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ABSTRACT 
 

The concept of a manifold is central to many parts of geometry and modern mathematical 

physics because it allows more complicated structures to be described and understood in terms of 

the relatively well-understood properties of Euclidean space. A manifold is roughly a continuous 

topological space which is locally similar to Euclidean space but which need not be Euclidean 

globally. Fibre bundle is a very interesting manifold and is formed by combining a manifold M 

with all its tangent spaces. A fibre bundle is a manifold that looks locally like a product of two 

manifolds, but is not necessarily a product globally. In this study some definitions are given to 

make the study easier to the common readers. An attempt has taken here to discuss elementary 

ideas of manifolds and fibre bundles in an easier way. 

 

PACs: 

Keywords: Manifold, Fibre bundles, M o bius band, Tangent space, Orientation. 

 

1. INTRODUCTION 

 

In the 20th century the discussion of physical concepts is sometimes based on the properties of 

gauge theories, topology and differential geometry (differentiable manifolds and fibre bundles). 

Differential geometry discusses curves, surfaces, length, volume, and curvature using the 

methods of calculus. In physics, the manifold may be the space-time continuum and the bundles 

and connections are related to various physical fields. Differential geometry is used in Einstein’s 
general theory of relativity. According to this theory, the universe is a smooth manifold equipped 

with a pseudo-Riemannian metric, which describes the curvature of space-time. Differential 

geometry is also used in the study of gravitational focusing and black holes. Differential 

geometry has applications to both Lagrangian mechanics and Hamiltonian mechanics. 

 

The term “manifold” comes from German Mannigfaltigkeit, by Bernhard Riemann. In English, 

“manifold” refers to spaces with a differentiable or topological structure. 

 

A manifold is roughly a continuous topological space which is locally similar to Euclidean space 

but which need not be Euclidean globally. A differentiable manifold M is said to be smooth if it 

is infinitely differentiable. Lines and circles are 1-dimensional manifolds; surfaces are 2-

dimensional manifolds, plane and sphere are 3-dimensional manifolds and Lorentzian space-time 

manifolds in general relativity are 4-dimentional.  

In Euclidean geometry all points of n
R can be covered by one coordinate frame  n

xx ,...,1

 and all 

frames with such a property are related to each other by general a linear transformation, that is, 

by the elements of the general linear group  RnGL , as (Frè 2013): 

mailto:haradhan1971@gmail.com
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xax  , where  RnGLa ,
 . 

 

The space-time manifold is the flat affine manifold 4
R  both in Galileo transformations and 

Lorentz transformations with Galilei or Lorentz subgroups of  RGL ,4 . But a different situation 

arises when the space-time manifold is non-flat. In such a situation we cannot express all points 

of a curved surface in a single coordinate frame, i.e., in a single chart. We can introduce this 

curved surface by a collection of charts, called atlas, each of which maps one open region of the 

surface such that the union of all these regions covers the entire surface. The concept of an atlas 

of open charts, suitably reformulated in mathematical terms, provides the definition of a 

differentiable manifold, for more complicated non-flat situations. 

 

2. SOME RELATED DEFINITIONS 

 

In this section we provide some definitions following Hawking and Ellis (1973), Joshi (1996) 

and Mohajan (2013b), which are fully related to the discussion of this study. 

 

Open Set 

 

Any point p contained in a set S can be surrounded by an open sphere or ball rpx  , all of 

whose points lie entirely in S, where 0r ; usually it is denoted by; 

 

    rxpdxrpS  ,: , . 

 

Closed Set 

 

A subset S of a topological space M is a closed set iff its complement c
S is an open set. 

 

Topological Space 

 

Let M be a non-empty set. A class T of subsets of M is a topology on M if T satisfies the 

following three axioms (Lipschutz 1965): 

1. M and   belong to T, 

2. the union of any number of open sets in T belongs to T, and 

3. the intersection of any two sets in T belongs to T. 

The members of T are open sets and the space (M, T) is called topological space. 

 

Limit Points 

 

Let M be a topological space. A point Mp  is a limit point of a subset S of M iff every open 

set O containing p contains a point of S different from p i.e.,  

 

    SpOOp .  



ABC Journal of Advanced Research, Volume 4, No 1 (2015) 

3 

 

 

Closure of Set 

 

Let S be subset of a topological space M, then the closure of S is the intersection of all closed 

supersets of S and is denoted by S . 

