 2, · · · , K2, (4.5)

where υt ∼ iid(0, σ2
υ) denotes the noise which is orthogonal to εt at all leads and lags. In

general K1 6= K2, but for the sake of convenience I set K1 = K2 = K. Thus, the agents’

information set encompasses the signals, as well as the history of prices and dividends.

Although to some readers these assumptions may look special, they are not. It is

widely accepted that neither dividend changes nor returns are predictable based on their

own past, but both are predictable based on price-dividend ratio.14 Assumptions (A1)-

(A3) formalize these stylized facts, and should also dispel the popular myth that if returns

and dividend changes follow a random walk process they are unpredictable. We also know

that signals must exists, although we do not know the exact form of them: If signals do

not exist, neither dividend changes nor returns are predictable, implying that the price-

dividend ratio must be a constant, which obviously is not the case.

Using (A1)-(A3) and the PV model (4.1), we can find equilibrium stock prices

δt = γrsrt|t + γdsdt|t + ρ(γrsrt|t+1 + γdsdt|t+1) + · · ·+ ρK(γrsrt|t+K + γdsdt|t+K), (4.6)

14Return and dividend predictability is a controversial topic in financial econometrics. See, for instance,
Cochrane (2008), Welch and Goyal (2007), Boudoukh et al. (2006), and Campbell and Thompson (2008).
Koijen and Van Nieuwerburgh (2011) provides a recent review of the literature.
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where γr = σ2
ǫ

σ2
ǫ+σ2

ν

and γd = σ2
ε

σ2
ε+σ2

υ

. From (4.6) it follows that stock prices can be decom-

posed into a Value Component

VC = γrǫt + γdεdt + ρ(γrǫrt+1 + γdεdt+1) + · · ·+ ρK(γrǫrt+K + γdεdt+K), (4.7)

associated with the future dividends growth and returns, and a Noise Component

NC = γrνt + γdυd
t + ρ(γrνr

t+1 + γdυd
t+1) + · · ·+ ρK(γrνr

t+K + γdυd
t+K). (4.8)

How to measure noise? From (4.6) we see that noise affects stock prices, but noise can

not affect future dividend changes or returns. Therefore,

Definition 4.1: Noise is the component of stock prices that is orthogonal to future

economic fundamentals.

This definition provides the theoretical framework to measure the noise in the stock

market. In the linear regression of δt on xt

δt = γ0 + γ1xt + ut, (4.9)

where xt ≡ ∑K

j=0 ρ
j
(
∆dt+j − rt+j

)
, the residuals ut is the component of δt that is by

construction orthogonal to xt. Therefore, in the above forward-looking regression, ut

approximates the NC in stock prices, and the fitted value of the regression, denoted by

δ̂t, approximates the VC.15

Several comments are in order. First, both the VC and the NC are included in the

15Note that regression (4.9) is different from the long-run predictability regressions

K∑

j=1

yt+j = γ0 + γ1δt + ut,

where yt = rt or ∆dt. The literature almost exclusively focused on the dividend and return predictability.
Our focus is instead on the comovement of the price-dividend ratio with future economic fundamentals.
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fundamental value, i.e., the right hand side of (4.1). Therefore, although prices deviate

from VC due to noise, this cannot be interpreted as a bubble.16 Second, δ̂t is based on the

information that is not available to econometricians and agents at time t, and therefore

cannot be used for market timing. Finally, to form the right hand side of the regression

(4.9), we observe both dividend growth (∆dt) and returns (rt) directly from the data.

Thus, unlike standard tests in the literature, this is not a joint hypothesis test of the

market efficiency and a discount rate model.

What restrictions rationality (or market efficiency) imposes on the size of the NC?

From (4.8), variance of the NC is

1− ρ2(K+1)

1− ρ2
σ4
ǫσ

2
ν

(σ2
ǫ + σ2

ν)
2
+

1− ρ2(K+1)

1− ρ2
σ4
εσ

2
υ

(σ2
ε + σ2

υ)
2
, (4.10)

which is maximized when σ2
ν = σ2

ǫ and σ2
υ = σ2

ε , and explains half of δt variation. This

proves the following proposition:

Proposition 4.2: Market Efficiency implies that noise component can not explain more

than 50% of the δt fluctuations.

Proposition 4.2. provides the key theoretical restriction that links the price-dividend

ratio fluctuation to noise. The nest step is to think about how to test this restriction

empirically. It turn out that the measure of fit, R2, of the regression (4.9) is particularly

useful for this purpose. Noticing that 1−R2 is the percent of the dependent variable (δt)

variance explained by residuals, proposition 4.2 implies that R2 must be greater than or

equal to 0.5. This proves the following corollary.

