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Abstract

We consider an extended spatial autoregressive model that can incorporate possible endogenous interactions,
exogenous interactions, unobserved group fixed effects and correlation of unobservables. In the generalized
method of moments (GMM) and the maximum likelihood (ML) frameworks, we introduce simple gradient
based tests that can be used to test the presence of endogenous effects, the correlation of unobservables and
the contextual effects. We show the asymptotic distributions of tests, and formulate robust tests that have
central chi-square distributions under both the null and local misspecification. The proposed tests are easy
to compute and only require the estimates from a transformed linear regression model. We carry out an
extensive Monte Carlo study to investigate the size and power properties of the proposed tests. Our results
show that the proposed tests have good finite sample properties and are useful for testing the presence of
endogenous effects, correlation of unobservables and contextual effects in a social interaction model.

Keywords: Social interactions, Endogenous effects, Spatial dependence, GMM inference, LM tests, Robust
LM test, Local misspecification.

1. Introduction

In a social interaction model, an individual’s outcome is affected by the outcomes and characteristics of2

her reference group’s members, i.e., her peers. The effects channeled through the outcomes of the reference
group is known as the endogenous effects. The effects arising from the characteristics of the group is called4

the contextual effects. Identification of these effects within an estimation framework is important because
their policy implications greatly differ. Manski (1993) shows that endogenous and contextual effects cannot6

be separately identified in a linear-in-means model. This identification problem, known as the “reflection
problem,” has led to various adjustments to the linear-in-means specification to allow for partial or full8

identification of these effects (Brock and Durlauf, 2001; Lee, 2007; Calvo-Armengol et al., 2009; Bramoullé
et al., 2009; Lin, 2010; Liu and Lee, 2010; Goldsmith-Pinkham and Imbens, 2013; Hsieh and Lee, 2014;10

Burridge et al., 2016).
Tools from spatial econometrics can be useful to reformulate social interaction models thereby identifica-12

tion of various effects become possible (for spatial econometrics, see Anselin (1988), LeSage and Pace (2009),
Elhorst (2010, 2014) ). The group relation can be represented by means of a so-called spatial weights (or14

connectivity) matrix. The outcomes of a group members are included into a model through a so-called spatial
lag operator which constructs a new variable consisting of a weighted average of the group members’ out-16

comes. Similarly, the contextual effect variables are formulated through a spatial lag of the group members’
characteristics. This class of models is referred to as the social interaction models with network structures.18

Lee (2007), Lee et al. (2010) and Liu et al. (2014) consider this type of social interaction models in which
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the endogenous effects, the contextual effects and the correlation of unobservables are formulated through20

the spatial lag operators.
In the literature, diagnostic testing for social interaction models with network structures have received22

scant attention. The gradient or score based tests within the GMM or ML frameworks can be formulated
for testing the presence of various effects by following White (1982), Newey (1985a,b,c), Tauchen (1985),24

Newey and West (1987) and Smith (1987). However, these gradient based tests, i.e., the Lagrange multiplier
(LM) tests, are not robust to the local parametric misspecification in the alternative models. Within the26

ML framework, Davidson and MacKinnon (1987), Saikkonen (1989) and Bera and Yoon (1993) show that
the conventional LM test statistic has a non-central chi-square distribution when the alternative hypothesis28

deviates (locally) from the true data generating process (DGP). Bera et al. (2010) extend this result to
a GMM framework and show that the asymptotic distribution of the LM test is a non-central chi-square30

distribution when the alternative model deviates locally from the true DGP. Thus, the conventional LM tests
will over reject the true null hypothesis and lead to incorrect inference under parametric misspecification.32

Bera and Yoon (1993) and Bera et al. (2010) formulate robust (or adjusted) versions that have, asymptotically,
central chi-square distributions irrespective of the local deviation of the alternative model from the true data34

generating process.
In this paper, we formulate robust LM tests in the GMM and ML frameworks for a social interaction36

model that has a network structure. We show the asymptotic distributions of these tests under the null and
the local alternatives within the context of our social interaction model. These tests can be used to detect38

the presence of endogenous effects, the correlation of unobservables and the contextual effects. Besides being
robust to local parametric misspecification in the alternative models, these tests are computationally very40

simple and only require estimates from a transformed linear regression model. We design an extensive Monte
Carlo study to investigate the size and power properties of our proposed tests. Our results show that the42

proposed tests have good finite sample properties and can be useful for the identification of the source of
dependence in a social interaction model.44

The rest of this paper is organized as follows. In Section 2, we introduce the social interaction model. In
Section 3, we review the GMM estimation approach and introduce the GMM gradient tests for testing linear46

and nonlinear restrictions on the spatial autoregressive parameters. We adjust these procedures for our social
interaction model and formulate the robust LM test statistics. In Section 4, we consider the ML estimation48

approach for the model, and formulate various versions of the LM tests. In Section 5, we introduce test
statistics for testing the presence of contextual effects in both GMM and ML frameworks. In Section 6, we50

show the relationships among the test statistics. In Sections 7, 8 and 9, we compare the size and power
properties of tests through a Monte Carlo study. Section 10 closes the paper with concluding remarks. Some52

technical details are relegated to appendices.

2. The Model Specification54

We consider a group interaction set up that consists of R groups. Let mr be the number of individuals in
the rth group, and n =

∑R
r=1mr be the total number of individuals. Let Yr = (Y1r, Y2r, . . . , Ymrr)

′

be the
mr × 1 vector of observed outcomes in the rth group. Then, the DGP stated for the rth group is given by

Yr = λ0WrYr +X1rβ01 +WrX2rβ02 + lmr
α0r + ur, (2.1)

ur = ρ0Mrur + εr for r = 1, . . . , R. (2.2)

In (2.1) and (2.2), the network weights matricesWr andMr are mr×mr matrices with known constant terms
and zero diagonal elements. The matrices of exogenous variables are denoted with X1r and X2r, which have56

dimensions of mr × k1 and mr × k2, respectively.
2 The matching parameters for the exogenous variables are

denoted by β01 and β02. The endogenous social interaction effects in (2.1) is captured byWrYr with the scalar58

coefficient λ0. The contextual effects are captured byWrX2r with the matching parameter vector of β02. The
model differs from the cross-sectional spatial econometric models by including the unobserved group fixed60

effect, denoted by lmr
α0r, where lmr

is anmr×1 vector of ones and α0r represents the unobserved group fixed
effect. The regression disturbance term ur = (u1r, . . . , umrr)

′

and the innovation term εr = (ε1r, . . . , εmrr)
′

62

2Note that X1r and X2r may or may not be the same.
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are mr-dimensional vectors. The distributional assumption is imposed on the elements of εr by assuming
that εirs are i.i.d with mean zero and variance σ2

0 . Finally, through the spatial autoregressive process given in64

(2.2), the unobserved correlation effects within the rth group is captured by Mrur with the scalar coefficient
ρ0. In the spatial econometric literature, λ0 and ρ0 are called the spatial autoregressive parameters.66

The network structure specified through weight matrices Wr and Mr has implications for the estimation
approaches adopted for the model. In Lee (2007), Wr =

1
mr−1

(
lmr

l
′

mr
− Imr

)
is the mr×mr network matrix,68

which indicates that each individual in the group is equally affected by the other members of the group.
Hence, the spatial lag term WrYr denotes the average outcome of the group r. The zero diagonal property70

of Wr indicates that Yir is not included in the calculation of the group mean outcome for the ith individual,
which is not the case in Manski (1993). The network matrices considered in Lee et al. (2010) may differ from72

above Wr, but their rows still sum to a constant. In the case where this property is violated, the likelihood
function of the model can not be derived, and therefore Liu and Lee (2010) propose 2SLS and GMM methods74

for estimation.
In certain interaction scenarios, the elements of weight matrices might be a function of sample size n. For76

cross-sectional spatial autoregressive models without group fixed effects, Lee (2004) assumes a large group
interaction setting and specifies the elements of weight matrix by wij = O(1/hn), where wij is the (i, j)th78

element of weight matrix W and {hn} is a sequence of real numbers that can be bounded or divergent with
the property that limn→∞ hn/n = 0. For the case where Wr = 1

mr−1

(
lmr

l
′

mr
− Imr

)
, we have hn = mr − 180

and hn/n = (mr − 1)/n, where n =
∑R
r=1mr. If there is no variation in group sizes and the increase in n is

generated by the increase in mr and R, then clearly limn→∞ hn/n = 0. However, as shown in Lee (2007), the82

endogenous effect cannot be identified in this case. In addition, Lee (2007) shows that both the endogenous
and exogenous interaction effects would be weakly identified and their rates of convergence can be quite low84

when all group sizes are large, even if there is group size variation. Therefore, following Lee et al. (2010) and
Liu and Lee (2010), we assume interaction scenarios in which {hn} is bounded in this study.86

In order to write the model for the entire sample, define Y = (Y
′

1 , . . . , Y
′

R)
′

, X = (X
′

1, . . . , X
′

R)
′

with

Xr = (X1r,WrX2r), u = (u
′

1, . . . , u
′

R)
′

, α0 = (α01, . . . , α0R)
′

, and ε = (ε
′

1, . . . , ε
′

R)
′

. Let D
(
{Cr}Rr=1

)
be

the operator that creates a block diagonal matrix in which the diagonal blocks are mr by nr matrices Cr.
Let W = D(W1, . . . ,WR), M = D(M1, . . . ,MR) and ln = D(lm1

, . . . , lmR
). Then, the model for the entire

sample is given by

Y = λ0WY +Xβ0 + lnα0 + u, u = ρ0Mu+ ε, (2.3)

where β0 = (β
′

01, β
′

02)
′

. To obtain the reduced form of (2.3), define R(ρ) = (In−ρM) and S(λ) = (In−λW ).
At the true parameter values, let R(ρ0) = R and S(λ0) = S. Then, if R and S are not singular, the reduced
form of the model becomes

Y = S−1Xβ0 + S−1lnα0 + S−1R−1ε. (2.4)

3. The GMM Estimation Approach

The model can be stated in terms of innovations in the following way

RY = RZδ0 +Rlnα0 + ε, (3.1)

where Z = (WY,X) and δ0 = (λ0, β
′

0)
′

. To wipe out fixed effects from (3.1), an orthogonal projector that
projects a vector to the column space of Rln can be used. For this purpose, the rth diagonal block of Rln,
which is given by Rrlmr

= A× (1, ρ0)
′

where A = (lmr
, Mrlmr

), can be used to construct a projector. Define
Jr = Imr

−A(A
′

A)−A
′

, where A− is the generalized inverse of A. In the case where Mr has rows all sum to
a constant c such that Rrlmr

= (1− cρ0)lmr
, the projector reduces to the usual deviation from group mean

maker Jr = Imr
− 1

mr

lmr
l
′

mr
. In any case, since JrRrlmr

= 0, the fixed effects can be eliminated from (3.1).
Let J = D(J1, . . . , JR). Then, the pre-multiplication of (3.1) by J yields

JRY = JRZδ0 + Jε. (3.2)

The GMM estimation approach requires the following assumptions.88
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Assumption 1. The innovation term εirs are i.i.d with zero mean and variance σ2
0, and E

(
|εir|4+τ

)
< ∞

for some τ > 0, for all i = 1, . . . ,mr and r = 1, . . . , R.90

Assumption 2. (i) The matrix X has full column rank of k = k1 + k2, and it has uniformly bounded
elements, and limn→∞

1
nX

′

X is a finite nonsingular matrix, (ii) X (ρ) = limn→∞
1
nf

′

(ρ) f (ρ), where f (ρ) =92

JR (ρ) E (Z), exist and is non-singular for all values of ρ such that R (ρ) is non-singular.

Assumption 3. The row and column sums of matrices W , M , S−1, and R−1 are bounded uniformly in94

absolute value.3

Assumption 4. The parameter vector θ0 = (ρ0, δ
′

0)
′

is in the interior of bounded parameter space Θ.96

3.1. The Moment Conditions

The internal instrumental variables (IVs) for the endogenous variable JRZ can be determined from
the reduced form of the model in (2.4). By definition, the best set of instruments is f = JRE(Z) =
(JRGXβ0 + JRGlnα0, JRX), whereG =WS−1. SinceR = In−ρ0M , the best IV set is a linear combination
of IVs in Q∞ = J

(
Q0, MQ0

)
, where Q0 = (GX, Gln, X). Furthermore, since G =

∑∞
j=0 λ

jW j+1, Q0 is

a linear combination of elements of Q0
∞ =

(
WX,W 2X, . . . ,W ln,W

2ln, . . . , X
)
. Since ln has R columns,

the number of IVs increases as the number of groups increases. Let Q0
K be a sub-matrix of Q0

∞ and define
QK = J

(
Q0
K , MQ0

K

)
as the n×K IV matrix, where K ≥ k+1. Then, the linear moment function is defined

by g1 (δ0) = Q
′

KJε, which satisfies the orthogonality condition under Assumption 1:

E
(
g1 (δ0)

)
= E

(
Q

′

KJε
)
= Q

′

KE
(
ε
)
= 0K×1, (3.3)

where Jε(θ0) = JR (Y − Zδ0). The result in (2.4) indicates that the endogenous term JRZ is also a
function of a stochastic term. Liu and Lee (2010) formulate additional quadratic moment functions to
exploit the information in the stochastic part. Both types of moment functions can be used in the GMM
framework to estimate all parameters jointly. Let U1, . . . , Uq be n × n non-stochastic matrices satisfying
tr(JUj) = 0 for j = 1, . . . , q.4 Using these non-stochastic matrices, additional quadratic moment functions

can be formulated as E
(
ε
′

(θ0)JUjJε(θ0)
)
for j = 1, . . . , q, where ε(θ0) = JR

(
Y − Zδ0

)
. Let g2(θ) =

(
ε
′

(θ)JU1Jε(θ), . . . , ε
′

(θ)JUqJε(θ)
)′

be the set of quadratic moment functions. The combined set of moment
functions for the GMM estimation is then given by

g(θ) =
[
g

′

1(θ), g
′

2(θ)
]′

, (3.4)

where θ = (ρ, δ
′

)
′

. The population moment condition for each quadratic moment function in (3.4) is satisfied98

since E
(
ε
′

(θ0)JUjJε(θ0)
)
= σ2

0tr (JUjJ) = 0 for all j by assumption.5

For the notational simplicity, let Tj = JUjJ for j = 1, . . . , q, H =MR−1, Ḡ = RGR−1 and As = A+A
′

for any square matrix A. Also, let vec(·) be the operator that creates a column vector from the elements
of an input matrix, vecD(·) be the operator that creates a column vector from the diagonal elements of an
input matrix, and ei be the ith unit column vector of dimension k + 1. Define Ω = E

[
g(θ0)g

′

(θ0)
]
and

D2 = E
[∂g2(θ)

∂θ′

∣∣
θ0

]
. For our generic set of moment functions in (3.4), these matrices are given by

Ω =

[
σ2
0Q

′

KQK µ3Q
′

Kω

µ3ω
′

QK (µ4 − 3σ4
0)ω

′

ω + σ4
0Υ

]
, (3.5)

3For properties of matrices that have row and column sums bounded uniformly in absolute value, see Kelejian and Prucha
(2010).

4The row and column sums of these matrices are assumed to be uniformly bounded in absolute value. That is, Assumption 3

holds for these matrices.
5The conditions for the identification of parameters can be investigated from moment functions. The identification requires

that E (g(θ)) = 0 if and only if θ = θ0 (Newey and McFadden, 1994, Lemma 2.3). Liu and Lee (2010) state the identification
conditions . Here, we simply assume that θ0 is identified.
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D2 = −σ2
0




tr(T s1H) tr(T s1 Ḡ) 01×k
tr(T s2H) tr(T s2 Ḡ) 01×k

...
...

...
tr(T sqH) tr(T sq Ḡ) 01×k


 , (3.6)

where µ3 and µ4 are, respectively, the third and the fourth moments of εir, ω = [vecD(T1), . . . , vecD(Tq)] and100

Υ = 1
2

[
vec(T s1 ), . . . , vec(T

s
q )
]′ [

vec(T s1 ), . . . , vec(T
s
q )
]
.