 

Interior, Exterior and Boundary 

 

Let S be subset of a topological space M. A point Sp  is an interior point of S if SOp  , 

where O is an open set. The set of interior points of S is denoted by int(S) and is called the 

interior of S. 

 

The exterior of S is the interior of complement of S, i.e., ext(S) = int( c
S ).  

 

The boundary of S is the set of all points which do not belong to the interior or the exterior of S 

and is denoted by S , hence   SSS  int . 

 

Neighborhoods 

 

Let p be a point in a topological space M. A subset N of M is a neighborhood of p iff N is a 

superset of an open set O containing p, i.e., NOp  . 

 

3. DIFFERENTIAL MANIFOLD   
 

A locally Euclidean space is a topological space M such that each point has a neighborhood 

homeomorphic to an open subset of the Euclidean space 
n

R . A manifold is essentially a space 

which is locally similar to Euclidean space in that it can be covered by coordinate patches but 

which need not be Euclidean globally. A real scalar function on a differentiable manifold M is a 

map, RMF :  that assigns a real number  pf  to every point Mp  of the manifold. Map 

OO :  where 
n

RO   and 
m

RO   is said to be a class  0rC
r

 if the following 

conditions are satisfied. If we choose a point p of coordinates  n
xx ,...,1

 on O and its image  p  

of coordinates   n
xx  ,...,1

 on O  then by 
r

C  map we mean that the function   is r-times 

differential and continuous. If a map is 
r

C for all 0r  then we denote it by 


C ; also by 
0

C map 

we mean that the map is continuous. This means that we can compare a manifold as smooth 

space (Hawking and Ellis 1973). Hence by identifying an open subset of a manifold with an open 

subset of 
n

R , the notion of differentiability of a function from 
n

R  to 
m

R  is passed on to one of a 

function from one manifold to another. 

 

A differentiable manifold is roughly a smooth topological space, which locally looks like 
n

R . 

An n-dimensional, 
r

C , real differentiable manifold M is defined as follows (Mohajan 2013a): 
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A topological space M has a 
r

C altas   , U  where U  are subsets of M and   are one-one 

maps of the corresponding U  to open sets in 
n

R  (i.e.,  is a homeomorphism from U to an 

open subset of 
n

R ) such that (figure 1);  

 

i. U  cover M , i.e., 
UM  . 

ii. If  UU  then the map      UUUU  :1  is a 
r

C  map of an 

open subset of 
n

R  to an open subset of 
n

R . 

 

Condition (ii) is very important for overlapping of two local coordinate neighborhoods. Now 

suppose U  and U  overlap and there is a point p in  UU  . Now choose a point q in   U  

and a point r in   U . Now   pr 1

 ,      qrp    1

   . Let coordinates of q be 

 n
xx ,...,1

 and those of r be  n
yy ,...,1

. At this stage we obtain a coordinate transformation; 

 n
xxyy ,...,111   

 

   n
xxyy ,...,122   

 

   …    …     … 

 

    nnn
xxyy ,...,1 . 

 

 

                M                                                                      

                                 U
                                                  

n
R

                  
  U  

  UU 
                                                                                                q

 

                                                                                                                

                    U     p      

                                                                                      
1

                              
1

  
 

    

 

 

                                                                                                                 r 

                                                                                                                       
  U  

 

 

Figure 1: The smooth maps 
1

    on the n-dimensional Euclidean space 
n

R giving the 

change of coordinates in the overlap region. 
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Given a local chart   ,U  one can define physical quantities on U  much like one would do 

on 
n

R , where the   define coordinates on U . The different patches U can however be glued 

together in a non-trivial way by the transition functions 
1

    , so that globally a manifold is a 

generalization of 
n

R . 

 

The open sets U , U  and maps 
1

    and 
1

    are all n-dimensional, so that 
r

C  manifold 

M is r-times differentiable and continuous i.e., M is a differentiable manifold. So that, whenever 

we will say manifold, we will mean differentiable manifold. General relativity is founded on the 

concept of differentiable manifolds. The mathematical model of space-time is given by a pair 

 gM , where M is a differentiable manifold of dimension 4 and g is a metric that is a rule to 

calculate the length of curves connecting points of M. 

 

3.1 Definitions 

 

Here we will discuss some definitions related to differential geometry following Mohajan 

(2013b) and Joshi (1996). 