Corollary 4.3: Market Efficiency implies that in the linear regression (4.9)

R2 ≥ 0.5 (4.11)
16In the asset pricing literature any deviation of price from the right hand side of (4.1) is known as

bubble. For an accessible survey of the bubble literature see Brunnermeier (2009).
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4.1 Empirical Results

This section presents the empirical analysis to measure the noise in the stock market

and test the restriction (4.11). I use the annual S&P 500 index data, obtained from

Robert Shiller’s website (http://www.econ.yale.edu/~shiller/data.htm). The data

cover 1871-2015 period.

A practical issue in implementing the tests and the historical decomposition is the

choice of K and ρ. For the full sample, I set K = 15, which is long enough to capture all

possible news that investors might have received about the future economic fundamentals.

Chen (2009) provides evidence that returns and dividend growth are predictable at 15- and

20-year horizons.17 In a similar study analyzing stock price volatility, Cochrane (1992)

also uses K = 15. The results are not particularly sensitive to the choice of K. The

parameter of linearizion can be directly constructed from the data. Empirically, over the

period 1871 to 2016 the average log price-dividend ratio is 0.04, implying that ρ = 0.96.

Table (1) presents the results. The focus of the regressions is the R2 (in bold), and its

standard error. 18 Consistent with the PV model and market efficiency, the R2 value for

the regression (4.9) is 0.52. The correlation between δt and δ̂t is 0.72, providing strong

evidence that agents have some information about the future economic fundamentals. The

coefficients are strongly significant, but due to the endogeneity problem the estimates are

not reliable. However, this is not of any concern as we do not test any restrictions on the

parameters of the regression (4.9).

The R2 = 0.52 does not look that impressive, but in the subsamples the R2 increases

significantly, reaching values 0.72 in the prewar period and 0.63 in the postwar period,

17See also Cochrane (2008) and Fama and French (1988).
18The standard error for the R2 is calculated as:

SER2 =

√

4R2(1−R2)2(n− k − 1)2

(n2 − 1)(n+ 3)
,

where n is the number of observations, and k + 1 counts an intercept plus the number of independent
variables. See Olkin and Finn (1995).
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Table 1: Testing Market Efficiency against Actual Data Using Corollary 4.3

Sample Period K γ0 γ1 R2 Chow 1945

1871− 2015 15 3.51
(0.04)

0.67
(0.06)

0.52
(0.06)

66.92
(0.000)

1871− 1945 10 3.28
(0.02)

0.69
(0.05)

0.72
(0.05)

1946− 2015 10 3.70
(0.05)

0.80
(0.08)

0.63
(0.07)

This table reports estimation results for the equation δt = γ0+γ1xt+ut, where δt ≡ pt−dt−1

and xt ≡
∑K

j=0 ρ
j
(
∆dt+j−rt+j

)
. The standard errors are reported below each coefficients.

The last column reports the F -statistic and associated p-value from a Chow test with null
hypothesis of no structural break in 1945. The data are annual for 1871-2015.

both highly significant. One possible explanation for these findings is parameter insta-

bility. Fama and French (2001) and Chen et al. (2012) argue that dividend policy has

changed significantly in the postwar period, which complicates predictability regressions.19

Confirming the instability of the parameter estimates, the final column of Table (1) re-

ports the results of a Chow (1960) test, which strongly rejects the null hypothesis of no

structural break in 1945. Appendix B provides evidence that our measure of noise is not

driven by dividend smoothing.

These empirical findings suggest that noise explains a large portion of price-dividend

ratio fluctuations: 48% in the full sample, 28% in the prewar period, and 37% in the

postwar period. The next question is what are the other sources of price-divided ratio

fluctuations? According to the PV model (4.1), high price-dividend ratio implies that

either future dividend growth must be high or future discount rates must be low. To

evaluate the contribution of each component, I repeat the exercise but fix the returns

or the dividends changes to their respective mean values when constructing the right

hand side of (4.9). First, I examine dividend growth. Panel A of Table (2) shows that

price-dividend ratio has a very weak (almost zero) relation to the estimated VC of future

19See also Lettau and Van Nieuwerburgh (2008).
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Table 2: Relative Importance of Dividend Growth and Returns

Sample Period K γ0 γ1 R2 Chow 1945

Panel A: δt = γ0 + γ1
∑K

j=0 ρ
j∆dt+j + ut

1871− 2015 15 3.08
(0.03)

−0.02
(0.11)

0.001
(0.005)

23.31
(0.000)

1871− 1945 10 0.00
(0.02)

0.03
(0.08)

