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Abstract. In this paper, we present the Expert Hub System, which was designed 

to help governmental structures find the best experts in different areas of exper-

tise for better reviewing of the incoming grant proposals. In order to define the 

areas of expertise with topic modeling and clustering, and then to relate experts 

to corresponding areas of expertise and rank them according to their proficiency 

in certain areas of expertise, the Expert Hub approach uses the data from the Di-

rectorate of Science and Technology Programmes. Furthermore, the paper dis-

cusses the use of Big Data and Machine Learning in the Russian government 

project. 
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Introduction 

Big Data projects for the government sector embody several prerequisites that expert 

believe are the hallmarks of fast analysis based on effective resources of information. 

Machine learning helps to build the hierarchy of importance of different parts of this 

information and gives a possibility to design semi-automated or completely automated 

services. World practices in this field are diverse. Currently there is a high degree of 

uncertainty as to which extent it is possible to use automated systems and where only 

human subjective evaluation works. However even conservative view on the issue al-

lows using Dig Data and machine learning in prior analysis – it reduces the scope of 

the study area. 

Information gathering and evaluation of heterogeneous distributed sources in expe-

rience and skills evaluation has previously been a manual process. At the same time the 

complexity of the operational environment increases due to the increase of labor mo-

bility. Even in classical sociology the studies of social mobility were engaged in com-

parative inquiries. Nowadays retrospective questions and the use of cohort approach 

(comparing data with the early stage mobility studies) are not that useful: contemporary 

society created a new paradigm of existence. In these circumstances, further compara-



 

tive and longitudinal mobility studies have little point. However fast services for ex-

pertise evaluation, especially for collecting data on experience and expertise of profes-

sionals who evaluate technological projects seeking for state financing, are of great 

demand. 

The framework outlined above lead to specific methods of research, used in this 

paper. First, it is a descriptive research on the worldwide experience. Secondly, in order 

to bring a cross-field study we try to analyze state-of-the-art technology and its use in 

a narrow sphere of e-government. Thirdly, we try to go in a very detail in description 

of the Russian Expert Hub system and as a conclusion – to compare it with the best 

world practices. 

Current state-of-the-art technology and projects regarding information collection, 

fusion and analysis have a clear focus on Big Data and machine learning. The main 

goal of this article is to study the major international cases of government experience 

of the use of these technologies – which are a part of e-government, and then to depict 

the Russian case of expert evaluation. By comparing several clustering algorithms. The 

main method of our studies is the experimental method. Conclusions should derive 

from comparisons and be useful for further cases of Big Data and machine learning 

deployment for government projects. Also there might be a possibility to use this expe-

rience in other government projects. Russia is one of the leaders in software develop-

ment and its market players are interested in fast development and potentially even in 

the export of technological products and solutions. 

Machine Learning and Data Analysis for government 

projects in Russia 

First thing we need to understand is that Data analysis field and e-governance in 

Russia are phenomena of completely different nature. They intersect during specific 

cases and amount of such cases is growing but both of them have their own features 

and specific history. In addition, both of this fields progress rapidly and information 

sources older than 10 years are almost outdated and have only historical interest. 

Official history of Russian e-governance begins in 2000 with Okinawa charter of 

global information society [1,2,3] which was signed by Russia.  The initial position of 

Russia in these matters was quite weak. In 2003, IT minister Reyman L. stated that only 

1% of federal government workers use internet [4].   

In 2002 governmental 2.57 billion dollars  program “Electronic Russia” (E-Russia) 

began [2,3], [5,6]. Mostly it was covering the problem of delivering municipal services 

and information by internet.  Results of this program were evaluated very diversely. In 

2005 year Putin V. stated that IT market grew from 2% to 5.3% of total GDP, however 

40 thousand of localities in Russia have no internet access [8].  Informational and ser-

vice coverage showed growth from 2000 to 2005 but service coverage was only 6% in 

2005 [2]. In 2012 year from 10 basic UN E-Gov objectives Russia targeted only 5 and 

had some success only in 4 of them [6]. Whole program was widely criticized for inef-

fectiveness [2,3], [5,7]. 

https://en.wikipedia.org/w/index.php?title=Federal_Target_Program&action=edit&redlink=1


 

Next big governmental attempt in these matters was State programme: “Information 
Society 2011-2020” which was issued by government in 2010 year [5], [8,9]. Signifi-
cant growth e-governance services of was stated. Public opinion poll showed that 66% 

of internet users are ready to user e-gov and according to official statistics 10.6% of 

Russians have interactions with electronic services at least once[9].  

