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Abstract

In this study, we consider Bayesian methods for the estimation of a sample selection model
with spatially correlated disturbance terms. We design a set of Markov chain Monte Carlo
(MCMC) algorithms based on the method of data augmentation. The natural parameterization
for the covariance structure of our model involves an unidentified parameter that complicates
posterior analysis. The unidentified parameter – the variance of the disturbance term in the
selection equation – is handled in different ways in these algorithms to achieve identification
for other parameters. The Bayesian estimator based on these algorithms can account for the
selection bias and the full covariance structure implied by the spatial correlation. We illustrate
the implementation of these algorithms through a simulation study.
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1 Introduction

A typical sample selection model consists of (i) a selection equation that models the selection mech-
anism through which we observe the level of outcome, and (ii) an outcome equation that describes
the process that is generating the outcome. The model structure is characterized by the correlation
between the disturbances of these equations, for which estimation requires special methods (Heck-
man, 1979, 1990; Lee, 1978, 1994; Newey, 2009; Olsen, 1980). Besides the cross equation correlation
in the disturbance terms, spatial correlation may also be present in the disturbance terms of each
equation. The spatial sample selection model considered in the present study accommodates both
type of correlations.

Selection models, or more generally Type-I or Type-II type Tobit models, may arise frequently
in urban economics, regional science, labor economics, agricultural economics, and social interaction
models. It is natural to consider a notion of spatial correlation in the unobservables so long as data
is organized by a notion of location in the relevant space. The presence of common shocks, factors,
cluster effects provides a natural motivation. For example, McMillen, (1995) studies residential land
values in urban areas through a sample selection model. He conjectures that unobserved variables
that make a parcel more likely to receive residential zoning may increase the value of residential
land. It is also plausible to allow for spatially correlated disturbance terms because nearby parcels
are likely to be affected by the same neighborhood factors and spillovers. Büchel and Ham, (2003)
studies overeducation– a job seeker’s overqualification for a job she accepts due to her location
constraints– through a Heckit model. The selection problem arises because overeducation observed
only for the employed. The authors state that the risk of overeducation largely determined by
spatial flexibility of a job seeker in combination with the spatial heterogeneity in suitable job
opportunities, relative to the place of residence. They try to control for spatial correlations in the
disturbance terms by clustering methods. Flores-Lagunes and Schnier, (2012) study (for details, see
our empirical illustration) the spatial production of fisheries in the Eastern Bering Sea through a
sample selection model. Since a negative shock that affects the fish population in a certain location
would affect the production of all vessels in other locations by displacing fishing effort into more
efficient surrounding locations, they allow disturbance terms to be spatially correlated.

Another motivation for considering spatial correlation is related to measurement error. The
mismatch between the spatial unit of observations (e.g., census tract, county, state, peer groups,
farm location, fishing zone etc.) and the unit of a study (e.g., student, household, housing market,
labor market, farm, fishing vessel, etc.) can cause measurement errors in the variables of interest
(Anselin, 2007). Since these measurement errors may vary systematically across space, the distur-
bance terms of a regression model over the same space are likely to be correlated. Ward et al.,
(2014) consider a sample selection model of cereal production where the selection equation specifies
a farmer’s endogenous decision about whether to plant cereals. They employ a first-order spatial
autoregressive model for the disturbance terms, because data on yields or climate are aggregated for
large administrative units, and correlation among unobservables may be driven by unobserved en-
vironmental, geographical and climatological clusters. Rabovič and Č́ıžek, (2016) provides another
example in the context of peer effects, where the outcome equation models a student’s achievement
on a test and the selection equation models the student’s decision whether to take the exam. It is
plausible that decision to take the exam and the score from the exam may depend on a student’s
ability that is likely to be similar to her peers’ abilities. Therefore, social interaction literature
often incorporate what is known as the “correlated effects” in the model (Lee et al., 2010).

The limited dependent variable models that accommodate spatial dependence have been studied
in terms of both estimation and testing issues. The maximum likelihood estimator (MLE) of a probit
model with a spatial autoregressive process requires evaluation of a multivariate normal cumulative
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distribution function, which often leads to numerical estimation problems. To circumvent this
shortcoming of the MLE, alternative methods have been suggested in the literature. For example,
McMillen, (1992) uses an expectation maximization (EM) algorithm to circumvent the evaluation of
the multivariate normal distribution function and suggests a tractable iterative estimation approach.
Beron and Vijverberg, (2004) use the recursive importance sampling (RIS) simulator to approximate
the log-likelihood function of the spatial probit model. Pinkse and Slade, (1998) formulate moment
functions from the score vector of a partial MLE for the generalized method of moments (GMM)
estimation of a spatial probit model. Instead of using entire joint distribution of observations
implied by the spatial dependence, Wang et al., (2013) formulate a partial MLE based on the
partial joint distribution of observations to reduce computational difficulties.

McMillen, (1995) extends the EM algorithm suggested in McMillen, (1992) to a sample selection
model that has a first order spatial autoregressive process in the disturbance term. The estimation
scheme requires inversion of an n×nmatrix at each iteration which makes this approach impractical
for large samples. Flores-Lagunes and Schnier, (2012) combine the GMM approach in Pinkse and
Slade, (1998) and Kelejian and Prucha, (1998) and suggest a GMM method for a sample selection
model that has a first order spatial autoregressive process in the disturbance terms. The moment
functions for the estimation of the selection equation are the ones suggested by Pinkse and Slade,
(1998) for the probit model. These moment functions are combined with the moment functions
formulated for the outcome equation to form a joint GMME. The simulation studies reported in
Flores-Lagunes and Schnier, (2012) show that the bias present in the selection equation parameters
adversely affects the estimation of the parameter of the outcome equation. Rabovič and Č́ıžek,
(2016) extends the partial maximum likelihood (ML) method of Wang et al., (2013) to a sample
selection model with a spatial lag of a latent dependent variable and a sample selection model with
spatially correlated disturbance terms. They establish the large sample properties of the proposed
partial MLE and provide a finite sample bias and precision comparison to the Heckit and the GMM
approach of Flores-Lagunes and Schnier, (2012). Overall, the proposed partial MLE outperforms
the Heckit and the GMM based estimator.

In this paper, we consider a sample selection model that has a first order spatial autoregres-
sive process for the disturbance terms of the selection and outcome equations.1 We consider the
Bayesian MCMC estimation approach for this model with various alternative Gibbs samplers. In
comparison with the GMM and partial ML approaches, the Bayesian approach with data augmenta-
tion formulates estimators that can exploit the full information on the spatial correlation structure.
The data augmentation method treats the underlying latent variable as an additional parameter to
be estimated and this treatment of latent variables facilitates the posterior simulation through an
MCMC sampler (Albert and Chib, 1993; van Dyk and Meng, 2001). The natural parameterization
for the covariance of our model involves an unidentified parameter which can complicate posterior
analysis. The unidentified parameter, i.e., the variance of the disturbance terms in the selection
equation, is handled in different ways in the suggested Gibbs samplers.

In the first algorithm, we specify prior distributions for the identified parameters and consider
the method suggested in Nobile, (2000) that can be used to construct a Markov chain that fixes the
unidentified parameter during the posterior analysis. In the second algorithm, we consider the re-
parameterization approach suggested in Li, (1998), McCulloch et al., (2000) and van Hasselt, (2011)
for the covariance matrix of the model. Given the bivariate normal distribution assumption for the
disturbance terms, the covariance matrix is re-parameterized in terms of conditional variance and
covariance of disturbance terms. In the third algorithm, we consider a different blocking scheme for

1To the best of our knowledge, McMillen, (1995), Flores-Lagunes and Schnier, (2012) and Rabovič and Č́ıžek,
(2016) are the only studies that consider estimation of sample selection models with spatial dependence.
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the full set of conditional posterior distributions. The Gibbs sampler operates by splitting the full
set of parameters into different blocks which can affect the mixing properties of the sampler. Hence,
we consider an alternative sampler where the parameter vector of the regressors in the outcome
equation and covariance term of the disturbance terms are sampled through a single block.

In the fourth and fifth algorithms, we consider samplers based on the parameter expansion
method (or the marginal data augmentation method) for the estimation of our model (Liu and Wu,
1999; Meng and van Dyk, 1999). The unidentified parameter, i.e., the variance of the disturbance
term in the selection equation, is introduced in the sampler through an appropriate prior distribution
to improve the convergence properties of the sampler. The proper prior distributions that can be
assigned to the unidentified parameter do not affect the posterior distribution of the identified
model parameters in these samplers but can improve the characteristics of the resulting Markov
chains. As a result, these algorithms accommodate the normalization constraint in the estimation
while improving the convergence rates of the resulting Markov chains.

Through a simulation study, we illustrate the implementation of these algorithms in the context
of our spatial sample selection model. Our results show that the Bayesian estimator in all algorithms
reports estimates that are close to the true parameter value for the autoregressive parameter of
the selection equation. For the autoregressive parameter in the outcome equation, the deviation of
the posterior mean estimate from the true parameter value is negligible for the Bayesian estimator
in Algorithms 1–4. As for the parameters of the exogenous variables in the selection and outcome
equations, the Bayesian estimator in Algorithms 1 and 4 performs relatively better in terms of
reported deviations between the point estimates and the true parameter values. Our results also
indicate that all algorithms have similar mixing properties under our priors specifications. For an
empirical illustration, we use the application in the area of natural resource economics considered in
Flores-Lagunes and Schnier, (2012) to model the spatial production within a fishery with a spatial
sample selection model. Our Bayesian estimator reports much precise estimates for this application
as it accounts for the full covariance structure implied by the spatial correlation.

The remainder of this article is divided into five sections. In Section 2, we provide the model
specification. In Section 3, we provide the posterior analysis including prior specifications. We
present the details of our simulation design in Section 4. We evaluate the relative performance
of algorithms in this section. In Section 5, we provide an empirical illustration and examine the
relevance of Bayesian estimates in comparison with the estimates from a GMME suggested by
Flores-Lagunes and Schnier, (2012). Section 6 concludes. Some technical results and figures are
left to a web appendix.