0.002
(0.009)

1945− 2015 10 0.00
(0.07)

−0.02
(0.34)

0.000
(0.000)

Panel B: δt = γ0 + γ1
∑K

j=0 ρ
jrt+j + ut

1871− 2015 15 3.38
(0.05)

−0.37
(0.05)

0.297
(0.065)

49.85
(0.000)

1871− 1945 10 3.09
(0.03)

−0.25
(0.05)

0.240
(0.081)

1945− 2015 10 3.71
(0.07)

−0.62
(0.08)

0.485
(0.085)

Panel A reports estimation results for the equation δt = γ0+γ1xt+ut, where δt ≡ pt−dt−1

and xt ≡
∑K

j=0 ρ
j∆dt+j. In Panel B, we regress δt on xt ≡

∑K

j=0 ρ
jrt+j. The first column

reports the sample period, and the second reports the value forK. The standard errors are
reported below each coefficients. The last column reports the F -statistic and associated
p-value from a Chow test with null hypothesis of no structural break in 1945. The data
are annual for 1871-2015.

dividend growth. Panel B of Table (2) repeats the analysis for the returns. The R2

increases to 0.30 over the full sample, and 0.24 in the prewar period. But, in the postwar

period the R2 increases to 0.49, and the restriction (4.11) cannot be rejected at the 5%

level. Overall, the regressions of (2) suggest that most variation in price-dividend ratio

corresponds to varying expected returns and almost nothing from movements in expected

dividend growth. See also Cochrane (2008) and the references therein.

The major advantage of my framework is that it can be used to provide a value-

noise decomposition of stock prices, and to date stamp overvaluation and undervaluation

periods. The right panels of Figure (1) plots the time series of log price-dividend ratio

(δt), estimated VC (δ̂t), and estimated NC (δt− δ̂t). The left panels report the percentage

deviation of price-dividend ratio from the VC, i.e., (δt−δ̂t)

δ̂t
× 100. As figures clearly show,
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Figure 1: Value-Noise Decomposition of Price-Dividend Ratio

(a) Sample Period: 1871-2015
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(b) Sample Period: 1871-1945

1870 1880 1890 1900 1910 1920 1930 1940 1950

Year

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

L
o
g
 P

ri
ce

-D
iv

id
e
n
d
 R

a
tio

1870 1880 1890 1900 1910 1920 1930 1940 1950

Year

-8

-6

-4

-2

0

2

4

6

8

(c) Sample Period: 1946-2015
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The figure plots historical decomposition of stock prices according to the equation (4.9).
The top panels plot the decomposition for the full sample (1871-2015), the middle panels
is for the prewar period (1871-1945), and the bottom panels gives the decomposition for
the postwar period (1946-2015). The left panels plot the value-noise decomposition of
stock prices: The solid (black) line is the log price-dividend ratio δt, the dashed (blue)
line is the estimated VC δ̂t, and the dotted (red) line is the estimated NC, i.e., δt − δ̂t.

The right panels report the noise as a percentage of VC, i.e., (δt−δ̂t)

δ̂t
× 100. The data are

annual for 1871-2015.
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noise can be negative as well as positive. Intuitively, a positive NC implies that prices are

high compare to what an investor will receive in the form of future dividends and returns,

and vice versa.

From visual inspection of Figure (1) we observe that the estimated VC mimics fairly

well the broad movement in stock prices. However, there is still significant noise in the

market, which implies that prices deviate from VC. However, since the NC is inside the

fundamental value, this deviation is not due to a bubble or other irrational explanations.

Some famous historical periods deserve further discussion here. Lets take the Great

Depression first. Many economists believe that the stock market crash of 1929 followed

the burst of a speculative bubble that had taken hold in the late 1920s. See for instance

Shiller (2015). Visual inspection of Figure (1) it clearly emerges that stock prices did not

significantly deviate from the VC, suggesting that the stock market was not overvalued

before the Wall Street Crash of 1929. This leads me to conclude that the boom of the

1920s was not necessarily due to a bubble in the market price. 20 These empirical finding

are robust to dividend smoothing, approximation error, and linear regression specification.

See Appendixes B, C, and D.

