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Abstract

The separation theorem in discrete convex analysis states that two disjoint discrete

convex sets can be separated by a hyperplane with a 0-1 normal vector. We apply this

theorem to an auction model and provide a unified approach to existing results. When

p is not an equilibrium price vector, i.e., aggregate demand and aggregate supply are

disjoint, the separation theorem indicates the existence of excess demand/supply. This

observation yields a refined analysis of a characterization of competitive price vectors

by Gul and Stacchetti (2000). Adjusting the prices of items in excess demand/supply

corresponds to Ausubel’s (2006) auction.

JEL classification: C78, D44

1 Introduction

The purpose of the present paper is to apply the separation theorem in discrete convex

analysis (Murota 2003) to an auction model and provide a unified approach to existing

results. The discrete separation theorem states that two disjoint discrete convex sets can

be separated by a hyperplane with a 0-1 normal vector. As recognized in the literature,

under the gross-substitutes condition, aggregate demand forms a discrete convex set called

the M♮-convex set. Geometrically, Walrasian equilibrium can be described as a situation

where aggregate demand and aggregate supply intersect. To put it differently, p is not an

equilibrium price vector if and only if aggregate demand and aggregate supply are disjoint.

Applying the discrete separation theorem to the two sets, the “slope” of the separating
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hyperplane turns out to describe excess demand or excess supply. This observation yileds a

refined analysis of Hall’s (1935) theorem and a characterization of competitive price vectors

by Gul and Stacchetti (2000). We further show that Ausubel’s (2006) auction proceeds

by increasing/decreasing the prices of items in excess demand/supply, thereby providing an

economic interpretation of the auction.

The rest of the paper is organized as follows. Section 2 presents preliminaries. Section

3 presents an application of the discrete separation theorem to an auction model. Section 4

presents concluding remarks. Section 5 presents proofs of the main results.

2 Preliminaries

2.1 Discrete convex analysis

Let Z be the set of integers and K be an arbitrary finite set. For x ∈ Z
K , we define

supp+x = {k ∈ K : xk > 0}, supp−x = {k ∈ K : xk < 0}.

For each A ⊆ K, let χA ∈ {0, 1}K denote the characteristic vector of A, i.e.,

(χA)k =







1 if k ∈ A,

0 otherwise.

For a singleton set {k} ⊆ K, we write χk for χ{k}.

We say that a function v : {0, 1}K → R is an M♮-concave function if, for any x, y ∈

{0, 1}K and k ∈ supp+(x− y), we have

(i) v(x) + v(y) ≤ v(x− χk) + v(y + χk), or

(ii) there exists ℓ ∈ supp−(x− y) such that v(x) + v(y) ≤ v(x− χk + χℓ) + v(y+ χk − χℓ).

Section 3 of Kojima et al. (2017) provides an interpretation for M♮-concavity.

We say that X ⊆ Z
K with X 6= ∅ is an M♮-convex set if, for any x, y ∈ X and

k ∈ supp+(x− y), we have

(i) x− χk ∈ X, y + χk ∈ X, or

(ii) there exists ℓ ∈ supp−(x− y) such that x− χk + χℓ ∈ X, y + χk − χℓ ∈ X.

The following is a discrete analogue of the separation theorem.
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Theorem 1. Let X1, X2 ⊆ Z
K be M♮-convex sets. If X1 ∩ X2 = ∅, there exists α ∈

{0, 1}K ∪ {0,−1}K such that

sup
x∈X1

α · x < inf
x∈X2

α · x.

Proof. See Section 5.1.

As is the case for continuous settings, this theorem states that two “convex” sets can be

separated by a hyperplane. The key difference is that the normal vector α can be taken as

a characteristic vector (i.e., a vector with 0-1 coordinates).

The following figure shows an example of the discrete separation theorem for K = {k, ℓ}.

Note that each “edge” of X1 and X2 is parallel to χk − χℓ or χk or χℓ.
1 The normal vector

of the separating hyperplane is taken as α = (1, 1).

Figure 1: Discrete separation theorem for K = {k, ℓ}

Remark 1. The separation theorem in discrete settings is already proved for two sets sat-

isfying M-convexity, which is stronger than (but essentially equivalent to) M♮-convexity (see

Murota 2003, Theorem 4.21). We provide another proof for its fundamental importance.

