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ABSTRACT 

In 2009, Bingmann, Lovejoy and Osburn have shown the generating function for spt2(n). In 

2012, Andrews, Garvan, and Liang have defined the sptcrank in terms of partition pairs. In 

this article the number of smallest parts in the overpartitions of n with smallest part not 

overlined and even are discussed, and the vector partitions and S-partitions with 4 

components, each a partition with certain restrictions are also discussed. The generating 

function for spt2(n), and the generating function for MS(m, n) are shown with a result in terms 

of modulo 3. This paper shows how to prove the Theorem 1, in terms of MS(m, n) with a 

numerical example, and shows how to prove the Theorem 2, with the help of sptcrank in 

terms of partition pairs. In 2014, Garvan and Jennings-Shaffer are capable to define the 

sptcrank for marked overpartitions. This paper also shows another result with the help of 15 

SP2-partition pairs of 8 and shows how to prove the Corollary with the help of 15 marked 

overpartitions of 8. 

 

Key words: crank, non-negative, overpartitions, overlined, sptcrank, weight.  

 

INTRODUCTION 

In this paper we give some related definitions of  nspt2 , various product notations, 

vector partitions and S -partitions, ),(
2

nmM
S

, ),,(
2

ntmM
S

,  xzS ,2 , marked partition and 

sptcrank  for marked overpartitions. We discuss the generating function for  nspt
2

 and 

prove the Corollary 1 with the help of generating function to prove the Result 1 with the help 

of 3 vector partitions from 2S  of 4. We prove the Theorem 1 with the help of various 

generating functions and prove the Corollary 2 with a special series  xzS ,2 , when n =1 and  

prove the Theorem 2 with the help of sptcrank  in terms of partition pairs  21,  when 

).()(0 21  ss   We  prove the Result 2 using the crank  of partition pairs   , 21  


 and  

mailto:sabujdas.ctg..@gmail.com
mailto:haradhan1971@gmail.com
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prove the Corollary 3 and 4 with the help of marked overpartition of 3n and of 13 n  (when 

n = 2) respectively. Finally we analyze the Corollary 5 with the help of marked overpartitions 

of 35 n  when n =1.  

 

 

Some Related Definitions  

 

In this section we have described some definitions related to the article following (Garvan 

and Shaffer 2014). 

 

 nspt2  (Bringann et al. 2009): The number of smallest parts in the overpartitions of n with 

smallest part not overlined and even is denoted by  nspt2  for example, 

 n                                              
2

spt (n) 

 1 :                0 

 2 :    2                           1 

 3 :                0 

 4 :    ,4
.

  
.

2  +
.

2                3 

 5 :    ,23
..

   23                2 

 

 ...            …       … 

 

From above we get; 

2
spt (6) = 6, 

2
spt (7) = 6, ... 

 

Product Notations 

 

)...1( )1( )1()( 32
xxxx   

)...1( )1();( 4222
xxxx   

)1)...(1( )1( )1()( 32 k

k xxxxx   

)...1( )1( )1();( 7655
xxxxx    

 

 

Vector Partitions and S -Partitions 

  

A vector partition can be done with 4 components each partition with certain restrictions 

(Bringann et al. 2013). Let, DPPDV 


, where D denote the set of all partitions into 

distinct parts, P denotes the set of all partitions. For a partition  , we let, )(s  denotes the 
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smallest part of   (with the convention that the empty partition has smallest part  ), # )(

the number of parts in  , and   the sum of the parts of  . 

 For ,),,,( 4321



 V  we define the weight ,)1()(
1)(# 1 



  the crank c

)(#)(#)( 32  


, the norm .4321  


 

 We say 


  is a vector partition of n if n


 . Let S  denotes the subset of V and it is given 

by; 


 



)(,)(1,),,,( 114321  ssVS  

     )()(),()(),( 41312  sssss  . 

   

Let 2S denotes the subset of S  with  1s  even. 

 

),(
2

nmM
S

: The number of vector partitions of n in 2S  with crank m are counted according to 

the weight   is exactly ),(
2

nmM
S

. 

 

),,(
2

ntmM
S

: The number of vector partitions of n in 2S with crank congruent to m modulo t 

are counted according to the weight   is exactly ),,(
2

ntmM
S

. 

 

2S (z, x): The series 2S (z, x) is defined by the generating function for ),(
2

nmM
S

. 

i.e., 2S (z, x)  

=














);();(

);();(
212

12122

1 xxzxzx

xxxxx
nn

nnn

n

  

 = 






 m

nm

S
n

xznmM ),(
2

1

. 