 

Hausdorff Space 

 

A topological space M is a Hausdorff space if for pair of distinct points  Mqp ,  there are 

disjoint open sets U  and U  in M such that Up  and Uq .    

 

Paracompact Space 

 

An atlas   , U  is called locally finite if there is an open set containing every Mp  which 

intersects only a finite number of the sets U . A manifold M is called a paracompact if for every 

atlas there is locally finite atlas   ,O  with each O  contained in some U . Let 


V  be a 

timelike vector, then paracompactness of manifold M implies that there is a smooth positive 

definite Riemann metric K  defined on M.        

 

Homeomorphism 

 

Two topological spaces 1M  and 2M  are called homeomophic if there exists a one-one onto 

function 21: MMf   such that f and 
1

f  are 
0

C  continuous. The function f is called a 

homeomorphism. If f and 
1

f  are both 
r

C  map then f is called 
r

C diffeomorphism. 

Homeomorphisms preserve all topological properties.  
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Tangent Space 

 

A 
k

C -curve in M is a map from an interval of R in to M (figure 2). A vector  
 0tt 

  which is 

tangent to a 
1

C -curve  t  at a point  0t  is an operator from the space of all smooth functions 

on M into R and is denoted by; 

 

 
 
 

 

     
s

tfstf
Lim

t
f

f
t s

t
t

















0

0
0

, 

 

where f be a function from M into R. If  ix   are local coordinates in a neighborhood of 

 0tp   then;  

                      

      
   0

0

.

t

i

i

t x

f

dt

dx

t
f

 












. 

 

A vector X at the point p tangent to the curve is called a tangent vector to M at p. If   ix  are a set 

of coordinates on U , X can be represented by the components,    
0


t

tx
dt

d
X 

. We define 

a tangent vector by the relation; 

 

    
0


t

tf
d

d
fX 

 
 

                                                         

                                                                                  b 
 

        

                                                                          t     

                                                                                      a                                                                       

 

                                                                            

 

                                                            a               t             b   

                                                                 

Figure 2: A curve in a differential manifold. 

 

where X is represented by a differential operator, 


x
XX




 . Hence the set 









x

 can be 

considered as a basis and every tangent vector at Mp  can be expressed as a linear 
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combination of the coordinates derivates,    
p

n
p xx 




 ,...,1 . Thus the vectors  i
x

  span the 

vector space 
pT . Then the vector space structure is defined by      YfbXfafbYaX  , 

where Rba ,  and pointwise multiplication is defined by       XgXfXgf . . The vector 

space 
pT is also called the tangent space at the point p, i.e., the collection of the vectors at p 

tangent to all curves that go through p is called the tangent space MTp
at p. Hence the tangent 

space MTp
to the manifold M in the point p is the vector space of first order differential 

operators on the smooth functions  MC


 at p. A smooth assignment of a tangent vector at 

every point Mp  is called a vector field  pX  on M. 

 

Orientation 

 

In mathematics, orientability is a property of surfaces in Euclidean space measuring whether it is 

possible to make a consistent choice of surface normal vector at every point. 

 

Let B be the set of all ordered basis  ie  for 
pT , the tangent space at point p. If  ie  and  

je  are 

in B, then we have i

i

jj eae   . If we denote the matrix  
ija  then   0det a . An n-dimensional 

manifold M is called orientable if M admits an atlas  iiU ,  such that whenever  ji UU
 

then the Jacibian, 0det 











j

i

x

x
J , where  ix  and  jx  are local coordinates in iU  and jU  

respectively. The M o bious strip is a non-orientable manifold (discuss later). A vector defined at 

a point in M o bious strip with a positive orientation comes back with a reversed orientation in 

negative direction when it traverses along the strip to come back to the same point. 

 

Orientation of a Manifold 

 

An orientation of a manifold is a choice of a maximal atlas, such that the coordinate changes are 

orientation preserving. An oriented atlas is called maximal if it cannot be enlarged to an oriented 

atlas by adding another chart. A topological manifold M is called orientable if it has a topological 

orientation, otherwise it is called non-orientable. For zero dimensional manifolds an orientation 

is a map  1: M  (Kreck 2013). 

 

An atlas  n
RUUU    :,  is called oriented if all coordinate changes 

     UUUU  :1  are orientation preserving. A homeomorphism 

MNf :  between oriented topological manifolds is orientation preserving if for each chart  
n

RVU :  in the oriented atlas of N the chart f is in the oriented atlas of M. 