2 Model Specification

We consider the following Type II Tobit model with a first order spatial autoregressive process:

Y ⋆
1i = X

′

1iβ + U1i, U1i = λ

n
∑

j=1

WijU1j + ε1i, (2.1)

Y ⋆
2i = X

′

2iδ + U2i, U2i = ρ

n
∑

j=1

MijU2j + ε2i, (2.2)

for i = 1, . . . , n. Here, Y ⋆
1i and Y

⋆
2i are, respectively, the latent variables of selection and outcome

equations, X1i and X2i are, respectively, k1 × 1 and k2 × 1 vectors of non-stochastic exogenous
variables with associated vectors of coefficients β and δ. Let W and M be n × n spatial weight
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matrices of known constants with zero diagonal elements. The (i, j)th element of these matrices
are respectively denoted by Wij and Mij in (2.1) and (2.2). Hence, the regression disturbance term
U1i and U2i are allowed to depend on the disturbance terms of other observations. The parameters
λ and ρ are known as the spatial autoregressive parameters. The innovations terms ε1i and ε2i are
assumed to be i.i.d N(0,Σ) with

Σ =

(

σ21 = 1 σ12
σ12 σ22

)

=

(

1 ̺σ2
̺σ2 σ22

)

(2.3)

where ̺ is the correlation coefficient between ε1i and ε2i. The observed variable Y1i for the selection
equation is related to the latent variable Y ⋆

1i by Y1i = I(Y ⋆
1i > 0) for i = 1, . . . , n, where I(·) is the

indicator function. The observed variable Y2i for the outcome equation is related to both the latent
variables of the selection and outcome equations by

Y2i =

{

Y ⋆
2i = X

′

2iδ + U2i if Y1i = 1

missing if Y1i = 0
(2.4)

for i = 1, . . . , n. For the non-spatial model where λ = ρ = 0, the OLS estimator of δ based on
the subsample obtained when Y1i = 1 is inconsistent when σ12 6= 0. This result is the well-known
selectivity bias problem (Heckman, 1979).2

There are two identification issues related to sample selection models: (i) the normalization
imposed on the variance of ε1i, and (ii) the exclusion restriction. Without the normalization
σ21 = 1, multiple values for the model parameters give rise to the same value for the likelihood
function. Hence, the normalization can be considered as a way to achieve identification. The
exclusion restriction, on the other hand, is relevant for the precision of estimator rather than
for the identification of parameters. When there is no exclusion restriction, i.e., X1i = X2i, the
parameters are still identified within the ML framework (Lee, 2003; Wooldridge, 2002).3 However,
if an excluded variable from the outcome equation is a relevant variable, i.e., when the exclusion
restriction is false, then the suggested estimator will suffer from the omitted variable bias (Lee,
2003).4

For the Bayesian estimation of non-spatial sample selection model, the data is usually stacked
for each pair of the latent observations such that the ith observation is a vector denoted by Y ⋆

i =
(Y ⋆

1i, Y
⋆
2i)

′
. Hence, the model can be written in a compact way by stacking over the pair of the

2In the literature, there are other variants of the non-spatial sample selection model. For example, van Hasselt,
(2005) and Wooldridge, (2002) suggest a two-part model where the outcome equation is different than that of the
Type II Tobit model. The difference arises because the two-part model assumes that the disturbance terms U1i and
U2i are independent conditional on Y ⋆

1i > 0. Another closely related variant is the Roy Model (or Type V Tobit
model) which is a three equation model, where the first equation determines a selection outcome and the remaining
two equations describe the main outcome for the cases of Y1i = 1 and Y1i = 0, respectively. Li, (1998) considers a
variant in which the outcome equation is a Tobit equation. Hence, the observed variable for the outcome equation
does not depend on the observed variable of the selection equation. In the variant considered by Chib et al., (2009),
the selection equation is a Tobit type equation, and the observed variable of the outcome equation depends on the
observed variable of the selection equation.

3There is also no identification problem for the Heckit of Heckman, (1979). However, this situation can introduce
severe collinearity between X2i and the inverse Mills ratio, which can lead to imprecise estimators. The ML estimator
may also show poor performance when there is no exclusion restriction. For some simulation evidence, see Leung and
Yu, (1996).

4Note that the bivariate normality assumption facilitates the posterior analysis for our model. The performance
of the Bayesian estimator under a distributional misspecification requires further investigation, which is beyond the
scope of this paper. In this respect, a non-parametric approach that relaxes the bivariate normality assumption can
be a direction for future studies.
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latent observations. Due to the presence of spatial dependence in disturbance terms, we do not use
the same format for our model. Instead, we stack each equation independently and get

Y ⋆
1 = X1β + S−1(λ)ε1, Y ⋆

2 = X2δ +R−1(ρ)ε2, (2.5)

where S(λ) = (In − λW ), R(ρ) = (In − ρM), Y ⋆
j = (Y ⋆

j1, Y
⋆
j2, . . . , Y

⋆
jn)

′
, Xj = (X

′

j1, X
′

j2, . . . , X
′

jn)
′

and εj = (εj1, εj2, . . . , εjn)
′
for j = 1, 2. Let θ = (β

′
, δ

′
)
′
be the augmented parameter vector.

Furthermore, let Y ⋆ =
(

Y ⋆′
1 , Y

⋆′
2

)′

, X =

(

X1 0n×k2

0n×k1 X2

)

and ε =
(

ε
′

1S
−1′(λ), ε

′

2R
−1′(ρ)

)′

. Then,

our model can be more compactly written as

Y ⋆ = Xθ + ε, and E(εε
′

) = Ω = K(λ, ρ)
(

Σ⊗ In
)

K′

(λ, ρ), (2.6)

where K(λ, ρ) =

(

S−1(λ) 0n×n

0n×n R−1(ρ)

)

.

3 Posterior Analysis

For the posterior analysis, the prior distributions need to be assigned to parameters of the model.
We assume that the prior distribution functions of parameters of the model are independent. Let
p(θ, λ, ρ,Σ) = p(θ)p(λ)p(ρ)p(Σ) be the joint prior distribution function. We assume the following
prior distribution functions:

p(θ) = (2π)−k/2|V0|−1/2 exp

{

− 1

2
(θ − µ0)

′

V −1
0 (θ − µ0)

}

, (3.1)

p(Σ) =

(

2v0π1/2
2
∏

i=1

Γ
(v0 + 1− i

2

)

)−1

|T0|v0/2|Σ|−(v0+3)/2 exp

{

− 1

2
tr
(

T0Σ
−1
)

}

I(Σ11 = 1),

(3.2)

p(λ) =

{

κ1/2 if λ ∈ (−1/κ1, 1/κ1)

0 otherwise
, (3.3)

p(ρ) =

{

κ2/2 if ρ ∈ (−1/κ2, 1/κ2)

0 otherwise
. (3.4)

The prior in (3.2), denoted with InvWish(T0, v0), is the inverse Wishart distribution function
which can be considered as the multivariate extension of the inverse-gamma distribution. As shown
in Nobile, (2000), the normalization constraint in the selection equation is imposed on the prior
through the indicator function I(Σ11 = 1), where (1, 1)th element Σ11 is set to 1.5 The uniform
prior distributions for the autoregressive parameters in (3.3) and (3.4) indicate that all values in
the corresponding intervals are equally probable. In these formulations, κ1 and κ2 are the spectral
radius of W and M , respectively.6 For the posterior analysis, the vectors of observed variables
corresponding to the selection and the outcome equation are respectively denoted by Y1 and Y2.

5Following Nobile, (2000), we provide an algorithm for sampling from the inverse Wishart distribution subject to
I(Σ11 = 1) in the web appendix.

6Note that the intervals (−1/κ1, 1/κ1) and (−1/κ2, 1/κ2) can be considered as the parameter spaces for λ and
ρ, respectively (Kelejian and Prucha, 2010). An alternative to the uniform prior is the four parameter Beta prior
introduced in LeSage and Pace, (2009) for autoregressive parameters.
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Let Y = (Y
′

1 , Y
′

2 ) be the combined vector on observed variables. The joint augmented posterior
kernel including the latent variable Y ⋆ can be expressed as

p(θ, λ, ρ,Σ, Y ⋆
∣

∣Y ) ∝ p(θ)p(λ)p(ρ)p(Σ)p(Y ⋆|θ, λ, ρ,Σ)p(Y |θ, λ, ρ,Σ, Y ⋆). (3.5)

From our stacked model in (2.6), it can be easily determined that

p(Y ⋆|θ, λ, ρ,Σ) = (2π)−n|S(λ)||R(ρ)||Σ|−n/2 × exp

{

− 1

2
(Y ⋆ −Xθ)

′

Ω−1(Y ⋆ −Xθ)

}

. (3.6)

Given (3.6), we can infer the conditional distributions of blocks Y ⋆
1 and Y ⋆

2 . These conditional
distributions are normal distributions with the following means and covariances (Geweke, 2005,
Theorem 5.3.1, p.171)

Y ⋆
1 |Y ⋆

2 , θ, λ, ρ,Σ ∼ N(ψ,Ψ), Y ⋆
2 |Y ⋆

1 , λ, ρ,Σ ∼ N(ϕ,Υ), (3.7)

where

ψ = X1β +
(

σ12/σ
2
2

)

S−1(λ)R(ρ)
(

Y ⋆
2 −X2δ

)

, Ψ =
(

1− σ212/σ
2
2

)

S−1(λ)S−1′(λ),

ϕ = X2δ + σ12R
−1(ρ)S(λ)

(

Y ⋆
1 −X1β

)

, Υ =
(

σ22 − σ212
)

R−1(ρ)R−1′(ρ).

From the augmented joint posterior distribution in (3.5), the kernel of the conditional posterior of
θ can be determined by collecting all terms that are not multiplicatively separable from θ. Thus

p
(

θ|ρ, λ,Σ, Y ⋆
)

∝ exp

{

− 1

2

(

θ − µ0
)′

V −1
0

(

θ − µ0
)

}

exp

{

− 1

2

(

Y ⋆ −Xθ
)′

Ω−1
(

Y ⋆ −Xθ
)

}

.

(3.8)

This result in (3.8) implies that

θ|ρ, λ,Σ, Y ⋆, Y ∼ N(µ1, V1) (3.9)

where V1 =
(

V −1
0 +X

′
Ω−1X

)−1
and µ1 = V1

(

V −1
0 µ0 +X

′
Ω−1Y ⋆

)

.
The conditional posterior kernel of Σ is

p(Σ|ρ, λ, Y ⋆, Y ) ∝ |Σ|−(v0+3+n)/2 exp

{

− 1

2

[

tr
(

T0Σ
−1
)

+ (Y ⋆ −Xθ)
′

Ω−1(Y ⋆ −Xθ)
]

}

× I
(

Σ11 = 1
)

. (3.10)

The exponent term in p
(

Y ⋆|θ, λ, ρ,Σ
)

can be written in a more compact way to facilitate the

derivation of the conditional posterior of Σ. Using Ω−1 = K′−1(λ, ρ)
(

Σ−1 ⊗ In
)

K−1(λ, ρ), ε1 =
S(λ)Y ⋆

1 − S(λ)X1β, ε2 = R(ρ)Y ⋆
2 −R(ρ)X1δ and the matrix trace operator, we obtain

(

Y ⋆ −Xθ)
′

Ω−1(Y ⋆ −Xθ
)

= tr

(

(

Y ⋆ −Xθ
)′

Ω−1
(

Y ⋆ −Xθ
)

)

= tr(A1 × Σ−1), (3.11)
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where A1 =

(

ε
′

1ε1 ε
′

1ε2
ε
′

2ε1 ε
′

2ε2

)

. Substituting (3.11) into (3.10) yields

p(Σ|ρ, λ, Y ⋆, Y ) ∝ |Σ|−(v0+3+n)/2 exp

{

− 1

2
tr

(

(

T0 +B
)

Σ−1

)}

× I
(

Σ11 = 1
)

(3.12)

The above result shows that the conditional posterior density of Σ is given by

Σ|θ, ρ, λ, Y ⋆, Y ∼ InvWish(v1, T1)× I(Σ11 = 1), (3.13)

where v1 = v0 + n and T1 = T0 + A1. The random draws from InvWish(v1, T1) should also be
conditional on the normalization constraint of Σ11 = 1. An algorithm similar to the one suggested
in Nobile, (2000) can be designed for imposing this constraint on the random draws.