  

Marked Partition (Andrews et al. 2013): We define a marked partition as a pair ),( k  where 

  is a partition and k is an integer identifying one of its smallest parts i.e., k =1, 2, ..., )( , 

where )(  is the number of smallest parts of  . 

  

sptcrank  for Marked overpartitions (Chen et al. 2013): We define a marked overpartitions of 

n as a pair ),( j  where   is an overpartition of n in which the smallest part is not overlined 

and even. It is clear that 2spt (n) = # of marked overpartitions ),( j  of n. For example, there 

are 3 marked overpartitions of 4, like:  

 

(4,1), (2+2,1), and (2+2,2).  
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Then, 3)4(
2

spt .  

 

The Generating Function for 2spt (N) 

  

The generating function (Bringann et al. 2013) for 2spt (n) is given by; 







 


);()1(

);(
1222

122

1 xxx

xxx
nn

nn

n

 

...
);()1(

);(

);()1(

);(
524

54

322

32



















xxx

xxx

xxx

xxx
 

....6.2.3..1. 65432  xxxxoxxo  

 3

2

2

22 )3()2()1( xsptxsptxspt  ....)5()4( 5

2

4

2  xsptxspt  

.)(2

1

n

n

xnspt




   

For convenience, define 2spt (1) = 0. 

  

From above we get ,0)3(2 spt  ,...6)6(2 spt  

i.e., 00)1.3(
2

spt  (mod 3),  

06)2.3(2 spt   (mod 3), ... 

  

We can conclude that  3mod0)3(
2

nspt . 

  

We also get ,3)4(2 spt  ,...6)7(2 spt  

i.e.,  3mod03)13(2 spt ,  

  3mod06)12.3(2 spt , … 

  

We can conclude that   3mod0)13(2 nspt  (Bringann 2009). Again from above we get;  

,0)3(2 spt ,...15)8(2 spt  

i.e.,  5mod00)3(2 spt , 

  5mod015)35(2 spt , ... 

  

We can conclude that  5mod0)35(2 nspt . 

 

Corollary 1: )(2 nspt 


m

),(
2

nmM
S

. 

Proof: The generating function for ),(
2

nmM
S

is given by; 
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


1n




m

),(
2

nmM
S

nm
xz  

=














);();(

);();(
212

12122

1 xxzxzx

xxxxx
nn

nnn

n

. 

 

 If z = 1, then, 




1n




m

),(
2

nmM
S

nx  

=











);();(

);();(
22

12122

1 xxxx

xxxxx
nn

nnn

n

 

= 





22

332

);(

);();(

xx

xxxxx
 




24

554

);(

);();(

xx

xxxxx
+... 

= 


 

...)1()1(

)...1)(1();(
2322

4332

xx

xxxxx

...)1()1(

)...1)(1();(
2524

6554

xx

xxxxx


   +… 

= 
)...1)(1()1(

);(
4322

32

xxx

xxx


  + ...

)...1)(1()1(

);(
6524

54




 

xxx

xxx
 

 

=


1n 








);()1(

);(
1222

122

xxx

xxx
nn

nn

 

=


1n

n
xnspt )(2 . 

i.e.,


1n

n
xnspt )(2 =



1n

 


m

),(
2

nmM
S

n
x . 

  

Now equating the co-efficient of 
n

x from both sides we get; 

)(2 nspt 





m

),(
2

nmM
S

. 

Hence the Corollary.  

  

Result 1:  

 )4(
3

1
)4,3,2()4,3,1()4,3,0( 2

222

sptMMM
SSS

 . 

Proof: We prove the result with the help of examples. We see the vector partitions from 2S of 

4 along with their weights and cranks and are given as follows: 

Here we have used   to indicate the empty partition. Thus we have, 

,1)4,3,0(
2


S

M   1)4,3,1(
2


S

M ,  

1)4,3,1()4,3,2(
22


SS

MM  

)4,3,1()4,3,0(
22 SS

MM   
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= )3(
3

1
3.

3

1
1)4,3,2( 2

2

sptM
S

  . 

Hence the Result. 

  
Table 1 

 

2S -vector partition )(


  of  4 Weight 

 )(


  

Crank 

 )(


  

 

mod 3 

),,,4(1  


 1 0 0 

),,22(2  


 1 1 1 




3 (2,  , 2, ) 1 –1 2 

 3)( 


    

 

Now from table 1 we get; 3)( 


 , i.e.,  3)4,3,(
2

2

0




kM
S

k

. 