 

A real vector bundle, which a priori has a  nGL  structure group, is called orientable when the 

structure group may be reduced to  nGL
 

, the group of matrices with positive determinant. For 
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the tangent bundle, this reduction is always possible if the underlying base manifold is orientable 

and in fact this provides a convenient way to define the orientability of a smooth real manifold.  

 

Space-time Manifold 

 

In general relativity each point is an event so that coordinates specify not only it is where but 

also it is when. General relativity models the physical universe as a four-dimensional 


C  

Hausdorff differentiable space-time manifold M of 4-dimentional with a Lorentzian metric g of 

signature (–,+,+,+) which is topologically connected, paracompact and space-time orientable. 

These properties are suitable when we consider for local physics. As soon as we investigate 

global features then we face various pathological difficulties such as, the violation of time 

orientation, possible non-Hausdorff or non-papacompactness, disconnected components of 

space-time etc. Such pathologies are to be ruled out by means of reasonable topological 

assumptions only. However, we like to ensure that the space-time is causally well-behaved. We 

will consider the space-time manifold (M, g) which has no boundary. By the word “boundary’ 
we mean the ‘edge’ of the universe which is not detected by any astronomical observations. It is 
common to have manifolds without boundary; for example, for two-spheres S2 in 

3
R  no point in 

S2 is a boundary point in the induced topology on the same implied by the natural topology on 
3

R . All the neighborhoods of any 
2

Sp  will be contained within S2 in this induced topology. 

We shall assume M to be connected i.e., one cannot have YXM  , where X and Y are two 

open sets such that YX . This is because disconnected components of the universe cannot 

interact by means of any signal and the observations are confined to the connected component 

wherein the observer is situated. It is not known if M is simply connected or multiply connected. 

M assumed to be Hausdorff, which ensures the uniqueness of limits of convergent sequences and 

incorporates our intuitive notion of distinct space-time events. 

 

One-form 

 

One-form is defined as linear, real valued function of vectors. We define a general basis by  ie  

for i = 1,2,..,n  which are linearly independent vectors. Then any vector pTV   we can write, 

 

i

i
eVV   

 

where the quantities i
V  are called the components of V with respect to the basis ie . In the 

coordinate basis we have 
dt

dx
V

i
i  . Also we know 










ix
 forms a basis of pT  at p, we can 

define the vector space of all the dual vectors at p is called covariant vectors or one-forms at p. A 

one-form   at p is a real-valued linear function of pT  and is denoted by     XXX ,  , 

where the last expression emphasizes the equal status of   and X. Here  X  is often called the 

contraction of   with X. In tensor algebra vectors are called contravariant vectors and one-forms 

are called covariant vectors. The linearity of one-form means (Hawking and Ellis 1973, Joshi 

1996);  
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YbXabYaX ,,,    

 

for Rba ,  and pTYX , . Multiplication of a one-form by a real number a implies; 

 

XaXa  ,,  . 

 

Again for all X,    is the one-form such that; 

 

XXX ,,,   . 

 

The linear combinations of one-forms are defined by; 

 

XbXaXba ,,,    

 

for all X. We observe that one-forms at the point p satisfy the axioms of vector space, which is 

called the dual vector of pT  and is denoted by 
*

pT . Given a tangent space basis  ie , a unique set 

of one-forms  ie
 
is defined by the condition that the given one-form j

e  maps a vector V into j
V

. Hence, 

 
jj

VVe ,  and  i

jj

i ee , . 

 

We can write the one-form   as; 

 
i

ie   i.e., ii e,  . 

 

For any 
*

pT  and pTV   we can write,  

 

j

ji

i eVeV ,,   i

j

j

iV  i

iV . 

 

Any smooth function f on M defines a one-form df, is called the differential of f as;  

 

VfVdf , . 

 

Hence in a coordinate basis we have, 

 

i

i

x

f
VVdf




, . 

 



ABC Journal of Advanced Research, Volume 4, No 1 (2015) 

10 

 

The local coordinate functions  n
xx ,...,1   can be used to define a set of one-forms  n

dxdx ,...,1  , 

which gives a basis dual to the coordinate basis. Now we can write; i

jj

i

j

i

x

x

x
dx 








, , which 

gives, 

 

a

a
dx

x
dfdf  ,




 a

a
dx

x

f




 . 