For two sets X1, X2 ⊆ Z
K , we define the Minkowski sum X1 +X2 by

X1 +X2 = {x1 + x2 : x1 ∈ X1, x2 ∈ X2}.

The following theorem says that M♮-convexity is preserved in Minkowski sum.

1An M♮-convex set in a general n-dimensional space can be characterized in terms of the direction of
edges; see Murota (2003), p.119.
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Theorem 2 (Murota 2003, Theorem 4.23). Let X1, X2 ⊆ Z
K be M♮-convex sets. Then,

X1 +X2 is an M♮-convex set.

3 Application to an auction model

We show that the discrete separation theorem clarifies the mathematical structure behind

an auction model.

Let N be a finite set of agents and K be a finite set of items. Each agent i has a

valuation function vi : {0, 1}
K → Z; we identify a subset of items A ⊆ K with χA. For

each i ∈ N , we define the demand correspondence Di : R
K
+ → {0, 1}K by

Di(p) =
{

x ∈ {0, 1}K : vi[p](x) ≥ vi[p](y) for all y ∈ {0, 1}K
}

for all p ∈ R
K
+ ,

where vi[p](x) = vi(x)− p · x.

We say that vi is monotonic if for any A,B ⊆ K with A ⊆ B, we have vi(χA) ≤ vi(χB).

We say that vi satisfies the gross substitutes condition (Kelso and Crawford 1982) if for

any p, q ∈ R
K
+ with p ≤ q and x ∈ Di(p), there exists y ∈ Di(q) such that xk ≤ yk if pk = qk.

Theorem 3 (Fujishige and Yang 2003). Suppose vi is monotonic. Then vi satisfies the gross

substitutes condition if and only if vi is M♮-concave.

Throughout this paper, we assume that vi is monotonic and satisfies the gross substitutes

condition for all i ∈ N . By Theorem 3, vi is M
♮-concave for all i ∈ N .

Theorem 4 (Fujishige and Yang 2003; Murota 2003, Theorem 6.30). Let vi be an M♮-concave

function. Then, for any p ∈ R
K
+ , Di(p) is an M♮-convex set.

An allocation is a set of bundles (xi)i∈N satisfying

xi ∈ {0, 1}K for all i ∈ N,
∑

i∈N

xi = χK .

A Walrasian equilibrium is a pair
(

p∗, (x∗
i )i∈N

)

, where p∗ ∈ R
K
+ , x

∗ is an allocation,

and x∗
i ∈ Di(p

∗) for all i ∈ N . We say that p∗ is a (Walrasian) equilibrium price vector

if there exists an allocation (x∗
i )i∈N such that

(

p∗, (x∗
i )i∈N

)

is a Walrasian equilibrium.

For each p ∈ R
K
+ , we define the aggregate demand D(p) by

D(p) =
∑

i∈N

Di(p).

The following lemma immediately follows from the definition of an equilibrium price vector.
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Lemma 1. A price vector p ∈ R
K
+ is an equilibrium price vector if and only if χK ∈ D(p).

Equivalently, p is not an equilibrium price vector if and only if

χK /∈ D(p). (1)

By Theorems 2-4, D(p) is an M♮-convex set. Regarding χK as a singleton set, {χK} is an

M♮-convex set. Hence (1) refers to two disjoint M♮-convex sets. By Theorem 1, there exists

α ∈ {0, 1}K ∪ {0,−1}K such that

α · χK < min
x∈D(p)

α · x. (2)

Assume α ∈ {0, 1}K and let A ⊆ K be such that α = χA. Then (2) is equivalent to

|A| < min
x∈

∑
i∈N

Di(p)

∑

k∈A

xk

=
∑

i∈N

min
xi∈Di(p)

∑

k∈A

(xi)k

=
∑

i∈N

min
xi∈Di(p)

∣

∣{k ∈ A : (xi)k = 1}
∣

∣. (3)

For each i ∈ N , Gul and Stacchetti (2000) called the above minimum value the requirement

function and interpreted it as follows: “the minimal number of objects in A that she would

need to construct any of her optimal consumption bundles”. In the above inequality, the

sum of the minimal numbers among agents is greater than the number of items in A, which

means excess demand.

When α ∈ {0,−1}K , letting A ⊆ K be such that α = −χA, (2) is equivalent to

|A| >
∑

i∈N

max
xi∈Di(p)

∣

∣{k ∈ A : (xi)k = 1}
∣

∣,

which means excess supply.