 ).()4,3,()4(
2

2

0

2 kMspt
S

k

 

 

Now we can define; 

 ),(),,(
22

)(mod

nmMntkM
S

tkm
S 



  

and 









1

0

2 ).,,(),()(
22

t

k
S

m
S

ntkMnmMnspt  

 

Theorem 1: The number of vector partitions of n in 2S  with crank m counted according to 

the weight   is non-negative, i.e., .0),(
2

nmM
S

 

Proof: The generating function for ),(
2

nmM
S

 is given by; 

 
nm

S
mn

xznmM ),(
2

1








 

















);();(

);();(
212

12122

1 xxzxzx

xxxxx
nn

nnn

n

  












 );.(

);();(

224

212

2

1

xx
xxzxzx

x n

nn

n

n

. 

[Since 









 );();( 1212

1

xxxx
nn

n

 

...);();();();( 5533   xxxxxxxx  

 )...1)(1)...(1)(1( 4343
xxxx ...)...1)...(1)(1( 565  xxx  

 )...1)(1()...1)(1( 121086
xxxx ...)...1( 14  x  
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...);();( 21026   xxxx  

]);( 224

1







 xx

n

n

 

















);(

);(
.

);();(

);(
4

224

212

42

1 xx

xx

xxzxzx

xxx
n

n

nn

nn

n

  












 


);)(1(

1
.

);();(

);(
2144212

42

1 xxxxxzxzx

xxx
nnnn

nn

n

 

  

[Since, ...
);(

);(

);(

);(

);(

);(
8

210

4

26

4

224

1


















xx

xx

xx

xx

xx

xx
n

n

n

 







)...1)(1)(1(

)...1)(1(
654

86

xxx

xx
...

)...1)(1)(1)(1(

)...1)(1(
111098

1210





xxxx

xx
 

 



)...1)(1)(1(

1
754

xxx
...

)...1)(1)(1(

1
1198


 xxx

 

 ]
);(

1
.

1

1
2144

1 




 


xxx
nn

n

 













 
 

);)(1(

1
.

)();(

)(
21442

21

01

2

xxxxxzx

xz
x

nn

k

kn

kn

kn

n  

 

[Since, 











);();(

);(
212

42

1 xxzxxz

xxx
nn

nn

n

 

]
)();(

)(
2

21

01

2

k

kn

kn

kn

n

xxxz

xz
x











 .  (by Berkovich and Garvan 2008) 

 

We see that the coefficient of any power x in the right hand side is non-negative so the 

coefficient ),(
2

nmM
S

 of 
nm

xz  is non-negative, i.e., .0),(
2

nmM
S

 Hence the Theorem. 

  

Numerical example 1 

  

The vector partitions from 2S  of 5 along with their weights and cranks are given as follows: 

 Here we have used   to indicate the empty partition. Thus we have; 

,011)5,0(
2


S

M ,1)5,1(
2


S

M and ,1)5,1(
2


S

M i.e., 2)5,(
2

 mM
S

m

, 

i.e., every term is non-negative, i.e., .0),(
2

nmM
S

 

So we can conclude that, .0),(
2

nmM
S
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Corollary 2:   ),1(2 xS  = 2

1

spt
n






(n) n
x . 

Proof: We get;  

















);();(

);();(
),(

212

12122

1

2

xxzxxz

xxxxx
xzS

nn

nnn

n

  (Andrews et al. 2012). 

   If z = 1, then we get;  














);();(

);();(
),1(

22

12122

1

2

xxxx

xxxxx
xS

nn

nnn

n

 

= 





22

332

);(

);();(

xx

xxxxx
...

);(

);();(
24

554








xx

xxxxx
 

= 


 

...)1()1(

)...1)(1();(
2322

4332

xx

xxxxx
...

...)1()1(

)...1()1();(
2524

6554




 

xx

xxxxx
 

= 


 

)...1()1(

);(
322

32

xx

xxx
...

)...1()1(

);(
524

54




 

xx

xxx
 

= 







 


);()1(

);(
1222

122

1 xxx

xxx
nn

nn

n

 

 





1

2

n

nspt
n

x . 

i.e., ),1(2 xS  = 2

1

spt
n






(n) nx . Hence the Corollary. 

 

Theorem 2: 






n

SP

nspt

21

2

1)(2




  

Proof: First we define the sptcrank  in terms of partition pairs, 

)()(0:),({ 2121  ssPPSP  and all parts of 
2  that are 1)(2 1  s  are  odd}. 

Let 2SP  be the set of SP


),( 21   with )( 1s even. The generating function for )(
2

nspt  

is given by; 

 











 


 
);()1(

);(
)(

1222

122

1 1

2
xxx

xxx
xnspt

nn

nn

n n

n  














 );(
);()1(

12

1222

2

1

xx
xxx

x n

nn

n

n

 

 












 


);(

);(
.