 

If f is non-constant function then the surface f = constant, define an (n–1)-dimensional sub-

manifold M. For the set of all the vectors pTV  , such that, 0, VfVdf , then the vectors V 

are tangent to curves in the f = constant sub-manifold through p. In such a situation df is normal 

to the surface f = constant at p. 

 

We can write an arbitrary tangent vector as; 

  

i
i

i

xd

dx

d

d




 
. 

 

So that the gradient df is defined by,  

 

 d

df

d

d
df 








. 

 

Hence we can write; 

 




































 d

d
b

d

d
af

d

df
b

d

df
af

d

d
b

d

d
a

d

d
b

d

d
adf .  

 

Hypersurface 

 

 In the Minkowski space-time 
22222

dzdydxdtds  , the surface t = 0 is a 3-dimensional 

surface with the time direction always normal to it. Any other surface t = constant is also a 

spacelike surface in this sense. Let S be an  1n -dimensional manifold. If there exists a 


C  

map MS :
 which is locally one-one i.e., if there is a neighborhood N for every Sp  such 

that   restricted to N is one-one, and 
1  is a 


C as defined on  N , then   S  is called an 

embedded sub-manifold of M. A hypersurface S of any n-dimensional manifold M is defined as 

an  1n -dimensional embedded sub-manifold of M. Let 
pV  be the  1n -dimensional 

subspace of 
pT  of the vectors tangent to S at any Sp  from which follows that there exists a 

unique vector p

a
Tn   and is orthogonal to all the vectors in 

pV . 
a

n  is called the normal to S at 
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p.  If the magnitude of  
a

n  is either positive or negative at all points of S without changing the 

sign, then 
a

n  could be normalized so that 1ba

ab nng . If 1ba

ab nng  then the normal vector 

is timelike everywhere and S is called a spacelike hypersurface. If the normal is spacelike 

everywhere on S with a positive magnitude, S is called a timelike hypersurface. Finally, S is null 

hypersurface if the normal 
a

n  is null at S. 

 

Lie Algebra 

 

The set of the infinitesimal generators  X  is a linear algebra on the field K where the group 

transformations are defined and the Lie product of two operators is simply their commutator 

(Gourdin 1982). 

 

     ZYZXZYX ,,,    

 

     ZXYXZYX ,,,    

 

K  ,  and ZYX ,, . 

 

A Lie Algebra is a linear algebra which satisfies the anti-symmetry property;  

 

   XXX ,0, . 

 

The fundamental relation of Lie Algebra is the following: 

 

  

 XCXX ,  

 

where the quantities 

C  are called the structure constant of the Lie Algebra. 

The Jacobian identity is, 

 

         0 ,, ,, ,,  YXZXZYZYX . 

 

For infinitesimal generators this gives the relation for the structure constants. The general linear 

group  RnGL ,  is defined as the set of regular linear transformations of n
R . An evident 

complete basis of nn  matrices is obtained with matrices having only one non-vanishing 

element. Let us choose for convenience,   nsmrmnrs ggE   and we have 
2

n  such matrices. The 

matrices rsE  are a matrix representation of the Lie algebra of  RnGL ,  and the commutation 

relations have the explicit form; 

 

  tsurruatturs EgEgEE , . 
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4. FIBRE BUNDLE 

 

Fibre bundle is absolutely central in modern physics which provides the appropriate 

mathematical framework to formulate modern field theory. There are two kinds of fibre-bundles: 

principal bundles and associated bundles. The notion of a principal fibre-bundle is the 

appropriate mathematical concept underlying the formulation of gauge theories. Gauge theories 

describe the dynamics of all non-gravitational interactions (interactions of photon, gluon, 

graviton etc. bosons). The associated fibre-bundles provide mathematical framework to describe 

matter fields that interact through the exchange of the gauge bosons. 

 

4.1 Basic Concepts of Fibre Bundle 

 

Fibre bundle is a very interesting manifold and is formed by combining a manifold M with all its 

tangent spaces 
pT . A fibre bundle is a manifold that looks locally like a product of two 

manifolds, but is not necessarily a product globally. A bundle whose fibre is a one-dimensional 

vector space is called a line bundle. A fibre bundle will be called trivial if it can be described as a 

global product. Because of the importance of fibre bundles in modern theoretical physics, many 

introductory expositions of fibre bundles for physicists exist. 