Finally, the conditional posterior distributions for autoregressive parameters take the following
forms:7

p(λ|θ, ρ,Σ, Y ⋆, Y ) ∝ |S(λ)| × exp

{

− 1

2

(

σ22
σ22 − σ212

ε
′

1ε1 −
2σ12

σ22 − σ212
ε
′

2ε1

)}

× I
(

λ ∈ (−1/κ1, 1/κ1)
)

, (3.14)

p(ρ|θ, λ,Σ, Y ⋆, Y ) ∝ |R(ρ)| × exp

{

− 1

2

(

1

σ22 − σ212
ε
′

2ε2 −
2σ12

σ22 − σ212
ε
′

2ε1

)}

× I
(

ρ ∈ (−1/κ2, 1/κ2)
)

. (3.15)

Both conditional posterior densities in (3.14) and (3.15) are not in the form of known densities.
Sampling for both λ and ρ can be accomplished through a Metropolis-Hasting algorithm. LeSage
and Pace, (2009) suggest a random walk Metropolis-Hasting algorithm in which a normal distribu-
tion is used as the proposal distribution to generate random draws for these parameters.8 According
to this method, the candidate values (λnew, ρnew) are generated by

(

λnew

ρnew

)

=

(

λold

ρold

)

+

(

zλ 0
0 zρ

)

×
(

Zλ

Zρ

)

, where

(

Zλ

Zρ

)

∼ N (02×1, I2) . (3.16)

The parameters zλ and zρ in (3.16) are called the tuning parameters which ensure that the sampler
moves over the entire conditional posterior distributions of the autoregressive parameters.9 The
candidate values generated through (3.16) are subject to the parameter space constraints. That is,
the candidate values, for which λnew 6∈ (−1/κ1, 1/κ1) and ρ

new 6∈ (−1/κ2, 1/κ2), are rejected as a
way of imposing the parameter space constraints. Since the increment random variables Zλ and
Zρ are standard normal, the acceptance probability values for the candidate (λnew, ρnew) take the

following forms: (Pr (λnew) ,Pr (ρnew)) =

(

min
{

1, p(λnew|θ,ρ,Σ,Y ∗,Y )

p(λold|θ,ρ,Σ,Y ∗,Y )

}

,min
{

1, p(ρnew|θ,λ,Σ,Y ∗,Y )

p(ρold|θ,λ,Σ,Y ∗,Y )

}

)

.

The candidates λnew and ρnew are accepted, respectively, with probabilities Pr (λnew) and Pr (ρnew).
Now we turn the conditional posterior distribution of latent variables. From the augmented joint

7With the parameterization in (2.3), we have (Y ⋆ −Xθ)
′

Ω−1(Y ⋆ −Xθ) =
σ2

2

σ2

2
−σ2

12

ε
′

1ε1 −
2σ12

σ2

2
−σ2

12

ε
′

2ε1 +
1

σ2

2
−σ2

12

ε
′

2ε2.

We use this result in (3.14) and (3.15).
8For some Monte Carlo results on the performance of this algorithm, see Doǧan and Taşpınar, (2014).
9We set zλ = zρ = z⋆ = 0.5 at the initial step. As suggested in LeSage and Pace, (2009), we adjust z⋆ so that the

acceptance rates fall between 40% and 60% during the sampling process. A modified version of the tuned random
walk procedure is to fix z⋆ after the burn-in period. During the burn-in period, the values of z⋆ can be collected and
then the mean of these collected values can be used as the tuning parameter for the sampler.
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posterior distribution function in (3.5), the conditional posterior of latent variable is proportional
to p (Y ⋆|θ, λ, ρ,Σ) p (Y |θ, λ, ρ,Σ, Y ⋆) = p (Y ⋆|θ, λ, ρ,Σ) p (Y |Y ⋆), where we use the fact that the
observable variable Y is determined with certainty given the information on latent variable Y ⋆

regardless of θ, λ, ρ, and Σ. Depending on the sign of the latent variable of the selection equation,
this conditional posterior will be in the from of a truncated multivariate normal distribution. As
in the case of non-spatial sample selection model, there are two cases: (i) Y ⋆

1i ≤ 0, i.e., Y1i = 0
and (ii) Y ⋆

1i > 0, i.e, Y1i = 1. Let N0 = {i : Y1i = 0} be the index set of observations for which
Y ⋆
1i ≤ 0. Similarly, let N1 = {i : Y1i = 1} be the index set of observations for which Y ⋆

1i > 0.
For the outcome equation, N0 contains indices of missing outcomes whereas N1 contains indices of
observed outcomes.

The conditional posterior of latent variable can be written as

p
(

Y ⋆|θ, λ, ρ,Σ, Y
)

∝ p
(

Y ⋆
1 , Y

⋆
2

∣

∣θ, λ, ρ,Σ
)

p
(

Y |Y ⋆
)

= p
(

Y ⋆
2

∣

∣Y ⋆
1 , θ, λ, ρ,Σ

)

p
(

Y ⋆
1 |θ, λ, ρ,Σ

)

p
(

Y |Y ⋆
)

(3.17)

where the proportionality in the first line follows from (3.5). The result in (3.17) also sug-
gests a computational implementation based on the method of composition for sampling from
p
(

Y ⋆
∣

∣θ, λ, ρ,Σ, Y
)

. We can first draw Y ⋆
1 from p

(

Y ⋆
1 |θ, λ, ρ,Σ

)

= N
(

X1β, S
−1(λ)S−1′(λ)

)

subject
to −∞ < Y ⋆

1i ≤ 0 for i ∈ N0, and 0 < Y ⋆
1i <∞ for i ∈ N1. Then, this draw can be used to generate

a draw of Y ⋆
2 from the conditional distribution p

(

Y ⋆
2

∣

∣Y ⋆
1 , θ, λ, ρ,Σ

)

= N
(

ϕ,Υ
)

for the observations
corresponding to indices in N0.

10.
In the first step of method of composition, we need to sample from the truncated multivariate

normal distribution. The algorithm suggested in Geweke, (1991) can be used to generate random
draws from the truncated multivariate normal distributions. Consider a random vector that has a
multivariate normal distribution subject to a linear constraint. The conditional distribution of an
individual element on all other elements of the vector is a univariate truncated normal distribution.11

Geweke, (1991) uses this result and suggests a Gibbs sampler to generate random draws from the
truncated multivariate normal distributions. In our simulation study, we use the same approach.
The sampling steps for the latent variable can be summarized as follows.

Imputation Step:

1. Use the Gibbs sampler suggested in Geweke, (1991) to generate Y ⋆
1 from

N
(

X1β, S
−1(λ)S−1′(λ)

)

subject to −∞ < Y ⋆
1i ≤ 0 for i ∈ N0, and 0 < Y ⋆

1i < ∞ for
i ∈ N1.

2. Use the vector Y ⋆
1 obtained in Step 1 to generate Y ⋆

2 from

MVN
(

X2δ + σ12R
−1(ρ)S(λ) (Y ⋆

1 −X1β) ,
(

σ22 − σ212
)

R−1(ρ)R−1′(ρ)
)

. (3.18)

3. Use draws from Step 1 to update Y ⋆
1 . For the case of Y ⋆

2 , use draws from Step 2 to update
Y ⋆
2 only for i ∈ N0 since Y ⋆

2 for i ∈ N1 is observed.

In the case of a non-spatial sample selection model, the draws of Y ⋆
1i for i ∈ N1 are generated

conditional on the observed outcome values. As shown above, these observations are not sampled

10The explicit form of N (ϕ,Υ) is given in (3.7). This multi-step method for sampling from p(Y ⋆|θ, λ, ρ,Σ, Y ) is
called the method of composition. For details, see Chib, (2001, p.3576)

11Chopin, (2011) describes an alternative numerical scheme which is computationally faster than some other alter-
native algorithms for sampling from a univariate truncated normal distribution.
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conditional on the observed values of the outcome equation, instead they are sampled from the
truncated marginal distribution of Y ⋆

1 . This difference arises because of the presence of spatial
dependence in our model.12

For an alternative algorithm, we consider the re-parametrization approach used in Li, (1998),
McCulloch et al., (2000) and van Hasselt, (2011) for Σ. Given our bivariate normality assumption

for
(

ε1i, ε2i
)′

, the conditional variance of ε2i given ε1i is Var (ε2i|ε1i) = σ22 − σ212/σ
2
1, where σ

2
1 is

the variance of ε1i. Imposing the normalization restriction of σ21 = 1 yields Var (ε2i|ε1i) = σ22 −σ212.
Let Var (ε2i|ε1i) = ξ2, then σ22 = σ212+ ξ

2. In this approach, the population expectation of ε2i given
ε1i is formulated with

ε2i = σ12ε1i + ηi, (3.19)

where ηi is i.i.d N(0, ξ2). In (3.19), the linearity is assumed in the population regression of ε2i on
ε1i. This result is always implied by the bivariate normal assumption. This re-parameterization
allows us to work with the model in terms of parameters σ12 and ξ2 such that

Σ =

(

1 σ12
σ12 σ212 + ξ2

)

. (3.20)

For the posterior analysis, we assume the following prior distributions: σ12|ξ2 ∼ N
(

0, τξ2
)

, and
ξ2 ∼ IG (a0, b0), where IG (a0, b0) is the inverse gamma density function with shape parameter
a0 and scale parameter b0. The prior dependence between ξ and σ12 is suggested in van Hasselt,
(2011), and the parameter τ is used to adjust the shape of prior implied for the correlation coefficient
between ε1i and ε2i. In Section 4, we provide the details about the elicitation of this parameter.

From the joint augmented posterior distribution, the conditional posterior of ξ2 is determined
by collecting all terms that are not multiplicatively separable from ξ2, which is given by

p(ξ2|θ, λ, ρ, σ12,Y ⋆, Y ) ∝
(

ξ2
)−(

2a0+n+1

2
+1)

exp

{

− 1

ξ2

(

b0 +
σ212
2τ

+
σ212
2
ε
′

1ε1 − σ12ε
′

2ε1 +
1

2
ε
′

2ε2

)}

,

(3.21)

where ε1 = S(λ)Y ⋆
1 − S(λ)X1β, and ε2 = R(ρ)Y ⋆

2 −R(ρ)X2δ.
13 The result (3.21) implies that

ξ2|θ, λ, ρ, σ12, Y ⋆, Y ∼ IG (a1, b1) , (3.22)

where a1 = 2a0+n+1
2 and b1 = b0 +

σ2
12

2τ +
σ2
12

2 ε
′

1ε1 − σ12ε
′

2ε1 + 1
2ε

′

2ε2. Similarly, the conditional
posterior of σ12 is given as

p
(

σ12|θ, λ, ρ, ξ2, Y ⋆, Y
)

∝ exp

{

− 1

2

(

σ12 − τε
′

2
ε1

1+τε
′

1
ε1

)2

τξ2(1 + τε
′

1ε1)
−1

}

. (3.23)

12We provide an alternative sampling scheme in which these observations can be drawn conditional on the observed
outcome values. For details, see the web appendix.

13Using parameterization in (3.20), we have (Y ⋆ −Xθ)
′

Ω−1(Y ⋆ −Xθ) = ε
′

1ε1 +
σ2

12

ξ2
ε
′

1ε1 −
2σ12

ξ2
ε
′

2ε1 +
1

ξ2
ε
′

2ε2. We

use this result in (3.21).
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The above result implies that

σ12|θ, λ, ρ, ξ2, Y ⋆, Y ∼ N

(

τε
′

2ε1

1 + τε
′

1ε1
,

τξ2

(1 + τε
′

1ε1)

)

. (3.24)

With this new parameterization, the conditional posterior distributions for autoregressive parame-
ters take the following forms:

p(λ|θ, ρ, σ12, ξ2, Y ⋆, Y ) ∝ |S(λ)| × exp

{

− 1

2

(

ε
′

1ε1 +
σ212
ξ2
ε
′

1ε1 −
2σ12
ξ2

ε
′

2ε1

)}

, (3.25)

p
(

ρ|θ, λ, σ12, ξ2, Y ⋆, Y
)

∝ |R(ρ)| × exp

{

− 1

2

(

1

ξ2
ε
′

2ε2 −
2σ12
ξ2

ε
′

2ε1

)}

. (3.26)

Again, the random walk Metropolis-Hasting algorithm described in (3.16) can be used to generate
random draws for these parameters.