Another key period is the 1990s, where the price of Internet related stocks soared

rapidly before plummeting in 2000. From Figure (1) it emerges that the stock prices

deviated the VC by about 15%. Thus, the market was overvalued before the Crash and

the overvaluation started around 1988. Finally, my estimates show that the U.S. stock

market was undervalued during 1965-1985. Modigliani and Cohn (1979) hypothesize that

the stock market suffers from money illusion, discounting real dividends using nominal

discount rates. An implication of such irrational behavior is that when inflation is high

(as it was the case during 1970s), the stock market is undervalued. Fama (1981) gives

a rational interpretation of this phenomenon: high inflation signals a decline in future

20Using data on productive capital on stocks and tax rates to estimate the fundamental value, Mc-
Grattan and Prescott (2001) also find that stock prices were undervalued, even at their pick. See also
Donaldson and Kamstra (1996) and Pástor and Veronesi (2006).
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economic activities, and stock prices rationally reflected this information. My proposed

method is agnostic as to whether these overvaluation and undervaluation is rational or

irrational.

5 Conclusions

Thirty years ago, Black (1986) emphasized the role of noise in the financial markets and

argued that noise ought to be contrasted with information. Through the lens of a present

value model, this paper explores the effects of news (or noisy information) on stock prices

and drives theoretical restrictions that link price volatility to noise and information. In the

model, agents receive news about future dividend changes and returns. Not distinguishing

noise from information, agents react to both just the same way and as a result noise affects

stock prices.

I show that the present value relation imposes testable restrictions on the contribution

of noise to the price volatility. In contrast to standard tests in the literature, my approach

does not require any particular assumptions about the unobserved discount rate process

and the information set of the investors. Using annual data on the U.S. stock market data

over the period 1871-2015, I find that consistent with the predictions of market efficiency

noise does not explain more than half of price-dividend ratio fluctuations. Moreover, the

variation in price-dividend ratio is mostly driven by news about future discount rates and

noise, and almost nothing from the news about future dividend growth.

This paper also proposes a decomposition of prices into a value component and noise

component. The decomposition provides a simple procedure to date stamp overvaluation

and undervaluation. Applying my decomposition to the U.S. stock market data, I find

that the market was undervalued during the 1970s and overvalued during the 1990s.

Interestingly, I find no evidence the market was overvalued before the Wall Street Crash

of 1929.
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Appendix A: Proofs

Proof of Proposition 3.3: Since we do not want to take a precise stance on the economic

model generating stock prices, lets consider a general VAR model of order p

Φ(L)Zt = Zt − Φ1Zt−1 − Φ2Zt−2 − · · · − ΦpZt−p = ηt, (A.1)

where Φ(z) = Im−Φ1z−Φ2z
2−· · ·−Φpz

p is the AR polynomial, and Zt := (Zt,1, · · · , Zt,m)
T

is an m-dimensional stochastic process, including at least prices and dividends, and

ηt := (ηt,1, · · · , ηt,m)T satisfies Assumption 3.2. The conventional causal VAR models re-

quire that detΦ(z) 6= 0, for all z ∈ C, such that |z| ≤ 1. To allow for the forward-looking

feature of stock prices, we allow detΦ(z) to have roots inside the unit circle. Without loss

of generality, assume that detΦ(z) has l roots outside the unit circle (the causal roots)

and p− l roots inside the unit circle (the non-causal roots).

We want ot show that the optimal forecast of a non-causal process based on its past

is nonlinear, i.e., E[Zt|Ht] 6= L[Zt|Ht]. The proof of the univariate case directly follows

from Rosenblatt (2000), Theorem 5.4.1 and Corollary 5.4.3. To prove the multivariate

case, first note that the optimal forecast in the MSE sense is linear, if and only if

E[ηt|Ht−1] = 0, (A.2)

where ηt = Zt − L[Zt|Ht−1]. Therefore, in the following, I show that the reduced form

residuals obtained from fitting a linear model do not satisfy (A.2), which implies that

conditional mean is nonlinear.

It is well-known that by fitting a conventional VARmodel, an econometrician estimates

Φ̃(L)Φ(L)Zt = Φ̃(L)ηt
︸ ︷︷ ︸

η∗
t

, (A.3)
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where Φ̃(L) is a Blaschke matrix defined as

Φ̃(L) = B(φ1, z)W1B(φ2, z)W2 · · ·B(φp−l, z)Wp−l, (A.4)

where Wi, i = 1, · · · , p− l, are orthogonal matrices (i.e., WiW
′
i = I) and

B(φi, z) =






1−φiL

L−φi

0

0 Im−1






with |φi| < 1 and φi denotes the complex conjugate of φi. The matrix Φ̃(L), in effect, flips

the roots of the Φ(L) from inside the unit circle to outside the unit circle, but preserves

the unconditional second moments of the VAR system.