 

 For simplicity let us consider a one-dimensional manifold M (a curve) and its tangent spaces. 

Figure 3a shows a curve M and a few tangent spaces which are straight lines drawn tangent to the 

curve, and each must be thought of as extending infinitely far in both directions. When we draw 

tangents in such a process the picture of course will be messy due to large number of tangent 

spaces intersecting one another and leaving the curve M haphazardly. So, we look for a better 

way like figure 3b where the tangent spaces are drawn parallel, they cross M only at the point  

                                               

                                                            pT  

                                                     p 

                 M 

                                                                                        

                                       

                                   qT
                                        

r
           rT  

                                        q 

 

Figure 3a: A one–dimensional manifold and some of its tangent spaces. 

 

where they are defined. Here 
pT represents not tangent to the curve but vector at each p. So, we 

define new manifold TM, consisting of all vectors at all points, which is two-dimensional. It is 

called a fibre bundle where the fibres are the spaces 
pT for each p. A general fibre bundle 

consists of a base manifold, which is the curve M and one fibre attached to each point of the base 

space. If the base space is n-dimensional and each fibre is m-dimensional then the bundle has  
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                                                             p 

                                                                                     

 

                                                      M 

                                                                                                        

                                                q                                               r 

 

 

Figure 3b: Same as figure 3a but here tangent spaces are drawn parallel to one another to 

avoid spurious intersections. 

 

 nm -dimensions. The points of a single fibre are related to one another while points on 

different fibres are not. This is formalized by defining a projection map  , which maps any 

point of a fibre to the base manifold defined on it (Schutz 1980). Hence a fibre bundle is a 

manifold M with a copy of the fibre F at every point of M. 

Now we shall study the global properties of the fibre bundles. For simplicity we consider the 

product space. Two spaces M and N have Cartesian product space NM   consisting of all 

ordered pairs (a,b) where Ma  and Nb . If M and N are manifolds, NM   is also a 

manifold. The set of coordinates   ,...,1, mix
i   of an open set U of M taken together with open 

set V of N, from a set of nm  coordinates for the open set  VU ,  of NM  . The fibre bundles 

defined above, at least locally, product spaces, the product  FU   of open set U of the base 

manifold B with the space F representing a typical fibre. It is locally trivial but globally it is not 

trivial. The above property is defined as follows (Schutz 1980): 

 

Let us consider 
1

TS , the tangent bundle of the circle 
1

S . 
1

TS is identical to the product space 

RS 1
, as shown in figure 4a which is global version of the local picture as shown in figure 3b. 

 

 

 

 

                                                                                
1

S  

                                                   p           

                                                 

                                                           

 

 

Figure 4a: The trivial way of constructing TS1 as the product space of the circle S1 and the 

typical fibre R1. 

 

If we cut the circle at point y and unwrap the bundle, laying it as figure 4b.  

 

 

 



ABC Journal of Advanced Research, Volume 4, No 1 (2015) 

14 

 

                                            x                                             x  
 

           y                                              y  
                                                                           

1
S  

                                             

           z                                               z  
 

Figure 4b: TS1 cut along one fibre and laid flat. Each fibre is extended infinitely far in the 

vertical direction. 

 

4.2 The M o bius Strip 

 

To form a M o bius strip we consider a rectangular strip. It is of course be seen as the product of 

two line segments. If we want to join two opposite edges of the strip to turn one of the line 

segments into a circle, there are two ways to do this. To reconstruct figure 4a from figure 4b we 

simply identify point x with x , y with y  and z with z , and so on. Joining of the two edges in a 

straightforward way we can form a cylinder C (Figure 5). It should be of course clear that the 

cylinder is not only locally a product, but also globally; namely LSC  1 , where L is a line 

segment which is not only locally a product but also globally. The cylinder is a global 

diffeomorphism from LS 1  to C (Nash and Sen1983, Nakahara 1990).  

 

 

 

 

 

 

 

 

 

 

Figure 5: The cylinder version of the fibre bundle. 

 

But in a different way we can form a M o bius band as follows: Identify x with z , y with y  and 

z with x , and so on. This is a twist so that it looks like figure 6 when joined together. Locally it 

is still the same as figure 4a. In fact the bundle over any connected open proper subset of 
1

S  has 

one-one continuous map into the same portion of figure 4a. Locally, along each open subset U of 

the 
1

S , the M o bius strip, Mo still looks like a product, LUMo  . However, globally there is 

no unambiguous and continuous way to write a point m of Mo as a Cartesian pair   LSts  1, . 

