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Abstract

We develop a model of a prediction market with ambiguity and derive

testable implications of the presence of Knightian uncertainty. Our model can

explain two commonly observed empirical regularities in betting markets: the

tendency for longshots to win less often than odds would indicate and the ten-

dency for favorites to win more often. Using historical data from Intrade, we

further present empirical evidence that is consistent with the predicted presence

of Knightian uncertainty. Our evidence also suggests that, even with informa-

tion acquisition, the Knightian uncertainty of the world may be not �learnable�

to the traders in prediction markets.
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1 Introduction

At least since the work of Knight (1921), economists have understood that economic

agents may behave di¤erently in risky circumstances, where outcomes are random

but governed by known probabilities, as opposed to uncertain circumstances, where

risks are unknown. Ellsberg (1961) provides examples that highlight the tendency

for some decision makers to be averse to the presence of Knightian uncertainty�or,

ambiguity.

In recent years, there has been an explosion of theoretical work developing models

that incorporate ambiguity aversion, building o¤ of the seminal contribution of Gilboa

and Schmeidler (1989). In the literature to date, Knightian uncertainty has been a

factor inserted in a model that could possibly explain puzzling observations. It has

served a role analogous to that of dark matter in cosmological models, lurking behind

the scenes to explain observed phenomena, never being directly observed. At the same

time, a rich literature has evolved exploring the e¢ciency of betting and prediction

markets that price speci�c events. Following on the early work of Kahneman and

Tversky (1979) and Asch, Malkiel and Quandt (1982), the ability of these markets

to predict future events has been studied extensively, and a number of empirical

anomalies have been identi�ed.

In this paper, we extend the theoretical literature and connect it to the prediction-

market application. In so doing, we develop more direct observable implications of the

presence of Knightian uncertainty than has been achieved previously in the literature,

and a method to test for its presence.

While we below will formally derive a model that suggests our test, the intuition

of our approach is quite straightforward and can be illustrated using an example from

Ellsberg (1961). Suppose that we have two urns. In one urn, we have 50 black balls

and 50 red balls. In another urn�the �Knightian urn��we have 100 balls, but we

have no information regarding the proportions. A subject is o¤ered a game. If she

pulls a black ball out of the urn, she wins $1. If she pulls a red ball out she wins

nothing. The literature has documented a tendency for individuals to prefer the urn

with the known probabilities, suggesting that they exhibit the aversion to ambiguity

discussed above.

Suppose that an econometrician could observe games played with both of the urns
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in Ellsberg�s game. With a number of repeated trials, the sample proportions from

the �rst urn would fairly rapidly indicate an estimate that the binomial probability of

victory is 50 percent. With enough data, one would say that with great con�dence.

On the other hand, if one observed repeated play with the second, Knightian urn

which, after all, has some number of black balls in it, then the sample proportion

would also converge to an estimated binomial probability, but that probability would

not necessarily be 50 percent.

The observation that motivates this paper stems from this thought experiment.

Given a market derived ex ante probability of a binary event, as one frequently

observes in betting markets, there will naturally be circumstances where information

is extremely solid, and odds are quite far from 50 percent. There will also be situations

where information suggests there is an even match (as with a coin �ip), and the

contract suggests there is close to a 50 percent chance of either outcome. This often

happens, for example, in presidential futures markets in the U.S. after the conventions

are over. But it is also possible that there are contracts that suggest that the odds

of either outcome are 50 percent because the event is shrouded in ambiguity. If we

were to estimate the ex post sample proportions from just these contracts with ex

ante 50 percent probabilities, then they could, as in the Ellsberg example above,

be anything. If we were to estimate the ex post sample proportions of the high

information contracts with probabilities far from 50 percent, the proportions and ex

ante probabilities should, if markets are e¢cient, align. But close to 50 percent, they

might not, and if they do not, it is indication of the presence of Knightian uncertainty.

Thus, the pattern by which the relationship between ex post proportions and ex

ante probabilities deviates from the 45 degree line becomes informative regarding the

presence of Knightian uncertainty. We also discuss the extent to which learning can

occur in markets over time. If Knightian uncertainty induces knowledge acquisition,

then the relationship between proportions and probabilities will evolve as a market

matures, a possibility we explore in the paper.

The next subsection brie�y reviews the literature. In Sections 2 and 3, we draw on

the work of Gilboa and Schmeidler (1989) and Dow and Werlang (1992) and develop

a model that suggests that the pattern described by our intuitive example would

emerge in a market in�uenced by the present of signi�cant Knightian uncertainty. In

Section 4, we provide some high-level evidence that the relationship between ex post
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proportions and ex ante probabilities is consistent with the predictions of our model.

Section 5 concludes.

1.1 Literature Review

This paper draws from two di¤erent strands in the literature. First, theorists have

made remarkable strides in recent years incorporating Knightian uncertainty and

ambiguity aversion into models of �nancial markets.

These models have, according to an exhaustive recent review, �implications for

portfolio choice and asset pricing that are very di¤erent from those of SEU (subjective

expected utility theory) and that help to explain otherwise puzzling features of the

data.�1 Ambiguity aversion could help explain the tendency of markets to stop op-

erating during �nancial crises, for prices to not be completely informative, and even

for there to be bank runs.2

This branch of the literature has focused on �nancial markets in general. At the

same time, an equally impressive literature has emerged exploring the functioning

of prediction markets, which, for the most part, price in the probability of speci�c

binary events. As Thaler and Ziemba (1988) �rst noted, these prediction markets

may be a better laboratory to test cutting edge theories, as they contain contracts

with known durations, and observable discrete events that stop the trading. While

an equity might live on virtually forever, a presidential election future has a speci�c

end date, and its ability to forecast the outcome can be precisely evaluated.