The optimal GMM estimation requires an initial estimate of Ω. The result in (3.5) indicates that a
consistent estimate of Ω can be recovered from consistent estimates of σ2

0 , µ3 and µ4 under the stated

assumptions. Let Ω̂ be an initial consistent estimate of Ω. Then, the optimal GMM estimator (GMME) is
defined by

θ̂ = argmin
θ∈Θ

g
′

(θ)Ω̂−1g(θ), (3.7)

The GMME defined in (3.7) is consistent but may not be centered properly around the true parameter vector.
The asymptotic bias arises since the dimension of g1(θ) increases as the number of groups increases, i.e., there
is too many IV problem for the GMM estimation. Under the condition that K3/2/n→ 0, Liu and Lee (2010)
establish the following fundamental result:

√
n
(
θ̂ − θ0 −Bias

)
d−→ N

[
0(k+2)×1, H−1

]
, (3.8)

where H = σ−2
0 D(0, X (ρ0)) + limn→∞

1
nD̄

′

2V22D̄2, V22 =
[ (
µ4 − 3σ4

0

)
ω

′

ω + σ4
0Υ − µ2

3

σ2

0

ω
′

PKω
]−1

, Bias =102

[
σ−2
0 D

(
0, Z

′

R
′

PKRZ
)
+ Ď

′

2V22Ď2

]−1 [
tr
(
PKMR−1

)
, tr

(
PKḠ

)
e
′

1

]′

, Ď2 = D2 − µ3

σ2

0

[
0, ω

′

PKRZ
]
, D̄2 =

D2 − µ3

σ2

0

[
0, ω

′

f
]
and PK = QK(Q

′

KQK)−Q
′

K .6104

3.2. The GMM Gradients Tests for Spatial Autoregressive Parameters

In this section, we formulate the GMM gradient tests when the number of linear IVs is fixed, i.e., when
K is fixed. The standard LM test statistic requires computation of the restricted model implied by the
null hypotheses. Consider the set of restrictions given by π(θ0) = 0, where π : Θ → R

p is a continuously
differentiable function such that its Jacobian ∂π(θ0)/∂θ

′

is finite and has full row rank p. Then, the restricted

GMME is defined by θ̂r = argmin{θ:π(θ)=0} g
′

(θ)Ω̂−1g(θ). The restricted estimator can also be defined in
an alternative way by using the implicit function theorem to state the set of restrictions in an explicit way.
By the implicit function theorem, there exists a continuously differentiable function κ : Rk+2−p → Rk+2

such that ∂κ (̺) /̺
′

has full row rank k + 2 − p, where ̺ is the vector of free parameters. Define ˆ̺ =

argmin̺ g
′

(κ (̺)) Ω̂−1g (κ (̺)). Then, the restricted GMME is, alternatively, defined by θ̂r = κ(ˆ̺). Let

Ga (θ) = ∂g(θ)

∂a′
and Ca(θ) = 1

nG
′

a(θ)Ω̂
−1g(θ) where a = ρ, λ, β. Define G (θ) = [Gρ (θ) , Gλ (θ) , Gβ (θ)],

C(θ) = [Cρ(θ), Cλ(θ), Cβ(θ)] and B(θ) = 1
nG

′

(θ)Ω̂−1G(θ).7 The standard gradient test, i.e. the LM test, is

based on the idea that the sample gradients evaluated at θ̂r should be close to zero when the restrictions are
valid. The test statistic is given by

LMg
0(θ̂r) = nC

′

(θ̂r)
[
B(θ̂r)

]−1

C(θ̂r). (3.9)

In the literature, the asymptotic properties of the LM test are investigated under local parametric mis-106

specification in the alternative model (Davidson and MacKinnon, 1987; Saikkonen, 1989; Bera and Yoon,
1993; Bera and Bilias, 2001; Bera et al., 2010). Bera and Yoon (1993) and Bera et al. (2010) suggest robust108

LM tests when there is a local parametric misspecification in the alternative model that used to construct
the test statistics. We consider similar robust LM tests for the following null hypothesis:110

6The bias term is O
(
K
n

)
, and the result in (3.8) indicates that it will vanish only when K2

n
→ 0.

7The test statistics suggested in this section are formulated with G (θ) and B(θ). In Appendix B, we give explicit expressions
for these terms.
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1. On the correlations of error terms:

Hρ0 : ρ0 = ρ⋆. (3.10)

2. On the endogenous effects:

Hλ0 : λ = λ⋆. (3.11)

In (3.10) and (3.11), ρ⋆ and λ⋆ are hypothesized known quantities. For these hypotheses, we construct LM
tests that are robust to local parametric misspecification. For this purpose, we consider the sequence of local
alternatives formulated for hypotheses in 3.10 and 3.11. The sequence of local alternatives, also known as
Pitman drifts, takes the following forms: HλA : λ0 = λ⋆+ δλ/

√
n, and HρA : ρ0 = ρ⋆+ δρ/

√
n, where δλ and δρ

are bounded scalars. As will be illustrated, this device of sequence of local alternatives is not only the basis
of the ensuing discussion of power properties of test statistics, it is also instrumental in the formulation of
our robust test statistics. Let H = σ−2

0 D(0, X (ρ0)) + limn→∞
1
nD̄

′

2V22D̄2. To formulate the test statistic,
consider the following partition of B (θ) and H:

B (θ) =




Bρρ (θ)︸ ︷︷ ︸
1×1

Bρλ (θ)︸ ︷︷ ︸
1×1

Bρβ (θ)︸ ︷︷ ︸
1×k

Bλρ (θ)︸ ︷︷ ︸
1×1

Bλλ (θ)︸ ︷︷ ︸
1×1

Bλβ (θ)︸ ︷︷ ︸
1×k

Bβρ (θ)︸ ︷︷ ︸
k×1

Bβλ (θ)︸ ︷︷ ︸
k×1

Bββ (θ)︸ ︷︷ ︸
k×k




, H =




Hρρ︸︷︷︸
1×1

Hρλ︸︷︷︸
1×1

Hρβ︸︷︷︸
1×k

Hλρ︸︷︷︸
1×1

Hλλ︸︷︷︸
1×1

Hλβ︸︷︷︸
1×k

Hβρ︸︷︷︸
k×1

Hβλ︸︷︷︸
k×1

Hββ︸︷︷︸
k×k




. (3.12)

Let θ̃ =
(
ρ⋆, λ⋆, β̃

′
)′

be a restricted GMME under the joint null hypothesis H0 : ρ0 = ρ⋆ and λ0 = λ⋆. The
LM test statistic for this joint null hypothesis can be expressed as

LMg
ρλ(θ̃) = nC

′

ρλ(θ̃)
[
B1·3(θ̃)

]−1

Cρλ(θ̃), (3.13)

where Cρλ(θ̃) =
[
C

′

ρ(θ̃), C
′

λ(θ̃)
]′

, B1·3(θ̃) = B11(θ̃) − B13(θ̃)B
−1
ββ (θ̃)B31(θ̃), B11(θ̃) =

[
Bρρ(θ̃) Bρλ(θ̃)

Bλρ(θ̃) Bλλ(θ̃)

]
,

and B31(θ̃) = B
′

13(θ̃) =
[
Bβρ(θ̃), Bβλ(θ̃)

]
.112

Now, we consider the problem of testing Hρ0 when Hλ0 holds. Then, the standard LM test can be stated
as

LMg
ρ(θ̃) = nC

′

ρ(θ̃)
[
Bρ·β(θ̃)

]−1

Cρ(θ̃), (3.14)

where Bρ·β(θ̃) = Bρρ(θ̃)−Bρβ(θ̃)B
−1
ββ (θ̃)Bβρ(θ̃). The distribution of (3.14) under HρA and HλA can be investi-

gated from the first order Taylor expansion of pseudo-gradients Cρ(θ̃) and Cβ(θ̃) around θ0. These expansions
can be stated as

√
nCρ(θ̃) =

√
nCρ(θ0)−

1

n
G

′

ρ(θ0)Ω̂
−1Gρ(θ̄)δρ −

1

n
G

′

ρ(θ0)Ω̂
−1Gλ(θ̄)δλ (3.15)

+
1

n
G

′

ρ(θ0)Ω̂
−1Gβ(θ̄)

√
n(β̃ − β0) + op(1),

√
nCβ(θ̃) =

√
nCβ(θ0)−

1

n
G

′

β(θ0)Ω̂
−1Gρ(θ̄)δρ −

1

n
G

′

β(θ0)Ω̂
−1Gλ(θ̄)δλ (3.16)

+
1

n
G

′

β(θ0)Ω̂
−1Gβ(θ̄)

√
n(β̃ − β0) + op(1),

where θ̄ lies between θ̃ and θ0. Using the asymptotic results in Lemma 1, we obtain the following result from
(3.15) and (3.16).

√
nCρ(θ̃) =

[
−1, HρβH−1

ββ

]
×
[
−√

nCρ(θ0)
−√

nCβ(θ0)

]
−
[
Hρρ −HρβH−1

ββHβρ

]
δρ (3.17)

−
[
Hρλ −HρβH−1

ββHβλ

]
δλ + op(1).
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Under our stated assumptions, the pseudo-gradients have an asymptotic normal distribution as shown in

Lemma 1. Thus, the result in (3.17) implies that
√
nCρ(θ̃)

d−→ N [−Hρ·βδρ −Hρλ·βδλ,Hρ·β ], where Hρ·β =114 [
Hρρ −HρβH−1

ββHβρ

]
, and Hρλ·β =

[
Hρλ −HρβH−1

ββHβλ

]
.8 Hence, LMg

ρ(θ̃)
d−→ χ2

1 (ϑ1) under HρA and HλA,

where ϑ1 = δ2ρHρ·β + δ
′

ρHρλ·βδλ + δ
′

λH
′

ρλ·βδρ + δ2λH
′

ρλ·βH−1
ρ·βHρλ·β is the non-centrality parameter.9116

In the case where HρA and Hλ0 hold, the result in (3.17) implies that
√
nCρ(θ̃)

d−→ N [−Hρ·βδρ,Hρ·β ].

Hence, LMg
ρ(θ̃)

d−→ χ2
1 (ϑ2) under HρA and Hλ0 , where ϑ2 = δ2ρHρ·β . Therefore , under Hρ0 and Hλ0 , LM

g
1(θ̃)118

has a central chi-squared distribution and hence asymptotically correct size. In case where Hρ0 and HλA hold,

the result in (3.17) indicates that
√
nCρ(θ̃)

d−→ N [−Hρλ·βδλ,Hρ·β ]. Hence, LMg
ρ(θ̃)

d−→ χ2
1 (ϑ3) under Hρ0120

and HλA, where ϑ3 = δ2λH
′

ρλ·βH−1
ρ·βHρλ·β . This result is simply the extension of Bera et al. (2010) to our

GMM framework. It indicates that LMg
1(θ̃) will over reject Hρ0 : ρ0 = ρ⋆ when there is local parametric122

misspecification in the alternative model.
Bera et al. (2010) suggest a robust version in a general context such that the test statistic has a cen-124

tral chi-square distribution irrespective of whether Hλ0 or HλA holds. Using this approach, we can adjust
the asymptotic mean and variance of

√
nCρ(θ̃) in such a way that the resulting score statistic LMg

ρ(θ̃)126

has an asymptotic centered chi-square distribution. Let
√
n
[
Cρ(θ̃)−Hρλ·βH−1

λ·βCλ(θ̃)
]
be the adjusted

unfeasible pseudo-gradient, which has a zero asymptotic mean. Under our assumptions, a feasible ver-128

sion of the adjusted pseudo-gradient is given by
√
nC⋆ρ (θ̃) =

√
n
[
Cρ(θ̃)−Bρλ·β(θ̃)B

−1
λ·β(θ̃)Cλ(θ̃)

]
, where

Bλ·β(θ̃) =
[
Bλλ(θ̃)−Bλβ(θ̃)B

−1
ββ (θ̃)Bβλ(θ̃)

]
, and Bρλ·β(θ̃) =

[
Bρλ(θ̃)−Bρβ(θ̃)B

−1
ββ (θ̃)Bβλ(θ̃)

]
. Then, we130

can use this adjusted pseudo-gradient to formulate a robust test statistics, denoted by LMg⋆
ρ (θ̃). In the

following proposition, we provide this test along with the results summarized so far.132

Proposition 1. — Under Assumptions 1–4, the following results hold.

1. Under HρA and HλA, we have

LMg
ρ(θ̃)

d−→ χ2
1 (ϑ1) , (3.18)

where ϑ1 = δ2ρHρ·β + δρHρλ·βδλ + δλH
′

ρλ·βδρ + δ2λH
′

ρλ·βH−1
ρ·βHρλ·β .134

2. Under Hρ0 and irrespective of whether Hλ0 or HλA holds, we have

LMg⋆
ρ (θ̃) = nC⋆

′

ρ (θ̃)
[
Bρ·β(θ̃)−Bρλ·β(θ̃)B

−1
λ·β(θ̃)B

′

ρλ·β(θ̃)
]−1

C⋆ρ (θ̃)
d−→ χ2

1, (3.19)

where Bρ·β(θ̃) =
[
Bρρ(θ̃)−Bρβ(θ̃)B

−1
ββ (θ̃)Bβρ(θ̃)

]
.

3. Under HρA and irrespective of whether Hλ0 or HλA holds, we have

LMg⋆
ρ (θ̃)

d−→ χ2
1 (ϑ4) , (3.20)

where ϑ4 = δ2ρ
(
Hρ·β −Hρλ·βH−1

λ·βH
′

ρλ·β
)
.136

Proof. See Appendix D.

The noncentrality parameters reported in Proposition 1 can be used for asymptotic local power compar-138

isons. Note that the tail probability of a noncentral chi-squared distribution decreases with the degrees of
freedom and increases with the noncentrality parameter. Also, the noncentrality parameter is related to the140

8Note that the distribution of
√
nCρ(θ̃) has an asymptotic mean of −

[
Hρ·βδρ +Hρλ·βδλ

]
. The negative sign arises since

we define the objective function differently. In Bera et al. (2010), the objective function is defined as Q = −g
′

(θ)Ω̂−1g(θ) and

θ̂ = argmaxθ∈Θ Q.
9For the definition of non-central chi-square distribution, see Anderson (2003, pp.81-82).
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approximate slope of a test. If the asymptotic distribution of a test has a relatively larger noncentrality pa-
rameter, then the test has a relatively larger approximate slope (Newey, 1985a). Under HρA and Hλ0 , we have142

LMg⋆
ρ (θ̃)

d−→ χ2
1(ϑ4) and LMg

ρ(θ̃)
d−→ χ2

1 (ϑ2) from Proposition 1. It follows that ϑ2 − ϑ4 ≥ 0, which indicates

that LMg⋆
ρ

(
θ̃
)
has less asymptotic power than LMg

ρ(θ̃) when there is no local parametric misspecification, i.e.,144

when λ0 = 0.
The results in Proposition 1 can also be replicated for the hypothesis in 3.11. For this purpose, we consider

the null hypothesis Hλ0 : λ0 = λ⋆ when Hρ0 : ρ0 = ρ⋆ holds. Then, the LM test can be formulated as

LMg
λ(θ̃) = nC

′

λ(θ̃)
[
Bλ·β(θ̃)

]−1

Cλ(θ̃), (3.21)

where Bλ·β(θ̃) = Bλλ(θ̃) − Bλβ(θ̃)B
−1
ββ (θ̃)Bβλ(θ̃). The asymptotic distribution of (3.21) under HλA and HρA

can be investigated from the first order Taylor expansions of the pseudo-gradients Cλ(θ̃) and Cβ(θ̃) around
θ0. These expansions yield

√
nCλ(θ̃) =

[
−1, HλβH−1

ββ

]
×

[
−√

nCλ(θ0)
−√

nCβ(θ0)

]
−
[
Hλρ −HλβH−1

ββHβρ

]
δρ (3.22)

−
[
Hλλ −HλβH−1

ββHβλ

]
δλ + op(1).

Using the asymptotic normality of pseudo-gradients from Lemma 1 in (3.22), we obtain
√
n Cλ(θ̃) d−→ N

[
−146

Hλ·βδλ −Hλρ·βδρ,Hλ·β
]
, where Hλ·β =

[
Hλλ −HλβH−1

ββHβλ

]
, and Hλρ·β =

[
Hλρ −HλβH−1

ββHβρ

]
. Hence,

LMg
λ

(
θ̃
) d−→ χ2

1 (ζ1) under H
ρ
A and HλA, where ζ1 = δ2λHλ·β+δρHλρ·βδλ+δλH

′

λρ·βδρ+δ
2
ρH

′

λρ·βH−1
λ·βHλρ·β is the148

non-centrality parameter. Let LMg⋆
λ (θ̃) be the robust version of LMg

λ(θ̃), which can be obtained by adjusting

the asymptotic mean and variance of
√
nCλ(θ̃). To this end, let C⋆λ(θ̃) =

[
Cλ(θ̃)−Bλρ·β(θ̃)B

−1
ρ·β(θ̃)Cρ(θ̃)

]
be150

the adjusted pseudo-gradient, where Bλρ·β(θ̃) =
[
Bλρ(θ̃)−Bλβ(θ̃)B

−1
ββ (θ̃)Bβλ(θ̃)

]
. In the following proposi-

tion, we summarize the asymptotic properties of LMg
λ(θ̃) and LMg⋆

λ (θ̃).152

Proposition 2. — Assumptions 1–4 ensure the following results.