For p ∈ R
K
+ and A ⊆ K, we define

Rmin
i (p, A) = min

xi∈Di(p)

∣

∣{k ∈ A : (xi)k = 1}
∣

∣, Rmin(p, A) =
∑

i∈N

Rmin
i (A, p),

Rmax
i (p, A) = max

xi∈Di(p)

∣

∣{k ∈ A : (xi)k = 1}
∣

∣, Rmax(p, A) =
∑

i∈N

Rmin
i (A, p).

We summarize the above discussion as a theorem.2

2The above discussion proves the contrapositive of the if part of Theorem 5. The only if part immediately
follows from the definition of a competitive price vector.
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Theorem 5. p ∈ R
K
+ is an equilibrium price vector if and only if

Rmin(p, A) ≤ |A| ≤ Rmax(p, A) for all A ⊆ K.

This theorem has an intuitive interpretation that p is an equilibrium price vector if and

only if excess demand/supply do not exist.

The above argument enables a refined analysis of a characterization of competitive price

vectors by Gul and Stacchetti (2000). Indeed, their characterization immediately follows

from the discrete separation theorem. Let [0, χK ] denote the integer interval between 0

and χK , i.e., [0, χK ] = {x ∈ Z
K : 0 ≤ x ≤ χK}. We say that p is a quasi competitive

price vector if [0, χK ] ∩D(p) 6= ∅. Namely, p is a quasi competitive price vector if all the

items are consumed by at most one agent.

Corollary 1 (Gul and Stacchetti 2000, Corollary). p is a quasi competitive price vector if

and only if

Rmin(p, A) ≤ |A| for all A ⊆ K.

Proof. The only if part immediately follows from the definition of a quasi competitive price

vector. We prove the contrapositive of the if part. If p is not a quasi competitive price

vector, then [0, χk] ∩D(p) = ∅. Since any integer interval is an M♮-convex set, by Theorem

1, there exists α ∈ {0, 1} ∪ {0,−1} such that

max
x∈[0,χK ]

α · x < min
x∈D(p)

α · x. (4)

If α ∈ {0,−1}, then we derive max
x∈[0,χK ]

α · x = 0 ≥ min
x∈D(p)

α · x, a contradiction to (4). Hence,

α ∈ {0, 1}. Since max
x∈[0,χK ]

α · x = α · χK , by choosing A ⊆ K with α = χA, the same

transformation as (3) yields the desired condition.

Remark 2. Hall’s (1935) theorem is a fundamental theorem in graph theory. See Demange

et al. (1986) as well as Section 8.3 of Roth and Sotomayor (1990) for its application to

auctions. As discussed by Gul and Stacchetti (2000), Corollary 1 is a generalization of Hall’s

(1935) theorem. Hence, Hall’s (1935) theorem can be obtained by the discrete separation

theorem.

Based on the description of excess demand and supply in Theorem 5, we provide an

economic interpretation of Ausubel’s (2006) auction. For each i ∈ N , we define the indirect
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utility function Vi : R
K
+ → Z by

Vi(p) = max
x∈{0,1}K

vi[p](x) for all p ∈ R
K
+

We define the Lyapunov function (Ausubel 2006) L : ZK
+ → Z by

L(p) =
∑

i∈N

Vi(p) + p · χK for all p ∈ Z
K
+ .

Ausubel’s (2006) auction proceeds by decreasing the value of the Lyapunov function. The

next theorem shows that the auction proceeds by increasing (res. decreasing) the prices of

items in excess demand (res. excess supply).

Theorem 6. Let p ∈ Z
K
+ and A ⊆ K. Then,

(i) L(p+ χA) < L(p) if and only if |A| < Rmin(A, p).

(ii) L(p− χA) < L(p) if and only if |A| > Rmax(A, p).

Proof. See Section 5.2.

Remark 3. The Lyapunov function L(·) satisfies a notion of discrete concavity called L♮-

concavity (see Section 8 of Murota (2016) for a detailed discussion), where L refers to lattice.

Combining L♮-concavity with Theorems 5 and 6, we can prove that p is a competitive price

vector if and only if p is a minimizer of L(·), which was previously proved by Ausubel (2006).

L♮-concavity also implies that the set of competitive price vectors has a lattice structure.

4 Concluding remarks

As proven by Murota et al. (2016), many existing iterative auctions can be embedded

into Ausubel’s (2006) auction. Hence our result shows that the discrete separation theorem

is a critical mathematical tool in iterative auctions.