This second literature has advanced both empirically and theoretically. On the

theoretical side, Manski (2004) �rst illustrated that the beliefs of bettors may not

necessarily yield a market-based probability. More recently, Wolfers and Zitzewitz

(2006) identify the conditions under which prediction-market prices coincide with

bettors� mean beliefs about probabilities. On the empirical side, prediction markets

have been found to be informative regarding the odds of events occurring. Berg et

al. (2008), for example, �nd that the Iowa Electronic Markets outperformed polls in

predicting election outcomes. At the same time, markets have been found to exhibit a

favorite-longshot bias, with favorites outperforming their odds, and longshots under-

1See Epstein and Schneider (2010), p. 315.
2See Caballero and Krishnamurthy (2008), Caballero and Simsek (2013), Guidolin and Rinaldi

(2010), Routledge and Zin (2009), and Uhlig (2013).
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performing (see, e.g., Cain, Law and Peel, 2000). A number of possible explanations

for this pattern include insider trading (Shin, 1992), risk loving behavior (Weitzman,

1965), and imperfect ability to process information (Snowberg and Wolfers, 2010).

The connection of these two literatures seems quite promising, as betting markets

often exist for events, such as Brexit or elections, for which Knightian uncertainty

may well be present. Since they also have �nite and determinate life spans, they also

allow the econometrician the ability to evaluate their performance ex post. We now

turn to illustrating the utility of this approach.

2 A Model of Prediction Market with Ambiguity

2.1 Setup

Events and Contracts. Consider a prediction market for the occurrence of a bi-

nary event. There are two all-or-nothing contracts corresponding to the two possible

realizations. One contract pays $1 if event A occurs and $0 otherwise, while the

other contract pays $1 if the complementary event Ac occurs and $0 otherwise. Let �

denote the price of contract A. No-arbitrage condition dictates that, in equilibrium,

the price of contract Ac be 1� �.

Traders. There is a continuum I of competitive traders, each endowed with ho-

mogeneous initial wealth w. The �net� position on contract A held by trader i is

denoted by xi 2 R.
3 Given price �, the �nal wealth wi of trader i is

wi =

(
w + (1� �) xi if event A occurs,

w � �xi if event Ac occurs.

All traders have log utility of their �nal wealth: u (wi) = lnwi.

3In practice, trader i can long and/or short contract A and/or contract Ac; but some strategies
are mathematically equivalent. For example, holding mi > 0 units of contract A and ni > mi > 0

units of contract Ac would be equivalent to holding mi units of cash, 0 unit of contract A , and
ni � mi > 0 units of contract Ac: Therefore, without loss of generality, we let a single decision
variable xi = mi � ni (which could be positive, zero, or negative) represent the �net� position held
by trader i:
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Beliefs and Ambiguity. Suppose trader i has a subjective belief that event A

occurs with probability eq 2 [0; 1]. Then, the subjective expected utility of trader i
from holding position xi at price � is given by

U (�; xi; eq) = eq ln (w + (1� �) xi) + (1� eq) ln (w � �xi) :

However, ambiguity exists, for traders may be uncertain about how likely event

A is to occur. We follow Gilboa and Schmeidler (1989) and model ambiguity using

the �multiple-prior� framework. Speci�cally, suppose each trader i considers every

probability eq 2 [qi � �; qi + �], where � � 0, an admissible probability that governs the
realization of the binary event. Under this framework, qi represents the �mean� belief

of trader i, while � is interpreted as a measure of ambiguity. Given price �, trader i

chooses position xi to maximize the minimum�that is, the worst-case scenario�of

all her admissible, subjective expected utilities:

max
xi2R

�
min

eq2[qi��;qi+�]
U (�; xi; eq)

�
: (1)

Traders are heterogeneous in mean belief. Let the distribution of traders� mean be-

liefs be characterized by a cumulative distribution function F over interval [�; 1� �].

That is, for the most pessimistic trader, the worst-case belief that A occurs is prob-

ability 0 while, for the most optimistic trader, the best-case belief that A occurs is

probability 1.

2.2 Optimal Demand and Portfolio Inertia

Solving the inner minimization reduces the optimization problem (1) to

max
xi2R

U (�; xi; qi � sgn (xi) �) ;

where sgn (�) is an indicator function that takes the sign of its argument.

The intuition behind the above expression is straightforward. If trader i has a

positive position on contract A, then the worst-case scenario would be that event A

occurs with probability qi � �, the lower bound. Similarly, if the position of trader

i is negative, then, in the worst-case scenario, event A occurs with the upper-bound
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probability, qi + �.

Solving the maximization problem gives the optimal (net) demand for contract A

by trader i,

x (�; qi) =

8
>><
>>:

qi����

�(1��)
w if � 2 [0; qi � �) ;

0 if � 2 [qi � �; qi + �] ;

qi+���
�(1��)

w if � 2 (qi + �; 1] ;

(2)

as a function of price and mean belief. Therefore, trader i longs contract A when the

price is lower than her most pessimistic belief, and shorts contract A when the price

is higher than her most optimistic belief. For any price in the intermediate range

[qi � �; qi + �], trader i does not participate in the prediction market�the phenom-

enon of portfolio inertia.

That portfolio inertia arises when investors have maxmin preferences is well known

in the �nance literature since the work by Dow and Werlang (1992). The setup of this

model replicates this phenomenon in the context of prediction markets. In particular,

for each trader, the size of price region at which portfolio inertia occurs is given by

2�. In other words, the higher the degree of ambiguity, the more inertial the traders�

portfolios.

2.3 Equilibrium

Given price � for contract A and distribution function F of traders� mean beliefs, the

aggregate (net) demand for the contract is given by

XF (�) =

Z 1��

�

x (�; q) dF (q) : (3)

The prediction market is in equilibrium when the aggregate demand for contract A

equals zero, that is, XF (�) = 0. The following proposition establishes the equilibrium

price.4

Proposition 1 Given distribution function F , the equilibrium price ��F is such that

��F = EF (q) +

Z ��
F
+�

��
F
��

F (q) dq � �:

4We relegate all proofs to Appendix A.
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When ambiguity is absent (i.e., � = 0) the prediction market aggregates the �wis-

dom of crowds:�

��F j�=0= EF (q) :

That is, the equilibrium price of contract A corresponds to the average of traders�

mean beliefs about the occurrence of event A.