1. Under HλA and HρA, we have

LMg
λ(θ̃)

d−→ χ2
1 (ζ1) , (3.23)

where ζ1 = δ2λHλ·β + δρHλρ·βδλ + δλH
′

λρ·βδρ + δ2ρH
′

λρ·βH−1
λ·βHλρ·β .154

2. Under Hλ0 and irrespective of whether Hρ0 or HρA holds,

LMg⋆
λ (θ̃) = nC⋆

′

λ (θ̃)
[
Bλ·β(θ̃)−Bλρ·β(θ̃)B

−1
ρ·β(θ̃)B

′

λρ·β(θ̃)
]−1

C⋆λ(θ̃)
d−→ χ2

1. (3.24)

3. Under HλA and irrespective of whether Hρ0 or HρA holds, we have

LMg⋆
λ (θ̃)

d−→ χ2
1 (ζ2) , (3.25)

where ζ2 = δ2λ
(
Hλ·β −Hλρ·βH−1

ρ·βH
′

λρ·β
)
.

Proof. See Appendix D.156

4. The ML Estimation Approach

As mentioned before, if the spatial weights matrices do not have rows that sum to a unique constant, i.e.,158

Wrlr 6= clr, where c is a constant, then the log-likelihood function of the model cannot be derived (Liu and Lee,
2010). Therefore, in this section, we consider the ML estimation of our model when Wrlmr

= Mrlmr
= lmr

160

holds.10

10Note that the LM test statistics suggested in this section are only valid for models that have row normalized weight matrices.
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4.1. The Log-likelihood Function162

In Section 3.1 , we state that if Mr has rows all sum to a constant c such that Rrlmr
= (1− cρ0)lmr

, the
projector reduces to the usual deviation from group mean maker Jr = Imr

− 1
mr

lmr
l
′

mr
. Lee et al. (2010) use164

the orthonormal matrix,
[
Fr, lmr

/
√
mr

]
consisting of the eigenvectors of Jr, to wipe out group fixed effects

from the model.11 Denote Y ∗
r = F

′

rYr, X
∗
r = F

′

rXr, ε
∗
r = F

′

rεr, W
∗
r = F

′

rWrFr, M
∗
r = F

′

rMrFr, S
∗
r (λ) =166

F
′

rSr (λ)Fr = Im∗

r
− λW ∗

r and R∗
r (ρ) = F

′

rRr (ρ)Fr = Im∗

r
− ρW ∗

r . Using Lemma 2, the transformation of

the dependent variable RrYr to F
′

rRrYr yields168

R∗
rY

∗
r = λ0R

∗
rW

∗
r Y

∗
r +R∗

rX
∗
rβ0 + ε∗r (4.1)

Let θ =
(
ρ, λ, β

′

, σ2
)′

be the parameter vector. The log-likelihood function for the entire sample for (4.1)
can be written as

lnL(θ) = −n
∗

2
ln
(
2πσ2

)
+

R∑

r=1

ln |S∗
r (λ)|+

R∑

r=1

ln |R∗
r (ρ)| −

1

2σ2

R∑

r=1

ε∗
′

r (θ) ε∗r (θ) , (4.2)

where n∗ = n − R, and ε∗r (θ) = R∗
r (ρ)S

∗
r (λ)Y

∗
r − Rr (ρ)X

∗
rβ. Using Lemma 2, it can be shown that

ε∗
′

r (θ) ε∗r (θ) = ε
′

r (θ) Jrεr (θ), where εr (θ) = Rr (ρ)Sr (λ)Yr −Rr (ρ)Xrβ . Then, again using Lemma 2, the
log-likelihood function in (4.2) can be written as

lnL(θ) = −n
∗

2
ln
(
2πσ2

)
+ ln |S (λ)|+ ln |R (ρ)| −R ln ((1− λ)(1− ρ))− 1

2σ2
ε
′

(θ) Jε (θ) , (4.3)

where ε (θ) = R (ρ)S (λ)Y −R (ρ)Xβ. Thus, the log-likelihood can be evaluated without the calculation of
Fr. For a given value of λ and ρ, the MLE of β0 and σ2

0 can computed from the first order conditions of the
log likelihood function. These estimators are

β̂ (λ, ρ) =
(
X

′

R
′

(ρ) JR (ρ)X
)−1

X
′

R
′

(ρ) JR (ρ)S (λ)Y, (4.4)

σ̂2 (λ, ρ) =
1

n∗
Y

′

S
′

(λ)R
′

(ρ)P (ρ)R (ρ)S (λ)Y, (4.5)

where P (ρ) = J − JR (ρ)X
(
X

′

R
′

(ρ) JR (ρ)X
)−1

X
′

R
′

(ρ) J . Then, the concentrated log-likelihood func-

tion is given by

lnL(λ, ρ) = −n
∗

2

(
ln (2π) + 1

)
− n∗

2
ln σ̂2 (λ, ρ) + ln |S (λ)|+ ln |R (ρ)| −R ln

(
(1− λ)(1− ρ)

)
. (4.6)

The MLE of λ0 and ρ0 is obtained by the maximization of (4.6). We assume the following regularity conditions
for the consistency and the asymptotic distribution of the MLE.170

Assumption 5. The innovation terms εirs are i.i.d normal with zero mean and variance σ2
0, and

E
(
|εir|2+τ

)
<∞ for some τ > 0, for all i = 1, . . . ,mr and r = 1, . . . , R.12172

Assumption 6. (i) The elements X are uniformly bounded constants for all n, (ii) X has the full rank of
k = k1 + k2, and (iii) limn→∞

1
nX

′

R
′

JRX exists and is nonsingular.174

Assumption 7. (i) The row and column sums of W and M are bounded uniformly in absolute value, (ii)
λ0 and ρ0 are in the interior of a compact parameter space Γ, (iii) the row and column sums of S−1 (λ) and176

R−1 (ρ) are bounded uniformly in absolute value for all (λ, ρ) ∈ Γ.

11Note that Fr has the following properties: F
′

r lmr
= 0, F

′

rFr = Im∗

r
, where m∗

r = mr − 1, and FrF
′

= Jr. For some other
properties, see Lemma 2. Burridge et al. (2016) provide an explicit expression for Fr.

12Note that the existence of (4 + τ)th moments of εir are required when εirs are simply i.i.d. (Kelejian and Prucha, 2001).
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Under Assumptions 5– 7, the following result for the MLE θ̂ can be established (Lee et al., 2010).13

√
n∗

(
θ̂ − θ0

)
d−→ N

[
0,
(
lim
n→∞

Σ
)−1

]
, (4.7)

where Σ = E
[
− 1
n∗

∂ lnL(θ0)

∂θ∂θ′

]
.14178

4.2. The LM Tests for Spatial Autoregressive Parameters

In this section, we consider the LM statistics for testing Hρ
0 and Hλ

0 . Our test statistics are similar to180

those suggested in Anselin et al. (1996). Note that the test statistics suggested in Anselin et al. (1996) cannot
be directly used for our model, since the log-likelihood function of our model is so different and complex from182

the one used in Anselin et al. (1996) to formulate the test statistics. When there are no group fixed effects,
i.e., α0 = 0, our model reduces to the cross-sectional model studied in Anselin et al. (1996). Thus, our results184

can be considered as an extension of results in Anselin et al. (1996).

Denote γ = (β
′

, σ2)
′

and γ0 = (β
′

0, σ
2
0)

′

. Let La
(
θ
)
= 1

n∗

∂ lnL(θ)
∂a , Laa (θ) =

1
n∗

∂2L(θ)

∂a∂a′
, where a = ρ, λ, γ,

I (θ) = Σ (θ), and I = limn→∞ Σ.15 With these new notations, the standard LM test statistic for the
restrictions of the form π(θ0) = 0 is given by

LMm
0 (θ̂r) = n∗L

′

(θ̂r)
[
I(θ̂r)

]−1

L(θ̂r), (4.8)

where θ̂r = argmax{θ:π(θ)=0} lnL(θ) is the restricted MLE and I(θ̂r) is the plug in estimator of I.186

In order to formulate similar test statistics, consider the following partition of I (θ) and I(θ0):

I (θ) =




Iρρ (θ)︸ ︷︷ ︸
1×1

Iρλ (θ)︸ ︷︷ ︸
1×1

Iργ (θ)︸ ︷︷ ︸
1×(k+1)

Iλρ (θ)︸ ︷︷ ︸
1×1

Iλλ (θ)︸ ︷︷ ︸
1×1

Iλγ (θ)︸ ︷︷ ︸
1×(k+1)

Iγρ (θ)︸ ︷︷ ︸
(k+1)×1

Iγλ (θ)︸ ︷︷ ︸
(k+1)×1

Iγγ (θ)︸ ︷︷ ︸
(k+1)×(k+1)




, I =




Iρρ︸︷︷︸
1×1

Iρλ︸︷︷︸
1×1

Iργ︸︷︷︸
1×(k+1)

Iλρ︸︷︷︸
1×1

Iλλ︸︷︷︸
1×1

Iλγ︸︷︷︸
1×(k+1)

Iγρ︸︷︷︸
(k+1)×1

Iγλ︸︷︷︸
(k+1)×1

Iγγ︸︷︷︸
(k+1)×(k+1)




. (4.9)

Let θ̃ = (ρ⋆, λ⋆, γ̃)
′

be the restricted MLE when H0 : ρ0 = ρ⋆, λ0 = λ⋆ holds. First, we consider the LM test
for the joint null hypothesis H0 : ρ0 = ρ⋆, λ0 = λ⋆. The test statistic is given by

LMm
ρλ(θ̃) = n∗L

′

ρλ(θ̃)
[
I1·3(θ̃)

]−1

Lρλ(θ̃), (4.10)

where Lρλ(θ̃) =
[
Lρ(θ̃), Lλ(θ̃)

]′

, I1·3(θ̃) = I11(θ̃) − I13(θ̃)I
−1
γγ (θ̃)I31(θ̃), I11(θ̃) =

[
Iρρ(θ̃) Iρλ(θ̃)

Iλρ(θ̃) Iλλ(θ̃)

]
, and

I31(θ̃) = I
′

13(θ̃) =
[
Iγρ(θ̃), Iγλ(θ̃)

]
.188

Next, following Bera and Yoon (1993), we formulate test statistics that are similar to those stated in
Propositions 1 and 2 for the null hypotheses given in (3.10) and (3.11). Again, we first consider the problem
of testing Hρ0 : ρ0 = ρ⋆ when Hλ0 : λ0 = λ⋆ holds. Then, the one directional test statistic can be formulated
as

LMm
ρ (θ̃) = n∗L

′

ρ(θ̃)
[
Iρ·γ(θ̃)

]−1

Lρ(θ̃), (4.11)

13Lee et al. (2010) investigate the identification conditions in the ML framework and they state these conditions. Here, we
simply assume that the parameters are identified.

14The explicit forms of Σ is given in Appendix C.
15The test statistics suggested in this section are formulated with L (θ) and I(θ). In Appendix C, we give explicit expressions

for these terms.
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where Iρ·γ(θ̃) = Iρρ(θ̃)−Iργ(θ̃)I−1
γγ (θ̃)Iγρ(θ̃). The distribution of (4.11) under HρA and HλA can be investigated

from the first order Taylor expansion of Lρ(θ̃) and Lγ(θ̃) around θ0 (Saikkonen, 1989). The Taylor expansions
can be derived as16

√
n∗Lρ(θ̃) =

√
n∗Lρ (θ0)− Lρρ (θ0) δρ − Lρλ (θ0) δλ +

√
n∗Lργ (θ0) (γ̃ − γ0) + op(1), (4.12)

√
n∗Lγ(θ̃) =

√
n∗Lγ (θ0)− Lγρ (θ0) δρ − Lγλ (θ0) δλ +

√
n∗Lγγ (θ0) (γ̃ − γ0) + op(1). (4.13)

Using (4.12), (4.13) and Lemma 3, we can obtain the following result.

√
n∗Lρ

(
θ̃
)
=

[
1, −IργI−1

γγ

]
×
[√

n∗Lρ(θ0)√
n∗Lγ(θ0)

]
+
[
Iρρ − IργI

−1
γγ Iγρ

]
δρ +

[
Iρλ − IργI

−1
γγ Iγλ

]
δλ + op(1). (4.14)

The asymptotic distribution of
√
n∗Lρ(θ̃) can be determined from (4.14) by using the asymptotic normality

of score functions (see Lemma 3). Hence, we can obtain
√
n∗Lρ(θ̃)

d−→ N [Iρ·γδρ + Iρλ·γδλ, Iρ·γ ], where Iρ·γ =190 [
Iρρ − IργI

−1
γγ Iγρ

]
and Iρλ·γ =

[
Iρλ − IργI

−1
γγ Iγλ

]
. This last result along with (4.14) can be used to determine

the asymptotic distributions of LMm
1 and its robust version LMm⋆

1 under the null and the local alternatives.192

We summarize these asymptotic results in the following proposition.

Proposition 3. — Under Assumptions 5-7, the following results hold.194

1. Under Hρ
A and Hλ

A, we have

LMm
ρ (θ̃)

d−→ χ2
1 (ϕ1) , (4.15)

where ϕ1 = δ2ρIρ·γ + δρIρλ·γδλ + δλI
′

ρλ·γδρ + δ2λI
′

ρλ·γI
−1
ρ·γIρλ·γ .

2. Under Hρ0 : ρ0 = ρ⋆ and irrespective of whether Hλ0 or HλA holds, we have

LMm⋆
ρ (θ̃) = n∗L⋆

′

ρ (θ̃)
[
Iρ·γ(θ̃)− Iρλ·γ(θ̃)I

−1
λ·γ(θ̃)I

′

ρλ·γ(θ̃)
]−1

L⋆ρ(θ̃)
d−→ χ2

1, (4.16)

where L⋆ρ(θ̃) =
[
Lρ(θ̃)− Iρλ·γ(θ̃)I−1

λ·γ(θ̃)Lλ(θ̃)
]
is the adjusted score function, Iρλ·γ(θ̃) = Iρλ(θ̃) −196

Iργ(θ̃)I
−1
γγ (θ̃)Iγλ(θ̃) and Iλ·γ(θ̃) = Iλλ(θ̃)− Iλγ(θ̃)I

−1
γγ (θ̃)Iγλ(θ̃).

3. Under HρA and irrespective of whether Hλ0 or HλA holds, we have

LMm⋆
ρ (θ̃)

d−→ χ2
1 (ϕ2) , (4.17)

where ϕ2 = δ2ρ

(
Iρ·γ − Iρλ·γI

−1
λ·γI

′

ρλ·γ

)
.198

Proof. See Appendix D.

Now, we consider the null hypothesis Hλ0 : λ0 = λ⋆, when Hρ0 : ρ0 = ρ⋆ holds. Then, the one-directional
LM test for this hypothesis can be expressed as

LMm
λ (θ̃) = n∗L

′

λ(θ̃)
[
Iλ·γ(θ̃)

]−1

Lλ(θ̃), (4.18)

where Iλ·γ(θ̃) = Iλλ(θ̃) − Iλγ(θ̃)I
−1
γγ (θ̃)Iγλ(θ̃). The distribution of (4.18) can be investigated from the first

order Taylor expansion of Lλ(θ̃) and Lγ(θ̃) around θ0 when HλA and HρA hold. It can be shown that these
first order expansions are

√
n∗Lλ(θ̃) =

√
n∗Lλ (θ0)− Lλρ (θ0) δρ − Lλλ (θ0) δλ +

√
n∗Lλγ (θ0)

(
γ̃ − γ0

)
+ op(1) (4.19)

√
n∗Lγ

(
θ̃
)
=

√
n∗Lγ (θ0)− Lγρ (θ0) δρ − Lγλ (θ0) δλ +

√
n∗Lγγ (θ0)

(
γ̃ − γ0

)
+ op(1). (4.20)

16See Corollary 5.1.5 of Fuller (1996).
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Then, using (4.19), (4.20) and Lemma 3, we can obtain

√
n∗Lλ(θ̃) =

[
1, −IργI−1

γγ

]
×
[√

n∗Lλ(θ0)√
n∗Lγ(θ0)

]
+
[
Iλρ − IλγI

−1
γγ Iγρ

]
δρ +

[
Iλλ − IλγI

−1
γγ Iγλ

]
δλ + op(1). (4.21)

The asymptotic distribution of
√
n∗Lλ(θ̃) in (4.21) can be determined from the asymptotic distribution of200

score functions in the right hand side of (4.21) (see Lemma 3). Hence, we can show that
√
n∗Lλ(θ̃)

d−→
N [Iλ·γδλ + Iλρ·γδρ, Iλ·γ ], where Iλ·γ =

[
Iλλ − IλγI

−1
γγ Iγλ

]
, and Iλρ·γ =

[
Iλρ − IλγI

−1
γγ Iγρ

]
. This last result202

together with (4.21) implies the following proposition.