Under governmental patronage large business accelerator, IIDF was founded in 

2013[10]. One of its goals was to deliver high quality IT and e-gov services to the 

people. However, only 7 of 152 successful projects are somehow connected with e-

governance [11].  Moreover, very few of IIDF successful projects exploited machine 

learning or data analysis. In the end of 2015 IIDF representative stated that 500 million 

of rubles will be invested in big data soon[12]. 

History of data analysis and machine learning is less dramatic.  Yandex Company, 

which is 4-th largest search engine in the world, started big data analysis trend in the 

middle of 2000s [13]. In 2007 it opens the school of data analysis[14]. Trend was picked 

up by many educational institutions ITMO [15], HSE [16], MIPT [17] and so on.   It 

was stated on governmental level, that data analysis and machine learning are develop-

ment priorities for Russia and country can become competitive in this fields [18]. Data 

analysis market is quite small ($340 m. in 2014) but its growth rate is almost 40% per 

year[19]. Main buyers of analytical solutions are banks and telecom.   Advertising firms 

use big data storages most intensively compared to other business directions but ab-

sence of world famous successful business stories in this field slows the growth down 

[20].  

Finally, when we reached big data and machine learning in governmental activities 

and services we can see that government does not use them much by now.  At most 

analytical firms directed to business and education. However, demand for these services 

is obvious and undeniable but somehow hidden from statistics.   

Main problem is that there are three basic levels of governance in Russia: 

 State level 

 Regional level 

 Municipal level 

State level has several success stories in developing analytical solutions. All of them 

can be counted by one hand however, they are quite massive. Total revenue of the lead-

ing IT companies in the public sector of Russia in 2013 was $4321 m. This is 77% of 

their total revenue in Russia [21]. For instance – Federal Pension Fund created analyt-

ical services based on SAP HANA, Sberbank launched several complex solutions based 

on Teradata, Federal Tax service uses various instruments like Teradata, Oracle Ex-

adata and SAP to create analytical layer and monitor tax payers’ activities [21], [23].   

Some of the state governmental projects are listed in table 1.   

Regional level and municipal level are almost completely hidden from view. At an-

alytical companies’ sites there can be found proposals of analytical solutions for every 

level of governmental structure, but very few stats of success histories on regional or 

municipal levels can be found.   It’s obvious that some projects require analysis and it 
is done for them. For instance, in news there can be found that several students created 

algorithm for optimal car trafficking on municipal toll roads entrances [23]. Obviously, 



 

it is a part of some municipal project, but this project was not tagged with “machine 
learning”.  It is very hard to evaluate real volume of analytical demand in regions. How-

ever surely it was rising in recent years [21,22].   

Table 1.  Recent state ML projects.  

Governmental client Implemented solutions 

Sberbank Marketing and sales, risk management 

scoring, CRM, anti-fraud 

Federal tax service Establishment of the analytical layer for 

federal data warehouse 

Pension Fund Analytics and reporting 

Federal Compulsory Medical 

 Insurance Fund 

Analytics and reporting 

Federal Road Agency Traffic jams forecasting system 

Ministry of Finance Security system, civil service positions 

classification system 

Ministry of Education and Science Expert-analytical prediction system, au-

tomated e-learning resources examina-

tion system, financial analytical system 

Central Bank Automated  support system for  IT depart-

ments, real estate analytical system 

Supreme Court of Arbitration E-governance integration,  HR system, 

Federal Treasury "Electronic Russia budget" system, 

security 

Roscosmos State Corporation Computing networks integration and con-

trol systems 

Federal Service for Hydromete-

orology and Environmental 

Monitoring 

Forcasting system update 

Ministry of Natural Resources and  

Environment 

Decision Support System 

Federal Service for State Registration

Cadastre and Cartography 

Automation of real estate registration ser-

vice, analytics 

Federal Financial Monitoring Service Automated classification and clustering 

system 

Federal Drug Control Service  

of Russia 

Data storage and analytics 

The overall technological progress dictates a shift towards the use of the latest solu-

tions in database management, data processing and automation of prior services. De-

spite the differences in systems of government administrative entities, the new genera-

tion of clerks brought a renewed vision on automation and the use of technology in 

government projects. This in its turn stimulates emergence of new specific projects and 

demands. One of such projects – the Expert Hub system, will be presented in the next 

part of the article. 
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Fig. 1. Schema of the system 

Concept. In this part, we will make a general description of the system and then – go 

into a more detail describing the algorithms that were used, focusing with a special 

attention on experiments with the algorithms and the way in which optimal variants 

were chosen.  