The Gibbs samplers outlined so far are summarized in the following algorithms.

Algorithm 1:

1. Let
(

θ0,Σ0, λ0, ρ0
)

be the initial parameter values.

2. Update θ: Sample θ from (3.9).

3. Update Σ: Sample Σ from (3.13).

4. Update λ and ρ: Sample these parameters from (3.14) and (3.15) using a Metropolis-Hasting
algorithm.

5. Update Y ⋆
1 and Y ⋆

2 using the imputation step.

Algorithm 2:

1. Let (θ0, σ012, ξ
2,0, λ0, ρ0) be the initial parameter values.

2. Update θ: Sample θ from (3.9).

3. Update σ12: Sample σ12 from (3.24).

4. Update ξ2: Sample ξ2 from (3.22).

5. Update λ and ρ: Sample these parameters from (3.25) and (3.26) using a Metropolis-Hasting
algorithm.

6. Update Y ⋆
1 and Y ⋆

2 using the imputation step.

The Gibbs samplers outlined in Algorithms 1 and 2 operate by splitting the full set of parameters
into different blocks. In general, the design of blocks is determined whether the conditional density
of each block takes a known form. Gilks et al., (1995) and Chib, (2001) suggest that the set
of parameters that are highly correlated should be treated as one block to improve mixing. For
the non-spatial sample selection model, van Hasselt, (2005) shows that σ12 has a direct effect on
δ, implying a high correlation between these parameters. Therefore, we consider an alternative
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sampler in which the sampling for δ and σ12 is carried out jointly. Given the re-parameterization
in (3.19), the model can be written as

Y ⋆
1 = X1β + S−1(λ)ε1 (3.27)

Y ⋆
2 = X2δ +R−1(ρ) [σ12ε1 + η] = Zγ +R−1(ρ)η (3.28)

where η ∼ N
(

0, ξ2In
)

, Z =
(

X2, R
−1(ρ)ε1

)

, and γ =
(

δ
′
, σ12

)′

. Following van Hasselt, (2011), we
assume the following prior distributions: β ∼ N (h0, H0), ξ

2 ∼ IG (a0, b0), and γ|ξ2 ∼ N (p0, P0)

where p0 =
(

d
′

0, g0

)′

and P0 =

(

D0 0
0 τξ2

)

. The prior distributions for the autoregressive pa-

rameters are the uniform distributions stated in (3.3) and (3.4). Starting from β, the posterior
distribution is given by

p
(

β|λ, Y ⋆
1 , Y1

)

∝ N
(

h0, H0

)

× exp

{

− 1

2

(

Y ⋆
1 −X1β

)′

S
′

(λ)S(λ)
(

Y ⋆
1 −X1β

)

}

. (3.29)

Then, it follows that

β|λ, Y ⋆
1 , Y1 ∼ N

(

h1, H1

)

, (3.30)

where h1 = H1

(

X
′

1S
′
(λ)S(λ)Y ⋆

1 + H−1
0 h0

)

, and H1 =
(

X
′

1S
′
(λ)S(λ)X1 + H−1

0

)−1
. Similarly, the

conditional posterior of γ is stated as

p
(

γ|β, λ, ρ, σ12, ξ2, Y, Y ⋆
)

∝ N(p0, P0)× exp

{

− 1

2
ξ−2
(

Y ⋆
2 − Zγ

)′

R
′

(ρ)R(ρ)
(

Y ⋆
2 − Zγ

)

}

.

(3.31)

With the same argument used to derive the result in (3.30), it can be shown that

γ|β, λ, ρ, σ12, ξ2, Y, Y ⋆ ∼ N
(

p1, P1

)

, (3.32)

where p1 = P1

(

ξ−2Z
′
R

′
(ρ)R(ρ)Y ⋆

2 + P−1
0 p0

)

, and P1 =
(

ξ−2Z
′
R

′
(ρ)R(ρ)Z + P−1

0

)−1
. Using η =

R(ρ)Y ⋆
2 −R(ρ)Zγ, the conditional posterior of ξ2 is given by

p
(

ξ2|β, γ, λ, ρ, σ12, Y, Y ⋆
)

∝ (ξ2)−(
2a0+n−2

2
+1) exp

{

− 1

ξ2

(

b0 +
1

2τ
(σ12 − g0)

2 +
1

2
η
′

η

)}

.

(3.33)

The above result implies that

ξ2|β, γ, λ, ρ, σ12, Y, Y ∗ ∼ IG(a1, b1), (3.34)

where a1 =
2a0+n−2

2 and b1 = b0 +
1
2τ

(

σ12 − g0
)2

+ 1
2η

′
η. For the spatial autoregressive parameters,

12



we have

p (λ|β, Y, Y ⋆) ∝ |S(λ)| exp
{

(S(λ)Y ⋆
1 − S(λ)X1β)

′

(S(λ)Y ⋆
1 − S(λ)X1β)

}

(3.35)

p
(

ρ|β, γ, λ, σ12, ξ2, Y, Y ⋆
)

∝ |R(ρ)| exp
{

− 1

2
ξ−2 (R(ρ)Y ⋆

2 −R(ρ)Zγ)
′

(R(ρ)Y ⋆
2 −R(ρ)Zγ)

}

.

(3.36)

Again, the results in (3.35) and (3.36) do not correspond to any known densities. The sampling
for these parameters can be accomplished thorough the random walk Metropolis-Hasting algorithm
described in (3.16).

Finally, the conditional posteriors of latent variables are required to complete the Gibbs sampler.
The model stated in (3.27) and (3.28) suggests that the conditional posterior of Y ⋆

1 is truncated
multivariate normal distribution, where the bounds of truncation are determined by cases (i) Y1i = 0
and (ii) Y1i = 1. Given the formulation in (3.27), we have

Y ⋆
1 |β, λ, Y1 ∼ N

(

X1β, S
−1(λ)S

′−1(λ)
)

, (3.37)

subject to (i) −∞ < Y ⋆
1i ≤ 0 for i ∈ N0 and (ii) 0 < Y ⋆

1i < ∞ for i ∈ N1. Once Y ⋆
1 is updated, Y ⋆

2

can be updated by using ε1 from the current iteration. For the outcome equation, we only need
draws for the missing observations. We consider two approaches. In the first approach, we simply
draw Y ⋆

2 from N
(

Zγ, ξ2R−1(ρ)R−1′(ρ)
)

and update Y ⋆
2i for i ∈ N0. For the second approach, we

assume that Y ⋆
2 =

(

Y ⋆′
2,1, Y

⋆′
2,2

)′

, where the first n1 × 1 block of Y ⋆
2,1 contains missing values and

the second n2 × 1 block of Y ⋆
2,2 contains the observed observations. As suggested in LeSage and

Pace, (2009) for the case of spatial Tobit model, we can generate Y ⋆
2,1 conditional on Y ⋆

2,2. This
conditional distribution can be determined from the following marginal distribution:

(

Y ⋆
2,1

Y ⋆
2,2

) ∣

∣

∣

∣

β, γ, λ, σ12, ξ
2 ∼ N

(

Zγ, ξ2R−1(ρ)R−1′(ρ)

)

. (3.38)

Using (3.38), we have the following partition:

(

Y ⋆
2,1

Y ⋆
2,2

) ∣

∣

∣

∣

β, γ, λ, σ12, ξ
2 ∼ N

((

Z1γ1
Z2γ2

)

,

(

R11(ρ) R12(ρ)
R21(ρ) R22(ρ)

))

where Z1γ1 and Z2γ2 are respectively the first n1 × 1 block and the second n2 × 1 block of Zγ.
R11(ρ) is the first n1 × n1 block of ξ2R−1(ρ)R−1′(ρ), and the other elements are defined similarly.
The above partition implies the following conditional posterior distribution:

Y ⋆
2,1

∣

∣β, γ, λ, σ12, ξ
2, Y ⋆

2,2, Y

∼ N

(

Z1γ1 +R12(ρ)R
−1
22 (ρ)

[

Y ⋆
2,2 − Z2γ2

]

, R11(ρ)−R12(ρ)R
−1
22 (ρ)R21(ρ)

)

. (3.39)

We summarize this alternative sampler in the following algorithm.

Algorithm 3:

1. Let (β0, γ0, ξ2,0, λ0, ρ0) be the initial parameter values.

2. Update β: Sample β from (3.30).
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3. Update γ: Sample γ from (3.32).

4. Update ξ2: Sample ξ2 from (3.34).

5. Update λ and ρ: Sample these parameters from (3.35) and (3.36) using a Metropolis-Hasting
algorithm.

6. Update Y ⋆
1 and Y ⋆

2 : Sample latent variables using (3.37) and (3.39).

Algorithms 2 and 3 are based on the re-parameterization scheme considered for Σ. The re-
parameterization approach can be seen as a special form of the more general method called “the
parameter expansion method” or “the marginal data augmentation method” considered in Liu and
Wu, (1999), Meng and van Dyk, (1999), and van Dyk and Meng, (2001). In this method, the model
is expanded with an expansion parameter to improve the convergence rate of the resulting Markov
chains. We consider this approach for our spatial sample selection model. Let α2 be an expansion
parameter that can be identified given the augmented data (Y ⋆, Y ) with a prior of p(α2|Σ). Then,
we can introduce the expansion parameter into our data augmentation sampling scheme of (3.5)
through

p(θ, λ, ρ,Σ, Y ⋆
∣

∣Y ) ∝ p(θ)p(λ)p(ρ)p(Σ)

∫

p(Y ⋆, Y |θ, λ, ρ,Σ, α2)p(α2|Σ)dα2. (3.40)

In (3.40), the marginalization over α2 yields the same joint augmented posterior stated in (3.5)
without any expansion parameter. The computational advantages of (3.40) are discussed in details
in Liu and Wu, (1999) and Meng and van Dyk, (1999). To make the approach in (3.40) opera-
tional, Meng and van Dyk, (1999) suggest a general two-step marginalization strategy such that
the convergence rate of the resulting Markov chains is better than any other scheme. In the context
of our spatial model, this two-step strategy can also be seen as an alternative way to circumvent
the computational problems that are due to the identification condition, Σ11 = σ21 = 1. In the
first step, the spatial sample selection model is transformed by the expansion parameter in such a
way that the transformed model has an unconstrained covariance matrix so that the computational
complications are circumvented for the posterior analysis. In the second step, an inverse Wishart
distribution is assigned as a prior to the unconstrained covariance matrix. At this step, the priors
for the expansion parameter and the constrained covariance matrix are also determined to complete
a Gibbs sampler.

In the literature, this two-step strategy is applied to non-spatial multinomial probit models
in Imai and van Dyk, (2005) and Burgette and Nordheim, (2012). These authors show that the
algorithm based on this method is better in terms of convergence rate. Talhouk et al., (2012)
suggest an efficient Bayesian MCMC algorithm based on the parameter expansion method for non-
spatial multivariate probit models. Recently, Ding, (2014) applied a scheme based on the parameter
expansion method to a non-spatial sample selection method and shows that an MCMC algorithm
with this scheme can perform better. Hence, it is of interest to consider the same approach for our
spatial model. In the following, we consider two new samplers in which the expansion parameter
is handled differently.

