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Abstract

The Herfindahl index is one of the most known indices used to measure the concentration of a variable
distributed over a certain number of units, and tipically to measure the degree of concentration of business in
a market. Its worth is the sensitivity both to the dimensional variability of these units and to their numerical
consistency. In this note a decomposition of the H-index into these two terms is offered.
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Introduction

The reasons why the Herfindahl index is widely used to
measure the degree of concentration in a certain market
are essentially two:

(é) it is very simple to be calculated; and

(4) it allows to capture the two main features of the
industrial concentration that a good index has to
take into account, that is the dimensional inequal-
ity across firms in the observed market and their
number.

Here we want to isolate and quantify these two es-
sential components.

A metric definition of concentration

Suppose we have to measure the degree of concentra-
tion of a positive variable X distributed over n units
according to x;, i = 1,2,...,n. To speak concretely, we
can think, for example, of n firms of an industry and
their respective sales recorded in a certain period.

So we can consider the R’} -vector:
s Tn)

X = (1‘1,.’172,...

together with the n-dimensional vector having all the
coordinates equal to z = + 31 | a;:

x=(z,%,...,7)

with a clear meaning of both of them: x is the point of
the space R} actually (empirically) observed, whereas x
is the ideal point representing the equidistribution state
of the variable X across the units under consideration
(in our example, the firms of an industry). Therefore
one of the most natural way to define the concentration
of X is to determine how close to or how far from X
the actual point x is. For this we can compute the (Eu-
clidean) distance between the two points (see also Ricci,
1975, p. 42):

n

3 (wi—2)? =

i=1

d(x,x) = Zx?—m’c? (1)

Such a measure can be normalized taking the ra-
tio to the greatest virtually observable distance in the
mentioned space of the R’} -vectors, consistent with our
actual data set on the firms’ sales. Naturally this
maximum distance is the distance between X and a
maximum-concentration point in which the total vol-
ume of the market is thought as attached to a single
firm, the others having an output equal to zero, say x*
(this is the concentration-mazimizing distribution) [see
Appendix (a)]. Hence we have:

max d(x,X) = d(x*,X) =

Y P -

= (Z’L xi)2 —nz? =

(n—1)nz?

(2)



and a relative index of concentration (with n > 1) is:

o d(x,%) _ IS a? — nz?
d(x*, %) (n —1)nz?

A first immediate remark is that 7 = ox/oxx,
namely the ratio of the standard deviations of the actual
distribution to the concentration-maximizing distribu-
tion of X. Moreover we see that 7 € [0,1]: if 7 =0, it
means that x coincides with the equidistribution point,
where by definition the degree of concentration is null;
if 7 =1, x coincides with one of the max-concentration
points; and, finally, if 0 < 7 < 1, the empirical point
x lies in the space R’} in an intermediate position, and
more exactly at a distance from X equal to the fraction
7 of the maximum observable distance (2): the closer to
(resp. farther from) X the actual point is, the more 7
tends to 0 (resp. to 1), thereby providing a measure of
the degree of concentration of X.

(3)

A decomposition of the Herfindahl index

The metric index 7 has two main advantages: first, it is
very easy to compute, and, second, it has a clear geomet-
ric, intuitive meaning. However, in spite of these advan-
tages, this index might not be completely satisfactory
especially as regards the analysis of industrial concen-
tration phenomena, because it takes into account only
the aspect of the dimensional heterogeneity of firms, not
being affected by their number, in the same sense that it
could be said about other concentration ratios, like the
Gini index for instance. More exactly, any distribution
of X with n equal-sized firms always corresponds to null
concentration for 7, and so 7 = 0 for any market with 2
or 200 or 20,000 identical firms. It is quite evident that
this is a crucial issue from the economic point of view,
because it is not acceptable that an industry could be
examined with reference to the features of concentration
regardless of the number of players. The number of firms
has relevant effects on the firms’ behaviour itself, on the
degree of competition, in short on the market conditions;
in fact, it is very hard to think that a market with two
firms only is the same that one with tens or hundreds
or more. For this reason a good index of industrial con-
centration should be able to embed both of the main
aspects related to (a) the dimensional inequality across
firms and (b) the number of firms within the industry,
according to a wider definition of concentration.

One of the most common indices holding such a good
property is the Herfindahl index, which has in reality a
very simple structure:

(4)

where s; represents the market share of the i-th firm,
that is x;/), x;. While the maximum of H is again 1,
in case of equidistribution we have s; = 1/n for all i’s,
and H = 1/n, which is therefore the minimum of H. It

follows that the Herfindahl index allows to distinguish
among uniform distributions according to the number of
the firms in the market, in the sense that H increases as
n decreases (as indeed we expect from an economic point
of view). Thus it is usually said that the Herfindahl in-
dex is able to capture the effect on concentration by side
not only of the dimensional variability of firms but also
of their number. Our purpose is to isolate clearly these
two effects [see Appendix (b)].