To increase the implementation speed of innovational solutions in government the 

Xpir project was created [25]. Its main goal is to provide information support for Rus-

sian scientific and technical society. This platform contains science news, conferences 

information, data on Russian and international funds and organizations.  The Expert 

Hub system prototype was originally created as a module for the Xpir project. 

The idea of the Expert Hub approach is to use the documents from Examination 

System in order to define areas of expertise with semantic space construction and clus-

tering, then to relate experts to the corresponding areas of expertise and rank them ac-

cording to their proficiency in certain areas of expertise. The Examination System is an 

internal system in the Directorate of Science and Technology Programmes for evaluat-

ing research project proposals. In this system, invited or employed experts are review-

ing incoming grant proposals and deciding whether a given research project should be 

or should not be awarded with a grant or other kind of benefit. 
Data. The Directorate of Science and Technology Programmes provided us with 

30 000 documents created by 13545 experts for the study.  

Data preparation and preprocessing. First, we extract all the so-called metadata 

from the documents – author names, document titles etc. This data is later used for 

reference purposes. Then, we conduct the tokenization of the contents, and remove all 

the punctuation marks as well as the stop-words. We consider words having almost no 



 

meaning, such as prepositions and conjunctions, stop-words. As the final step of data 

preprocessing, we lemmatize the contents in order to reduce the number of unique terms 

as different forms for one word by converting them into one conventional form. 

Semantic space construction. After preprocessing the input documents, we create 

LSA term-document semantic space of all documents from data we have, where each 

row denotes document and each column is a word. 

LSA (Latent Semantic Analysis) is a technique for Natural Language Processing, 

which is widely used for solving various tasks in information retrieval. The underlying 

idea of LSA is that words with similar sense tend to occur in similar contexts. Thus, 

this technique can deal with homonymy. We employ LSA as it is faster and can work 

with larger data sets compared to other approaches [26]. 

LSA is based on the well-known singular value decomposition technique (SVD): 𝑀 = 𝑈𝛴𝑉*                            (1) 

where M is m × n matrix whose entries come from some field K, U is m×m matrix, Σ 
is m×n diagonal matrix with non-negative real numbers on the diagonal and V* is an 

n×n unitary matrix over K. 

We apply Log Entropy weighting function for LSA as this function works well in 

many practical studies [27]. 

Particularly, each cell aij of a term-document matrix A is computed as follows: 𝑝𝑖𝑗 = 𝑡𝑓𝑖𝑗𝑔𝑓𝑖 ,   𝑔𝑖 = 1 + ∑ 𝑝𝑖𝑗 log 𝑝𝑖𝑗log 𝑛𝑗  , 𝑎𝑖𝑗 = 𝑔𝑖 + log(𝑡𝑓𝑖𝑗 + 1)              (2) 

where n is total number of documents, gi is the global weight, tfij is the number of 

occurrences of term i in document j, and gfi is the total number of times the term i occurs 

in the corpus. 

Semantic space clustering. We cluster the LSA semantic space (currently we use 

DBSCAN + CBC hybrid clustering algorithm for this task, see Experiments section to 

know why we used it). As the result of clustering, we obtain centroids and document 

vectors belonging to those centroids. The optimal number of clusters is computed with 

Silhouette score using Grid search hyperparameter optimization approach. We then call 

each cluster an Expert Hub. Since we know, which document belongs to which expert, 

we may estimate areas of expertise for every expert based on their documents - and the 

documents are already distributed to clusters.  

CBC (Clustering by committee) is a centroid-based clustering algorithm, which was 

designed with motivation to cluster texts written in natural languages. The algorithm 

consists of three phases. In Phase I, each element’s top-k similar elements are computed 

for some small value of k. In Phase II, a collection of tight clusters is constructed, using 

the top-k similar elements from Phase I, where the elements of each cluster form a so-

called “committee”. The algorithm tries to form as many committees as possible on the 
condition that each newly formed committee should not be equal or much similar to 

any already existing committee. All the committees violating this condition are simply 

discarded from further computing. In the final phase of the algorithm, each element e 



 

is assigned to its most similar cluster or clusters if we apply soft clustering approach 

[28]. 

DBSCAN (Density-based spatial clustering of applications with noise) is a density-

based clustering algorithm. Given a set of points in some space, it groups together 

points that are close to each other, marking as outliers points that lie alone in low-

density regions. [29]. 

Silhouette score is an internal clustering validation measure, which is the measure 

that does not employ any external knowledge about the data e.g. known class labels. It 

just evaluates the quality of clustering based on the data used for clustering and the 

result of clustering. Silhouette coefficient compares the average distance from element 

to element within a cluster with the average distance to elements in other clusters, as-

signing highest scores to the algorithm producing dense clusters (with high similarity 

within the cluster) located far from each other (low similarity between clusters). [30]. 