There are many papers that provide a characterization of the Walrasian equilibria; see,

for example, Mishra and Talman (2010). It remains as a topic for future work to apply

the discrtete separation theorem to other characterizations and clarify the mathematical

structure behind them.
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5 Proofs

5.1 Proof of Theorem 1

For x ∈ Z
K and X ⊆ Z

K , we define

d+(x,X) = {k ∈ K : x+ χk ∈ X}, d−(x,X) = {k ∈ K : x− χk ∈ X}.

For x ∈ Z
K and A ⊆ K, we define3

||x||1 =
∑

k∈K

|xk|, x(A) =
∑

k∈A

xk.

Lemma 2 (Murota Shioura 1999, Lemma 4.3). Let X ⊆ Z
K be an M♮-convex set. Then,

for any x, y ∈ X with x(K) < y(K), there exists k ∈ supp+(y − x) such that

x+ χk ∈ X and y − χk ∈ X.

Claim 1. Let X ⊆ Z
K be an M♮-convex set and x /∈ X. If d+(x,X) 6= ∅, then

x(d+(x,X)) < y(d+(x,X)) for all y ∈ X.

Proof. We proceed by induction on ||x− y||1 for y ∈ X.

Induction base: Case 1: Suppose ||x− y||1 = 1. We consider two subcases.

Subcase 1-1: Suppose y = x + χk for some k ∈ K. Since y = x + χk ∈ X, we have

k ∈ d+(x,X). Then,

x(d+(x,X)) < (x+ χk)(d
+(x,X)) = y(d+(x,X)).

Subcase 1-2: Suppose y = x− χℓ for some ℓ ∈ K. Let k ∈ d+(x,X). We apply Lemma 2

to x + χk, y ∈ X with (x + χk)(K) > y(K). Since supp+((x + χk) − y) = {k, ℓ}, we have

(x+ χk)− χk = x ∈ X or y + χℓ = x ∈ X, either of which is a contradiction to x /∈ X.

Case 2: Suppose ||x− y||1 = 2. Let k ∈ d+(x,X). We consider three subcases.

Subcase 2-1: Suppose y = x+ 2 · χℓ for some ℓ ∈ K. We apply Lemma 2 to y, x+ χk ∈ X

with y(K) > (x+ χk)(K). Since supp+(y − (x+ χk)) = {ℓ}, we have y − χℓ = x+ χℓ ∈ X.

Hence ℓ ∈ d+(x,X), which implies

x(d+(x,X)) < (x+ 2 · χℓ)(d
+(x,X)) = y(d+(x,X)).

3||x||1 is called the ℓ1-norm of x.
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Subcase 2-2: Suppose y = x + χℓ − χm for some ℓ,m ∈ K with ℓ 6= m. We apply Lemma

2 to x + χk, y ∈ X with (x + χk)(K) > y(K). Note that supp+((x + χk) − y) = {k,m} if

k 6= ℓ and supp+((x+ χk)− y) = {m} if k = ℓ. Since (x+ χk)− χk = x /∈ X, in eihter case,

we have y + χm = x+ χℓ ∈ X. Namely, ℓ ∈ d+(x,X).

Suppose m ∈ d+(x,X). We apply Lemma 2 to x+χm, y ∈ X with (x+χm)(K) > y(K).

Since supp+((x + χm) − y) = {m}, we have (x + χm) − χm = x ∈ X, a contradiction to

x /∈ X. Hence, m /∈ d+(x,X).

By ℓ ∈ d+(x,X) and m /∈ d+(x,X),

x(d+(x,X)) < (x+ χℓ − χm)(d
+(x,X)) = y(d+(x,X)).

Subcase 2-3: Suppose y = x−2·χℓ for some ℓ ∈ K. We apply Lemma 2 to x+χk, y ∈ X with

(x+χk)(K) > y(K). Note that supp+((x+χk)− y) = {k, ℓ}. Since (x+χk)−χk = x /∈ X,

we have (y + χℓ) = x − χℓ ∈ X. Following the same argument as Subcase 1-2, we obtain a

contradiction to x /∈ X.

Induction step: Let t ≥ 3. Suppose the result holds for all y ∈ X with 1 ≤ ||x−y||1 ≤ t−1.

We prove the result for y ∈ X with ||x− y||1 = t.