In order to write the model in (2.6) in terms of unconstrained covariance matrix, define

E⋆ =

(

σ1In 0n×n

0n×n In

)

×
(

Y ⋆ −Xθ
)

, (3.41)

where the expansion parameter is α = σ1. Given our bivariate normal distribution assumption, we
have E⋆|θ,B ∼ N (02n×2n, Q), where Q = K(λ, ρ)(B ⊗ In)K′

(λ, ρ), and B is the unconstrained
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covariance matrix of (ε1i, ε2i)
′
, namely

B =

(

σ1 0
0 1

)

× Σ×
(

σ1 0
0 1

)

=

(

σ21 ̺σ1σ2
̺σ1σ2 σ22

)

, (3.42)

where ̺ = σ12

σ1σ2
. Now, the inverse Wishart distribution can be assigned as a prior to B, namely

B ∼ InvWish(v0, I2). Given the transformation in (3.42), the priors for Σ and σ21, i.e., the derived
densities, can be deduced from InvWish(v0, I2). These derived priors are given by

p(Σ) ∝
(

1− ̺2
)−3/2

σ
−(v0+3)
2 exp

{

− 1

2σ22(1− ̺2)

}

, (3.43)

σ21|Σ ∼
(

(1− ̺2)χ2
v0

)−1

. (3.44)

Given our normal distribution assumption for E⋆|θ,B ∼ N(02n×2n, Q), the conditional poste-
rior of B is given by

p(B|θ, λ, ρ, Y ⋆, Y, E⋆) ∝ |B|−(v0+3)/2 exp

{

− 1

2
tr
(

I2B
−1
)

}

× |B|−n/2 exp

{

− 1

2
E⋆′Q−1E⋆

}

.

(3.45)

Using ε1 = S(λ)Y ⋆
1 − S(λ)X1β and ε2 = R(ρ)Y ⋆

2 − R(ρ)X1δ, the quadratic term E⋆′Q−1E⋆ in
(3.45) can be written as

E⋆′Q−1E⋆ = tr

(

E⋆′Q−1E⋆

)

= tr

(

A2 ×B
−1

)

, (3.46)

where A2 =

(

σ21ε
′

1ε1 σ1ε
′

1ε2
σ1ε

′

2ε1 ε
′

2ε2

)

. Substituting (3.46) into (3.45) yields

B|θ, ρ, λ,Σ, Y ⋆, Y, E⋆ ∼ InvWish
(

v1, T1
)

, (3.47)

where v1 = n+ v0 and T1 = I2 +A2. To marginalize over σ21, we draw B from InvWish(v1, T1) and
set σ21 = B11, where B11 is the (1, 1)th element of B. Then, we set

Σ =

(

1/σ1 0
0 1

)

×B×
(

1/σ1 0
0 1

)

. (3.48)

This new approach can be summarized by the following algorithm.

Algorithm 4:

1. Let (θ0,Σ0, λ0, ρ0) be the initial parameter values.

2. Update θ: Sample θ from (3.9).

3. Update Σ: Use the following steps

(a) Draw σ21 from its prior
(

(1− ̺2)χ2
v0

)−1
.

(b) Apply the transformation in (3.41) to obtain E⋆.

(c) Sample B from (3.47).
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(d) Set σ21 = B11 and recover Σ by

Σ =

(

1/σ1 0
0 1

)

×B×
(

1/σ1 0
0 1

)

.

4. Update λ and ρ: Sample these parameters from (3.14) and (3.15) using a Metropolis-Hasting
algorithm.

5. Update Y ⋆
1 and Y ⋆

2 using the imputation step.

In the above algorithm, although the sampled B depends on the unidentifiable parameter σ21, there
is a complete marginalization over σ21 in updating Σ. There is an alternative approach in Meng and
van Dyk, (1999) and Imai and van Dyk, (2005), where the conditional posterior distribution of the
expansion parameter, which is σ21 in our case, is used in the sampler. Meng and van Dyk, (1999) and
van Dyk and Meng, (2001) called the algorithm in which the distribution of the working parameters
is used “the marginal data augmentation algorithm.” Following Imai and van Dyk, (2005), we also
consider a similar marginal data augmentation algorithm for our model. Transforming our model
in (2.6) by multiplying with a positive scalar parameter α yields

αY ⋆ ≡ Ỹ ⋆ = Xθ̃ + ε̃, (3.49)

where θ̃ = αθ and ε̃ = αε. Meng and van Dyk, (1999) called the parameter α a “working pa-
rameter” (it is called an “expansion parameter” in Liu and Wu, (1999)). A working parameter
is an unidentifiable parameter but is identifiable in the expanded parameter space of a data aug-
mentation algorithm. Denote the covariance of ε̃ with D. Given the transformation in (3.49),
we have D = α2Ω = K(λ, ρ)

(

α2Σ ⊗ In
)

K′
(λ, ρ). Define Σ̃ = α2Σ as the new unconstrained co-

variance matrix. Now, the inverse Wishart distribution can be assigned as a prior to Σ̃, namely
Σ̃ ∼ InvWish(v0, S0). The transformation in (3.49) and the prior Σ̃ ∼ InvWish(v0, S0) imply the
following joint prior density:

p(Σ, α2) =
(

α2
)−(

2v0
2

+1) |Σ|−(v0+3)/2 exp

{

− 1

2α2
tr
(

S0Σ
−1
)

}

. (3.50)

The joint prior in (3.50) implies the following derived prior densities (for details, see the web
appendix)

p(Σ) ∝ |Σ|−(v0+3)/2 ×
[

tr
(

S0Σ
−1
)]−v0 , (3.51)

α2|Σ ∼ tr
(

S0Σ
−1
)

/χ2
2v0 . (3.52)

For the posterior analysis, we consider the following prior specifications: θ̃|α ∼ N(0, α2V0),
Σ̃ ∼ InvWish(v0, S0), α

2|Σ ∼ tr(S0Σ
−1)/χ2

2v0
. With these priors, a new algorithm can be de-

veloped by considering the transformed model in (3.49). This algorithm, besides the imputation
step and the conditional posterior distributions of autoregressive parameters, requires (i) the joint
conditional posterior distribution of θ̃ and α2, and (ii) the conditional posterior distribution of Σ̃. To
this end, θ̃ and α2 is sampled from the joint conditional posterior density, p(θ̃, α2|Σ, λ, ρ, Ỹ ⋆, Y ) =
p(θ̃|Σ, λ, ρ, α2, Ỹ ⋆, Y ) × p(α2|Σ, λ, ρ, Ỹ ⋆, Y ), which can be done by generating a draw of α2 from
p(α2|Σ, λ, ρ, Ỹ ⋆, Y ) and then using this draw to sample θ̃ from p(θ̃|Σ, λ, ρ, α2, Ỹ ⋆, Y ). Hence, the al-
gorithm will be completed once p(θ̃|Σ, λ, ρ, α2, Ỹ ⋆, Y ), p(α2|Σ, λ, ρ, Ỹ ⋆, Y ) and p(Σ̃|θ̃, α2, λ, ρ, Ỹ ⋆, Y )
are determined. The conditional posterior densities of θ̃ and Σ̃ can be easily determined with a
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similar way used in the previous algorithms. The conditional posterior density, p(α2|Σ, λ, ρ, Ỹ ⋆, Y )
can be determined from

p(α2|Σ, λ, ρ, Ỹ ⋆, Y ) =
p(α̃, θ̃|Σ, λ, ρ, Ỹ ⋆, Y )

p(θ̃|Σ, λ, ρ, Ỹ ⋆, Y )
. (3.53)

Using (3.53), it can be shown that

α2|Σ, λ, ρ, Ỹ ⋆, Y (3.54)

∼
(

Ỹ ⋆ −Xθgls
)′

Ω−1
(

Ỹ ⋆ −Xθgls
)

+ θ
′

gls

(

V0 +
[

X
′
Ω−1X

]−1)−1
θgls + tr

(

S0Σ
−1
)

χ2
2(n+v0)

.

where θgls =
(

X
′
Ω−1X

)−1
X

′
Ω−1Ỹ ⋆. The working parameter α is marginalized out in different

ways to recover θ and Σ as shown in the following. The steps of this new algorithm at iteration t
can be summarized in the following algorithm.14

Algorithm 5:

1. Let (θ0,Σ0, λ0, ρ0) be the initial parameter values.

2. Update Y ⋆
1 and Y ⋆

2 by using the imputation step. This step is the same as the last step of
Algorithm 1. Let Y ⋆ = (Y ⋆

1 , Y
⋆
2 ) be the updated vector.

3. Draw α2 from (3.52) and set Ỹ ⋆ = αY ⋆.

4. Update θ̃ and α2: Calculate θgls =
(

X
′
Ω−1X

)−1
X

′
Ω−1Ỹ ⋆ with Ω = K(λt−1, ρt−1)

(

Σt−1 ⊗
In
)

K′
(λt−1, ρt−1), where λt−1, ρt−1 and Σt−1 are obtained from the previous iteration.

(a) Draw α using

α2|Σ, λ, ρ, Ỹ ⋆, Y (3.55)

∼
(

Ỹ ⋆ −Xθgls
)′

Ω−1
(

Ỹ ⋆ −Xθgls
)

+ θ
′

gls

(

V0 +
[

X
′
Ω−1X

]−1)−1
θgls + tr

(

S0Σ
−1
)

χ2
2(n+v0)

.

(b) Draw θ̃ using

θ̃|Σ, α2, λ, ρ, Y ⋆, Y ∼ N

(

µ1, α
2
(

V −1
0 +X

′

Ω−1X
)−1
)

. (3.56)

Set θt = θ̃/α as the sampled value at iteration t.

5. Draw Σ̃: Calculate ε̃1 = S(λt−1)Ỹ ⋆
1 − S(λt−1)X1β̃, ε̃2 = R(ρt−1)Ỹ ⋆

2 − R(ρt−1)X1δ̃ and Ã1 =
(

ε̃
′

1ε̃1 ε̃
′

1ε̃2
ε̃
′

2ε̃1 ε̃
′

2ε̃2

)

. Draw Σ̃ using

Σ̃|θ̃, α2, λ, ρ, Ỹ ⋆, Y ∼ InvWish(v0 + n, S0 + Ã1), (3.57)

Finally set Σt = 1
Σ̃11

× Σ̃, and Y ⋆,t = 1√
Σ̃11

× Ỹ ⋆ as the sampled values for iteration t.

14See the web appendix for details.
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6. Update λ and ρ conditional on θt, Σt and Y ⋆,t: Sample these parameters from (3.14) and
(3.15) using a Metropolis-Hasting algorithm.