Grid search hyperparameter optimization approach is a simple approach for selecting 

the best hyperparameters (e.g. parameters set by a researcher and not learned by algo-

rithm itself) by generating candidate hyperparameters from a grid of possible hyperpa-

rameter values specified by a researcher [31].  

Key terms extraction. We extract key terms (including n-grams) from LSA seman-

tic space for each Expert Hub based on documents belonging to that Hub. The extracted 

key terms represent the Expert Hub making it possible for user to name the Expert Hub. 

In addition, we extract keywords for every area of expertise for every expert for the 

same purpose. 

We experimented with two methods of key term extraction: 

1. Computing research area vector for an expert as average vector of his or her docu-

ments belonging to the research area. Then, we select top-20 lemma vectors from 

the whole semantic space, which are similar to the research area vector. These top-

20 lemma vectors are selected to represent the research area for the expert. This 

approach has a feature that among words representing research area for the expert 

there may occur words not presented in documents of the expert. Caveat of this ap-

proach is that we retrieve only unigrams as the semantic space consists of lemma 

vectors representing single words (bag-of-words approach) 

2. We compute research area vector for an expert as average vector of his or her docu-

ments belonging to the research area as in first approach. Then we take top-20 lemma 

vectors, which are most similar to the research area average vector, only from doc-

uments of the expert. For the most similar words, we look for n-grams in documents 

based on rules, which we created. We estimate the LogEntropy weights of a bigram 

as maximum weight of unigram constituents of a bigram. This approach can retrieve 

n-grams up to trigrams and consider terms occurring only in this expert' documents. 

As bigrams represent areas of expertise better than unigrams, we employ the second 

approach in our system. 

Expert assigning and ranking. We then append experts to the corresponding Ex-

pert Hubs and rank them based on their impact weight to the Hub.  

Impact weight is computed based on multiple factors: 



 

─ scientific background of an expert (from the expert’s profile in the Examination Sys-
tem) 

─ information about the previous expert assessments of an expert  

─ similarity of the documents of the expert belonging to the certain Hub (the higher 

similarity to the Hub documents have, the more impact weight the expert obtains).  

Since every expert may have multiple different areas of expertise, we apply soft clus-

tering method allowing the experts be related to several Hubs with various impact 

weight.  

Experiments 

In this section, we conduct experiments in order to define the best approach to clus-

tering the term-document semantic space built from the documents of the experts. We 

try three different types of clustering algorithms (i.e. centroid-based, agglomerative hi-

erarchical and density-based) and their combinations. 

The aim of the experiments is to select the optimal clustering algorithm or combina-

tion of clustering algorithms providing the best clustering results. To measure the qual-

ity of clustering, we use Silhouette score. With optimal clustering results, the Expert 

Hub System should maintain the optimal quality of experts’ allocation to the hubs. 
In every experiment, for every clustering algorithm, we iteratively select certain 

number of clusters and on every cluster number we measure Silhouette score. The num-

ber of clusters with the highest measured Silhouette score we consider optimal for the 

clustering algorithm. As we expected the number of Expert Hubs to be from 40 to 120 

depending on the possible degree of fragmentation of scientific fields, we conducted 

iterative clustering on this possible distribution of the clusters. For experimental pur-

poses, we cluster the LSA space constructed from all the 30 000 documents. 

Experiment 1. In the first experiment, we clustered the LSA space with just CBC 

algorithm. The optimal Silhouette score value (0.131) was obtained on 45 clusters (ta-

ble 2). The keywords extracted from the clusters contained much common lexis and 

words irrelevant to clusters, which indirectly indicated bad quality of clustering. 

Experiment 2. In the second experiment, we clustered the LSA space with just Ag-

glomerative Hierarchical Clustering algorithm (also known as AGNES and AHC). 

AGNES (AGglomerative NESting) or AHC is a standard agglomerative hierarchical 

clustering algorithm, consisting of two phases. Phase I initially starts with n clusters 

each containing a different element, Phase II embraces the merge of two most similar 

clusters (repeated n – 1 times) [28]. 

The results of clustering were better than in previous experiment, however, not 

much: the highest Silhouette score value was 0.1457 for 43 clusters (table 2). Key terms 

extracted from the clusters contained common lexis. This makes us to conclude that 

Agglomerative Hierarchical Clustering is also irrelevant method for clustering in our 

case. 