In the presence of ambiguity, however, the prediction market does not necessarily

aggregate the wisdom of crowds. In particular, it aggregates the wisdom of crowds

if and only if the distribution function F is such that
R ��

F
+�

��
F
��
F (q) dq = �. The next

proposition shows that the situations in which such equality happens to hold are

topologically rare.

Proposition 2 The prediction market �rarely� aggregates the wisdom of crowds.

Formally, let � be the space of probability distributions over [�; 1� �], endowed with

the weak topology. Then, the subset of probability distributions such that the equilib-

rium price equals the average of traders� mean beliefs is nowhere dense in �.

Propositions 1 and 2 together suggests that the presence of ambiguity renders the

prediction market ine¤ective in aggregating the beliefs held by heterogeneous traders.

Proposition 3 The equilibrium quantity of trades is strictly decreasing in the degree

of ambiguity.

Proposition 3 is a direct consequence of portfolio inertia. As the degree of ambi-

guity increases, the �inaction range� of each trader i, [qi � �; qi + �], becomes wider.

Since each trader is more likely to stay put in a more ambiguous environment, the

aggregate trades must be fewer as well. This result is reminiscent of well-known mod-

els of ambiguity in �nancial economics (e.g., Caballero and Krishnamurthy, 2008;

Guidolin and Rinaldi, 2010; and Routledge and Zin,2009), which suggest that a sig-

ni�cant increase in Knightian uncertainty may contribute to liquidity hoarding and

market breakdown.

Moreover, the deterrence of trades in a particular way is what causes the failure of

the prediction market to aggregate beliefs. Speci�cally, for any prevailing price �, the

traders who stay put are those with moderate beliefs such that their inaction ranges

cover �. Those who trade have beliefs that are more extreme�either more optimistic

8



or more pessimistic�than the abstainers. Suppose the abstaining traders did trade,

the chance of the hypothetical market price, after aggregating the abstaining traders�

beliefs, happens to be exactly the same as � is zero.

3 Testable Implications

The previous section has derived the equilibrium results under ambiguity. However,

since the degree of ambiguity is not observable, those results cannot be tested directly.

In this section, we impose more information structures on the model and derive

implications that are testable with prediction-market data.

3.1 Information Structures

Suppose the true probability that event A occurs is given by p 2 [�; 1� �]. No trader

knows about p for certain. However, there is a mass m 2 (0; 1) of traders whose mean

beliefs equal p, while all the other uninformed traders� mean beliefs are continuously

distributed over [�; 1� �]. Assumption 1 embeds these additional structures into the

distribution function F .

Assumption 1 The distribution function F takes the following form:

F (q) �

(
(1�m)F (q) if q 2 [�; p) ;

(1�m)F (q) +m if q 2 [p; 1� �] ;

where F is some continuous distribution function of q over [�; 1� �].

The functional form of F is left unspeci�ed. We let � denote the integral of F ,

i.e., � (q) �
R q
�
F (q0) dq0.

The interpretation of Assumption 1 is that there are some traders who are in-

formed while the others are not. One could provide a micro-foundation for this setup

by assuming that the mass m of traders have the correct mean beliefs because they

have received private signals informative of the true probability, while all other traders

have received no such signals. With such a micro-foundation, the traders� (multiple)

beliefs should be interpreted as their (multiple) posteriors. In this section, we adopt a
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reduced-form approach and build these details directly into the distribution function

F .

As will be clear in the next subsection, the assumption of a massm is not essential

to deriving testable implications. Whether m is extremely small, in which case few

traders are informed, or very large, which means most traders are informed, the main

results, shown in Proposition 4, are unchanged. The essence of this setup is that a

fraction of traders hold beliefs that are informative of the true state of the world.

Therefore, when these informed traders do not participate in the market, their beliefs

will not be re�ected in the equilibrium price.

3.2 Implications

Since the distribution function F is given and parameterized by the true probability

p, applying Proposition 1 allows us to solve for the equilibrium price as a function of

p, as shown below.

Proposition 4 Under Assumption 1, the equilibrium price �� (p) is:

1. continuous, with �� (�) > � and �� (1� �) < 1� �;

2. such that �� (p) = b� for any p 2 [b� � �; b� + �];

3. strictly increasing for p =2 [b� � �; b� + �];

where b� is identi�ed by b� � � (b� + �) + � (b� � �) = 1� 2�� � (1� �).

Figure 1 plots the equilibrium price in a p�� diagram, where the true probability

p = (��)�1 (�) is a correspondence of the equilibrium price �. Speci�cally, it attains

a non-singleton set value when � = b�, with the size of that set equal to 2�.
The most important feature of the equilibrium (part 2) is that there exists a

range of true probabilities, [b� � �; b� + �], within which the market price is not at all
responsive to any change in the underlying state of the world. That is, ��0 (p) = 0

for any p in that range. Instead of prediction, the prediction market simply assigns

an uninformative number b��the mid-point of the range [b� � �; b� + �]�as the price.
The reason for this result is straightforward: Since the traders who hold private

information about p are not trading, what exactly those traders know about the true
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Figure 1: Prediction Market Equilibrium in the p�� Diagram.

state of the world must not be re�ected in the market price. Morever, note that

the size of the segment [b� � �; b� + �], measuring the degree of ambiguity, does not
depend on m, the mass of traders who are informed of p. Even if m is in�nitesimal,

the market price stops re�ecting the true probability once these traders abstain from

betting.

Outside the range [b� � �; b� + �], however, the prediction market works (part 3).
Speci�cally, if all parameters of the model were known, one would be able to infer

the true probability p from the equilibrium market price �� (p). The higher the true

probability, the higher the price.