Proposition 4. — Under our Assumptions 5–7, the following results hold.204

1. Under HλA and HρA, we have

LMm
λ (θ̃)

d−→ χ2
1 (ψ1) , (4.22)

where ψ1 = δ2λIλ·γ + δρIλρ·γδλ + δλI
′

λρ·γδρ + δ2ρI
′

λρ·γI
−1
λ·γIλρ·γ .

2. For the robust test LMm⋆
λ (θ̃), under Hλ0 and irrespective of whether Hρ0 or HρA holds, we have

LMm⋆
λ (θ̃) = n∗L⋆

′

λ (θ̃)
[
Iλ·γ(θ̃)− Iλρ·γ(θ̃)I−1

ρ·γ(θ̃)I
′

λρ·γ(θ̃)
]−1

L⋆ρ(θ̃)
d−→ χ2

1, (4.23)

where L⋆λ(θ̃) =
[
Lλ(θ̃)− Iλρ·γ(θ̃)I−1

ρ·γ(θ̃)Lρ(θ̃)
]

is the adjusted gradient, and Iλρ·γ(θ̃) =206

[
Iλρ(θ̃)− Iλγ(θ̃)I

−1
γγ (θ̃)Iγρ(θ̃)

]
.

3. Under HλA and irrespective of whether Hρ0 or HρA holds, we have

LMm⋆
λ (θ̃)

d−→ χ2
1 (ψ2) , (4.24)

where ψ2 = δ2λ

(
Iλ·γ − Iλρ·γI−1

ρ·γI
′

λρ·γ

)
.208

Proof. See Appendix D.

Note that Propositions 3 and 4 show that the robust versions of tests have less asymptotic power than210

the corresponding one directional tests when there is no parametric misspecification in the model.

5. The Test Statistics for Contextual Effects212

The social interaction effects through observed peers’ characteristics is known as the contextual effects and
is measured by k2 × 1 parameter vector β02 in our model. In spatial econometric literature, the associated214

matrix WrX2r is called the spatial Durbin term. On motivations for specifications that include spatial
Durbin terms, see LeSage and Pace (2009), Elhorst (2014), Halleck Vega and Elhorst (2015) and Burridge216

et al. (2016). In this section, we consider the GMM gradient tests and the ML score tests for hypotheses
about β02.218

First, we state the test statistics in the GMM framework. For notational simplicity, let ψ0 = β02,
φ0 = (ρ0, λ0)

′

and γ0 = β01 be true parameter vectors. Then, ψ, φ and γ denote arbitrary parameter values
in the parameter space. Let θ0 = (ψ

′

0, φ
′

0, γ
′

0)
′

be the parameter vector of the model. We assume that G(θ),
C(θ), B(θ) and H, which are defined in Section 3.2, are partitioned according to dimensions of ψ, φ and γ.

Consider Hψ
0 : ψ0 = ψ⋆ and Hφ

0 : φ0 = φ⋆, where ψ⋆ and φ⋆ are hypothesized values under the null. The

sequence of local alternatives are Hψ
A : ψ0 = ψ⋆ + δψ/

√
n and Hφ

A : φ0 = φ⋆ + δφ/
√
n, where δψ and δφ are

bounded vectors. We can determine the GMM gradient test statistics for Hψ
0 : ψ0 = ψ⋆ by following the

similar arguments used for Proposition 1. The GMM gradient test for Hψ0 when Hφ0 holds is

LMg
ψ(θ̃) = nC

′

ψ(θ̃)
[
Bψ·γ(θ̃)

]−1

Cψ(θ̃), (5.1)

where Bψ·γ(θ̃) = Bψψ(θ̃) − Bψγ(θ̃)B
−1
γγ (θ̃)Bγψ(θ̃) and θ̃ = (ψ

′

⋆, φ
′

⋆, γ̃)
′

is the restricted optimal GMME. In

the following proposition, we summarize the asymptotic results for LMg
ψ(θ̃) and its robust version.220
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Proposition 5. — Under Assumptions 1–4, the following results hold.

1. Under HψA and HφA, we have

LMg
ψ(θ̃)

d−→ χ2
k2 (η1) , (5.2)

where η1 = δ
′

ψHψ·γδψ + δ
′

ψHψφ·γδφ + δ
′

φH
′

ψφ·γδψ + δ
′

φH
′

ψφ·γH−1
ψ·γHψφ·γδφ.222

2. Under Hψ0 and irrespective of whether Hφ0 or HφA holds, we have

LMg⋆
ψ (θ̃) = nC⋆

′

ψ (θ̃)
[
Bψ·γ(θ̃)−Bψφ·γ(θ̃)B

−1
φ·γ(θ̃)B

′

ψφ·γ(θ̃)
]−1

C⋆ψ(θ̃)
d−→ χ2

k2 , (5.3)

where C⋆ψ(θ̃) =
[
Cψ(θ̃)−Bψφ·γ(θ̃)B

−1
φ·γ(θ̃)Cφ(θ̃)

]
is the adjusted pseudo-gradient, and Bψ·γ(θ̃) =

[
Bψψ(θ̃)−Bψγ(θ̃)B

−1
γγ (θ̃)Bγψ(θ̃)

]
.224

3. Under HψA and irrespective of whether Hφ0 or HφA holds, we have

LMg⋆
ψ (θ̃)

d−→ χ2
k2 (η2) , (5.4)

where η2 = δ
′

ψ

(
Hψ·γ −Hψφ·γH−1

φ·γH
′

ψφ·γ
)
δψ.

Proof. See Appendix D.226

Next, we state the test statistics in the ML framework. Let ψ0 = β02, φ0 = (ρ0, λ0)
′

and γ0 = (β
′

01, σ
2
0)

′

be true parameter vectors. The combined parameter vector is denoted by θ0 = (ψ
′

0, φ
′

0, γ
′

0)
′

. We assume that
I(θ) and I defined in Section 4.2 are partitioned according to dimensions of ψ, φ and γ. The LM test statistic

for Hψ0 when Hφ0 holds is, then, given by

LMm
ψ (θ̃) = n∗L

′

ψ(θ̃)
[
Iψ·γ

(
θ̃
)]−1

Lψ(θ̃), (5.5)

where Iψ·γ(θ̃) = Iψψ(θ̃)−Iψγ(θ̃)I−1
γγ (θ̃)Iγψ(θ̃) and θ̃ = (ψ

′

⋆, φ
′

⋆, γ̃)
′

is the restricted MLE. The next proposition
summarizes asymptotic results for this test statistic and its robust version.228

Proposition 6. — Under our Assumptions 5-7, the following results hold.

1. Under Hψ
A and Hφ

A, we have

LMm
ψ (θ̃)

d−→ χ2
k2 (µ1) , (5.6)

where µ1 = δ
′

ψIψ·γδψ + δψIψφ·γδφ + δφI
′

ψφ·γδψ + δ
′

φI
′

ψφ·γI
−1
ψ·γIψφ·γδφ.230

2. Under Hψ0 and irrespective of whether Hφ0 or HφA holds, the distribution of the robust test LMm⋆
ψ

(
θ̃
)
is

given by

LMm⋆
ψ (θ̃) = n∗L⋆

′

ψ (θ̃)
[
Iψ·γ(θ̃)− Iψφ·γ(θ̃)I

−1
φ·γ(θ̃)I

′

ψφ·γ(θ̃)
]−1

L⋆ψ(θ̃)
d−→ χ2

k2 , (5.7)

where L⋆ψ(θ̃) =
[
Lψ(θ̃)− Iψφ·γ(θ̃)I

−1
φ·γ(θ̃)Lφ(θ̃)

]
is the adjusted score function, Iψφ·γ = Iψφ(θ̃) −

Iψγ(θ̃)I
−1
γγ (θ̃)Iγφ(θ̃) and Iφ·γ(θ̃) = Iφφ(θ̃)− Iφγ(θ̃)I

−1
γγ (θ̃)Iγφ(θ̃).232

3. Under HψA and irrespective of whether Hφ0 or HφA holds, we have

LMm⋆
ψ (θ̃)

d−→ χ2
k2 (µ2) , (5.8)

where µ2 = δ
′

ψ

(
Iψ·γ − Iψφ·γI

−1
φ·γI

′

ψφ·γ
)
δψ.

Proof. See Appendix D.234
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Under HψA and Hφ0 , Propositions 5 and 6, respectively, show that η1 − η2 ≥ 0 and µ1 − µ2 ≥ 0. That
is, the robust versions of tests have less asymptotic power than the corresponding one directional tests when236

there is no parametric misspecification in the model, i.e., when φ0 = φ⋆.

Remark 1. — The test statistics suggested in Propositions 5 and 6 are robust to the local presence of λ0238

and ρ0. Note that Propositions 5 and 6 are general enough and can easily be adjusted to formulate the test
statistics for some other hypotheses of interest. For example, the test statistic that is only robust to the local240

presence of λ0 can be obtained simply by setting φ0 = λ0 and γ = (ρ0, β
′

01)
′

in Proposition 5, and φ0 = λ0
and γ = (ρ0, β

′

01, σ
2
0)

′

in Proposition 6. Similarly, the test statistic that is only robust to the local presence of242

ρ0 can be obtained by setting φ0 = ρ0 and γ = (λ0, β
′

01)
′

in Proposition 5, and φ0 = ρ0 and γ = (λ0, β
′

01, σ
2
0)

′

in Proposition 6.244

6. The Relationship Between Test Statistics

There are four important observations regarding to the robust tests. First, the robust tests introduced by246

Bera and Yoon (1993) and(Bera et al., 2010) share the optimality property of the Neyman’s C(α) test. In
particular, Bera and Yoon (1993) show that the robust test is asymptotically equivalent to Neyman’s C(α)248

test under the null and the local alternatives. It is important to note that the motivation for both tests are
different. In the case of the robust test, the one-directional test statistic is adjusted in such a way that it has250

a central chi-square distribution when the alternative model has a local parametric misspecification. On the
other hand, the C(α) test is developed in a framework that involves several nuisance parameters. In such a252

framework, an optimal test is the one that has the highest power among the class of tests obtaining the same
size. To achieve the optimality, the C(α) test statistic is constructed in such a way that it is orthogonal to254

the gradients with respect to the nuisance parameters. The C(α) test can be computed with any consistent
estimator and it reduces to the standard LM test when it is formulated with the optimal restricted GMME256

or the restricted MLE.
Second, the robust tests are formulated by an estimator obtained under the joint null hypothesis H0 :258

ρ0 = ρ⋆, λ0 = λ⋆. Under the joint null, the model reduces to a one-way panel data type model Yr =
X1rβ01 +WrX2rβ02 + lmr

α0r + εr, which can be estimated by an OLSE. Therefore, the computation of test260

statistics does not require any nonlinear optimization routines. On the other hand, the conditional LM tests
(see LMjA

ρ , LMjA
λ LMjA

ψ and LMjA
ψ , where j = g,m in Tables 1 and 2) require the estimation of spatial262

parameters, which can be computationally involved.
Third, it is easy to check whether a robust test reduces to a one-directional test. Recall that264

the adjusted gradients are in the forms of L⋆λ(θ̃) =
[
Lλ(θ̃)− Iλρ·γ(θ̃)I−1

ρ·γ(θ̃)Lρ(θ̃)
]

and C⋆λ(θ̃) =
[
Cλ(θ̃)− Bλρ·β(θ̃)B−1

ρ·β(θ̃)Cρ(θ̃)
]
for H0 : λ0 = λ⋆. Hence, the robust tests formulated with these adjusted266

gradients reduce to the corresponding one-directional tests when Iλρ·γ = 0 and Bλρ·β = 0. In such cases, the
one directional tests are valid under the local presence of ρ in the alternative model. Similarly, in the case268

of H0 : ψ0 = ψ⋆, the robust test statistics reduce to the corresponding one directional test statistics when
Iψφ·γ = 0 and Bψφ·γ = 0.270

Finally, the test statistic for the joint null H0 : ρ0 = ρ⋆, λ0 = λ⋆ can be decomposed into two orthogonal
components: (i) the robust test statistic, and (ii) the one directional test statistic. In the context of the GMM

framework, the joint test statistic is formulated with
[
B1·3(θ̃)

]−1

in (3.14). By the inverse of the partitioned

matrix, we have

[
B1·3(θ̃)

]−1

=

[
A−1

1 −A−1
1 B12·3B

−1
2·3

−B−1
λ·βBλρ·βA

−1
1 B−1

λ·β +B−1
λ·βBλρ·βA

−1
1 Bρλ·βB

−1
λ·β

]
(6.1)

=

[
B−1
ρ·β +B−1

ρ·βBρλ·βA
−1
2 Bλρ·βB

−1
ρ·β −Bρ·βB−1

ρλ·βA
−1
2

−A−1
2 Bλρ·βB

−1
ρ·β A−1

2

]
,

where A1 =
[
Bρ·β −Bρλ·βB

−1
λ·βBλρ·β

]
and A2 =

[
Bλ·β −Bλρ·βB

−1
ρ·βBρλ·β

]
. A similar result can be obtained

for
[
I1·3

(
θ̃
)]−1

. These results can be used to establish relationships between the test statistics as shown in272

the next corollary.
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Corollary 1. — In the GMM framework, we have the following relations.

LMg
ρλ = LMg

λ + LMg⋆
ρ = LMg

ρ + LMg⋆
λ . (6.2)

Similarly, in the ML framework, the following relations hold.

LMm
ρλ = LMm

λ + LMm⋆
ρ = LMm

ρ + LMm⋆
λ . (6.3)

Proof. See Appendix D.274

The results in (6.2) and (6.3) show that the robust tests can also be computed from the joint and the one
directional tests.276

7. Monte Carlo Simulations

To shed light on the performance of the proposed tests in finite samples, we conduct a Monte Carlo study278

based on two different data generating processes. Note that the computations of one directional and robust
tests statistics require θ̃, which is the OLS estimator when ρ0 = 0 and λ0 = 0 in the model. A summary of280

tests statistics is given in Tables 1 and 2. As indicated in these tables, all test statistics will be available
when they are evaluated at θ̃, except the conditional test statistics LMA

ρ , LM
A
λ and LMA

ψ . In Tables 1 and282

2, the test statistic LMA
ρ is for H0 : ρ0 = 0 in the presence of λ0, LM

A
λ is for H0 : λ0 = 0 in the presence

of ρ0, and LMA
ψ is for H0 : ψ0 = 0 in the presence of φ0. These test statistics can be calculated by using284

the general results in (3.9) and (4.8), and their computations require the estimation of the corresponding
restricted models by the GMME and the MLE.286

We consider two data generating processes:

DGP 1: Yr = S−1
r X1rβ01 + S−1

r WrX2rβ02 + S−1
r lmr

αr + S−1
r R−1

r εr (7.1)

DGP 2: Yr = S−1
r X3rβ01 + S−1

r WrX3rβ02 + S−1
r lmr

αr + S−1
r R−1

r εr (7.2)

In DGP 1, X1r and X2r are mr × 1 vectors of independent standard normal random variables with the
associated coefficient vector (β01, β02)

′

= (1.2, 0.6)
′

. In DGP 2, we use the U.S. county-level data set of Pace288

and Barry (1997) on the 1980 presidential election. More specifically, X3r = (X3r,1, X3r,2), where X3r,1 is
the standardized value of log income per-capita and X3r,2 is the standardized value of the homeownership290

rate. The data set describes 3107 U.S. counties, of which we use the first n observations in the Monte
Carlo study. For the parameter values, we set (β

′

01, β
′

02)
′

= (1.2, 0.6,−0.4, 0.1)
′

in Model 2. For each group292

r = 1, 2, . . . , R, αr is a random draw from N(0, 1). The disturbance terms εirs are independently generated
from two distributions: (i) N(0, 1) and (ii) Gamma

(
1, 1

)
−1. The Gamma distribution generates disturbances294

with positive skewness and excess kurtosis.
For the interaction scenario, we consider an experiments where the number of groups is R = 60. We allow296

mr to vary across R groups by randomly assigning a value from the set of integers {10, 11, . . . , 15} to each
group size. The total number of observations n varies between 600 and 900. Following Liu and Lee (2010),298

the weight matrix Wr is generated in two steps. We first draw an integer value ϑir uniformly from the set of
integer values {1, 2, 3, 4}. Then, if ϑir+ i ≤ mr, the (i+1)th, . . . , (i+ϑir)th elements of the ith row ofWr are300

set to one and the rest of the elements in the ith row are set to zero. On the other hand, if ϑir + i > mr, the
first (ϑir + i−mr) entries of the ith row are set to one and the others are set to zero. Then, W is generated302

as the row-normalized D
(
W1, . . . ,WR

)
and we let M =W .