Locally, 1: SM o  , hence for every 1
Sx , its inverse image is isomorphic to the line 

segment,   Lx 1 . For every open subset U of 
1

S , we can define a diffeomorphism 

 ULU
1:   , i.e., for every element p of   oMU 1 , we can assign local coordinates 

   txp ,1  , where    Upx  and Lt . 
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Figure 6: M o bius band version of the fibre bundle. 

 

M o bius strip covers the circle by two open sets, 
1U  and 

2U , which overlap on two 

disjoint open intervals, A and B  (Collinucci and Wijns 2006). Here we have the two maps 

(Figure 7); 

 

 1

1

11 : ULU
   

 

 2

1

22 : ULU
   

 

Here 21 UU   covers Mo and 1  and 
2  are homeomorphisms 12h  which define an atlas 

for Mo from L to L in such a way that     thxtx 122

1

1 ,,   . So, M o bius band is not a product 

space globally that is, of a non-trivial fibre bundle.  

                                                                                    1U  

 

    

                                                                                     2U   

 

Figure 7: M o bius band is not a product space globally. 

 

The difference between above two bundles over 
1

S  is in what is called the bundles ‘structure 
group’. We define a fibre bundle as a space E for which the following are given a base manifold 

B, a projection BE : , a typical fibre F, a structure group G of homeomorphism of F into 

itself, and a family  
jU  of open sets covering B, all of which satisfies the following restrictions: 
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The bundle over any set iU , which is  iU
1 , has a homeomorphism onto the product space 

FUi  i.e., locally the bundle is trivial. Part of this homeomorphism is a homeomorphism from 

each fibre, say  x
1  where x is an element of B, onto F. Let us call this map  xhi . 

 

When two sets iU  and 
jU  overlap, a given point x in their intersection has two homeomorphism 

 xhi  and  xh j
 from its fibre onto F. Since a homeomorphism is invertible, the map 

   xhxh
ji

1  is a homeomorphism of F onto F which is necessary to be an element of the 

structure group G. 

 

                                                                   6U                 

                                                           5U                              7U  

                        
4U                                   

1U  

                                                                3U                           8U  

                                                                                  2U  

                                                                         

 

Figure 8: A set of neighborhoods of 
1

S  which cover 
1

S . The extent of each neighborhood is 

indicated by the parentheses, 1U  overlaps 2U , and so on until 8U
 
overlaps 1U . 

 

 

The second restriction is global structure of the fibre bundle. To check this, we first introduce the 

complete definition of 
1

TS . The bundle 
1

TSE   has base 
1

SB  , typical fibre 
1

RF  ,  and 

projection   xvx ,:  where x is a point of 
1

S and v is a vector in xT . Let the covering  iU  

be the open sets of any atlas of 
1

S , (figure 8).  

 

Every iU  has a coordinate system i.e., a parametrization of 
1

S , which we will call i  . The 

vector idd    at x in iU
 
is a basis for xT , so, any vector v in xT  has representation   ii dd    for 

any index i, and   Ri  . 

 

The homeomorphism of xT  onto R which are part of the definition of 
1

TS  are defined to be 

   ii vxh : . If x belongs to two neighborhoods iU  and 
jU
 

there are two such 

homeomorphisms from xT  on to R, and since i    and 
j  are unaltered,  i   and  i  can be any 

two real numbers. The homeomorphism     FFxhxh
ji  :1

   maps    ji    and is therefore 

just multiplication by the number    jiijr  . Since 
ijr  is any real number other than zero, the 

structure group is  01 R , which is a Lie Group. For an n-dimensional manifold M the structure 
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group of TM is the set of all nn  matrices with non-zero determinant, which is called GL (n, R) 

which defines 
1

TS . 

 

To characterize the structure of the M o bius band we must use different maps  xhi . Let us use 

the family  8,...,2,1 , iU i  and also define 1,...,1,1 782312  rrr . But in this case the twist in 

the M o bius band faces us to use 181 r . 

 

The structure group here is a multiplicative group with elements  1,1  . The tangent bundle 
1

TS  

has the structure group is  01 R , which is nearly the same as its typical fibre. The frame bundle 

of any manifold M has the same structure group as TM, but its fibre is the set of all bases for the 

tangent space. 