Part 1 of the proposition also shows that, for a true probability that is very high

(near 1 � �) or very low (near �), the equilibrium price exhibits a favorite-longshot

bias commonly observed in the literature (e.g., Cain, Law, and Peel, 2000): favorite

events are under-priced while longshot events are over-priced. The intuition is as

follows. For a longshot event where p = �, for example, if the market price was as

low as �, that would imply all traders� mean beliefs were greater than the prevailing

price and, hence, all traders would long the contract, which cannot be an equilibrium.

Therefore, the equilibrium price of a longshot must be signi�cantly larger than the
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longshot�s odds.

Note that, although the degree of ambiguity, �, is not directly observable in reality,

Proposition 4 yields implications of the presence of ambiguity that are testable with

prediction-market data. Suppose an econometrician could conduct a large number of

repeated trials for each value of the true probability. Then, with enough data, the

ex post sample proportion, denoted by P , would converge to the corresponding true

probability, p. It follows that the estimated relationship between P and the market

price, �, would converge to the graph of the correspondence p = (��)�1 (�). As in

Figure 1, such ideal trials would show a big jump at price level � = b�, with P being
generally below the 45-degree line below but close to b�, and above it just thereafter.
Moreover, since the relationship between P and � fundamentally shifts between the

two continuous segments, our result suggests a testable structural change near the

jump in at b�.
Before conducting the test, the econometrician may not know where the jump

would appear, because b�, given by

b� � � (b� + �) + � (b� � �) = 1� 2�� � (1� �) ;

depends on the distribution of mean beliefs among all prediction-market traders. It

follows from the above equation that b� would be smaller than 0:5 if F is skewed

towards the lowest mean belief �, and larger than 0:5 if F is skewed towards the

highest mean belief 1� �. But when F is symmetrically distributed over [�; 1� �], b�
would be equal to 0:5, which is the following corollary.

Corollary 5 Under Assumption 1,

b� = 0:5

if F is a symmetric distribution function over [�; 1� �] (i.e., F (1� x) = 1 � F (x)

for any x 2 [�; 1� �]).

In practice, the empirical chart would precisely follow Figure 1 with the jump at 0:5

in the case of symmetry, but not if asymmetries were present. But even if one might

expect skewness to be present for some contracts but not others, the range for the

crossover point could be scattered about the neighborhood of 0:5. The aggregation
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of a large number of contracts, therefore, could push the average b� to be in the
neighborhood of 0:5. Since each contract would exhibit a similar (if slightly shifted)

pattern, the overall pattern should loosely follow Figure 1 if Knightian uncertainty is

important in these markets, even though some re�ect symmetry whereas others do

not.

Accordingly, the theory suggests that the empirical relationship between P and �

would contain a testable structural break about the neighborhood of 0:5, where one

would expect to see observations scattered below the 45-degree line to the left of the

break-point, and above the 45-degree line to the right. The presence of a structural

break adjacent to 0:5, therefore, would be an indication that Knightian uncertainty

is a factor in the market, and would be consistent with the intuition provided in the

introduction.

4 Empirical Evidence

In this section, we provide some high-level evidence that is consistent with the theo-

retical predictions.5

We use the historical data from Intrade, a popular online prediction platform

which operated from 2003 to 2013. The platform hosted prediction contracts across

wide-ranging categories of events, such as business (e.g., whether the CEO of a certain

company would step down), current events (e.g., which city would host the Olympic),

entertainment (e.g., which movie would win the Academy Award for the Best Picture),

politics (e.g., which candidate would be elected the U.S. president), etc. We collect

all those contracts that are on binary events, regardless of their categories, and record

how each binary event had turned out.

The aim of the empirical analysis is to estimate the ex post sample proportion,

P , of event A�s occurrence as a function of the ex ante price, �, of contract A. We

process the data in the following way. The observations are sorted by price and

evenly partitioned into a number of percentile bins. For each percentile bin, we

calculate the sample proportion of event A�s occurrences whose corresponding prices

fall into that bin. Finally, we plot the sample proportions against the mid-points of

the corresponding price bins.

5See Appendix B for the details of the empirics.
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If the theory developed in the previous section holds, the following is what one

would expect in the empirics. Recall that the value of b� depends on the distribution
of mean beliefs among traders. Since each observation in the dataset is from a certain

market with a certain distribution of mean beliefs held by the participating traders,

we can interpret each observation as a single draw from the data-generating process

associated with a certain version of Figure 1. For a price bin closer to 0, therefore, it

is more likely that the observations contained in the bin have been drawn from the

left part of Figure 1, i.e., below the break-point. Similarly, for a price bin closer to

1, the observations are more likely to have been drawn from the right part of Figure

1, i.e., above the break-point. More important, when the price bin is near 0:5, the

observations are more likely to be from just around the jump, suggesting a structural

break.

We start with the empirical evidence from political events, one of the largest

categories in the Intrade dataset. These events, like Brexit and U.S. presidential

elections, often see a high volume of transactions between bettors. Figure 2, based on

a partition into 50 bins (i.e., 2% of observations per bin), plots the sample proportion

for all bins against the corresponding price. Since prices evolve over time in the

prediction markets until the random events are realized, the two panels of the �gure

together capture the e¤ect of timing by showing the estimation for two di¤erent dates:

(a) the �rst day market opens to bettors, and (b) the last trading day before the event

is realized, respectively.

For each panel, we conduct three analyses. First, a linear regression assuming no

structural breaks is shown as the dashed line in the diagram. Next, we run two types

of break-point tests�an F test6 and a �moving sum of residuals� (MOSUM) test7�

against the null hypothesis that there is no structural breaks for the entire sample.

Lastly, we re-run the linear regression by estimating the location of one break-point

(as suggested by our theory). The estimation returns (i) a linear segment on each side

of the estimated structural break, plotted as the solid lines in the diagram, as well

as (ii) the location of the structural break, identi�ed by two red dots in the diagram

corresponding to, respectively, the last observation of the �rst segment and the �rst

6The F test is an extension of the �Chow test� (1960), against the alternative hypothesis of an
unknown break-point. See, e.g., Andrews (1993) and Andrews and Ploberger (1994) for details.