Suppose by way of contradiction that there exists y ∈ X such that ||x− y||1 = t and

x(d+(x,X)) ≥ y(d+(x,X)). (5)

Let k ∈ d+(x,X) be such that xk − yk ≥ xk′ − yk′ for all k
′ ∈ d+(x,X). By (5), xk − yk ≥ 0.

By M♮-convexity applied to x+ χk, y ∈ X and k ∈ supp+((x+ χk)− y), we have

(i) x ∈ X and y + χk ∈ X, or

(ii) there exists ℓ ∈ supp−((x+ χk)− y) such that x+ χℓ ∈ X and y + χk − χℓ ∈ X.

By x /∈ X, (ii) holds. By x+ χℓ ∈ X, we have ℓ ∈ d+(x,X). Together with (5),

x(d+(x,X)) ≥ y(d+(x,X)) = (y + χk − χℓ)(d
+(x,X)). (6)

By (ii), y + χk − χℓ ∈ X. Since ℓ ∈ d+(x,X) and yℓ > xℓ + (χk)ℓ = xℓ, together with the

choice of k and (5), we obtain xk−yk > 0. Hence, ||x−(y+χk−χℓ)||1 = ||x−y||1−2 = t−2.

Then, (6) contradicts the induction hypothesis.

Claim 2. Let X ⊆ Z
K be an M♮-convex set and x /∈ X. If d−(x,X) 6= ∅, then

x(d−(x,X)) > y(d−(x,X)) for all y ∈ X.

Proof. This claim can be proved in the same way as Claim 1
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Claim 3. Let X ⊆ Z
K be an M♮-convex set and x /∈ X. Then, there exists α ∈ {0, 1}K ∪

{0,−1}K such that

α · x < inf
y∈X

α · y. (7)

Proof. Let ȳ ∈ X be such that ||x − ȳ||1 ≤ ||x − y||1 for all y ∈ X. Set m = ||x − ȳ||1 and

let k ∈ supp+(ȳ − x) ∪ supp−(ȳ − x) 6= ∅.

Case 1: Suppose k ∈ supp+(ȳ−x). By the choice of ȳ, we have ȳ−χk /∈ X. Set x̄ = ȳ−χk.

By d+(x̄, X) 6= ∅, Claim 1 implies

x̄(d+(x̄, X)) < y(d+(y,X)) for all y ∈ X. (8)

Suppose by way of contradiction that x(d+(x̄, X)) > x̄(d+(x̄, X)). Then there exists

ℓ ∈ d+(x̄, X) with xℓ > x̄ℓ = ȳℓ − (χk)ℓ. Together with ȳk > xk, we have k 6= ℓ, from which

follows xℓ > ȳℓ. By x̄+ χℓ = ȳ − χk + χℓ ∈ X and ||(ȳ − χk + χℓ)− x||1 = m− 2, we obtain

a contradiction to the choice of ȳ.

It follows that x(d+(x̄, X)) ≤ x̄(d+(x̄, X)). Together with (8),

x(d+(x̄, X)) < y(d+(y,X)) for all y ∈ X.

Set A = d+(x̄, X). By the above inequality, together with the fact that y(d+(y,X)) always

takes an integer value, we obtain (7) for α = χA.

Case 2: Suppose k ∈ supp−(ȳ − x). This case can be proved in the same way as Case 1.

Applying Claim 2 instead of Claim 1, we obtain α ∈ {0,−1}K that satisfies (7).

For X ⊆ Z
K , we define −X = {x ∈ Z

K : −x ∈ X}.

Claim 4. Let X ⊆ Z
K be an M♮-convex set. Then, −X is also an M♮-convex set.

Proof. This claim immediately follows from the definition of M♮-convexity.

Proof of Theorem 1 . By Theorem 2 and Claim 4, −X1 + X2 is an M♮-convex set. By

X1 ∩ X2 = ∅, 0 /∈ −X1 + X2. Applying Claim 3, there exists α ∈ {0, 1}K ∪ {0,−1}K such

that

0 < inf
x∈−X1+X2

α · x,

0 < inf
x1∈X1

α · (−x1) + inf
x2∈X2

α · x2,

0 < − sup
x1∈X1

α · x1 + inf
x2∈X2

α · x2,

sup
x1∈X1

α · x1 < inf
x2∈X2

α · x2,

10



which completes the proof.