For the size analysis of test statistics for endogenous effects and/or correlated effects in Table 1, we304

set λ0 = 0 and ρ0 = 0 in (7.1) and (7.2). Following Halleck Vega and Elhorst (2015), we refer to these
models as the SLX models. For the power analysis of these test statistics, we consider three specifications306

for the alternative model. The first alternative is the spatial lag model (SARAR(1, 0)) where we allow for
spatial dependence in the dependent variable but not in the disturbance term, i.e., ρ0 = 0. Note that308

SARAR(1, 0) specification can also be considered as a null model for LMρ statistics for testing H0 : ρ0 = 0.
The second alternative model is the spatial error model (SARAR(0, 1)) which allows for spatial dependence310

in the disturbances but not in the dependent variable, i.e., λ0 = 0. Similarly, SARAR(0, 1) can also be
considered as another null model for the one-directional LM statistics for testing H0 : λ0 = 0. Finally, the312
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Table 1: Summary of test statistics for spatial autoregressive parameters

GMM Parameters Test statistic

Null hypothesis ρ0 λ0

H0 : ρ0 = 0 – Set to zero LMg
ρ in (3.14)

H0 : ρ0 = 0 – Unrestricted, estimated LMgA
ρ in (3.9)

H0 : ρ0 = 0 – Unrestricted, not estimated LMg⋆
ρ in (4.17)

H0 : λ0 = 0 Set to zero – LMg
λ in (3.21)

H0 : λ0 = 0 Unrestricted, estimated – LMgA
λ in (3.9)

H0 : λ0 = 0 Unrestricted, not estimated – LMg⋆
λ in (4.24)

H0 : λ0 = 0, ρ0 = 0 – – LMg
ρλ in (3.9)

ML

H0 : ρ0 = 0 – Set to zero LMm
ρ in (4.11)

H0 : ρ0 = 0 – Unrestricted, estimated LMmA
ρ in (4.8)

H0 : ρ0 = 0 – Unrestricted, not estimated LMm⋆
ρ in (4.16)

H0 : λ0 = 0 Set to zero – LMm
λ in (4.18)

H0 : λ0 = 0 Unrestricted, estimated – LMmA
λ in (4.8)

H0 : λ0 = 0 Unrestricted, not estimated – LMm⋆
λ in (4.23)

H0 : λ0 = 0, ρ0 = 0 – – LMm
ρλ in (4.10)

Table 2: Summary of test statistics for contextual effects

GMM Parameters Test statistic

Null hypothesis ρ0 λ0

H0 : β02 = 0 Set to zero Set to zero LMg
ψ in (5.1)

H0 : β02 = 0 Unrestricted, estimated Unrestricted, estimated LMgA
ψ in (3.9)

H0 : β02 = 0 Unrestricted, not estimated Unrestricted, not estimated LMg⋆
ψ in (5.3)

ML

H0 : β02 = 0 Set to zero Set to zero LMm
ψ in (5.5)

H0 : β02 = 0 Unrestricted, estimated Unrestricted, estimated LMmA
ψ in (4.8)

H0 : β02 = 0 Unrestricted, not estimated Unrestricted, not estimated LMm⋆
ψ in (5.7)

third alternative model allows for both type of spatial dependence, namely SARAR(1, 1). In the relevant
alternative models, we let spatial parameters λ0 and ρ0 take on values from 0.1 to 0.6 with an increment of314

0.1.
In the case of tests for the contextual effects in Table 2, we only use DGP 2 to study the size and power316

properties of test statistics. For the size analysis, we set β02 = 02×1 and let λ0 and ρ0 vary between 0.1
to 0.6. For the power analysis, we set λ0 = 0.3 and ρ0 = 0.2, and let elements of β02 take on values from318

{−1,−0.5, 0.5, 1}. All Monte Carlo simulations are based on 1000 repetitions.
Finally, we need to specify the set of moment functions for the GMM approach. As we mentioned before,320

we are interested in the case where the number of instruments is kept fixed as the number of observations grows
without a bound. Therefore, we choose a simple set of moment functions: Q1r = Jr

(
Xr, WrXr, W

2
rXr

)
,322

U1r = JrWrJr − tr
(
JrWrJr

)
Jr/tr

(
Jr
)
and U2r = JrW

2
r Jr − tr

(
JrW

2
r Jr

)
Jr/tr

(
Jr
)
.

8. Results for Endogenous Effects and Correlated Effects324

In this section, we investigate the finite sample properties of the test statistics for endogenous effects and
correlated effects. In the following, we first evaluate the empirical rejection frequencies of each test under326
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the null hypothesis, and then provide a power analysis for each test.

8.1. Results on Size Properties328

To present simulation results on size properties, we use the P value discrepancy plots suggested in Davidson
and MacKinnon (1998), which are based on the empirical distribution functions (edf) of p-values. Let τ be
a test statistic, and τj for j = 1, . . . ,R be the R realizations of τ generated in a Monte Carlo experiment.
Let F (x) be the cumulative distribution function (cdf) of the asymptotic distribution of τ evaluated at x.
Then, the p-value associated with τj , denoted by p(τj), is given by p(τj) = 1 − F (τj). An estimate of the
cdf of p(τ) can be constructed simply from the edf of p(τj). Consider a sequence of points denoted by xi for
i = 1, . . . ,m from the interval (0, 1). Then an estimate of cdf of p(τ) is given by

F̂ (xi) =
1

R

R∑

j=1

1
(
p(τj) ≤ xi

)
. (8.1)

As stated in Davidson and MacKinnon (1998), there is no decisive way to choose the sequence xi from (0, 1).
In practice, the main attention is typically paid to the Type-I errors which are set at levels smaller than or
equal to 10%. We choose the following sequence and focus on levels smaller than or equal to 10%.

{xi}mi=1 = {0.001 : 0.001 : 0.010 0.015 : 0.005 : 0.990 0.991 : 0.001 : 0.999} (8.2)

The P value discrepancy plot is defined as the plot of F̂ (xi) − xi against xi under the assumption that
the true data generating process is characterized by the null hypothesis. If F (x) approximate to the finite330

sample distribution of τ well enough, then each p(τj) will have a uniform distribution over (0, 1). Hence,

the P value plot, obtained by a plot of F̂ (xi) against xi, should be close to the 45 degree line. Therefore,332

a P value discrepancy plot highlights the differences between the empirical distribution function and the 45
degree line. The discrepancies from the horizontal axis in a P value discrepancy plot suggest an empirical334

distribution that differs from the asymptotic distribution used to determine the critical values.
To asses the significance of discrepancies in a P value discrepancy plot, we construct a point-wise 95%336

confidence interval for a nominal size by using a normal approximation to the binomial distribution. Let
α denote the nominal size at which the test is carried out. Using a normal approximation to the binomial338

distribution, a point-wise 95% confidence interval centered on α would be given by α± 1.96 [α(1− α)/R]
1/2

,

and thus it would include rejection rates between α − 1.96 [α(1− α)/R]
1/2

and α + 1.96 [α(1− α)/R]
1/2

.340

We use this approach to insert a 95% point-wise confidence interval in a P value discrepancy plot. In the
discrepancy plots, this interval will be represented by the red solid lines (for some examples, see Taspinar342

and Dogan (2016)).
To save space, the size results based on the SLX models will be presented through the P value discrepancy344

plots while the size results based on SARAR(1, 0) or SARAR(0, 1) are summarized in tables. When the null
model is SARAR(1,0) or SARAR(0,1), we focus solely on the nominal size of 5% and provide size deviations346

at this level only.
The general observations on the size properties of tests from Figures 1-2 and Tables 3- 4 are listed below.348

For notational simplicity, if a superscript “g” or “m” is not specified for a test, it means that the observation
made holds for both the GMM based test and the ML based test.350

1. Figures 1 and 2 present the size properties of test statistics under H0 : λ0 = ρ0 = 0. Figures 1 and 2
show that all LM tests based on GMM are generally over-sized regardless of the normality of the errors.352

In both figures, the maximum size distortion is always less than 0.03 and the size distortions generally
lie inside the 95% point-wise confidence interval and therefore they are acceptable.354

2. In Figure 1, LMgA
ρ and LMgA

λ are generally over-sized and their size discrepancies lie outside the 95%
point-wise confidence interval. For example, for the nominal size of 5%, the actual rejection rate of356

LMgA
ρ is about 7%. In Figure 2, LMgA

λ , LMg⋆
λ and LMgA

ρ are over-sized especially in panel (a).

3. Figures 1 and 2 clearly indicate that the size distortions of all ML based tests generally lie inside the358

95% point-wise confidence interval and are smaller compared to the GMM based tests. Surprisingly,
the ML based tests perform in a similar fashion even when the errors are not normally distributed.360
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(c) GMM gradient tests with non-normal errors
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(d) ML gradient tests with non-normal errors
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Figure 1: Size discrepancy plots under DGP 1

4. Table 3 and 4 provide some evidences on the magnitude of size distortions as a function of the size of
local parametric misspecification in the alternative model. We would expect that the robust versions362

of one directional tests, LM⋆
ρ and LM⋆

λ, to perform relatively better than LMρ and LMλ, respectively.
Overall, this seems to be the case, especially when the null model is SARAR(0, 1).364

5. Tables 3 and 4 show that LMA
ρ and LMA

λ perform well in all cases. This is not surprising as these tests
require the estimation of the spatial parameter λ0 and ρ0, respectively.366

6. When the null model is SARAR (1,0) in Tables 3 and 4, LM⋆
ρ performs satisfactorily for small values of
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(c) GMM gradient tests with non-normal errors
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(d) ML gradient tests with non-normal errors
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Figure 2: Size discrepancy plots under DGP 2

λ0 in the alternative model. Indeed, when λ0 is less than 0.3, LM⋆
ρ always performs better than LMρ.368

On the other hand, when the local misspecification deteriorates as λ0 gets larger, LM⋆
ρ severely over

rejects the null model, although still beats LMρ in all cases. Recall that LM⋆
ρ uses the least squares370

residuals from the transformed model and implements a correction on the test statistics for a local
parametric misspecification of the alternative model, i.e., ignoring the spatial lag. The bias of the least372

squares residuals depends on the strength of spatial dependence as well as on the connectedness of the
weights matrix. Therefore, we can expect poor performance for the robust tests as λ0 deviates from374
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Table 3: Empirical size of tests at 5% level under DGP 1

H0: SARAR(1, 0)

Normal distribution Gamma distribution Normal distribution Gamma distribution

λ0 LMg
ρ LMg⋆

ρ LMgA
ρ LMg

ρ LMg⋆
ρ LMgA

ρ LMm
ρ LMm⋆

ρ LMmA
ρ LMm

ρ LMm⋆
ρ LMmA

ρ

0.1 0.455 0.055 0.068 0.441 0.055 0.072 0.415 0.050 0.051 0.410 0.054 0.056

0.2 0.946 0.061 0.070 0.937 0.057 0.067 0.936 0.053 0.051 0.929 0.052 0.050

0.3 1.000 0.088 0.070 0.999 0.099 0.065 1.000 0.069 0.049 0.999 0.073 0.048

0.4 1.000 0.188 0.073 1.000 0.201 0.068 1.000 0.103 0.049 1.000 0.120 0.049

0.5 1.000 0.392 0.065 1.000 0.406 0.069 1.000 0.166 0.043 1.000 0.186 0.048

0.6 1.000 0.655 0.069 1.000 0.646 0.065 1.000 0.244 0.050 1.000 0.258 0.046

H0: SARAR(0, 1)

ρ0 LMg
λ LMg⋆

λ LMgA
λ LMg

λ LMg⋆
λ LMgA

λ LMm
λ LMm⋆

λ LMmA
λ LMm

λ LMm⋆
λ LMmA

λ

0.1 0.177 0.059 0.068 0.173 0.049 0.058 0.159 0.060 0.056 0.166 0.054 0.046

0.2 0.499 0.051 0.061 0.455 0.048 0.060 0.464 0.060 0.047 0.447 0.057 0.046

0.3 0.786 0.057 0.066 0.760 0.054 0.064 0.760 0.076 0.053 0.760 0.070 0.050

0.4 0.934 0.051 0.060 0.913 0.051 0.065 0.931 0.073 0.047 0.926 0.076 0.053

0.5 0.981 0.052 0.064 0.971 0.051 0.065 0.983 0.078 0.048 0.979 0.081 0.048

0.6 0.992 0.062 0.071 0.988 0.054 0.072 0.995 0.092 0.052 0.995 0.089 0.051

zero substantially. Note that when the null model is SARAR (1,0), LM⋆
ρ performs relatively better

in Tables 3 than in Table 4. This results suggest that the performance of tests statistics should be376

investigated under realistic data generating processes.

7. In Table 3, LM⋆
λ perform satisfactorily regardless of the strength of spatial dependence in the alternative378

model and beats LMλ in all cases. In In Table 3, LMg⋆
λ performs generally better than LMgA

λ , even
though the latter requires the estimation of ρ0. This result may seem surprising at first, but note that380

in this case the least squares residuals are still consistent under the parametric misspecification of the
alternative model. The relative performances of LMm⋆

λ and LMmA
λ are reversed, when we move from382

the GMM based tests to the ML based tests. That is, LMmA
λ performs relatively better than LMm⋆

λ in
most cases. In Table 4, the robust test based on the ML is performing relatively better than the one384

based on GMM. Also, the robust tests have relatively larger size distortions in Table 4 than in Table 3.

8.2. Results on Power Properties386

The results on the power properties of tests are presented in Tables 5-8.17 The general observations on
the power properties of our proposed tests are listed as follows.388

1. In Tables 5 and 6, the null model is the SLX model and the alternative model is either SARAR(1,0) or
SARAR(0,1). When the alternative model is SARAR(1,0), the results in both tables indicate that all390

test statistics for λ0 have satisfactory power. LM⋆
λ and LMA

λ present very similar performance but the
former has the computational advantage and is robust to local deviations of ρ0 from zero. The power392

of tests are relatively slightly lower in Table 6.

2. In Tables 5 and 6, the test statistics for H0 : ρ0 = 0 should lack of power when the alternative model394

is SARAR(1,0). The conditional test statistics, LMA
ρ lack power in all cases. The robust test statistic,

LM⋆
ρ, lacks power when λ0 locally deviate from zero. Both LMρ and LMρλ have good powers against396

the positive spatial lag term in both tables. These results clearly show that the application of LMρ and
LMρλ can lead to the incorrect inference.398

17For the sake of brevity, we only provide power results for the case where the disturbance terms are normally distributed.
The results based on the gamma distribution are similar and available upon request.
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Table 4: Empirical size of tests at 5% level under DGP 2

H0: SARAR(1, 0)

Normal distribution Gamma distribution Normal distribution Gamma distribution

λ0 LMg
ρ LMg⋆

ρ LMgA
ρ LMg

ρ LMg⋆
ρ LMgA

ρ LMm
ρ LMm⋆

ρ LMmA
ρ LMm

ρ LMm⋆
ρ LMmA

ρ

0.1 0.372 0.059 0.053 0.358 0.069 0.059 0.347 0.061 0.050 0.346 0.059 0.057

0.2 0.873 0.200 0.067 0.899 0.170 0.041 0.865 0.075 0.056 0.890 0.060 0.042

0.3 0.992 0.354 0.059 0.995 0.366 0.060 0.992 0.054 0.050 0.995 0.068 0.066

0.4 1.000 0.497 0.064 1.000 0.500 0.060 1.000 0.063 0.049 1.000 0.066 0.063

0.5 1.000 0.590 0.063 1.000 0.549 0.071 1.000 0.067 0.058 1.000 0.075 0.063

0.6 1.000 0.711 0.071 1.000 0.671 0.063 1.000 0.077 0.046 1.000 0.099 0.052

H0: SARAR(0, 1)

ρ0 LMg
λ LMg⋆

λ LMgA
λ LMg

λ LMg⋆
λ LMgA

λ LMm
λ LMm⋆

λ LMmA
λ LMm

λ LMm⋆
λ LMmA

λ

0.1 0.360 0.043 0.069 0.349 0.046 0.049 0.332 0.065 0.065 0.348 0.051 0.044

0.2 0.851 0.065 0.068 0.865 0.061 0.058 0.839 0.073 0.054 0.866 0.061 0.059

0.3 0.992 0.111 0.048 0.990 0.095 0.058 0.991 0.062 0.043 0.989 0.073 0.055

0.4 1.000 0.191 0.045 1.000 0.184 0.052 1.000 0.055 0.044 1.000 0.070 0.063

0.5 1.000 0.282 0.067 1.000 0.257 0.053 1.000 0.086 0.047 1.000 0.070 0.061

0.6 1.000 0.357 0.065 1.000 0.342 0.064 1.000 0.089 0.056 1.000 0.088 0.064

3. There are similar findings in Tables 5 and 6 when the alternative model is SARAR(0,1). All one
directional tests and the two directional tests for H0 : ρ0 = 0 have satisfactory power. In both tables,400

LMρ has more power than LM⋆
ρ and LMA

ρ , and the difference in power levels get smaller when ρ0 = 0.2
in the alternative model. In both tables, LMρλ is indistinguishable from the one directional tests, but402

they cannot point the true alternative model and could lead to the wrong inference.