In this regard, first of all it is necessary to express
7 in terms of H, which is not difficult to obtain if we
divide by (3", #;)? both numerator and denominator of
the ratio under the square root in (3) (that in turn is the
same as considering s;’s in place of x;’s, meaning that
7 is exempt from scaling problems). Then, by virtue of

(4), we get:
n Hfl ~ /nH -1
n—1 n) n—1

which represents a sequence of functions whose limit is
VH as n — 400 [see Appendix (c)].
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Figure 1. AN H-INDEX DECOMPOSITION: for
each level of H (e.g. H' or H" on the horizon-
tal axis) and of 7 (e.g. 7' or 7" on the vertical
axis), the decomposition of H into F; and E,,
respectively the inequality and the n effects on
the concentration.

In Figure 1 expression (5) is depicted together with
VH in such a way that we can visualize the horizon-
tal distance between the two curves. The point is that
this distance reflects the difference between two mar-
ket conditions: one being a limit case with an infinite
number of firms — on the curve v/H taken as a term
of comparison —, and the other one with the actual (fi-
nite) number of firms, in correspondence of the same
degree of metric concentration 7. Hence, this distance
can be assumed as a measure of the pure n-effect on



the Herfindahl index, the complement being related to
the remaining determinant that we can call inequality
effect. Notice that, as wanted, the n-effect on H is
unambiguous: as n increases, H certainly decreases for
each level of 7, and vice versa H certainly rises as n falls.

Some developments and remarks:

A) for any n > 1 there exists a one-to-one correspon-
dence between H and 7. For any n and for each level
of H (or, that is the same, for each level of 7), H can
be decomposed into two parts: the above-mentioned in-
equality effect (E;) and the n-effect (E,,). See Figure 1
for an exemplification. It is easy to realize that:

nH —1
E;, =72 =
E,=H — 72 :17H
" n—1

B) Moreover, by virtue of (5), we have:

(6)

(7)

H:W (8)

so that the (first-order) differences of H with respect to
n (7 constant) are:

-1

AH, = —F——= <
n(n+1)

which expresses the fact that, given whatever 7, there
exists an inverse relation between H and n (and hence
between E,, and n).

C) The most interesting point is the one which
mainly emerges just from looking at Figure 1: as we pass
from minimum levels of dimensional inequality, mea-
sured by 7 (or E;), to higher ones, the effect of the
number of firms decreases; in other words, the firms’
crowding on the market is bound to have a decreasing-in-
importance role in the determination of H as the players’
inequality raises. And this seems to be reasonable: in a
neighbourhood of the maximum of 7 the market tends to
a monopoly whatever the number of firms (think about
the substantial equivalence of two industries both dom-
inated by one very big company, but in a case flanked
by just one very small firm and, in the other, by a large
number of little co-players); on the other side, in a neigh-
bourhood of the minimum of 7, where players are all
fairly comparable, their number is rather crucial in dis-
criminating even very different situations: a market with
few quite equal firms (= duopoly, oligopoly) and that
one with a great many firms (= competitive market).

In particular:
ifr=1 = H=F;and E, =0

ifr=0 = H=F,and E; =0

As a last remark we must note that sometimes, in
some applications, normalizations of the Herfindahl in-
dex are used for the claimed purpose to make markets
with different n comparable and hence to neutralize the
n-effect. It is not difficult to conclude that this is in
principle incorrect, because, for all said thus far, the dis-
tinctive function of H is precisely to catch that effect.
Indeed we can see that the standard normalization, for
example, obtained as a composition ratio with respect
to the range of variation, i.e.:

H-1/n
1-1/n

corresponds exactly to E; we derived above at (6), which
discloses the real meaning of this kind of operation. The
result is therefore and simply to reduce the index to just
one component of two, with consequent remarkable loss
of information (unless, obviously, E, is unimportant).
On the normalization of H, see, for instance, the recent
work of Cracau and Lima (2016).

Conclusions and examples

If studying the concentration of business in a certain
market at a given point in time our aim is to answer
questions like: "How much of it is explained by the fac-
tor « rather than the factor 57", we need to partition
the measure of the phenomenon into measure of o +
measure of 3, both positive. Here, in particular, our in-
tention has been to decompose the Herfindahl index of
concentration (H) into two main components, one (E;)
expressing the (squared) relative distance of the actual
state of the market with respect to the ideal equidistri-
bution state (same number of firms, same volume of the
market, but equidistributed), and the other one (E,), a
sort of distance from that other ideal state of the market
in which the number of firms tends to infinity, so-called
perfect competition.

This decomposition hence allows to get precise mea-
sure of situations as follows: let n = 100 and consider
> ;x; = 1000 distributed at 60% within the 40%-top
units (for the sake of simplicity suppose uniformely, in
and out of this 40% range); then we obtain:

H T El En
0.01167 0.04103 0.00168 0.00998
(100%) (14.4%)  (85.6%)

Now let n = 50 and the same volume of the market at
80% within the 20%-top units:

H T Ez En
0.06500 0.21429 0.04592 0.01908
(100%) (70.6%)  (29.4%)

where we see both components increased, easy to guess
also without decomposition, but with an inversion in
weights, less easy to ascertain without decomposition.



Appendix

(a)

(b)

Note that (3, 2;)% > Y, 27 for the assumption
x; >0, and so (2) > (1).

Some representations of H in terms of main deter-
minants are well known. For instance, in Hay and
Morris (1984, p. 142):

1
H=no*+ -

n

where o is the standard deviation of market shares,
but in this espression H is lacking of a clear one-

way dependence by n. In Scognamiglio Pasini
(2013, p. 138):
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