5.2 Proof of Theorem 6

Let A ⊆ K and p ∈ Z
K
+ . We prove (i) and omit the proof of (ii) which can be obtained

analogously.

Only-if: We prove the contrapositive. Suppose there exist xi ∈ Di(p) for i ∈ N such that

|A| ≥ χA ·
∑

i∈N

xi. (9)

Then,

L(p) =
∑

i∈N

Vi(p) + p · χK

=
∑

i∈N

{vi(xi)− p · xi}+ p · χK

≤
∑

i∈N

vi(xi)− p ·
∑

i∈N

xi + p · χK + |A| − χA ·
∑

i∈N

xi

=
∑

i∈N

vi(xi)− (p+ χA) ·
∑

i∈N

xi + (p+ χA) · χK

=
∑

i∈N

{vi(xi)− (p+ χA) · xi

}

+ (p+ χA) · χK

≤
∑

i∈N

Vi(p+ χA) + (p+ χA) · χK

= L(p+ χA).

where the first inequality follows from (9) and the second inequality follows from the definifion

of the indirect utility function.

If:

For i ∈ N and a ∈ Z+, we define

Da
i (p) =

{

x ∈ {0, 1}K : vi[p](x) ≥ Vi(p)− a
}

.

Note that D0
i (p) = Di(p).

Theorem 7 (Murota 2003, Theorem 6.15). Let p ∈ R
K and vi be an M♮-concave function.

Then, vi[p] is an M♮-concave function.
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Claim 5. Let i ∈ N . Then for any a ∈ Z+, we have

x ∈ Da
i (p) implies x · χA ≥ Rmin

i (A, p)− a.

Proof. For each a ∈ Z+, set

Da = {x ∈ {0, 1}K : x ∈ Da
i (p) and x · χA < Rmin

i (A, p)− a}.

It suffices to prove that Da = ∅ for all a ∈ Z+. We proceed by induction on a. If a = 0, the

result follows from Rmin
i (A, p) ≥ 0. Suppose that the result holds for a = k and we prove

the result for a = k + 1, where k ≥ 1.

Suppose by way of contradiction that there exists x ∈ Dk+1. Let x̄ ∈ Di(p) be such that

|supp+(x̄− x) ∩ A| ≤ |supp+(y − x) ∩ A| for all y ∈ Di(p). By x̄ · χA ≥ Rmin
i (A, p), it holds

that x̄ · χA > x · χA. This means that there exists k ∈ supp+(x̄ − x) ∩ A. By Theorem 7,

vi[p] is an M♮-concave function. With the notation χ0 = 0, by M♮-concavity, there exists

ℓ ∈ supp−(x̄− x) ∪ {0} such that

vi[p](x̄) + vi[p](x) ≤ vi[p](x̄− χk + χℓ) + vi[p](x+ χk − χℓ). (10)

Since (x + χk − χℓ) · χA ≤ x · χA + 1 < Rmin
i (A, p) − k, by the induction hypothesis,

x + χk − χℓ /∈ Dk
i (p). Together with x ∈ Dk+1

i (p), we obtain vi[p](x) ≥ vi[p](x + χk − χℓ).

This inequality and (10) imply vi[p](x̄) ≤ vi[p](x̄− χk + χℓ). Namely,

x̄− χk + χℓ ∈ Di(p) and |supp+((x̄− χk + χℓ)− x) ∩ A| = |supp+(x̄− x) ∩ A| − 1,

a contradiction to the choice of x̄.

For any i ∈ N and xi ∈ {0, 1}K , by letting a(xi) := Vi(p)− vi[p](xi),

vi[p+ χA](xi) = vi[p](xi)− χA · xi

= Vi(p)− a(xi)− χA · xi

≤ Vi(p)− a(xi)−Rmin
i (A, p) + a(xi)

= Vi(p)−Rmin
i (A, p), (11)

12



where the inequality follows from Claim 5. For each i ∈ N , let x̄i ∈ Di(p+ χA). Then,

L(p+ χA) =
∑

i∈N

Vi(p+ χA) + p · χK + |A|

=
∑

i∈N

vi[p+ χA](x̄i) + p · χK + |A|

≤
∑

i∈N

Vi(p)−
∑

i∈N

Rmin
i (A, p) + p · χK + |A|

<
∑

i∈N

Vi(p) + p · χK

= L(p),

where the first inequality follows from (11) and the second inequality follows from the as-

sumption.
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