7The MOSUM test analyzes the moving sum of residuals and detects whether a strong shift of
the �uctuation process exists. See, e.g., Chu, Hornik, and Kuan (1995a, b) for details.
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Figure 2: Prediction Market Data in the P -� Diagram: Politics (50 bins).

(Note: The dashed lines are regression lines without breaks. The solid lines are regression

lines with one estimated break, with two red dots identifying the location of the break.)
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observation of the second segment. The details of the three analyses are shown in the

column �50 bins� of Table 1.

A few remarks on the results follow. First, in both panels, the regression lines

without structural breaks fall very close to the 45-degree line, suggesting the overall

e¢ciency of markets in pricing the probabilities of random events. The evidence of

market e¢ciency on the �rst trading day is remarkable because, for politics, a lot of

markets opened a long time�sometimes years�ahead of the resolution of the events.

Yet, as the regression table shows, the slopes are statistically signi�cant and very

close to 1.

Second, although panel (a) is relatively noisier, panel (b) shows a clear pattern

as predicted by our theory: The null hypothesis of no structural breaks is cleared

rejected by the tests, and the break-point estimation shows a signi�cant jump near

price level 0:5. The diagram, hence, resembles our prediction shown in Figure 1. For

observations in the intermediate price range, one might think that the price is close

to 0:5 because traders have solid information suggesting an �even match� between

outcome A and Ac. It is also possible, however, that the market is shrouded in

ambiguity as some traders, albeit partially informed, are reluctant to trade. Just like

in the example of a Knightian urn, an intermediate price in this case could mean a

wide range of true probabilities. In panel (b), for a price in the break region between

0:57 and 0:69, the sample proportion could be as low as 33%, or as high as 83%.

In other words, the degree of ambiguity, �, in this particular example is about 0:25

(i.e., half of 83% � 33%). Such a magnitude is signi�cant not only statistically�

as the rejection of null hypothesis �no structural breaks� implies the rejection of ��

equals to zero��but also economically. According to the multiple-prior framework,

it would mean that a typical trader would consider all the probabilities within an

interval of length 0:5 equally admissible in governing the realization of the binary

event. A signi�cant jump near price level 0:5 like the one in panel (b), therefore, is an

indication of the presence of Knightian uncertainty. As the linear regression without

breaks shows, the speci�c pattern of observations also causes the regression line to

have a slope larger�albeit only slightly�than 1.

Another important di¤erence between the two panels is that, in panel (b), more

observations are clustered near price levels 0 and 1. This means, by the last day,

more traders hold (posterior) beliefs that some outcome�either A or Ac�is very
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Table 1: Estimation and Test of Structural Breaks: Politics

Dependent variable: ex post sample proportion
Independent variable: ex ante price

50 bins 30 bins
(a) �rst trading day

slope (no breaks) 0.953��� 0.950���

(22.7) (21.5)

tests of �no breaks�
F test not rejected not rejected
MOSUM test not rejected rejected�

structural break estimation
slope (segment 1) 0.727��� 0.690���

(5.75) (5.13)

break region [0.45, 0.47] [0.43, 0.47]
slope (segment 2) 0.863��� 0.867���

(7.70) (7.56)

(b) last trading day
slope (no breaks) 1.03��� 1.04���

(44.8) (44.8)

tests of �no breaks�
F test rejected��� rejected���

MOSUM test rejected� rejected�

structural break estimation
slope (segment 1) 0.617��� 0.767���

(15.6) (21.4)

break region [0.57, 0.69] [0.60, 0.75]
slope (segment 2) 0.464��� 0.229�

(5.10) (2.13)

t statistics in parentheses
^ p < 0:1, � p < 0:05, �� p < 0:01, ��� p < 0:001
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likely to be realized, suggesting a decrease in risks over time. Such a decrease in

risks can be a result of information acquisition by the traders, who, until the random

events resolve, may have the incentives to learn about the events and update their

bets accordingly. Since risks have decreased while ambiguity remains, our empirical

evidence also suggests an observational distinction between the concepts of risk and

Knightian uncertainty.

Furthermore, the above empirical patterns are to some extent robust against the

choice of the number of bins. Figure 3 reproduces the diagram by partitioning the

data into 30 bins instead. The column �30 bins� of Table 1 shows the details of

the regression and break-point analysis. Overall, the observations drawn earlier still

hold.8

The observation that ambiguity remains until the last trading day suggests, unlike

risks, Knightian uncertainty may be not �learnable� in practice to the traders. The

intuition can be illustrated using the Knightian urn where the composition of black

and red balls is unknown. Imagine two di¤erent scenarios. In the �rst scenario, a

subject observed repeated draws from the same Knightian urn. In this case, the

sample proportion over time would reveal the true composition of the two colors

because, after all, the composition is �xed over time. In the second scenario, there was

an experimenter who replaced the Knightian urn with a new one every time a ball was

drawn by the subject. In this case, the sample proportion may not inform the subject

of what to expect in the next Knightian urn, simply because the composition of black

and red balls in the new urn could be anything of the experimenter�s choosing. If the

underlying data-generating process�that is, the way the experimenter changed every

other Knightian urn�was not learnable to the subject, then the degree of ambiguity

would not decrease over time.9 One might think that, in politics, it is intuitively easy

for traders to acquire knowledge�from polls, news reports, political analyses, etc.

Yet, our empirical evidence, which is based on a large number of prediction markets

about various political events, seems to �t the second scenario, suggesting that the

Knightian uncertainty of politics may indeed be not �learnable� through information

acquisition.

8We have checked other variations between 30 and 50, which yield similar results (omitted to
limit space). Obviously, the number of bins should be neither too small (which would leave too few
points in the diagram), nor too large (which would leave too few observations per bin).

9See Epstein and Schneider (2007) for a theoretical treatment of learning under ambiguity.
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Figure 3: Prediction Market Data in the P -� Diagram: Politics (30 bins).