4. In Tables 5 and 6, when the alternative model is SARAR(0,1), the conditional test statistic, LMA
λ ,404

reports power around the nominal size level in all cases. The robust test statistics, LM⋆
λ indicate less

powers only when ρ0 locally deviates from zero, which is inline with our asymptotic results. Again,406

LMλ and LMλρ do not lack power and therefore can lead to incorrect inference.

5. In Tables 7 and 8, the alternative model is SARAR(1,1) and λ0 and ρ0 values vary from 0.1 to 0.6. Both408

GMM and ML based one directional test statistics relatively have higher power than the corresponding
robust test statistics, especially when λ0 and ρ0 are close to zero. In all cases, LMλρ has higher power410

and are indistinguishable from the one directional tests statistics LMρ and LMλ. The conditional test

statistics LMA
ρ and LMA

λ achieve higher power than the one-directional robust test in most cases, but412

not as much as the one-directional and two directional test statistics.
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Table 5: Power of Tests at 5% level under DGP 1

H1: SARAR(1, 0)

GMM ML

λ0 LMg
ρ LMg⋆

ρ LMgA
ρ LMg

λ LMg⋆
λ LMgA

λ LMg
ρλ LMm

ρ LMm⋆
ρ LMmA

ρ LMm
λ LMm⋆

λ LMmA
λ LMm

ρλ

0.1 0.455 0.055 0.068 0.830 0.652 0.674 0.753 0.415 0.050 0.051 0.826 0.667 0.646 0.747

0.2 0.946 0.061 0.070 1.000 0.997 0.997 1.000 0.936 0.053 0.051 1.000 0.997 0.995 1.000

0.3 1.000 0.088 0.070 1.000 1.000 1.000 1.000 1.000 0.069 0.049 1.000 1.000 1.000 1.000

0.4 1.000 0.188 0.073 1.000 1.000 1.000 1.000 1.000 0.103 0.049 1.000 1.000 1.000 1.000

0.5 1.000 0.392 0.065 1.000 1.000 1.000 1.000 1.000 0.166 0.043 1.000 1.000 1.000 1.000

0.6 1.000 0.655 0.069 1.000 1.000 1.000 1.000 1.000 0.244 0.050 1.000 1.000 1.000 1.000

H1: SARAR(0, 1)

ρ0

0.1 0.408 0.297 0.327 0.177 0.059 0.068 0.327 0.387 0.288 0.287 0.159 0.060 0.056 0.309

0.2 0.897 0.748 0.772 0.499 0.051 0.061 0.834 0.886 0.745 0.739 0.464 0.060 0.047 0.822

0.3 0.997 0.970 0.975 0.786 0.057 0.066 0.994 0.996 0.971 0.971 0.760 0.076 0.053 0.993

0.4 1.000 0.998 0.998 0.934 0.051 0.060 1.000 1.000 0.999 0.998 0.931 0.073 0.047 1.000

0.5 1.000 1.000 1.000 0.981 0.052 0.064 1.000 1.000 1.000 1.000 0.983 0.078 0.048 1.000

0.6 1.000 1.000 1.000 0.992 0.062 0.071 1.000 1.000 1.000 1.000 0.995 0.092 0.052 1.000

Table 6: Power of Tests at 5% level under DGP 2

H1: SARAR(1, 0)

GMM ML

λ0 LMg
ρ LMg⋆

ρ LMgA
ρ LMg

λ LMg⋆
λ LMgA

λ LMg
ρλ LMm

ρ LMm⋆
ρ LMmA

ρ LMm
λ LMm⋆

λ LMmA
λ LMm

ρλ

0.1 0.372 0.059 0.053 0.387 0.078 0.085 0.309 0.347 0.061 0.050 0.375 0.082 0.084 0.310

0.2 0.873 0.200 0.067 0.886 0.226 0.107 0.840 0.865 0.075 0.056 0.887 0.123 0.088 0.826

0.3 0.992 0.354 0.059 0.995 0.435 0.133 0.994 0.992 0.054 0.050 0.994 0.173 0.078 0.992

0.4 1.000 0.497 0.064 1.000 0.586 0.266 1.000 1.000 0.063 0.049 1.000 0.304 0.101 1.000

0.5 1.000 0.590 0.063 1.000 0.759 0.538 1.000 1.000 0.067 0.058 1.000 0.562 0.165 1.000

0.6 1.000 0.711 0.071 1.000 0.895 0.814 1.000 1.000 0.077 0.046 1.000 0.796 0.264 1.000

H1: SARAR(0, 1)

ρ0

0.1 0.373 0.063 0.070 0.360 0.043 0.069 0.279 0.353 0.078 0.065 0.332 0.065 0.065 0.287

0.2 0.864 0.164 0.154 0.851 0.065 0.068 0.803 0.856 0.152 0.142 0.839 0.073 0.054 0.803

0.3 0.993 0.286 0.244 0.992 0.111 0.048 0.989 0.993 0.268 0.216 0.991 0.062 0.043 0.989

0.4 1.000 0.468 0.347 1.000 0.191 0.045 1.000 1.000 0.413 0.278 1.000 0.055 0.044 1.000

0.5 1.000 0.556 0.455 1.000 0.282 0.067 1.000 1.000 0.569 0.368 1.000 0.086 0.047 1.000

0.6 1.000 0.634 0.564 1.000 0.357 0.065 1.000 1.000 0.681 0.395 1.000 0.089 0.056 1.000
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Table 7: Power of Tests at 5% level under DGP 1

H1: SARAR(1, 1)

GMM ML

λ0 ρ0 LMg
ρ LMg⋆

ρ LMgA
ρ LMg

λ LMg⋆
λ LMgA

λ LMg
ρλ LMm

ρ LMm⋆
ρ LMmA

ρ LMm
λ LMm⋆

λ LMmA
λ LMm

ρλ

0.1 0.1 0.922 0.257 0.331 0.967 0.644 0.662 0.962 0.914 0.299 0.289 0.966 0.666 0.635 0.961

0.1 0.2 0.998 0.685 0.786 0.996 0.645 0.678 0.999 0.998 0.755 0.749 0.996 0.675 0.645 0.999

0.1 0.3 1.000 0.947 0.976 0.999 0.623 0.681 1.000 1.000 0.974 0.970 1.000 0.663 0.644 1.000

0.1 0.4 1.000 0.997 0.999 1.000 0.614 0.694 1.000 1.000 0.999 0.999 1.000 0.662 0.660 1.000

0.1 0.5 1.000 1.000 1.000 1.000 0.605 0.714 1.000 1.000 1.000 1.000 1.000 0.657 0.679 1.000

0.1 0.6 1.000 1.000 1.000 1.000 0.581 0.752 1.000 1.000 1.000 1.000 1.000 0.641 0.718 1.000

0.2 0.1 0.998 0.149 0.322 1.000 0.996 0.996 1.000 0.998 0.321 0.279 1.000 0.996 0.994 1.000

0.2 0.2 1.000 0.510 0.798 1.000 0.996 0.997 1.000 1.000 0.786 0.765 1.000 0.996 0.995 1.000

0.2 0.3 1.000 0.850 0.982 1.000 0.992 0.995 1.000 1.000 0.977 0.976 1.000 0.992 0.994 1.000

0.2 0.4 1.000 0.969 0.999 1.000 0.992 0.997 1.000 1.000 0.998 0.998 1.000 0.992 0.995 1.000

0.2 0.5 1.000 0.995 1.000 1.000 0.989 0.998 1.000 1.000 1.000 1.000 1.000 0.988 0.997 1.000

0.2 0.6 1.000 1.000 1.000 1.000 0.986 0.999 1.000 1.000 1.000 1.000 1.000 0.986 0.998 1.000

0.3 0.1 1.000 0.062 0.340 1.000 1.000 1.000 1.000 1.000 0.382 0.294 1.000 1.000 1.000 1.000

0.3 0.2 1.000 0.243 0.816 1.000 1.000 1.000 1.000 1.000 0.810 0.785 1.000 1.000 1.000 1.000

0.3 0.3 1.000 0.565 0.980 1.000 1.000 1.000 1.000 1.000 0.971 0.976 1.000 1.000 1.000 1.000

0.3 0.4 1.000 0.820 0.998 1.000 1.000 1.000 1.000 1.000 0.996 0.998 1.000 1.000 1.000 1.000

0.3 0.5 1.000 0.930 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.3 0.6 1.000 0.980 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.4 0.1 1.000 0.045 0.359 1.000 1.000 1.000 1.000 1.000 0.464 0.316 1.000 1.000 1.000 1.000

0.4 0.2 1.000 0.062 0.828 1.000 1.000 1.000 1.000 1.000 0.828 0.796 1.000 1.000 1.000 1.000

0.4 0.3 1.000 0.205 0.986 1.000 1.000 1.000 1.000 1.000 0.973 0.981 1.000 1.000 1.000 1.000

0.4 0.4 1.000 0.442 1.000 1.000 1.000 1.000 1.000 1.000 0.998 1.000 1.000 1.000 1.000 1.000

0.4 0.5 1.000 0.639 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.4 0.6 1.000 0.789 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.5 0.1 1.000 0.158 0.360 1.000 1.000 1.000 1.000 1.000 0.536 0.312 1.000 1.000 1.000 1.000

0.5 0.2 1.000 0.063 0.849 1.000 1.000 1.000 1.000 1.000 0.855 0.820 1.000 1.000 1.000 1.000

0.5 0.3 1.000 0.044 0.990 1.000 1.000 1.000 1.000 1.000 0.976 0.985 1.000 1.000 1.000 1.000

0.5 0.4 1.000 0.098 0.999 1.000 1.000 1.000 1.000 1.000 0.997 0.999 1.000 1.000 1.000 1.000

0.5 0.5 1.000 0.202 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.5 0.6 1.000 0.329 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.6 0.1 1.000 0.434 0.365 1.000 1.000 1.000 1.000 1.000 0.577 0.320 1.000 1.000 1.000 1.000

0.6 0.2 1.000 0.237 0.857 1.000 1.000 1.000 1.000 1.000 0.856 0.824 1.000 1.000 1.000 1.000

0.6 0.3 1.000 0.106 0.991 1.000 1.000 1.000 1.000 1.000 0.970 0.988 1.000 1.000 1.000 1.000

0.6 0.4 1.000 0.056 1.000 1.000 1.000 1.000 1.000 1.000 0.994 1.000 1.000 1.000 1.000 1.000

0.6 0.5 1.000 0.038 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000

0.6 0.6 1.000 0.060 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 8: Power of Tests at 5% level under DGP 2

H1: SARAR(1, 1)

GMM ML

λ0 ρ0 LMg
ρ LMg⋆

ρ LMgA
ρ LMg

λ LMg⋆
λ LMgA

λ LMg
ρλ LMm

ρ LMm⋆
ρ LMmA

ρ LMm
λ LMm⋆

λ LMmA
λ LMm

ρλ

0.1 0.1 0.913 0.140 0.082 0.914 0.110 0.073 0.866 0.907 0.086 0.069 0.909 0.082 0.071 0.855

0.1 0.2 0.999 0.294 0.138 1.000 0.231 0.072 0.996 0.999 0.131 0.120 1.000 0.080 0.078 0.996

0.1 0.3 1.000 0.426 0.231 1.000 0.332 0.079 1.000 1.000 0.228 0.193 1.000 0.104 0.086 1.000

0.1 0.4 1.000 0.575 0.304 1.000 0.439 0.087 1.000 1.000 0.331 0.253 1.000 0.098 0.096 1.000

0.1 0.5 1.000 0.657 0.386 1.000 0.546 0.118 1.000 1.000 0.404 0.323 1.000 0.125 0.151 1.000

0.1 0.6 1.000 0.705 0.510 1.000 0.591 0.157 1.000 1.000 0.507 0.401 1.000 0.132 0.199 1.000

0.2 0.1 0.995 0.375 0.073 0.996 0.365 0.100 0.994 0.994 0.074 0.061 0.997 0.123 0.090 0.996

0.2 0.2 1.000 0.503 0.151 1.000 0.504 0.103 1.000 1.000 0.102 0.129 1.000 0.140 0.128 1.000

0.2 0.3 1.000 0.600 0.245 1.000 0.591 0.113 1.000 1.000 0.168 0.224 1.000 0.134 0.184 1.000

0.2 0.4 1.000 0.689 0.355 1.000 0.654 0.143 1.000 1.000 0.221 0.329 1.000 0.155 0.264 1.000

0.2 0.5 1.000 0.738 0.515 1.000 0.716 0.252 1.000 1.000 0.310 0.528 1.000 0.158 0.429 1.000

0.2 0.6 1.000 0.762 0.690 1.000 0.747 0.430 1.000 1.000 0.340 0.667 1.000 0.169 0.576 1.000

0.3 0.1 1.000 0.531 0.090 1.000 0.568 0.140 1.000 1.000 0.072 0.094 1.000 0.186 0.141 1.000

0.3 0.2 1.000 0.617 0.189 1.000 0.641 0.153 1.000 1.000 0.100 0.180 1.000 0.188 0.193 1.000

0.3 0.3 1.000 0.675 0.342 1.000 0.703 0.202 1.000 1.000 0.142 0.355 1.000 0.211 0.340 1.000

0.3 0.4 1.000 0.716 0.538 1.000 0.733 0.344 1.000 1.000 0.198 0.568 1.000 0.223 0.539 1.000

0.3 0.5 1.000 0.753 0.757 1.000 0.780 0.594 1.000 1.000 0.254 0.803 1.000 0.197 0.763 1.000

0.3 0.6 1.000 0.790 0.880 1.000 0.830 0.831 1.000 1.000 0.315 0.916 1.000 0.259 0.903 1.000

0.4 0.1 1.000 0.609 0.127 1.000 0.712 0.252 1.000 1.000 0.084 0.102 1.000 0.326 0.173 1.000

0.4 0.2 1.000 0.683 0.316 1.000 0.746 0.357 1.000 1.000 0.115 0.314 1.000 0.356 0.410 1.000

0.4 0.3 1.000 0.710 0.549 1.000 0.786 0.499 1.000 1.000 0.166 0.577 1.000 0.367 0.614 1.000

0.4 0.4 1.000 0.745 0.817 1.000 0.786 0.712 1.000 1.000 0.214 0.835 1.000 0.330 0.833 1.000

0.4 0.5 1.000 0.798 0.946 1.000 0.823 0.917 1.000 1.000 0.267 0.951 1.000 0.344 0.951 1.000

0.4 0.6 1.000 0.798 0.987 1.000 0.835 0.980 1.000 1.000 0.363 0.997 1.000 0.320 0.997 1.000

0.5 0.1 1.000 0.672 0.168 1.000 0.827 0.553 1.000 1.000 0.083 0.150 1.000 0.558 0.313 1.000

0.5 0.2 1.000 0.737 0.449 1.000 0.851 0.674 1.000 1.000 0.106 0.459 1.000 0.578 0.615 1.000

0.5 0.3 1.000 0.768 0.785 1.000 0.857 0.812 1.000 1.000 0.198 0.811 1.000 0.576 0.860 1.000

0.5 0.4 1.000 0.742 0.957 1.000 0.830 0.966 1.000 1.000 0.267 0.964 1.000 0.561 0.977 1.000

0.5 0.5 1.000 0.795 0.990 1.000 0.857 0.991 1.000 1.000 0.350 0.996 1.000 0.532 0.996 1.000

0.5 0.6 1.000 0.814 0.999 1.000 0.863 0.999 1.000 1.000 0.346 1.000 1.000 0.577 1.000 1.000

0.6 0.1 1.000 0.754 0.220 1.000 0.914 0.873 1.000 1.000 0.069 0.196 1.000 0.844 0.503 1.000

0.6 0.2 1.000 0.794 0.638 1.000 0.919 0.920 1.000 1.000 0.106 0.652 1.000 0.827 0.836 1.000

0.6 0.3 1.000 0.785 0.918 1.000 0.902 0.981 1.000 1.000 0.210 0.925 1.000 0.795 0.971 1.000

0.6 0.4 1.000 0.816 0.995 1.000 0.908 0.999 1.000 1.000 0.267 0.991 1.000 0.803 0.998 1.000

0.6 0.5 1.000 0.813 0.999 1.000 0.895 1.000 1.000 1.000 0.304 0.998 1.000 0.784 1.000 1.000

0.6 0.6 1.000 0.816 1.000 1.000 0.907 1.000 1.000 1.000 0.384 1.000 1.000 0.790 1.000 1.000
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9. Results for Contextual Effects414

In this section, we investigate the size and power properties of test statistics for the contextual effects.
We consider the following test statistics: (i) the robust test statistics LM⋆

ψ of Proposition 5 and 6, (ii) the416

conditional test statistics in (3.9) and (4.8), and (iii) the F-statistic. The computation of LM⋆
ψ is based on

the OLS estimator of Yr = X3rβ01 + lmr
αr + εr, while the computation of conditional test LMA

ψ is based418

on the restricted ML estimation of Yr = S−1
r X3rβ01 + S−1

r lmr
αr + S−1

r R−1
r εr. Hence, the conditional test

statistics require the estimation of both λ0 and ρ0. To compute the F-statistic, estimations of the restricted420

model Yr = X3rβ01 + lmr
αr + εr and the unrestricted model Yr = X3rβ01 +WrX3rβ02 + lmr

αr + εr are
needed. It is clear that the robust test statistic has computational advantage as it only requires a single OLS422

estimation. Note that we use only DGP 2 to investigate the size and power properties. Here, the hypothesis
of interest is H0 : ψ0 = 02×1, where ψ0 = β02. To investigate power properties, we vary the values of β02424

between −1 to 1 in the alternative model Yr = S−1
r X3rβ01 + S−1

r WrX3rβ02 + S−1
r lmr

αr + S−1
r R−1

r εr, and
set λ0 = 0.3 and ρ0 = 0.2. The results are presented in Tables 9 and 10. The main observations from these426

results are listed as follows.