Now let η∗1,t denotes the first element of the vector η∗t . Then, from the definition of η∗t

and Blaschke matrices (5) we have that

η∗1,t =
m∑

a=1

∑

v

Ca,v

∏

i∈v

(1− φiL

L− φi

)

ηa,t, (A.5)

where the sum in v is over all combinations of indexes {1, 2, · · · , p− l} with no repetition,

and Ca,v, a = 1, · · · ,m, functions of the underlying elements of the matrices Wi. Also

note that since the Blaschke matrices are full rank matrices, Ca,v 6= 0 for at least one a

and v.

Now from Theorem 5.4.1 and Corollary 5.4.3 of Rosenblatt (2000) we know that the

best predictor of each element of the sum is nonlinear, thus

E[η∗1,t|η∗t−1, η
∗
t−2, · · · ] = E[η∗1,t|Ht−1] 6= 0, (A.6)

which implies that E[η∗t |Ht−1] 6= 0, and the proof is complete.
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Appendix B: Dividend Smoothing

The predictability regression is controversial because of dividend smoothing. In their

seminal work, Miller and Modigliani (1961) argue that in a perfect capital market dividend

policy is irrelevant, and the stock prices should be driven by earning power of a firm’s

asset. Chen et al. (2012) propose a modified PV model to get around the issue of dividend

smoothing. To see how it works, consider the Lintner (1956) partial adjustment model in

log form:

∆dt = α0 + α1et + α2dt−1 + ϑt, (C.7)

where et ≡ ln(Et), Et is the earning at time t, and ϑt is an error term. Rewrite (C.7) in

terms of differences:

∆dt = α1∆et + (1 + α2)∆dt−1 + νt, (C.8)

Dividends are most smoothed if α1 = 0 and α2 = 0, in which case dividends grow at a

constant rate plus some noise.

Table (3) reports the estimates from the dividend behavior models (C.7) and (C.8).

From Panel A, we see that both α1 and α2 have reduced significantly in the postwar

period, which implies that dividends are more smoothed. The final column of panel A

reports a Chow (1960) test that indicates a significant structural break around 1945.

Panel B confirms these empirical findings.

To get around the issue of dividend smoothing, notice that from (C.8) it follows that

∞∑

j=0

ρj∆dt =
(1 + α2)

1− (1 + α2)ρ
∆dt−1 +

α1

1− (1 + α2)ρ

∞∑

j=0

ρj∆et+j

+
α1

1− (1 + α2)ρ

∞∑

j=0

ρj∆ϑt+j (C.9)
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Suppressing the constant, (4.1) can be rewritten as

δt = E

[ ∞∑

j=0

ρjrt+j +
α1

1− (1 + α2)ρ

∞∑

j=0

ρj∆et+j

∣
∣
∣It

]

. (C.10)

The above implies that, to measure the noise and test the restriction (4.11), one can use

the modified versions of (4.9), as follows

δt = γ0 + γ1xt + ut, (C.11)

where xt =
∑K

j=0 ρ
jrt+j +

α1

1−(1+α2)ρ

∑K

j=0 ρ
j∆et+j.

Table (4) presents the results. The R2 value for in the prewar period is 0.33, which

does not satisfy the restriction (4.11), but this increases to 0.52 for the postwar period.

The right panels of Figure (2) plots the time series of log price-dividend ratio (δt), value

component (δ̂t), and noise components (δt − δ̂t), estimated from the regression (C.11).

The left panels report the percentage deviation of price-dividend ratio from the value

component, i.e., (δt−δ̂t)

δ̂t
× 100. These empirical findings suggest that although dividend

smoothing is an important issue in the postwar period, our measure of noise is not driven

by dividend smoothing.
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Table 3: Dividend Policy Models Using Actual Dividends and Earnings 18712015

Panel A: ∆dt = α0 + α1et + α2dt−1 + ϑt

Sample Period α0 α1 α2 R2 Chow 1945

1871− 2015 0.01
(0.04)

0.24
(0.02)

−0.32
(0.03)

0.40 5.81
(0.001)

1871− 1945 0.08
(0.11)

0.33
(0.04)

−0.42
(0.06)

0.50

1945− 2015 0.06
(0.07)

0.12
(0.02)

−0.17
(0.04)

0.26

Panel B: ∆dt = β0 + β1∆et + β2∆dt−1 + νt

Sample Period β0 β1 β2 R2 Chow 1945

1871− 2015 0.01
(0.01)

0.13
(0.03)

0.16
(0.08)

0.11 5.52
(0.001)

1871− 1945 0.00
(0.01)

0.26
(0.06)

0.11
(0.11)

0.21

1945− 2015 0.01
(0.01)

0.02
(0.03)

0.38
(0.12)

0.14

This table reports estimation results for two dividend behavior models. The first is the
(C.7) model and the second is estimated using the first differences (C.8). The standard
errors are reported below each coefficients. The last column reports the F -statistic and
associated p-value from a Chow test with null hypothesis of no structural break in 1945.
The data are annual for 1871-2015.