(Note: The dashed lines are regression lines without breaks. The solid lines are regression

lines with one estimated break, with two red dots identifying the location of the break.)
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We now turn to another major category: entertainment events, such as the winners

of cinematic awards or the box o¢ces of movies. Figures 4 and 5 reproduce the P -�

diagram for 30 bins and 50 bins, respectively, and Table 2 reports the details of the

regressions and break-point tests. Although qualitatively similar, the patterns are less

pronounced compared to politics. The jump near 0:5 is less clear and, interestingly,

the clustering near 0 and 1 is less marked. This evidence suggests less learning in

entertainment than in politics, which is understandable since it is more di¢cult for

bettors to acquire information about the general public�s personal tastes of movies

and music.

Politics and entertainment together accounts for over 80% of the Intrade dataset.

However, for completeness, we reproduce the empirical evidence with the full sam-

ple, as shown in Figures 6 and 7, as well as Table 3. The patterns, essentially by

construction, are similar to what we establish above.

5 Concluding Remarks

Knightian uncertainty�an important theoretical concept in the literature that is of-

ten used to explain observed phenomena�has never been directly evidenced in an

empirical setting. In this paper, we have developed a model of a prediction market

with ambiguity, where traders have maxmin preferences. We have derived more di-

rect, observational implications of the presence of Knightian uncertainty. Using the

historical betting data from Intrade, we have further presented some high-level ev-

idence that is consistent with the prediction of our model. In particular, for price

levels close to 0:5, the market-implied, ex ante probability of a random event is not

indicative of the ex post sample proportion, suggesting the presence of Knightian

uncertainty.

Moreover, our empirical evidence has shown that, although traders seem to have

acquired information which leads to a decrease in risks, ambiguity remains until the

last trading day, suggesting that the Knightian uncertainty of the world may be not

�learnable� to traders. By comparing political events and entertainment events, we

have also shown that the empirical patterns we identi�ed are more pronounced in

politics than in entertainment.

The evidence we have provided is only preliminary, since the empirics of this
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Figure 4: Prediction Market Data in the P -� Diagram: Entertainment (50 bins).

(Note: The dashed lines are regression lines without breaks. The solid lines are regression

lines with one estimated break, with two red dots identifying the location of the break.)
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Figure 5: Prediction Market Data in the P -� Diagram: Entertainment (30 bins).

(Note: The dashed lines are regression lines without breaks. The solid lines are regression

lines with one estimated break, with two red dots identifying the location of the break.)
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Table 2: Estimation and Test of Structural Breaks: Entertainment

Dependent variable: ex post sample proportion
Independent variable: ex ante price

50 bins 30 bins
(a) �rst trading day

slope (no breaks) 0.933��� 0.936���

(20.9) (23.3)

tests of �no breaks�
F test not rejected not rejected
MOSUM test not rejected not rejected

structural break estimation
slope (segment 1) 0.859��� 0.929���

(8.66) (16.2)

break region [0.50, 0.50] [0.68, 0.73]
slope (segment 2) 0.881��� 1.49���

(6.80) (4.89)

(b) last trading day
slope (no breaks) 1.04��� 1.04���

(33.7) (37.8)

tests of �no breaks�
F test rejected��� rejected���

MOSUM test rejected^ not rejected
structural break estimation

slope (segment 1) 0.744��� 0.697���

(10.3) (10.3)

break region [0.50, 0.51] [0.44, 0.49]
slope (segment 2) 0.866��� 1.00�

(9.02) (16.2)

t statistics in parentheses
^ p < 0:1, � p < 0:05, �� p < 0:01, ��� p < 0:001
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Figure 6: Prediction Market Data in the P -� Diagram: Full Sample (50 bins).

(Note: The dashed lines are regression lines without breaks. The solid lines are regression

lines with one estimated break, with two red dots identifying the location of the break.)

24



Figure 7: Prediction Market Data in the P -� Diagram: Full Sample (30 bins).

(Note: The dashed lines are regression lines without breaks. The solid lines are regression

lines with one estimated break, with two red dots identifying the location of the break.)
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Table 3: Estimation and Test of Structural Breaks: Full Sample

Dependent variable: ex post sample proportion
Independent variable: ex ante price

50 bins 30 bins
(a) �rst trading day

slope (no breaks) 0.917��� 0.929���

(63.6) (27.7)

tests of �no breaks�
F test not rejected not rejected
MOSUM test not rejected not rejected

structural break estimation
slope (segment 1) 0.936��� 0.739���

(18.0) (8.50)

break region [0.59, 0.61] [0.44, 0.48]
slope (segment 2) 1.26��� 0.876���

(9.56) (10.5)

(b) last trading day
slope (no breaks) 1.03��� 1.03���

(56.6) (46.5)

tests of �no breaks�
F test rejected��� rejected���

MOSUM test rejected� rejected^

structural break estimation
slope (segment 1) 0.853��� 0.812���

(25.2) (20.9)

break region [0.62, 0.68] [0.55, 0.65]
slope (segment 2) 0.693��� 0.765�

(7.84) (9.27)

t statistics in parentheses
^ p < 0:1, � p < 0:05, �� p < 0:01, ��� p < 0:001
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paper are based on a single prediction platform that is skewed towards political and

entertainment events. In a future, empirical study, we will collect more prediction-

market data across di¤erent platforms and di¤erent event types, and we will examine

more closely the relationship between the ex post sample proportion and the ex ante

price by taking into account the type of events, the time ahead of the resolution of

randomness, and other aspects of the betting markets.
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Appendix A Proofs

Proof of Proposition 1. Note that any equilibrium price � has to satisfy (i)

� > 2� and (ii) � < 1�2�. If (i) does not hold, then �� � qi+ � for all i, which means

any trader will have either a long position or a zero position�not an equilibrium.

Similarly, if (ii) does not hold, no trader will have a long position, which cannot be

an equilibrium either.