1. The size properties are presented in Table 9. The conditional test statistic LMA
ψ has proper sizes in all428

cases. The F-statistic is always over-sized and only report small size distortions in the first block of
Table 9, where λ0 = 0. In all other cases, it reports very large size distortions.430

2. The robust test statistic is under-sized when λ0 locally deviates from zero. As λ0 get larger, the size
distortions of robust test get larger. The presence of spatial lag dependence in the true data generating432

process relatively has more distorting effects on the size performance of the robust LM tests and the F
test.434

3. Overall, the robust test statistic outperforms the F-statistic in terms of size distortions. The perfor-
mance of all test statistics seem to be not affected by the distribution of disturbance terms.436

4. All test statistics have satisfactory power levels except for some negative combinations β02,1 and β02,2.

5. As expected, the robust test statistic has relatively lower power than other test statistics. The power438

of LM⋆
ψ increases asymmetrically as β02,1 moves away from zero, and increases faster on the positive

side.440
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Table 9: Size of Tests at 5% level: H0: SARAR(1, 1)

Normal Gamma

GMM ML GMM ML

λ0 ρ0 LM
g⋆
ψ LM

gA
ψ LM

m⋆
ψ LM

mA
ψ F LM

g⋆
ψ LM

gA
ψ LM

m⋆
ψ LM

mA
ψ F

0.00 0.00 0.014 0.042 0.013 0.051 0.078 0.017 0.029 0.015 0.046 0.057

0.00 0.05 0.022 0.043 0.018 0.056 0.071 0.020 0.044 0.019 0.064 0.075

0.00 0.10 0.013 0.039 0.012 0.053 0.068 0.018 0.034 0.016 0.062 0.067

0.00 0.15 0.019 0.043 0.020 0.061 0.075 0.020 0.048 0.021 0.076 0.082

0.00 0.20 0.021 0.033 0.021 0.038 0.078 0.021 0.040 0.020 0.060 0.083

0.00 0.25 0.022 0.034 0.019 0.054 0.079 0.025 0.036 0.027 0.059 0.096

0.00 0.30 0.027 0.041 0.027 0.047 0.082 0.028 0.046 0.028 0.061 0.090

0.05 0.00 0.015 0.051 0.015 0.053 0.144 0.014 0.031 0.013 0.059 0.133

0.05 0.05 0.015 0.034 0.014 0.054 0.141 0.019 0.047 0.022 0.068 0.148

0.05 0.10 0.014 0.036 0.013 0.050 0.158 0.016 0.043 0.016 0.049 0.174

0.05 0.15 0.021 0.045 0.022 0.047 0.171 0.022 0.035 0.025 0.059 0.155

0.05 0.20 0.027 0.044 0.032 0.052 0.167 0.017 0.047 0.021 0.061 0.175

0.05 0.25 0.018 0.056 0.019 0.052 0.185 0.020 0.051 0.017 0.063 0.170

0.05 0.30 0.019 0.041 0.025 0.046 0.204 0.025 0.035 0.028 0.063 0.167

0.10 0.00 0.020 0.050 0.019 0.060 0.402 0.019 0.050 0.019 0.052 0.419

0.10 0.05 0.016 0.037 0.018 0.043 0.418 0.020 0.037 0.018 0.055 0.456

0.10 0.10 0.012 0.052 0.013 0.055 0.405 0.021 0.055 0.023 0.061 0.431

0.10 0.15 0.027 0.049 0.026 0.053 0.400 0.020 0.047 0.021 0.050 0.433

0.10 0.20 0.020 0.042 0.025 0.042 0.417 0.021 0.042 0.017 0.043 0.449

0.10 0.25 0.023 0.042 0.032 0.040 0.410 0.021 0.034 0.028 0.048 0.452

0.10 0.30 0.019 0.045 0.027 0.045 0.472 0.024 0.041 0.032 0.067 0.455

0.15 0.00 0.028 0.047 0.026 0.052 0.722 0.028 0.043 0.028 0.054 0.726

0.15 0.05 0.019 0.041 0.021 0.049 0.722 0.021 0.045 0.021 0.049 0.734

0.15 0.10 0.023 0.041 0.024 0.050 0.725 0.031 0.040 0.030 0.056 0.725

0.15 0.15 0.034 0.046 0.038 0.046 0.732 0.016 0.052 0.019 0.056 0.729

0.15 0.20 0.037 0.043 0.048 0.045 0.735 0.019 0.041 0.027 0.035 0.757

0.15 0.25 0.029 0.043 0.036 0.047 0.736 0.029 0.059 0.036 0.072 0.739

0.15 0.30 0.030 0.053 0.033 0.054 0.749 0.029 0.045 0.032 0.056 0.750

0.20 0.00 0.033 0.067 0.034 0.064 0.929 0.047 0.056 0.050 0.064 0.947

0.20 0.05 0.028 0.053 0.033 0.055 0.941 0.035 0.048 0.030 0.053 0.922

0.20 0.10 0.030 0.041 0.029 0.035 0.907 0.039 0.056 0.043 0.053 0.920

0.20 0.15 0.039 0.047 0.041 0.044 0.926 0.027 0.045 0.032 0.058 0.929

0.20 0.20 0.033 0.062 0.040 0.055 0.922 0.035 0.047 0.041 0.053 0.928

0.20 0.25 0.040 0.044 0.041 0.041 0.906 0.045 0.051 0.053 0.051 0.931

0.20 0.30 0.043 0.045 0.050 0.032 0.909 0.044 0.045 0.045 0.047 0.913

0.25 0.00 0.065 0.051 0.066 0.049 0.993 0.060 0.051 0.060 0.043 0.987

0.25 0.05 0.053 0.044 0.057 0.037 0.988 0.079 0.072 0.074 0.055 0.987

0.25 0.10 0.066 0.059 0.067 0.054 0.989 0.052 0.056 0.058 0.057 0.992

0.25 0.15 0.046 0.057 0.057 0.050 0.994 0.064 0.069 0.068 0.057 0.987

0.25 0.20 0.055 0.061 0.068 0.044 0.987 0.070 0.039 0.069 0.046 0.981

0.25 0.25 0.065 0.057 0.076 0.049 0.989 0.077 0.051 0.084 0.052 0.987

0.25 0.30 0.077 0.043 0.098 0.040 0.986 0.081 0.050 0.093 0.051 0.976

0.30 0.00 0.110 0.057 0.127 0.048 0.999 0.099 0.064 0.106 0.053 1.000

0.30 0.05 0.122 0.052 0.134 0.043 0.998 0.127 0.065 0.130 0.051 0.999

0.30 0.10 0.125 0.054 0.136 0.056 0.998 0.138 0.076 0.146 0.070 1.000

0.30 0.15 0.135 0.066 0.143 0.056 1.000 0.127 0.048 0.148 0.041 0.996

0.30 0.20 0.118 0.066 0.122 0.051 0.999 0.140 0.062 0.138 0.055 0.998

0.30 0.25 0.125 0.049 0.142 0.041 0.999 0.138 0.055 0.138 0.050 0.998

0.30 0.30 0.148 0.061 0.166 0.061 0.998 0.156 0.037 0.157 0.040 0.998
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Table 10: Power of Tests at 5% level: H1: SARAR(1, 1)

Normal Gamma

GMM ML GMM ML

β02,1 β02,2 LMg⋆
ψ LMgA

ψ LMm⋆
ψ LMmA

ψ F LMg⋆
ψ LMgA

ψ LMm⋆
ψ LMmA

ψ F

-1.0 -1.0 0.603 1.000 0.572 1.000 1.000 0.629 1.000 0.602 1.000 1.000

-1.0 -0.5 0.435 1.000 0.419 1.000 1.000 0.469 1.000 0.470 1.000 1.000

-1.0 0.5 0.838 1.000 0.860 1.000 1.000 0.847 1.000 0.865 1.000 1.000

-1.0 1.0 0.960 1.000 0.976 1.000 1.000 0.956 1.000 0.987 1.000 1.000

-0.5 -1.0 0.390 1.000 0.369 0.999 1.000 0.401 1.000 0.373 0.998 1.000

-0.5 -0.5 0.088 0.913 0.102 0.902 0.971 0.102 0.890 0.116 0.895 0.968

-0.5 0.5 0.620 1.000 0.645 1.000 1.000 0.669 1.000 0.680 1.000 1.000

-0.5 1.0 0.896 1.000 0.932 1.000 1.000 0.904 1.000 0.936 1.000 1.000

0.5 -1.0 0.712 1.000 0.692 1.000 1.000 0.732 1.000 0.726 1.000 1.000

0.5 -0.5 0.389 1.000 0.405 1.000 1.000 0.409 1.000 0.403 1.000 1.000

0.5 0.5 0.628 0.999 0.688 0.998 1.000 0.597 1.000 0.622 0.999 1.000

0.5 1.0 0.850 1.000 0.895 1.000 1.000 0.851 1.000 0.896 1.000 1.000

1.0 -1.0 0.935 1.000 0.926 1.000 1.000 0.928 1.000 0.923 1.000 1.000

1.0 -0.5 0.803 1.000 0.800 1.000 1.000 0.792 1.000 0.818 1.000 1.000

1.0 0.5 0.800 1.000 0.851 1.000 1.000 0.821 1.000 0.860 1.000 1.000

1.0 1.0 0.927 1.000 0.957 1.000 1.000 0.907 1.000 0.955 1.000 1.000

10. Conclusion

In this paper, we formulate robust LM tests within the GMM and the ML frameworks for a social442

interaction model with a network structure. These tests are robust in the sense that their null asymptotic
distributions are still a central chi-square distribution when the alternative model has a local parametric444

misspecification. We show that the asymptotic null distribution of the standard LM test deviates from the
central chi-square distribution when the alternative model is misspecified. Hence, the robust tests are size-446

resistant as they produce, asymptotically, correct size. Within the context of our social interaction model,
we formally show the asymptotic distributions of our proposed tests under the null and the local alternative448

hypotheses. These tests can be used to test the presence of the endogenous effects, the correlated effects,
and the contextual effects in a social interaction model.450

One attractive feature of our proposed tests is that their test statistics are easy to compute and only
require the least squares estimates from a transformed linear regression model. Therefore, our proposed tests452

can easily be made available for practical applications using standard statistical software. In a Monte Carlo
study, we investigate the size and power properties of our proposed tests. Our results show that the robust454

tests have good finite sample properties and can be useful for the detection of the source of dependence in
a social interaction model. The Monte Carlo results show evidence for the analytical results that the robust456

tests are valid when the alternative model locally deviates from the true data generating process. Of course,
more simulation work and empirical applications are needed to further confirm the finite sample properties458

of our suggested tests.
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Appendices460

Appendix A. Some Useful Lemmas

Lemma 1. — Let θ̃ = θ0 + op(1) and Ω̃ be a consistent estimate of Ω. Define ḡ2 (θ) =
µ3

σ2

0

ω
′

PKǫ (θ)− g2 (θ).462

Then, when K
n → 0, we have the following results:

1. B(θ̃) = σ−2
0 D(0,X (ρ0)) + limn→∞

1
nD̄

′

2V22D̄2 + op(1), where X (ρ0) = limn→∞
1
nf

′

(ρ0) f (ρ0), V22 =464

[ (
µ4 − 3σ4

0

)
ω

′

ω + σ4
0Υ− µ2

3

σ2

0

ω
′

PKω
]−1

, and D̄2 = D2 − µ3

σ2

0

[
0, ω

′

f
]
.

2. − 1√
n
G

′

(θ0) Ω̃
−1g (θ0) = 1√

n

[
tr
(
PKMR−1

)
, tr

(
PKḠ

)
e
′

1

]′

+
σ2

0√
n

[
0, f

′

ǫ
]
+ 1√

n
D̄

′

2V22ḡ2(θ0) + op(1),466

where e1 is the first unit column vector of dimension k + 1.

3.
σ2

0√
n

[
0, f

′

ǫ
]

+ 1√
n
D̄

′

2V22ḡ2(θ0)
d−→ N

[
0, σ2

0 D(0, X (ρ0)] + limn→∞
1
nD̄

′

2V22D̄2

]
, and468

1√
n

[
tr
(
PKMR−1

)
, tr

(
PKḠ

)
e
′

1

]′

= O( K√
n
).

Proof. See Liu and Lee (2010, Propositions 4 & 5).470

Lemma 2. — Suppose that Wrlmr
= lmr

and Mrlmr
= lmr

. Then,

1. F
′

rlmr
= 0, F

′

rFr = Imr−1, and FrF
′

r = Jr.472

2. F
′

rS (λ) = S∗
rF

′

r , F
′

rRrWr = R∗
rF

′

rWr = R∗
rW

∗
r F

′

r , and F
′

rRrYr = R∗
rF

′

rYr = R∗
rY

∗
r F

′

r .

3. |S∗ (λ)| = |Sr (λ)| /(1− λ), and |R∗ (ρ)| = |Rr (ρ)| /(1− ρ).474

4. S∗−1 (λ) = F
′

rS
−1 (λ)Fr, R

∗−1 (ρ) = F
′

rR
−1 (ρ)Fr and G∗

r (λ) = S∗−1 (λ)W ∗
r = F

′

rG (λ)Fr.

Proof. See Lee et al. (2010, Lemma C.1).476

Lemma 3. — Suppose that θ̃ is a consistent estimator of θ0. Under Assumptions 5- 7, we have

1.
√
n∗L(θ0)

d−→ N [0, limn→∞ Σ], where Σ = E
[
− 1
n∗

∂ lnL(θ0)

∂θ∂θ′

]
is stated in Appendix C.478

2. −Lθθ(θ̃) = Σ + op(1).