Table 4: Testing Market Efficiency against Actual Data Using Corollary 4.3

δt = γ0 + γ1xt + ut

Sample Period K γ0 γ1 R2 Chow 1945

1871− 2015 15 3.40
(0.04)

0.43
(0.05)

0.34
(0.07)

51.13
(0.000)

1871− 1945 10 3.12
(0.03)

0.32
(0.05)

0.33
(0.09)

1946− 2015 10 3.71
(0.06)

0.65
(0.08)

0.52
(0.08)

This table reports estimation results for the linear specification (C.11), where xt =
∑K

j=0 ρ
jrt+j +

α1

1−(1+α2)ρ

∑K

j=0 ρ
j∆et+j. The standard errors are reported below each coef-

ficients. The last column reports the F -statistic and associated p-value from a Chow test
with null hypothesis of no structural break in 1945. The data are annual for 1871-2015.
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Figure 2: Value-Noise Decomposition of Price-Dividend Ratio: Dividend Smoothing

(a) Sample Period: 1871-2015
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(b) Sample Period: 1871-1945

1870 1880 1890 1900 1910 1920 1930 1940 1950

Year

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

L
o
g
 P

ri
ce

-D
iv

id
e
n
d
 R

a
tio

1870 1880 1890 1900 1910 1920 1930 1940 1950

Year

-15

-10

-5

0

5

10

15

(c) Sample Period: 1946-2015
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The figure plots historical decomposition of stock prices according to the equation (C.11).
The top panels plot the decomposition for the full sample (1871-2015), the middle panels is
for the prewar period (1871-1945), and the bottom panels gives the decomposition for the
postwar period (1946-2015). The left panels plot the value-noise decomposition of stock
prices: The solid (black) line is the log price-dividend ratio δt, the dashed (blue) line is the
estimated value component δ̂t, and the dotted (red) line is the estimated noise component,
i.e., δt − δ̂t. The right panels report the noise as a percentage of value component, i.e.,
(δt−δ̂t)

δ̂t
× 100. The data are annual for 1871-2015.
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Appendix C: Approximation Error

So far, the empirical results are based on a first-order Taylor approximation of the gen-

eral Euler equation. A reasonable concern is that the higher-order terms in the Taylor

expansion, which are neglected, can create an approximation error. Campbell and Shiller

(1988a) show that empirically the error is small and almost constant. In this section, I

will argue that the main results of this paper are not sensitive to the approximation error.

Consider a general one-period Euler equation:

Pt = E
[
Mt+1(Pt+1 +Dt)|It

]
.

Iterating forward and imposing the transversality condition, we obtain the PV model with

time-varying discount rates

Pt = E

[
∞∑

j=1

( j
∏

i=1

Mt+1

)

Dt+j|It
]

. (C.12)

Since prices and dividends are not stationary, population moments can not be estimated

from sample counterparts. However, if dividend growth, Dt

Dt−1
= Gt, and discount rates

are stationary, the PV model implies that price-dividend ratio is stationary.21 Thus, we

can write (C.12) as

Pt

Dt

= E

[ ∞∑

j=1

j
∏

i=1

Mt+iGt+i|It
]

, (C.13)

where MtGt is the discounted dividend growth rate, which can be obtained directly from

the data.

We can approximate the noise component by the residuals of the following modified

linear regression

Pt

Dt

= γ0 + γ1Xt + ut, (C.14)

21For the formal proof see (Cochrane, 1994).
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where Xt =
∑K

j=1

∏j

i=1 Mt+iGt+i and ut is orthogonal to the right hand side by construc-

tion, and the fitted value of the regression approximates the fundamental component.

Table (5) presents the results. The R2 value for in the prewar period is 0.68, but this

decreases to 0.51 for the postwar period. This should provide evidence that our measure

of noise is not driven by approximation error. The right panels of Figure (3) plots the time

series of log price-dividend ratio (δt), value component (δ̂t), and noise components (δt−δ̂t),

estimated from the regression (C.14). The left panels report the percentage deviation of

price-dividend ratio from the value component, i.e., (δt−δ̂t)

δ̂t
× 100. Surprisingly, the noise

appears to explain an even bigger portion of price fluctuations, but the conclusion that

the US market was undervalued during 1970s and overvalued during 1990s still holds.

Still there is no sign of overvaluation before the crash of 1930s.