As we may see from the above experiments, agglomerative hierarchical and centroid 

algorithms worked not very well on the data. We supposed, that the cause of such re-

sults was that the distribution of data points in the LSA semantic space contained much 



 

outliers and the shape of the resulting clusters could be arbitrary. Thus, we decided to 

try a density-based clustering algorithm DBSCAN as its advantages included robust-

ness to outliers and ability to locate arbitrary-shaped clusters 

Experiment 3. In the experiment number three, we first clustered the LSA space 

with DBSCAN algorithm (with the following hyperparameters: epsilon = 0.5, minPts 

= 10 and cosine distance function). As this algorithm discovers the appropriate number 

of clusters by itself and this number of clusters may not fit our predefined possible 

cluster distribution, we applied CBC to the resulting average vectors of DBSCAN clus-

ters and iteratively measured Silhouette score. The highest Silhouette score value 

(0.697) was achieved on 42 clusters (table 2). The key terms, which we extracted, con-

tained a lot of special lexis and almost no common lexis. This indirectly indicates a 

good clustering, i.e., documents with a large number of common lexis were assigned to 

separate clusters. 

As the final trial, we also experimented with applying AHC to the average DBSCAN 

vectors, but ended up with lower Silhouette score of 0.579 on 46 clusters (table 2).  

Conclusion. We consider hybrid clustering algorithm, consisting of DBSCAN and 

CBC, the most appropriate algorithm to cluster the LSA space constructed from the 

data. For the data under study, we found out that based on experimental study the opti-

mal number of clusters was between 40 and 46 clusters with the most probable number 

of 42 clusters. 

Table 2. Highest results for clustering algorithms 

Clustering algorithm Optimal number of  clusters Highest Silhouette Score 

CBC 45 0.131 

AHC 43 0.1457 

DBSCAN + AHC 46 0.579 

DBSCAN + CBC 42 0.697 

Evaluation 

To evaluate the Expert Hub System, we employed the expert analysis approach. 

First, we named the expert hubs with the appropriate names according to the key terms 

of those hubs (for example, Physical Chemistry, Biology etc.). Then, we selected the 

top-5 most highly ranked (i.e. relevant to the hub) persons from each of the 42 hubs 

ending up with the total number of 210 persons. After that, we asked our experts to 

check some bibliographic databases (i.e. RSCI, Scopus and Web of Science) to make 

sure that persons indeed should have been related to certain expert hubs. The criterion 

of the person relevance to the certain expert hub was the following: a person should 

have had more publications relevant to the topic of the hub he or she was assigned to 

than to every other topics. 

The evaluation showed us, that 83.34% of experts (175 persons) met the criterion. 

Thus, we can suppose that the Expert Hub System prototype maintains relatively high 

accuracy in assigning experts to the corresponding hubs. 



 

Results and discussion 

In this study, we presented our attempt to create a system to automatically detect and 

rank experts in certain areas of expertise in order to provide governmental structures 

with the most highly qualified experts for reviewing incoming grant proposals and re-

search projects. The Expert Hub System prototype operates well – the accuracy of as-

signing experts to the corresponding expert hubs is above 80%. The clustering algo-

rithm with the best performance on the data we had for the study appeared to be the 

hybrid DBSCAN + CBC algorithm. 

Furthermore, we described prior experiences of technologisation of government ser-

vices and projects. The basic goals of the previous stage of government services devel-

opment focused much on automation and storage of information, while nowadays it is 

possible to work with well-structured data, to shift from database management towards 

Data Mining, to use Big Data and Machine Learning for sophisticated projects. 

Certainly, our study has many limitations. For instance, the evaluation of the system 

was not strictly formal and we evaluated only some aspects of the system. Moreover, 

the data we had for this study was relatively small in order to be applied to real pro-

cesses in the Directorate of Science and Technology Programmes and other govern-

mental structures. 

Conclusion and future work 

To conclude, we would like to say that the Expert Hub System prototype shows prom-

ising results and demonstrated decent performance during the evaluation. Product and 

market opportunities make the project scalable for other tasks, i.e. for HR solutions or 

for automated studies of competitors (especially for SME). 

For a future study, we suggest: 

─ Conducting a more thorough and formalized evaluation of the system 

─ Applying other methods for creating the semantic space from documents in order to 

obtain better results. Currently, we consider word2vec and similar tools suitable for 

this. 

─ Conducting a research in order to better detect the optimal number of clusters, cur-

rently we think about applying semi-supervised approach to cluster analysis to han-

dle the task. 

─ Carrying out usability studies of the system to discover its applicability to other 

tasks. 
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