Substitute (2) into (3) and rewrite the aggregate demand as

XF (�) =

Z ���

�

q + �� �

� (1� �)
wdF (q) +

Z 1��

�+�

q � �� �

� (1� �)
wdF (q) :

Hence, XF (�) = 0 if and only if

Z ���

�

(q + �� �) dF (q) +

Z 1��

�+�

(q � �� �) dF (q) = 0

,

Z ���

�

(q � �) dF (q) +

Z 1��

�+�

(q � �) dF (q) +

Z ���

�

�dF (q)�

Z 1��

�+�

�dF (q) = 0

, EF (q)� � �

Z �+�

���

(q � �) dF (q) + � [F (� � �) + F (� + �)� 1] = 0

, EF (q)� � +

Z �+�

���

F (q) dq � [(q � �)F (q)]�+���� + � [F (� � �) + F (� + �)� 1] = 0;

where the last step follows from integration by parts. Simplifying and rearranging

terms yields the stated expression in the proposition.

Proof of Proposition 2. Let G be the space of distribution functions over [�; 1� �],

endowed with the Lévy metric `, where

` (G1; G2)

� inf f" > 0 j G1 (q � ")� " � G2 � G1 (q + ") + " for all q 2 [�; 1� �]g

for anyG1; G2 2 G. Let F be the subset of G that satis�es �
�

F = EF (q) for any F 2 F .

Since the Lévy metric metrizes the weak topology,10 the proposition is equivalent to

the claim that F is nowhere dense in (G; `).

10See, e.g., Huber and Ronchetti (2009), p. 28.
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Note that F is closed. Since a set is nowhere dense if and only if the complement

of its closure is dense,11, it remains to be shown GnF is dense, that is, for any point in

G, there is a sequence from G nF converging to that point. It is thus enough to show,

for any F 2 F and any � > 0, there exists some G 2 G n F such that ` (F;G) < �.

F is non-decreasing since it is a distribution function. It follows that

lim
q![EF (q)+�]

�

F (q) � F (EF (q)� �) :

We show prove the results by examining two cases.

Case 1: limq![EF (q)+�]
� F (q) > F (EF (q)� �).

Given � > 0, we construct a distribution function G from F as

G (q) �

8
><
>:

F (q) if q 2 [�;EF (q)� �� �1) ;

F (EF (q)� �) if q 2 [EF (q)� �� �1;EF (q) + �+ �2) ;

F (q) if q 2 [EF (q) + �+ �2; 1� �] ;

where �1; �2 > 0 are such that function g � G� F satis�es conditions

Z
EF (q)+�+�2

EF (q)����1

g (q) dq = 0

and

max fg (EF (q)� �� �1) ;�g (EF (q) + �+ �2)g =
�

2
:

It is easily veri�ed that G is a mean-preserving spread of F , with two new atoms

created at points EF (q) � � � �1 and EF (q) + � + �2. By construction, this implies

that

Z
EG(q)+�

EG(q)��

G (q) dq =

Z
EF (q)+�

EF (q)��

G (q) dq

=

Z
EF (q)+�

EF (q)��

[F (q) + g (q)] dq

= �+

Z
EF (q)+�

EF (q)��

g (q) dq < �;

11See, e.g., Sutherland (1975), p. 64.
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where the last equality holds because F 2 F , and the inequality is due to g (EF (q) + �) <

0 which implies
R
EF (q)+�

EF (q)��
g (q) dq < 0. Since

R
EG(q)+�

EG(q)��
G (q) dq < �, G 2 G n F . Finally,

let � be the uniform metric, that is,

� (G1; G2) � sup fjG1 (q)�G2 (q)j j q 2 [�; 1� �]g

for any G1; G2 2 G. By construction, � (F;G) =
�
2
. Since the Lévy metric is bounded

by the uniform metric from above, that is, ` (G1; G2) � � (G1; G2) for any G1; G2 2 G,

we have ` (F;G) � �
2
< �.

Case 2: limq![EF (q)+�]
� F (q) = F (EF (q)� �).

Given � > 0, we construct a distribution function H from F as

H (q) �

8
><
>:

F (q) if q 2 [�;EF (q)� �) ;

F (EF (q)� �) + �3 if q 2 [EF (q)� �;EF (q) + �+ �4) ;

F (q) if q 2 [EF (q) + �+ �4; 1� �] ;

where �3; �4 > 0 are such that function h � H � F satis�es conditions

Z
EF (q)+�+�4

EF (q)��

h (q) dq = 0

and

max f�3;�h (EF (q) + �+ �4)g =
�

2
:

It is easily veri�ed that H is a mean-preserving spread of F , with two new atoms

created at points EF (q)� � and EF (q) + �+ �4. By construction, this implies that

Z
EG(q)+�

EG(q)��

H (q) dq =

Z
EF (q)+�

EF (q)��

H (q) dq

=

Z
EF (q)+�

EF (q)��

[F (q) + h (q)] dq

= �+

Z
EF (q)+�

EF (q)��

h (q) dq

= �+ 2��3 > �;

where the last but second equality holds because F 2 F , and the last equality follows

33



from the construction of H. Since
R
EG(q)+�

EG(q)��
H (q) dq > �, H 2 G n F . Finally, similar

to Case 1, we have � (F;H) = �
2
and, hence, ` (F;H) < �.

Proof of Proposition 3. Decompose XF (�) into the aggregate supply (shorts)

SF (�) and the aggregate demand (longs) DF (�), where

SF (�) =

Z ���

�

�
q + �� �

� (1� �)
wdF (q) ; DF (�) =

Z 1��

�+�

q � �� �

� (1� �)
wdF (q) ;

and SF (�
�

F ) = DF (�
�

F ) in equilibrium. We show that an increase in � shifts the

supply curve inwards. That is,

dSF (�)

d�
= 0 +

�+ �� �

� (1� �)
wdF (�)�

Z ���

�

@

@�

q + �� �

� (1� �)
wdF (q) < 0:

Similarly, an increase in � shifts the demand curve inwards (i.e., dDF (�)
d�

< 0). It follows

that the equilibrium quantity of trade�SF (�
�

F ), or DF (�
�

F )�has to be smaller as

the degree of ambiguity increases.