Table 5: Testing Market Efficiency against Actual Data Using Corollary 4.3

Pt

Dt
= γ0 + γ1Xt + ut

Sample Period K γ0 γ1 R2 Chow 1945

1871− 2015 15 1.28
(2.6)

2.08
(0.24)

0.36
(0.07)

31.67
(0.000)

1871− 1945 10 0.02
(1.56)

2.52
(0.20)

0.68
(0.06)

1946− 2015 10 −6.48
(5.07)

4.64
(0.60)

0.51
(0.08)

This table reports estimation results for the equation (C.14), where Xt ≡
∑K

j=1

∏j

i=1 Mt+iGt+i, Mt ≡ Pt+Dt

Pt−1
and Gt ≡ Dt

Dt−1
. The first column reports the sam-

ple period, and the second reports the value for K. The standard errors are reported
below each coefficients. The last column reports the F -statistic and associated p-value
from a Chow test with null hypothesis of no structural break in 1945. The data are annual
for 1871-2015.
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Figure 3: Value-Noise Decomposition of Price-Dividend Ratio: Exact PV Model

(a) Sample Period: 1871-2015
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(b) Sample Period: 1871-1945
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(c) Sample Period: 1946-2015

1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

Year

-40

-20

0

20

40

60

80

100

P
ri
ce

-D
iv

id
e
n
d
 R

a
tio

1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

Year

-50

0

50

100

The figure plots historical decomposition of stock prices according to the equation (C.14).
The top panels plot the decomposition for the full sample (1871-2015), the middle panels is
for the prewar period (1871-1945), and the bottom panels gives the decomposition for the
postwar period (1946-2015). The left panels plot the value-noise decomposition of stock
prices: The solid (black) line is the log price-dividend ratio δt, the dashed (blue) line is the
estimated value component δ̂t, and the dotted (red) line is the estimated noise component,
i.e., δt − δ̂t. The right panels report the noise as a percentage of value component, i.e.,
(δt−δ̂t)

δ̂t
× 100. The data are annual for 1871-2015.
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Appendix D: Quadratic Specification

While the linear specification provides important insights, in many settings, it may not

hold. A tractable alternative is to formulate the decomposition problem as a linear-

quadratic regression,

δt = γ0 + γ1xt + γ2x
2
t + ut, (D.15)

where xt =
∑K

j=0 ρ
j
(
∆dt+j − rt+j

)
. Panel B of Table (6) reports the results for the

quadratic model that fits different sample periods. Again, the R2 is grater than 0.5 in all

periods, which is consistent with market efficiency. Including cubic terms improves the

R2, but not significantly. The right panels of Figure (4) plots the time series of log price-

dividend ratio (δt), value component (δ̂t), and noise components (δt − δ̂t), estimated from

the regression (D.15). The left panels report the percentage deviation of price-dividend

ratio from the value component, i.e., (δt−δ̂t)

δ̂t
× 100.

Table 6: Testing Market Efficiency against Actual Data Using Corollary 4.3

δt = γ0 + γ1xt + γ2x
2
t + ut

Sample Period K γ0 γ1 γ2 R2 Chow 1945

1871− 2015 15 3.68
(0.06)

1.39
(0.18)

0.56
(0.14)

0.57
(0.05)

34.50
(0.000)

1871− 1945 10 3.24
(0.04)

0.46
(0.17)

−0.25
(0.18)

0.73
(0.05)

1946− 2015 10 3.70
(0.05)

1.17
(0.17)

0.43
(0.18)

0.66
(0.06)

This table reports estimation results for the equation (D.15), where δt ≡ pt − dt−1 and
xt ≡

∑K

j=0 ρ
j
(
∆dt+j − rt+j

)
. The first column reports the sample period, and the second

reports the value for K. The standard errors are reported below each coefficients. The
last column reports the F -statistic and associated p-value from a Chow test with null
hypothesis of no structural break in 1945. The data are annual for 1871-2015.
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Figure 4: Value-Noise Decomposition of Price-Dividend Ratio: Quadratic Specification

(a) Sample Period: 1871-2015
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(b) Sample Period: 1871-1945
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(c) Sample Period: 1946-2015
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The figure plots historical decomposition of stock prices according to the equation (D.15).
The top panels plot the decomposition for the full sample (1871-2015), the middle panels is
for the prewar period (1871-1945), and the bottom panels gives the decomposition for the
postwar period (1946-2015). The left panels plot the value-noise decomposition of stock
prices: The solid (black) line is the log price-dividend ratio δt, the dashed (blue) line is the
estimated value component δ̂t, and the dotted (red) line is the estimated noise component,
i.e., δt − δ̂t. The right panels report the noise as a percentage of value component, i.e.,
(δt−δ̂t)

δ̂t
× 100. The data are annual for 1871-2015.
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Appendix E: Simulations

This section contains Monte Carlo simulations to shed light on the importance of assump-

tion (CS4). The algorithm for generating data from the model specified in Section 2 is as

follows:

1. Obtain dividend changes ǫt = dt − dt−1 and its variance σ2
ǫ . Calculate ρ ≡ 1/

(
1 +

exp(dt − pt)
)
and κ ≡ − log(ρ) − (1 − ρ) log(1/ρ − 1) from the data. Set K = 15

and itr = 1.