 

In the case of a one-dimensional manifold like 
1

S , this is the set of all non-zero vectors, which is 

identical to  01 R . So, the fibre bundle of has fibres homeomorphic to its structure group, and 

this is true for all frame bundles. Such a group is called a principal fibre bundle (Schutz 1980).        

 

Corollary: The M o bious band is a non-orientable manifold. 

 

Proof: The center circle in a M o bious band, oM is an orientable sub-manifold, but it does not 

admit a continuous vector field which is nowhere tangent to it. Hence the oM  cannot be 

orientable. 

 

4.3 Definition of a Fibre Bundle 
 

A differentiable fibre bundle  GFME ,,,,  consists of the following elements (Collinucci and 

Wijns 2006): 

 

i) A differentiable manifold E is called the total space. 

ii) A differentiable manifold M is called the base space. 

iii) A differentiable manifold F is called the typical fibre. 

iv) A surjection ME :  is called the projection map which is smooth. For Mx , the 

inverse image   FFx x 1   is called the fibre at x. 

v) A (Lie) Group G is called the structure group, which acts on the fibre on the left and it is 

called principal bundle. A principal bundle can be thought of the parent of various 

associated bundles, which are constructed by allowing the Lie group to act on a fibre. 

vi) An open covering  iU  of M and a set of diffeomorphisms   iii UFU
1:    such 

that   xtxi , . The map i  is called a local trivialization. 

vii) At each point Mx ,    txt ixi ,,    is a diffeomorphism, xxi FF :, . On each 

overlap  ji UU , we require  FFh xjxiij   :,

1

,   to be an element of G, i.e., we 

have a smooth map  GUUh jiij  :  such that     txhxtx ijij  ,,   . 
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Mathematically this defines a coordinate bundle. From (vi) it follows that  iU
1  is 

diffeomorphic to a product, the diffeomorphism is given by   FUU iii  11 : . It is in this 

sense that E is locally a product. We usually require that all fibres be diffeomorphic to some 

fixed manifold F. A bundle that is a product FME  , is said to be trivial (Frankel 1999). 

 

4.4 Principal Bundles and Associated Vector Bundles 

 

The collection of all tangent vectors to a manifold M at a point p is a vector space called the 

tangent space MTp . The collection  MxMTp    of all tangent spaces of M is called the tangent 

bundle TM. Its base manifold is M and fibre is n
R , where n is the dimension of M, and its 

structure group is a subgroup of   RnGL , . If M is n
R , the tangent space to every point is 

isomorphic to M itself. Its tangent bundle n
TR  is trivial and equal to nnn

RRR
2 . The circle is 

not contractible, yet its tangent bundle 1
TS  is trivial. The tangent bundle of the 2-sphere 2

TS  is a 

nontrivial bundle. There is no global diffeomorphism between 2
TS  and 22

RS  , since in this 

case one cannot even find a single global non-vanishing vector field  and one would have to be 

able to define two linearly independent vectors at every point of the sphere in a smooth fashion. 

A set of pointwise linearly independent vectors over an open set of the base manifold of a 

tangent bundle is called a frame 2
FS . We have seen that 2

TS  is non-trivial globally, because we 

cannot able to find a frame over the entire sphere. At each point of frame we can of course 

construct many different sets of linearly independent vectors. The set of all possible frames over 

an open set U of 2
S  is diffeomorphic to  RGLU ,2 . Globally this becomes a bundle over 2

S

with fibre  RGL ,2  and is called the frame bundle 2
FS  of 2

S (Collinucci and Wijns 2006). 

 

An associated vector bundle is a fibre-bundle where the standard fibre F = V is a vector space 

and the action of the structural group on the standard fibre is a linear representation of G on V. A 

tangent bundle is always a vector bundle. The M o bius strip is not a vector bundle. A principal 

bundle has a fibre which is identical to the structure group G. It is usually denoted by P(M, G) 

and called a G-bundle over M. 

 

5. CONCLUDING REMARKS 

 

In this study we have discussed preliminary ideas of differential manifold and fibre bundles. We 

have discussed some definitions to make the paper interesting to the readers. Throughout the 

study we have avoided difficult mathematical calculations. The paper will be helpful for those 

readers who need very elementary idea of differential geometry.  
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