Note that the working parameter is completely marginalized after Step 5 in Algorithm 5. Meng
and van Dyk, (1999) and Imai and van Dyk, (2005) consider another sampling scheme in which
the working parameter is not sampled from its prior but instead is sampled from its conditional
posterior distribution. For example, we could record draws of α2 from (3.55) in the sampler for
the next iterations. Imai and van Dyk, (2005) show that the scheme we outlined in Algorithm 5
outperforms some other schemes that can be considered for the sampler. Hence, we only consider
the scheme in Algorithm 5.15

Algorithms 4 and 5 handle the working parameter in different ways. In terms of specification,
the working parameter (or expansion parameter) is defined in a more general way in Algorithm
5. The difference in specifications imply different functional relationships between the constrained
and the unconstrained covariances. Therefore, the derived conditional prior of working parameter
stated in (3.44) for Algorithm 4 is different from the one stated in (3.52) for Algorithm 5. There
are different ways in which the working parameter is marginalized out (or swept over) in these
algorithms. It is obvious that the working parameter is more active in Algorithm 5 implying a
higher variability in the augmented data. This additional variability in the augmented data may
allow the Gibbs sampler to move around the parameter space more quickly (Imai and van Dyk,
2005).

Table 1: Prior hyper-parameters and Initial Values

Hyper-parameters Initial values

Algorithm 1:
θ0 = 04×1, V0 = 103 × I4 θ0 = (X

′

X)−1X
′

Y
v0 = 3, T0 = 8× I2 Σ0 = [1, 0.25; 0.25, 1]

κ1 = κ2 = 1 λ0 = 0.25, ρ0 = 0.25

Algorithm 2:

θ0 = 04×1, V0 = 103 × I4 θ0 = (X
′

X)−1X
′

Y
κ1 = κ2 = 1 λ0 = 0.25, ρ0 = 0.25

τ = 0.7, a0 = 1, b0 = 1

Algorithm 3:

h0 = 02×1, H0 = 103 × I2 β0 = (X
′

1X1)
−1X

′

1Y1,δ
0 = (X

′

2X2)
−1X

′

2Y2

d0 = 02×1,g0 = 0, D0 = 103 × I2 λ0 = 0.25, ρ0 = 0.25
κ1 = κ2 = 1

τ = 0.7, a0 = 1, b0 = 1

Algorithm 4:
θ0 = 04×1, V0 = 103 × I4 θ0 = (X

′

X)−1X
′

Y
κ1 = κ2 = 1, v0 = 3 Σ0 = [1, 0.25; 0.25, 1]

λ0 = 0.25, ρ0 = 0.25

Algorithm 5:

θ0 = 04×1, V0 = 103 × I4 θ0 = (X
′

X)−1X
′

Y
κ1 = κ2 = 1 Σ0 = [1, 0.25; 0.25, 1]

v0 = 8, S0 = 8× I2 λ0 = 0.25, ρ0 = 0.25

15Our algorithm corresponds to Algorithm 1 of Imai and van Dyk, (2005) with their Scheme 1. Algorithm 1 with
Scheme 1 in Imai and van Dyk, (2005) is same as with the PX-DA Algorithm with Scheme 1.1 in Liu and Wu, (1999).
In the web appendix, we provide an alternative algorithm which corresponds to Algorithm 2 of Imai and van Dyk,
(2005).
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4 Simulation Study

To evaluate the finite sample properties of Gibbs samplers in Algorithms 1-5, we design a simulation
study in this section. We consider the following data generating process (DGP):

(

Y ⋆
1

Y ⋆
2

)

=

(

X1 0n×k2

0n×k1 X2

)(

β
δ

)

+

(

S−1(λ)ε1
R−1(ρ)ε2

)

. (4.1)

where X1 = (l
′

n, X
′

1,1)
′
with β = (β1, β2)

′
, and X2 = (l

′

n, X
′

2,1)
′
with δ = (δ1, δ2)

′
. The exogenous

variable X1,1 consists of random draws from U(0, 1) whereas X2,1 is generated from N(0, 1).16 The
innovations are generated from the bivariate normal distribution according to

(

ε1i
ε2i

)

∼ N

((

0
0

)

,

(

1 0.3
0.3 1.2

))

(4.2)

for i = 1, . . . , n. Hence, ̺ = 0.25. For the true parameter values, we set (δ1, δ2)
′
= (0.4, 1.2)

′
,

and β2 = 2. We use β1 to control the amount of the sample selection in the model. We set β1 =
−0.2 to generate 25% censuring. We consider (λ, ρ) = {(0.1, 0.1), (0.4, 0.4)} for the autoregressive
parameters to allow for weak and moderate dependence in the error processes.

The row normalized W and M are based on the interaction scenario described in Liu and Lee,
(2010). Both matrices are block diagonal matrices where each block represents the interaction
structure of a group. Let the total sample involve R groups where the rth group has the groups
size mr. We consider an experiment where R is set to 30. We allow mr to vary across R groups
by randomly assigning a value from the set of integers {10, 11, 12, 13, 14, 15} to each group size.
Therefore, the total number of observations n varies between 300 and 450. The weight matrix Wr

for the rth group is generated in two steps. First, an integer value τir is uniformly drawn from the
set of integer values {1, 2, 3, 4}. Then, if τir + i ≤ mr, the (i+ 1)th, . . . , (i+ τir)th elements of the
ith row of Wr are set to one and the rest of the elements in the ith row are set to zero. On the
other hand, if τir + i > mr, the first (τir + i −mr) entries of the ith row are set to one and the
other elements of the ith row are set to zero. Then, W =M = Diag(W1, . . . ,WR).

The hyper-parameter values and the initial parameter values we used in the simulation are
stated in Table 1. These values are close to those used in Imai and van Dyk, (2005) in a simulation
for a multinomial probit model. In Algorithms 2 and 3, we set τ = 0.7, which generates a relatively
diffuse prior for the correlation coefficient between ε1i and ε2i.

17 Finally, we run each MCMC
algorithm for 60000 iterations. The first 10000 draws are discarded as a burn in period.

4.1 Simulation Results

The simulation results are presented in Tables 2-3, and Figures 1 – 4. We compare point estimates
to gauge statistical inference implied by each algorithm in Tables 2 and 3. We provide (i) the mean
of sampled draws, i.e., the estimated posterior means, (ii) the standard deviations of sampled draws
(Std.dev.) and (iii) some other convergence diagnostics. The convergence diagnostics include, the
Gelman-Rubin (GR) statistic, the first three lag-correlations in sampled draws (denoted by AC(1),

16 Pace et al., (2012) show that the explanatory variables used in applied studies exhibit spatial dependence.
As shown in Pace et al., (2012), the spatial dependence among regressors can also effect the performance of the
likelihood-based estimators. It will be interesting to see the effect of spatial dependence among regressors on the
Bayesian estimator. This issue is raised by a referee and can be explored in future studies.

17The implied prior density of ̺ for different values of τ is illustrated in the web appendix. A roughly uniform
prior for ̺ can be induced when τ ∈ [0.6, 0.7].
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Table 2: Posterior summary: λ0 = 0.1 and ρ0 = 0.1
Parameter Mean Std.dev. GR AC(1) AC(2) AC(3) IF
Algorithm 1
λ 0.0836 0.1586 1.0006 0.9320 0.8684 0.8095 26.4242
ρ 0.1407 0.0761 1.0000 0.6840 0.4657 0.3181 5.2606
σ12 -0.0006 0.0923 1.0000 0.4730 0.2808 0.1680 3.2418
σ2
2 1.2653 0.1084 1.0000 0.2538 0.0710 0.0149 1.6795

β1 -0.1066 0.1429 1.0000 0.4552 0.2283 0.1279 2.9592
β2 1.8529 0.2798 1.0002 0.6312 0.4180 0.2864 4.7646
δ1 0.5266 0.0841 1.0000 0.3530 0.2005 0.1231 2.5820
δ2 1.2549 0.0685 1.0000 0.2609 0.0652 0.0239 1.6998
Algorithm 2
λ 0.0840 0.1603 1.0003 0.9364 0.8770 0.8218 27.0106
ρ 0.1459 0.0659 1.0000 0.6888 0.4707 0.3192 5.0085
σ12 0.0030 0.0822 1.0000 0.4763 0.2836 0.1720 3.2778
ξ2 0.8752 0.0696 1.0000 -0.1739 0.0305 -0.0045 1.0000
β1 -0.1070 0.1426 1.0000 0.4463 0.2192 0.1243 2.8113
β2 1.8563 0.2800 1.0000 0.6251 0.4071 0.2769 4.8148
δ1 0.5257 0.0704 1.0000 0.3557 0.2075 0.1192 2.5831
δ2 1.2556 0.0571 1.0000 0.2646 0.0719 0.0257 1.7243
Algorithm 3
λ 0.0856 0.1565 1.0002 0.9547 0.9125 0.8724 70.3474
ρ 0.1460 0.0647 1.0001 0.7127 0.5080 0.3624 5.8613
σ12 0.0038 0.0816 1.0000 0.4660 0.2713 0.1636 3.2068
ξ2 0.8689 0.0691 1.0000 -0.1770 0.0413 -0.0055 1.0000
β1 -0.1071 0.1438 1.0001 0.4447 0.2186 0.1179 2.8074
β2 1.8569 0.2806 1.0001 0.6222 0.4069 0.2728 4.6321
δ1 0.5248 0.0703 1.0000 0.3576 0.2019 0.1153 2.5566
δ2 1.2560 0.0571 1.0001 0.2628 0.0688 0.0221 1.7075
Algorithm 4
λ 0.0819 0.1566 1.0008 0.9617 0.9251 0.8900 51.7106
ρ 0.1409 0.0760 1.0001 0.6945 0.4835 0.3391 5.4550
σ12 0.0012 0.0931 1.0000 0.4767 0.2775 0.1648 3.1767
σ2
2 1.2414 0.1061 1.0000 0.2480 0.0651 0.0190 1.6643

β1 -0.1067 0.1422 1.0000 0.4426 0.2140 0.1125 2.7783
β2 1.8545 0.2802 1.0000 0.6259 0.4100 0.2770 4.7014
δ1 0.5262 0.0833 1.0000 0.3520 0.2032 0.1211 2.5676
δ2 1.2548 0.0681 1.0000 0.2657 0.0750 0.0209 1.7232
Algorithm 5
λ 0.2804 0.1427 1.0002 0.9029 0.8132 0.7333 17.8891
ρ 0.1427 0.0825 1.0003 0.7197 0.5149 0.3655 5.7368
σ12 0.0091 0.1176 1.0000 0.5323 0.2566 0.0676 2.6462
σ2
2 1.5528 1.1383 1.0000 0.7511 0.3920 0.1017 2.5470

β1 -0.0835 0.1554 1.0000 0.4409 0.2074 0.0900 2.5324
β2 1.7992 0.3668 1.0000 0.6350 0.2729 0.0058 2.8274
δ1 0.5354 0.1672 1.0000 0.6900 0.4335 0.1940 3.6725
δ2 1.2826 0.3755 1.0001 0.8096 0.4779 0.1509 2.6257

AC(2), and AC(3)), and the inefficiency factors (IF). The inefficiency factor (or autocorrelation
time) is defined as the ratio of the squared numerical standard errors to the variance of the posterior
mean based on the hypothetical independent draws (Chib, 2001, p. 3580).18 An efficient sampler
would generate a sequence of sampled draws with a small IF close to 1.

We also provide several graphical summaries of draws in Figures 1 – 4 to compare algorithms
in terms of convergence and mixing properties of the corresponding Markov chains. For the sake
of brevity, we only provide the figures for Algorithms 1 and 4 for the case of {λ, ρ} = {0.4, 0.4}.19
These figures include the convergence plots (or time series plots), the autocorrelation plots, the
lag-one scatter plots, and the Gelman and Rubin, (1992)’s

√
R statistic. The convergence plots in

these figures for a parameter simply show all draws generated by the samplers against iterations.
The autocorrelation plots provide a simple visual inspection of the lag-correlation in sampled draws

18It is calculated as IF(θ) = 1 + 2
∑M−1

k=1

(

1− k
M

)

ρk, where M is the total number of draws, and ρk is the lag k
sample autocorrelation.