2. Generate random noise using νt ∼ iidN(0, σ2
ν), and set γ = σ2

ǫ

σ2
ǫ+σ2

ν

. I consider

alternative values of σ2
ν below.

3. Generate bootstrap sample itr using the parametric bootstrap: Resample the ǫt’s,

denoting the bootstrap ǫt by ǫ∗t . Set starting value d∗1 = d1. For t > 1, construct the

bootstrap sample using (2.2) and (2.5):

d∗t = d∗t−1 + ǫ∗t ,

p∗t − d∗t−1 =
κ

1− ρ
+ = γ(ǫ∗t + νt) + ργ(ǫ∗t+1 + νt+1) + · · ·+ ρKγ(ǫ∗t+K + νt+K).

4. Construct δ∗
′

t from a VAR system including Z∗
t = (∆d∗t , δ

∗
t ).

5. If itr < ITR then increase itr by one and return to step two.

Figure (5) compares the sample path of actual stock prices, simulated stock prices,

and their VAR forecast based on a VAR with a single lag. The top left panel plots the

actual δt, along with the VAR forecast δ′t. Other panels plot the simulated δ∗t and δ∗
′

t ,

for three different values of noise variance. From the plot of actual data we see that

δt is much more volatile than δ′t, which Campbell and Shiller (1987, 1988a,b) interpret

as evidence of excessively volatility. However, as the other panels clearly show, such
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conclusions are absolutely unfounded, because these figures are based on simulated data

that by construction are generated by the rational model (2.1).

Table (7) reports a formal test of the hypothesis (3.1) and (3.15). Campbell and Shiller

(1988a, p. 214) also argue that if the model with constant discount rate were true, the

variable δ′t would place a unit weight on δt and a zero weight on ∆dt−1. More specifically,

in the following linear regression

δt = α + β1δ
′
t + β2∆dt−1 + vt, (E.16)

CS propose to jointly test whether (β1, β2) = (1, 0).

Table (7) also reports the result of this test. Given that assumptions (CS1)-(CS3) hold

by construction, the only explanation for the observed overrejection of the null hypothesis

is that assumption (CS4) is not satisfied. In contrast, the R2 test proposed in Section 4

(column 4) controls the size.
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Figure 5: Actual Stock Prices vs VAR Forecasts

(a) Actual S&P 500 Data
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(b) Simulatied Data: σν = 0.5σǫ
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(c) Simulatied Data: σν = σǫ

1860 1880 1900 1920 1940 1960 1980 2000 2020

Year

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

L
o

g
 P

ri
c
e

-D
iv

id
e

n
d

 R
a

ti
o

(d) Simulatied Data: σν = 2σǫ
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This figure plots log price-dividend ratio δt (solid-black) versus the VAR forecast δ′t
(dashed-red). The top right panel plots the actual data. Other panels plot the simu-
lated data with different noise variances.
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Table 7: Tests of Present Value Models

var(δt) = var(δ′t) χ2(2) Test of δt = δ′t R2 ≥ 0.5
Actual S&P 500 Data

p-Value 0.00 0.00 0.00 ≤ 0.05

Simulated Data: σν = 0.5σǫ

% of rejections 38.8 100 98.8 5.6

Simulated Data: σν = σǫ

% of rejections 45.1 100 98.2 5.3

Simulated Data: σν = 2σǫ

% of rejections 49.4 100 98.6 6.0

This table reports estimation results for the Present Value models. The top row reports
the results for the actual data, where δt = pt − dt−1 and δ′t denotes its VAR forecast. The
first column reports the p-Value for the restriction var(δt) = var(δ′t), against the alternative
that var(δt) > var(δ′t). The second column reports the Wald statistic for the cross-equation
restrictions (3.15). Third column reports the F -statistics for the null hypothesis that in
the regression (E.16), (β1, β2) = (1, 0). The last column (in bold) reports the R2 test
of restriction (4.11). The second-forth rows report percentage of rejections of the null
hypothesis using a nominal size of 5%. All experiments have 1000 replications. The last
column reports the mean of the R2 in 1000 Monte Carlo replications.
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