Proof. See Lee et al. (2010, Proposition 6.1).480

Appendix B. Detailed Expressions for GMM Gradient Tests

In this section, we provide explicit expressions for the components of test statistics. The variance matrix
of g(θ0) is

Ω =




σ2
0Q

′

KQK︸ ︷︷ ︸
K×K

µ3Q
′

Kω︸ ︷︷ ︸
K×q

µ3ω
′

QK︸ ︷︷ ︸
q×K

(µ4 − 3σ4
0)ω

′

ω + σ4
0∆︸ ︷︷ ︸

q×q


 (B.1)

where ω = [vecD(T1), . . . , vecD(Tq)] and ∆ = 1
2

[
vec(T s1 ), . . . , vec(T

s
q )
]′ [

vec(T s1 ), . . . , vec(T
s
q )
]
. By the inverse

of the partitioned matrix, we have

Ω−1 =

[
V11 V12
V21 V22

]
(B.2)

where

V11 = σ−2
0

(
Q

′

KQK

)−1

+

(
µ3

σ2
0

)2 (
Q

′

KQK

)−1

Q
′

KωV22ω
′

QK

(
Q

′

KQK

)−1

, (B.3)

V21 = V
′

12 = −µ3

σ2
0

V22ω
′

QK

(
Q

′

KQK

)−1

, V22 =

[(
µ4 − 3σ4

0

)
ω

′

ω + σ4
0∆− µ2

3

σ2
0

ω
′

PKω

]−1

. (B.4)
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A consistent estimator of Ω can be obtained by replacing σ2
0 , µ3 and µ4 with their initial consistent counter-482

parts.
The components of C(θ) = 1

nG
′

(θ)Ω̂−1g(θ) can be explicitly stated in the following way:

∂g(θ)

∂θ′
= −

[
Gρ (θ)︸ ︷︷ ︸
(q+K)×1

Gλ (θ)︸ ︷︷ ︸
(q+K)×1

Gβ (θ)︸ ︷︷ ︸
(q+K)×k

]
, (B.5)

where

Gρ (θ) =




Q
′

KM (Y − Zδ)

ε
′

n(θ)T
s
1M (Y − Zδ)

...

ε
′

(θ)T sqM (Y − Zδ)


 , Gλ (θ) =




Q
′

KR(ρ)WY

ε
′

(θ)T s1R(ρ)WY
...

ε
′

(θ)T sqR(ρ)WY


 , Gβ (θ) =




Q
′

KR(ρ)X

ε
′

(θ)T s1R(ρ)X
...

ε
′

(θ)T sqR(ρ)X


 .

Hence, the components of C(θ) can be determined as Cj(θ) = − 1
nG

′

ρ(θ)

[
V̂11 V̂12
V̂21 V̂22

]
g(θ) for j ∈ {ρ, λ, β}.484

Similarly, components of B(θ) can be determined as Bj,k (θ) =
1
nG

′

j(θ)

[
V̂11 V̂12
V̂21 V̂22

]
Gk(θ) for j, k ∈ {ρ, λ, β}.

To calculate the relevant parts of the test statistics for spatial parameters, we simply evaluate C(θ) and B(θ)486

at θ̃.
The relevant terms in the test statistics for the contextual effects can be determined from

Gψ (θ) =




Q
′

KR(ρ)X2

ε
′

(θ)T s1R(ρ)X2

...

ε
′

(θ)T sqR(ρ)X2


 , Gφ (θ) =




Q
′

KM (Y − Zδ) Q
′

KR(ρ)WY

ε
′

n(θ)T
s
1M (Y − Zδ) ε

′

(θ)T s1R(ρ)WY
...

...

ε
′

(θ)T sqM (Y − Zδ) ε
′

(θ)T sqR(ρ)WY


 , Gγ (θ) =




Q
′

KR(ρ)X1

ε
′

(θ)T s1R(ρ)X1

...

ε
′

(θ)T sqR(ρ)X1


 ,

where X1 =
(
X

′

11, . . . , X
′

1R

)′

and X2 =
(
X

′

21W
′

1, . . . , X
′

2RW
′

R

)′

. The components of C(θ) and B(θ) are488

calculated in a similar fashion as above for j, k ∈ {ψ, φ, γ}.

Appendix C. Detailed Expressions for ML Tests490

In this section, we state the explicit expressions for the relevant components of LM statistics. The first
order derivatives of the log-likelihood function are given below.

1. Lρ (θ) =
1

n∗σ2

(
ε
′

(θ) JH (ρ) ε (θ)− σ2tr (JH (ρ))
)
, (C.1)

2. Lλ (θ) =
1

n∗σ2
Y

′

W
′

R
′

(ρ)Jε(θ)− 1

n∗ tr (JG(λ)) , 3. Lγ (θ) =

[
1

n∗σ2 X̄
′

(ρ) Jε (θ)
1

2n∗σ2

(
ε
′

(θ) Jε (θ)− n∗σ2
)
]
, (C.2)

where H(ρ) =MR−1(ρ), X̄(ρ) = R(ρ)X. The components of Σ(θ) are given as
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Iρρ (θ) =
1

n∗ tr (H
s (ρ) JH (ρ)) , Iρλ (θ) =

1

n∗ tr
(
Hs (ρ) JḠ (λ, ρ)

)
, (C.3)

Iργ (θ) =

[
01×k,

1

n∗σ2
tr (JH (ρ))

]
, Iλρ (θ) =

1

n∗ tr
(
Hs (ρ) JḠ (λ, ρ)

)
, (C.4)

Iλλ (θ) =
1

n∗σ2

(
Ḡ (λ, ρ) X̄ (ρ)β

)′

J
(
Ḡ (λ, ρ) X̄ (ρ)β

)
+

1

n∗ tr
(
Ḡs (λ, ρ) JḠ (λ, ρ)

)
, (C.5)

Iλγ (θ) =

[
1

n∗σ2

(
Ḡ (λ, ρ) X̄ (ρ)β

)′

JX̄ (ρ) ,
1

n∗σ2
tr
(
JḠ (λ, ρ)

)]
, (C.6)

Iγρ (θ) =

[
01×k,

1

n∗σ2
tr (JH (ρ))

]′

, Iγγ (θ) =

[
1

n∗σ2 X̄
′

JX̄ 0k×1

01×k
1

2σ4

]
, (C.7)

Iγλ (θ) =

[
1

n∗σ2

(
Ḡ (λ, ρ) X̄ (ρ)β

)′

JX̄ (ρ) ,
1

n∗σ2
tr
(
JḠ (λ, ρ)

)]′

. (C.8)

where Ḡ(λ, ρ) = R(ρ)G(λ)R−1(ρ) and As = A+A
′

for any square matrix A. To calculate the required parts492

of the test statistics, the first order derivatives and the components of Σ(θ) are evaluated at θ̃.
The required parts in the test statistics for contextual effects are stated in the following.

1. Lψ (θ) =
1

n∗σ2
X

′

2R
′

(ρ) Jε (θ) , 2. Lφ (θ) =

[
1

n∗σ2

(
ε
′

(θ) JH (ρ) ε (θ)− σ2tr (JH (ρ))
)

1
n∗σ2Y

′

W
′

R
′

(ρ)Jε(θ)− 1
n∗

tr (JG(λ))

]
, (C.9)

3. Lγ (θ) =

[
1

n∗σ2X
′

1R
′

(ρ) Jε (θ)
1

2n∗σ2

(
ε
′

(θ) Jε (θ)− n∗σ2
)
]
. (C.10)

where X1 =
(
X

′

11, . . . , X
′

1R

)′

and X2 =
(
X

′

21W
′

1, . . . , X
′

2RW
′

R

)′

. Then,

Iψψ (θ) =
1

n∗σ2
X

′

2R
′

(ρ)JR(ρ)X2, Iψφ (θ) = I
′

φψ (θ) =
[
0k2×1

1
n∗σ2X

′

2R
′

(ρ)J
(
Ḡ (λ, ρ) X̄ (ρ)β

)]
(C.11)

Iψγ (θ) = I
′

γψ (θ) =
[

1
n∗σ2X

′

2R
′

(ρ)JR(ρ)X1 0k2×1

]
, (C.12)

Iφφ (θ) =

[
1
n∗

tr (Hs (ρ) JH (ρ)) 1
n∗

tr
(
Hs (ρ) JḠ (λ, ρ)

)

1
n∗

tr
(
Hs (ρ) JḠ (λ, ρ)

)
1

n∗σ2

(
Ḡ (λ, ρ) X̄ (ρ)β

)′

J
(
Ḡ (λ, ρ) X̄ (ρ)β

)
+ 1

n∗
tr
(
Ḡs (λ, ρ) JḠ (λ, ρ)

)
]
,

(C.13)

Iφγ (θ) = I
′

γφ (θ) =

[
01×k1

1
n∗σ2 tr (JH(ρ))

1
n∗σ2

(
Ḡ (λ, ρ) X̄ (ρ)β

)′

JR(ρ)X1
1

n∗σ2 tr
(
JḠ (λ, ρ)

)
]
, (C.14)

Iγγ (θ) =

[
1

n∗σ2X
′

1R
′

(ρ)JR(ρ)X1 0k1×1

01×k1
1

2σ4

]
. (C.15)

Appendix D. Proofs of Propositions494

In this section, we only provide proofs for Propositions 1 and 2. Other propositions can be proved
similarly, hence their proofs are omitted.496

Proof Proposition 1. Let θ̃ = (ρ⋆, λ⋆, γ̃
′

)
′

be the restricted optimal GMME under Hρ0 and Hλ0 . The first

result directly follows from
√
nCρ(θ̃)

d−→ N [−Hρ·βδρ −Hρλ·βδλ,Hρ·β ], where Hρ·β =
[
Hρρ −HρβH−1

ββHβρ

]
,

and Hρλ·β =
[
Hρλ −HρβH−1

ββHβλ

]
. Therefore, we provide the proofs for the last two results in the following.

To this end, we determine the joint distribution of Cρλ(θ̃) =
[
C

′

ρ(θ̃), C
′

λ(θ̃)
]′

under Hρ0 and HλA. When HρA
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and HλA hold, the first order Taylor expansions of the pseudo-scores Cρλ(θ̃) and Cβ(θ̃) around θ0 can be
stated as

√
nCρλ

(
θ̃
)
=

√
nCρλ (θ0)−

1

n
G

′

ρλ (θ0) Ω̂
−1Gρλ

(
θ̄
)
(δρ, δλ)

′

+
1

n
G

′

ρλ (θ0) Ω̂
−1Gβ

(
θ̄
)√

n
(
β̃ − β0

)
+ op(1),

(D.1)

√
nCβ

(
θ̃
)
=

√
nCβ (θ0)−

1

n
G

′

β (θ0) Ω̂
−1Gρλ

(
θ̄
)
(δρ, δλ)

′

+
1

n
G

′

β (θ0) Ω̂
−1Gβ

(
θ̄
)√

n
(
β̃ − β0

)
+ op(1),

(D.2)

where θ̄ lies between θ̃ and θ0, and Gρλ (θ) = [Gρ (θ) , Gλ (θ)]. Using (D.1) and (D.2) and Lemma 1, the
following equation can be obtained.

√
nCρλ

(
θ̃
)
=

[
−I2, Hρλ,βH−1

ββ

]
×
[
− 1√

n
G

′

ρλ (θ0) Ω
−1g (θ0)

− 1√
n
G

′

β (θ0) Ω
−1g (θ0)

]
−

[Hρ·β Hρλ·β
H′

ρλ·β Hλ·β

]
×
[
δρ
δλ

]
+ op(1) (D.3)

where Hρλ,β =
[
H′

ρβ , H
′

λβ

]′

. By Lemma 1, we have

[
1√
n
Gρλ (θ0) Ω

−1g(θ0)
1√
n
Gβ (θ0) Ω

−1g(θ0)

]
d−→ N [0, H]. Therefore, under

Hρ
0 and Hλ

A, the result in (D.3) implies that

√
nCρλ(θ̃)

d−→ N

[
−
[
Hρλ·γδλ
Hλ·γδλ

]
,

[Hρ·γ Hρλ·γ
H′

ρλ·γ Hλ·γ

]]
. (D.4)

The result in (D.4) can be used to determine the asymptotic distribution of the adjusted pseudo-gradient
√
n
[
Cρ(θ̃)−Hρλ·βH−1

λ·βCλ(θ̃)
]
=

[
1,−Hρλ·βH−1

λ·β

]√
nCρλ(θ̃). Then, using (D.4), we can find that

√
n
[
Cρ(θ̃)−Hρλ·βH−1

λ·βCλ(θ̃)
]
d−→ N

[
0,H1·3 −H12·3H−1

33 H
′

12·3

]
. (D.5)

This last result and Lemma 1 imply that LMg⋆
ρ

(
θ̃
) d−→ χ2

1. Note that, (D.5) also holds under Hρ
0 and Hλ

0 .
This completes the proof of Proposition 1 (2).498

The result in (D.3) can also be used to compare the asymptotic power of LMg⋆
1

(
θ̃
)
and LMg

1

(
θ̃
)
. Under

HρA and HλA, i.e., when there is no local parametric misspecification in the alternative model, the result in
(D.3) implies that

√
nC⋆ρ (θ̃)

d−→ N
[
−
(
Hρ·β −Hρλ·βH−1

λ·βH
′

ρλ·β
)
δρ, Hρ·β −Hρλ·βH−1

λ·βH
′

ρλ·β

]
. (D.6)

Therefore LMg⋆
ρ (θ̃)

d−→ χ2
1(ϑ2), where ϑ2 = δ2ρ

(
Hρ·β −Hρλ·βH−1

λ·βH
′

ρλ·β

)
. It follows that ϑ2 − ϑ4 ≥ 0, which

shows that LMg⋆
ρ

(
θ̃
)
has less asymptotic power than LMg

ρ

(
θ̃
)
when there is no local parametric misspecifica-500

tion. Note that the result in (D.6) also holds under HρA and HλA. This completes the proof of Proposition 1
(3).502

Proof of Proposition 2. The first result directly follows from
√
nCλ(θ̃)

d−→ N [−Hλ·βδλ −Hλρ·βδρ,Hλ·β ],

where Hλ·β =
[
Hλλ −HλβH−1

ββHβλ

]
, and Hλρ·β =

[
Hλρ −HλβH−1

ββHβρ

]
. Here, we provide only proofs

for the last two results of the proposition. We will determine the limiting distribution of Cλρ(θ̃) =
[
C

′

λ

(
θ̃
)
, C

′

ρ

(
θ̃
)]′

under Hλ0 and HρA. A result similar to (D.3) can be derived as

√
nCλρ

(
θ̃
)
=

[
−I2, Hλρ,βH−1

ββ

]
×
[
− 1√

n
G

′

λρ (θ0) Ω
−1g (θ0)

− 1√
n
G

′

β (θ0) Ω
−1g (θ0)

]
−

[Hλ·β Hλρ·β
H′

ρλ·β Hρ·β

]
×
[
δλ
δρ

]
+ op(1) (D.7)
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where Gλρ (θ) = [Gλ (θ) , Gρ (θ)] and Hλρ,β =
[
H′

λβ , H
′

ρβ

]′

. By Lemma 1, we have

[
− 1√

n
G

′

λρ (θ0) Ω
−1g (θ0)

− 1√
n
G

′

β (θ0) Ω
−1g (θ0)

]
d−→ N


0,



Hλλ Hλρ Hλβ

Hρλ Hρρ Hρβ

Hβλ Hβρ Hββ




 . (D.8)

Using (D.8) in (D.7), we obtain the following result under Hλ0 and HρA.

√
nCλρ

(
θ̃
) d−→ N

[
−
[
Hλρ·γδρ
Hρ·γδρ

]
,

[Hλ·γ Hλρ·γ
H′

λρ·γ Hρ·γ

]]
. (D.9)

Then, our assumptions and Lemma 1 ensure that

C⋆λ
(
θ̃
)
=

[
Cλ

(
θ̃
)
−Bλρ·β

(
θ̃
)
B−1
ρ·β

(
θ̃
)
Cρ

(
θ̃
)]

(D.10)

=
[
Cλ

(
θ̃
)
−Hλρ·βH−1

ρ·βCρ
(
θ̃
)]

+ op(1)
d−→ N

[
0, Hλ·β −Hλρ·βH−1

ρ·βH
′

λρ·β

]
.

This last result and Lemma 1 imply that LMg⋆
λ

(
θ̃
) d−→ χ2

1. Since (D.10) also holds under Hλ0 and Hρ0, the
result in Proposition 2 (2) follows.504

Under HλA and Hρ0, i.e., when there is no parametric misspecification in the alternative model, the result
in (D.7) implies that

√
nC⋆λ

(
θ̃
) d−→ N

[
−
(
Hλ·β −Hλρ·βH−1

ρ·βH
′

λρ·β
)
δλ, ,Hλ·β −Hλρ·βH−1

ρ·βH
′

λρ·β

]
. (D.11)

Therefore, LMg⋆
λ

(
θ̃
) d−→ χ2

1(ζ2), where ζ2 = δ2λ
(
Hλ·β − Hλρ·βH−1

ρ·βH
′

λρ·β
)
. It follows that ζ1 − ζ2 ≥ 0 under

HλA and Hρ0. This result indicates that LMg⋆
λ

(
θ̃
)
has less asymptotic power than LMg

λ

(
θ̃
)
when there is no506

local parametric misspecification in the model. Since (D.11) also holds under HλA and HρA, the last result in
Proposition 2 follows.508

Proof Corollary 1. These results directly follow by applying the inverse of the partitioned matrix formula to[
B1·3

(
θ̃
)]−1

and
[
I1·3

(
θ̃
)]−1

in (3.13) and (4.10), respectively.510
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