19Figures for other algorithms and the case of {λ, ρ} = {0.1, 0.1} are similar and provided in the web appendix.
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Table 3: Posterior summary: λ0 = 0.4 and ρ0 = 0.4
Parameter Mean Std.dev. GR AC(1) AC(2) AC(3) IF
Algorithm 1
λ 0.4025 0.0993 1.0002 0.8975 0.8068 0.7256 17.8230
ρ 0.3147 0.0716 1.0001 0.6898 0.4727 0.3230 5.1795
σ12 -0.0086 0.0998 1.0000 0.5205 0.3271 0.2084 3.7044
σ2
2 1.2991 0.1194 1.0000 0.3122 0.1072 0.0306 1.9002

β1 -0.2511 0.1604 1.0000 0.4170 0.2116 0.1251 2.8534
β2 1.9199 0.2788 1.0001 0.6477 0.4286 0.2879 4.7719
δ1 0.6006 0.1089 1.0000 0.3974 0.2420 0.1551 2.9608
δ2 1.2609 0.0675 1.0000 0.2442 0.0618 0.0208 1.6535
Algorithm 2
λ 0.3997 0.0991 1.0000 0.8886 0.7895 0.7030 16.7897
ρ 0.3271 0.0616 1.0000 0.6811 0.4569 0.3049 4.8734
σ12 -0.0078 0.0879 1.0001 0.5261 0.3330 0.2169 3.7923
ξ2 0.8738 0.0727 1.0000 -0.2088 0.0494 -0.0079 1.0000
β1 -0.2500 0.1596 1.0000 0.4064 0.2024 0.1212 2.6977
β2 1.9184 0.2793 1.0001 0.6426 0.4190 0.2817 4.8156
δ1 0.6020 0.0910 1.0001 0.4019 0.2476 0.1534 2.9784
δ2 1.2621 0.0557 1.0000 0.2464 0.0603 0.0188 1.6511
Algorithm 3
λ 0.3976 0.0980 1.0002 0.9368 0.8782 0.8246 44.8648
ρ 0.3280 0.0631 1.0000 0.6722 0.4522 0.3052 4.9678
σ12 -0.0063 0.0876 1.0001 0.5262 0.3336 0.2127 3.7699
ξ2 0.8680 0.0724 1.0000 -0.2140 0.0509 -0.0073 1.0000
β1 -0.2556 0.1591 1.0001 0.4044 0.2020 0.1176 2.6693
β2 1.9301 0.2789 1.0002 0.6400 0.4184 0.2815 4.7345
δ1 0.6008 0.0913 1.0000 0.4013 0.2469 0.1556 3.0066
δ2 1.2625 0.0562 1.0001 0.2435 0.0640 0.0232 1.6613
Algorithm 4
λ 0.3986 0.0998 1.0000 0.8787 0.7731 0.6815 14.7438
ρ 0.3159 0.0705 1.0000 0.7051 0.4998 0.3543 5.5756
σ12 -0.0082 0.1003 1.0000 0.5302 0.3286 0.2100 3.7459
σ2
2 1.2730 0.1179 1.0000 0.3270 0.1193 0.0457 1.9840

β1 -0.2496 0.1604 1.0000 0.3985 0.1892 0.0996 2.5818
β2 1.9155 0.2797 1.0000 0.6383 0.4147 0.2711 4.6257
δ1 0.6015 0.1077 1.0000 0.3977 0.2442 0.1566 2.9564
δ2 1.2608 0.0673 1.0000 0.2470 0.0605 0.0109 1.6368
Algorithm 5
λ 0.4355 0.0968 1.0001 0.8525 0.7247 0.6160 11.5732
ρ 0.3024 0.0801 1.0000 0.6910 0.4745 0.3215 5.1716
σ12 -0.0013 0.1300 1.0000 0.5915 0.3172 0.1106 3.0104
σ2
2 1.5484 1.1086 1.0000 0.7708 0.4316 0.1425 2.6178

β1 -0.2440 0.1703 1.0000 0.4299 0.2000 0.0833 2.4710
β2 1.8995 0.3649 1.0000 0.6445 0.2926 0.0306 2.9356
δ1 0.6024 0.1895 1.0000 0.6838 0.4593 0.2437 3.8644
δ2 1.2664 0.3744 1.0000 0.8170 0.5018 0.1827 2.5420

and can be used to assess the mixing properties of the sampler. Low autocorrelation in sampled
draws means that the sampler is expected to converge to the posterior distribution more quickly.
Hence, slowly decaying autocorrelations in these figures indicate inefficiencies for a sampler. The√
R statistic is defined as the ratio of the between-chain variance and the within-chain variance;

and values close to one indicate acceptable mixing.
We provide the salient features of our results in the following list.

1. The results in Tables 2 and 3 indicate that the estimated posterior means of autoregressive
parameters are close to true parameter values, except in the case of Algorithm 5 for λ. These
results become visually available through the convergence plots provided in Figures 1 – 4.
The sampled draws generated for ρ are slightly off-centered from the true parameter value.

2. The Bayesian point estimates for σ12 are far away from the true value in all algorithms. As can
be seen from the convergence plots provided in Figures 1 – 4, this parameter is underestimated
in all algorithms. The samplers in Algorithms 2 and 3 produce similar estimates, in particular,
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Figure 1: Algorithm 1

Figure 2: Algorithm 1
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Figure 3: Algorithm 4

Figure 4: Algorithm 4
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the estimates for ξ2 deviate substantially from the true value. Algorithms 1 and 4 report
estimates of σ22 that are close to the true value, while Algorithm 5 does not.

3. Although all algorithms report estimates for β1 and δ2 that are close to the true values, there
is some deviations in the case of β2 and δ1. Overall, the deviation between estimated posterior
means and the true values is relatively smaller in Table 2, and the Bayesian estimator based
on Algorithms 1 and 4 performs relatively better in both tables.

4. To give an overall picture on the deviation between the estimated posterior means and the
true parameter values, we calculate average deviations over all parameters from Tables 2 and
3. In Table 2, the average absolute deviation is (i) 0.1056 from Algorithm 1, (ii) 0.1264 from
Algorithm 2, (iii) 0.1268 from Algorithm 3, (iv) 0.1023 from Algorithm 4, and (v) 0.1752 from
Algorithm 5. In Table 3, we have the average absolute bias of (i) 0.1110 from Algorithm 1,
(ii) 0.1266 from Algorithm 2, (iii) 0.1264 from Algorithm 3, (iv) 0.1078 from Algorithm 4,
and (v) 0.1495 from Algorithm 5. Hence, Algorithms 1 and 4 performs relatively better in
both tables.

5. The standard deviations reported in both tables are close to each other for the first four
algorithms. The standard deviations reported for Algorithm 5 are slightly larger, especially
in the case of σ22.

6. The reported Gelman-Rubin (GR) statistic, the IF statistics, the autocorrelation plots, the
lag-one scatter plots and the

√
R statistics can be used to assess the mixing properties of

samplers. The Gelman-Rubin statistics in Tables 2 and 3 suggest that the Markov chains are
mixing well. The

√
R statistics in Figures 1 – 4 stabilize near one quickly. The inefficiency

factor (IF) statistics are very similar across algorithms except for the case of λ. In particular,
the autocorrelation plots and lag-one scatter plots for λ in Figures 1 – 4 indicate that the
autocorrelation among draws decays slowly, leading to large values of IF in all algorithms.
Overall our results indicate that there is no substantial differences among algorithms in terms
of mixing properties.20

5 Empirical Illustration

For the empirical illustration, we use the application in the area of natural resource economics
considered in Flores-Lagunes and Schnier, (2012). In this application, the authors model the
spatial production within a fishery with a spatial sample selection model. The data set is collected
from the Pacific cod fishery, located in the Eastern Bering Sea of Alaska. Among the groundfish
fisheries of Alaska, the Pacific cod fishery is the second largest one with landings valued at more
than 185 million dollars in 2012. For production purposes, the fishery is divided into 90 spatially
different locations. The catch per unit effort (CPUE) which is measured as the metric tons of fish
caught during the year 1997 in a fishing fleet is used to analyze the productivity and efficiency

20Note that the use of the deviations between the posterior mean estimates and the true parameter values does
not necessarily measure the performance of our suggested algorithms. Instead, here, they serve as indicators for our
algorithms under the given prior specifications within the context of our spatial sample selection model. For more
details on the principle of unbiasedness in the Bayesian framework, see Gelman et al., (2003, pg. 248). In addition, our
comparison of these algorithms in terms of mixing properties should be considered under the given prior definitions.
It is also possible that the priors specified in these algorithms may not lead to the same marginal posteriors for the
common parameters even though they are specified to be reasonably diffuse. In that case, the performance of these
algorithms require further investigation, which is an issue beyond the scope of this study. We thank one referee for
raising these issues, which is a limitation of our study.
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within the fishery. A fishing fleet consists of vessels grouped according to the size of the vessel,
gear utilized, and type of vessel (catcher-processor vs. catcher-vessel). Due to the confidentiality
reasons, the CPUE of a fishing fleet that has less than four vessels in a location is not reported in
this data set. In other words, the CPUE is observed only for those locations where four or more
vessels with similar characteristics fish within that region. Since the CPUE at a certain region is
likely to be an increasing function of unobserved variables that cause four or more vessels to fish
at that region, a valid inference on the entire population of fishing regions should account for this
selection problem. The data set contains 320 observations with a sample selection rate of 35%.21

Moreover, because a negative shock that affects the fish population in a certain location would
affect the production of all vessels in other locations by displacing fishing effort into more efficient
surrounding locations, the disturbance terms are likely to be spatially correlated. Therefore, a valid
model of fishing productions must account for the selection problem and the spatially correlated
disturbances simultaneously.

For the outcome equation, the dependent variable is the logarithm of CPUE and the explana-
tory variable X2 contains (i) the log-transformed bathymetric measurements corresponding to the
maximum and minimum depth within the locations, (ii) the stock assessment data of locations
received from annual biomass trawl survey, and (iii) the indicator variables for the vessel types:
catcher-vessel (CV), hook-and-line gear (HAL), non-pelagic trawl gear (NPT), and vessel at least
125 feet long (Large). For the selection equation, X1 contains X2 and 1-year lagged stock assess-
ment data received from the annual biomass trawl survey. The lower fish stock in a location in
the previous year affects the number of vessels that will fish in that location in the upcoming year.
Therefore, the time lag of the total biomass of a location will be a relevant variable for the selection
equation. On the other hand, Flores-Lagunes and Schnier, (2012) assume that the time lag of the
total biomass of a location may not affect the amount of hauls that will be conducted in the next
year in the same location and hence, it is excluded from the outcome equation. Note that this
exclusion restriction may not hold, that is, the time lag of the total biomass of a location may also
be a relevant variable for the outcome equation. For example, it is possible that the lower biomass
in a location can be improved by some favorable environmental factors in the upcoming years. If
fishers are aware of this fact, then they will conduct a large amount of hauls in the same location in
the upcoming years, hence the time lag of the total biomass of a location will be a relevant variable
for the outcome equation.22

The specification for the weight matrices is distance based with a band. Let Ni be the set of
observations in location i, where i = 1, . . . , 90. Also, let dij denote the Euclidean distance between
locations i and j. Then, the (i, j)th element of W and M is equal to 1/d2ij if j 6∈ Ni and zero
otherwise. To control the number of neighbors in a location, a band of 7 is used. For example, an
observation in location i can have at most 6 neighbors in location j. Finally, both weight matrices
are row normalized.