Proof of Proposition 4. Let � denote the integral of F , i.e., � (q) �
R q
�
F (q0) dq0.

It follows from the de�nition of F that

� (q) =

Z q

�

F (q0) dq0 =

(
(1�m) � (q) if q 2 [�; p) ;

(1�m) � (q) +m (q � p) if q 2 [p; 1� �] ;

where � is the integral of F . The equilibrium condition becomes

� = EF (q) + � (� + �)� � (� � �)� �

= 1� 2�� � (1� �) + � (� + �)� � (� � �) ;

where the second equality follows from integration by parts. Since � (q) has a kink

at point p, the equilibrium price depends on the position of p relative to � + � and

� � �.

Case 1: � � � � p � � + �.
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The equilibrium condition is rewritten as

� = 1� 2�� (1�m) � (1� �)�m (1� �� p)

+ (1�m) � (� + �) +m (� + �� p)� (1�m) � (� � �) :

Rearranging terms and dividing both sides by 1�m yields

� � � (� + �) + � (� � �) = 1� 2�� � (1� �) :

Case 2: p > � + �.

The equilibrium condition is rewritten as

� = 1� 2�� (1�m) � (1� �)�m (1� �� p)

+ (1�m) � (� + �)� (1�m) � (� � �) :

Rearranging terms yields

�

1�m
� � (� + �) + � (� � �) = 1� 2�� � (1� �) +

(p� �)m

1�m
: (4)

Note that the left-hand side of equation (4) is strictly increasing in �. Thus, the

solution �� to the equation is a continuous and strictly increasing function of p.

Furthermore, as p! b�+ �, where b� is the equilibrium price in Case 1, the right-hand
side of equation (4) converges to 1 � 2� � � (1� �) + b�m

1�m
, and the solution to the

equation converges to b�. In other words, the equilibrium price is continuous at point

p = b� + �.
Next, we show �� (1� �) < 1 � 2�, which implies �� (1� �) < 1 � � in part 1 of

the proposition. Let LHS (�) and RHS (p) denote the left- and right-hand sides of

equation (4), as functions of � and p, respectively. Note that

LHS (1� 2�)�RHS (1� �) =

�
1� 2�

1�m
� � (1� �) + � (1� 3�)

�

�

�
1� 2�� � (1� �) +

(1� 2�)m

1�m

�

= �(1� 3�) > 0:
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Since LHS is strictly increasing in �, the solution to the equation when p = 1 � �

must be smaller than 1� 2�.

Case 3: p < � � �.

The equilibrium condition is rewritten as

� = 1� 2�� (1�m) � (1� �)�m (1� �� p)

+ (1�m) � (� + �) +m (� + �� p)

� (1�m) � (� � �)�m (� � �� p) :

Rearranging terms yields

�

1�m
� � (� + �) + � (� � �) = 1� 2�� � (1� �) +

(p+ �)m

1�m
: (5)

Similar to Case 2, the solution �� to equation (5) is continuous and strictly increasing

in p, and it converges to b� as p ! b� � �. Hence, the equilibrium price is continuous

at point p = b� � � as well.
Next, we show �� (�) > 2�, which implies �� (�) > � in part 1 of the proposition.

Again, let LHS (�) and RHS (p) denote the left- and right-hand sides of equation

(5). Note that

LHS (2�)�RHS (�) =

�
2�

1�m
� � (3�) + � (�)

�

�

�
1� 2�� � (1� �) +

2�m

1�m

�

=
�
� (1� �)� � (3�)

�
� [(1� �)� 3�] < 0;

where the last inequality holds because � is the integral of distribution function F

over [�; 1� �]. Since LHS is strictly increasing in �, the solution to the equation

when p = � must be larger than 2�.

Proof of Corollary 5. Recall that b� is identi�ed by equation

b� � � (b� + �) + � (b� � �) = 1� 2�� � (1� �) :
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The symmetry of F implies �� (1� x) = (x� �)�� (x) for any x 2 [�; 1� �]. Thus,

the equilibrium condition becomes

b� �
�
b� + �(1� b� � �)

�
+ �(b� � �) = 1� 2��

�
1� 2�+ �(�)

�

, � (1� b� � �)� � (b� � �) = � (�) = 0;

to which b� = 0:5 is the only solution.
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Appendix B Empirics

The historical data of Intrade was archived by Ipeirotis (2013) and is available on

GitHub. Table 4 lists all the categories of events and the number of markets within

each category. We complete the dataset by creating an outcome variable and recording

how each random event had turned out. The outcome equals 1 if an event occurs,

and it equals 0 if its complement event occurs.

Some markets have correlated outcomes, because they are about the same, uncer-

tain circumstances. For example, concerning the 2012 U.S. Republican Party presi-

dential nominee, there are 53 separate markets corresponding to 53 possible winners,

including Mitt Romney, Rick Santorum, Ron Paul, Newt Gingrich, and �any other

individual� not speci�ed by the prediction platform. To avoid such correlation in

the observations, for each group of these correlated markets, we randomly select one

market into the aggregate sample and disregard the rest.

The total number of selected markets included in the �nal analysis also shown in

Table 5. The table lists the number of observations�the total as well as the number

of observations per percentile bin�for political events, entertainment events, and the

full sample. The dataset is skewed towards political and entertainment events, as the

two categories together accounts for 82% of the full sample.
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Table 4: Intrade Data: Event Categories and Number of Markets.

Event category Number of markets
Art 60
Business 43
Chess 52
Climate & Weather 861
Construction & Engineering 9
Current Events 1540
Education 1
Entertainment 8715
Fine Wine 5
Foreign A¤airs 87
Legal 310
Media 10
Politics 5460
Real Estate 2
Science 20
Social & Civil 30
Technologies 65
Transportation 11

Table 5: Intrade Data: Number of Observations in Final Analysis.

Event category Total observations Observations per bin
(50 bins) (30 bins)

Politics 897 18 30
Entertainment 1157 23 39
Full sample 2509 50 84
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