Estimation results from Algorithm 3 is presented in Table 4.23 The tables include (i) the mean
of sampled draws, (ii) the median of sampled draws, (iii) the standard deviation of sampled draws
(sdv.), (iv) the 95% highest posterior density (HPD) intervals, (v) the numerical standard errors

21This data set is available in the Journal of Applied Econometrics Data Archive at http://onlinelibrary.wiley.
com/doi/10.1002/jae.1189/abstract.

22 Recall that it is not necessary to have an exclusion restriction for identification in our methodology. To investigate
the effect of the exclusion restriction assumed by Flores-Lagunes and Schnier, (2012) on the parameter estimates, we
also estimate the model without the exclusion restriction. The results in Table 4 in Section H of the web appendix
indicate that there are not any significant changes in the results in terms of sign, magnitude and statistical significance.
Therefore, we did not pursue this issue further.

23The results for the other algorithms are similar and left to the web appendix.
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Table 4: Posterior Summary
mean median sdv. 95% HPD nse M∗ CD IF AC(1)

Algorithm 3
Selection equation

constant -1.3116 -1.2797 0.9668 [-1.3354,-1.2260] 0.0079 14988.4887 -1.6385 3.3359 0.4103
Max. depth 0.3479 0.3468 0.1142 [0.3395,0.3538] 0.0010 13260.1456 0.9336 3.7707 0.5576
Min. depth -0.1012 -0.1007 0.0720 [-0.1053,-0.0965] 0.0006 13843.2979 0.9260 3.6119 0.5784
Biomass 0.0671 0.0668 0.0819 [0.0618,0.0721] 0.0007 13700.5567 0.5354 3.6495 0.5753
Dum CV -0.9748 -0.9743 0.2005 [-0.9866,-0.9619] 0.0016 16680.7041 -1.1661 2.9975 0.4734
Dum HAL 0.9582 0.9577 0.2322 [0.9434,0.9723] 0.0019 15350.6942 0.1981 3.2572 0.5017
Dum NPT 0.2703 0.2688 0.2831 [0.2518,0.2861] 0.0021 18393.1317 0.7652 2.7184 0.4636
Dum Large -0.1454 -0.1446 0.1837 [-0.1561,-0.1331] 0.0014 16673.2626 -0.1435 2.9988 0.5171
Lag biomass -0.0401 -0.0399 0.0799 [-0.0450,-0.0348] 0.0006 15366.8398 0.5221 3.2538 0.5478
λ 0.7724 0.7871 0.1111 [0.7803,0.7937] 0.0015 5706.4515 1.5449 8.7620 0.7867
Outcome equation

constant 7.4684 7.4748 0.6771 [7.4358,7.5170] 0.0056 14697.7320 0.4096 3.4019 0.4417
Max. depth 0.0720 0.0716 0.0976 [0.0655,0.0776] 0.0007 18266.9821 -0.6309 2.7372 0.3936
Min. depth 0.0439 0.0442 0.0666 [0.0400,0.0484] 0.0005 21144.6629 0.9436 2.3647 0.3821
Biomass 0.1881 0.1882 0.0698 [0.1837,0.1926] 0.0005 23300.8059 -0.8908 2.1458 0.3551
Dum CV 1.2611 1.2639 0.2957 [1.2454,1.2820] 0.0034 7750.0968 0.3440 6.4515 0.7041
Dum HAL 0.0726 0.0744 0.2836 [0.0568,0.0913] 0.0028 10138.8031 -0.3507 4.9315 0.6256
Dum NPT -0.5976 -0.5968 0.3114 [-0.6161,-0.5770] 0.0025 15099.9288 -0.2719 3.3113 0.5084
Dum Large 0.5983 0.5998 0.1652 [0.5897,0.6097] 0.0010 25722.3042 -0.4191 1.9438 0.3174
ρ 0.3502 0.3648 0.2333 [0.3505,0.3806] 0.0025 8450.8401 1.1637 5.9166 0.7201
σ12 0.0183 0.0171 0.1314 [0.0091,0.0251] 0.0016 6877.1023 -0.0775 7.2705 0.6945
ξ2 1.1313 1.1261 0.1327 [1.1183,1.1339] 0.0006 50000.0000 -1.0730 1.0000 -0.4378

(nse), (vi) the i.i.d equivalent number of iterations (M⋆), (vii) the Geweke, (1992)’s CD score, (viii)
the inefficiency factor (IF), (ix) the first lag-correlations in sampled draws (AC(1)).

The numerical standard errors (nse) capture simulation noise surrounding posterior mean of
each parameter and can be made arbitrarily small by choosing a sufficiently large number of
iterations. Let {θ1, θ2, . . . , θM} be a sequence of draws generated for parameter θ. Consider
the mean θ = 1

M

∑M
i=1 θi. Then, the nse of θ is calculated as (Koop et al., 2007, p. 145):

nse(θ) =

√

S2/M
(

1 + 2
∑M−1

k=1 (1− k/M) ρk

)

, where S2 is the sample variance of the sequence

of draws and ρk is the lag k sample autocorrelation. As can be seen in Table 4, the numerical
standard errors are very close to zero.

The i.i.d equivalent number of iterations (M⋆) is another diagnostic tool to assess the efficiency
of the sampler and it is calculated from the IF. It is simply given by M⋆ = M/IF. Hence, a very
small M⋆ (a very large IF) is an indicative of an inefficient sampler. The results in Table 4 report
large IF values and hence smaller M⋆ values for the autoregressive parameters as they have large
AC(1) values.

Finally, the Geweke, (1992)’s CD score is a test statistic to determine if the chain of a parameter
converges to the target posterior distribution. LetM1 = 0.1M andM2 = 0.6M . Let θ1 be the mean
of the segment {θ1, θ2, . . . , θM1

}, and θ2 be the mean of the last segment {θM2+1, θ2, . . . , θM}. Then,
the CD score is given CD =

(

θ1 − θ2
)

/
√

nse2(θ1)− nse2(θ2). Under the null hypothesis that the

whole sequence of {θ1, θ2, . . . , θM} contains random draws from the target posterior distribution,
the CD score converges in distribution to N(0, 1). Hence, a CD test statistic that is larger than
1.96 in absolute value indicates that the sequence of draws may not have converged to the target
posterior distribution. The CD scores in Table 4 indicate that the sequence of draws converged to
the target posterior distribution for all parameters.
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For an easy comparison of the point estimates from all algorithms, we provide the estimates
of the posterior means in Figure 5. This figure also includes the estimates reported in Flores-
Lagunes and Schnier, (2012) based on a GMME ( denoted by Spheck). Figure 5(a) indicates
that all algorithms report very similar estimates for the selection equation, and they are also very
similar to those obtained from the Spheck estimator of Flores-Lagunes and Schnier, (2012) except
for the spatial autoregressive parameter, λ. Our simulation results in Tables 2 – 3 indicate that
the Bayesian estimator in all algorithms reports estimates of λ that are close to the true value,
except in the case of Algorithm 5. Therefore, the estimates reported by our Bayesian estimator
can be close to the true parameter value in this application. The Spheck estimator only provides
statistically significant estimates for Max. depth, Min. depth, Dum CV and Dum HAL, while all
estimates provided by our Bayesian estimator are significant as indicated by the 95% HPD intervals
in Table 4. Our Bayesian estimator provides relatively more precise estimates, since it accounts for
the full covariance structure implied by the spatial correlation.

The estimates for the outcome equation are displayed in Figure 5(b). Although estimates
obtained from Algorithms 1–4 are in agreement, those from Algorithm 5 are slightly different in the
case of Dum CV, Dum HAL, and the spatial autoregressive parameter ρ. The estimates reported
by the Spheck estimator do not agree with our estimates in terms of magnitude for the case of
Min. depth, Dum CV, Dum NPT, and especially for ρ, but they are in agreement in terms of signs
except for the case of Min. depth. To see the effect of the selection problem on the estimate of
autoregressive parameter, we consider the estimates from the following spatial error model that
does not account for the selection problem: Y2i = X

′

2iδ + ρ
∑n

j=1MijU2j + ε2i. Flores-Lagunes
and Schnier, (2012) estimate this model by the GMME of Kelejian and Prucha, (1998), which
is denoted by KP-SAE in their Table VIII. The Spheck estimator yields an estimate for ρ (close
to 0.92) that is not so different in magnitude than the estimate of the KP-SAE estimator (close
to 0.91) that only controls for the spatial correlations. Indeed, these estimates are close to the
boundary of the parameter space for the spatial autoregressive parameter. As seen from Figure
5(b), our Bayesian estimator, on the other hand, yields estimates for the spatial autoregressive
parameter that are much smaller in magnitude. Our simulation results in Tables 2 – 3 indicate
that the Bayesian estimator corresponding to Algorithms 1–4 reports estimates of ρ that are close
to the true parameter value, and therefore the true value of ρ for this application is more likely to
be around 0.4.

For the effect of spatial dependence on the parameter estimates, Flores-Lagunes and Schnier,
(2012) show that the Spheck and the Heckit estimators largely agree in the magnitude of the
estimates in most coefficients, although not in their statistical significance. The Spheck estimator
provides insignificant estimates for Min.depth, Dum CV, Dum HAL, and Dum NPT, while all
estimates are insignificant in the case of Heckit. Note that the Heckit estimator is inconsistent in
the presence of spatial dependence. On the other hand, the 95% HPD intervals reported in Table 4
indicate that all estimates are significant. We think that the differences in the set of inference
provided by the Spheck and our Bayesian estimators are due to the fact that our Bayesian estimator
accounts for the full spatial correlation structure, whereas the Spheck estimator partially accounts
for the spatial correlation.

6 Conclusion

In this study, we considered various Gibbs samplers for a sample selection model that accommodates
spatial correlations in the disturbance terms of selection and outcome equations. To the best of our
knowledge, this study is the first extensive study to illustrate the implementation of these Gibbs
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Figure 5: Estimates of Selection and Outcome Equations

samplers with the given prior specifications for a spatial sample selection model. These samplers
are designed to account for both the sample selection bias and the spatial correlation structure
implied by the model specification.

The natural parameterization of our model involved an unidentified parameter, i.e., σ21. The
unidentified parameter was handled in different ways in these algorithms to circumvent the com-
putational problems. In the first algorithm, the identification constraint of σ21 = 1 was directly
imposed on the posterior distribution of covariance matrix of the model. In the second and third
algorithms, the covariance matrix was re-parameterized in such a way that the resulting posterior
distributions are not subject to the identification constraint. In the fourth and fifth algorithms,
the marginal data augmentation (or the parameter expansion) method was used to handle the
unidentified parameter in the posterior analysis.

Our simulation results demonstrated that for the autoregressive parameter of selection equation
the Bayesian estimator reports point estimates that are close to the true parameter value in all
algorithms. The results for the spatial autoregressive parameter of the outcome equation showed
that the Bayesian estimates are very close to the true parameter values in Algorithms 1–4. As
for the parameter of exogenous variables in the selection and outcome equations, the Bayesian
estimator in Algorithms 1 and 4 performs relatively better in terms of deviations between point

28



estimates and the true parameter values. Finally, our results indicated that all algorithms have
similar mixing properties.
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