);()1( 12

224

1222

2

1 xx

xx

xxx

x
n

n

nn

n

n

 

 

[Since,   ...);();();( 53

1

12  






 xxxxxx
n

n
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= )...1)(1()...1)(1( 6543
xxxx  ...)...1( )1( 87  xx  

)...1)(1(

)...1)(1(

)...1)(1(

)...1)(1(
65

1210

43

86

xx

xx

xx

xx








 ...
)...1(

)...1(
7

14






x

x
 

..
);(

);(

);(

);(
5

210

3

26


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
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all parts in 122  n are odd 

 








1
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2

  
n

n

SP

x





. 

 Equating the co-efficient of 
n

x from both sides we get; 
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






n

SP

nspt

21

2

1)(2




 .  Hence the Theorem. 

 

Numerical Example 2 

 The overpartitions of 6 with smallest parts not overlined and even are 6, 4+2, ,24   and 

2+2+2. Consequently, the number of smallest parts in the overpartitions of 6 with smallest 

part not overlined and even is given by; 

 

 
•

6  4+
•

2 , 
•

 24 , 
•

2 +
•

2 +
•

2 , 

 

 so that 6)6(
2

spt  i.e., there are 2 6 SP -partition pairs of 6 like:  

),,6(  ),,24(  ),4,2( ),,222(  )2,22(   and (2, 2+2). 

 

Result 2:  

)8,5,0(
2S

M ),8,5,1(
2S

M ),8,5,2(
2S

M  

)8,5,3(
2S

M
5

1
3)8,5,4(

2


S
M )8(

2
spt . 

Proof: We prove the result with the help of examples. We can define a crank of partition 

pairs .),( 221 SP


   

For 221 ),( SP


 , we define, 


)(k  #  of pairs j in 
2  such that 2)( 1  js  1)( 1 s , 

and also define;

  

 















0 if ;1 of parts of#

0 if

 ; of parts of#

)(

1

11

k

k

kks

crank




   where ).(



 kk  

We know that 15)8(2 spt . There are 15 2SP -partition pairs of 8. 

 

Table 2 

 

2S -vector partition 

)(


 of  5 

Weight 

 

Crank 

c  

 
–1 0 

(2, , ,3) 
1 0 

 
1 1 

 
1 –1 

 
 

 

 )(


 )(




),,,23(1  





2  

),,3,2(3  


),3,,2(4  


2)( 



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From the table 2 we get;  

)8,5,0(
2S

M ),8,5,1(
2S

M ),8,5,2(
2S

M  

)8,5,3(
2S

M
5

1
3)8,5,4(

2


S
M )8(

2
spt . Hence the Result. 

  

Table 3 

 

2SP -partition pair of 8 k crank  (mod 5) 

(3+2, 3) 1 0 0 

(4+2, 2) 1 0 0 

),8(   0 0 0 

(2+2, 4) 0 1 1 

(4+4,  ) 0 1 1 

(6+2,  ) 0 1 1 

(2, 2+2+2) 3 –3 2 

(3+3+2, ) 0 2 2 

(4+2+2,  ) 0 2 2 

(2, 3+3) 2 –2 3 

(2+2, 2+2) 2 –2 3 

(2+2+2+2, ) 0 3 3 

(2, 4+2) 1 –1 4 

(4, 4) 1 –1 4 

(2+2+2, 2) 1 –1 4 

 

 

Now we will describe the sptcrank  of a marked overpartition (Chen et al. 2013). To define 

the sptcrank  of a marked overpartition we first need to define a function  nmk ,  for 

positive integers m, n such that 1 nm , we write 
j

bm 2 , where b is odd and oj  . For 

a given odd integer b and a positive integer n we define ),(00 nbjj   to be the smallest non-

negative integer 0j  such that .12 0  nb
j

  

We define;  














 

.22 if ,0

22 if 2

2 if ,0

,

0

00

nb

nb

nb

nmk

j

jjj
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Table 4 

 

Marked 

overpartition ( ), j
of 6 

1  
2  )( 1

 

 )(,( 12  sk

 

k  sptcrank

 

(mod 3) 

(6 ,1) 6   1 0 0 0 0 

(4+2 ,1) 4+2   1 0 0 1 1 

)1,24(   2 4 1 0 0 0 0 

(2+2+2, 1) 2+2+2   3 0 2 –2 1 

(2+2+2, 2) 2+2+2   3 0 1 –1 2 

(2+2+2, 3) 2+2+2   3 0 0 2 2 

 

For a marked overpartitions ( ), j  we let 
1  be the partition formed by the non-overlined 

parts of ,
2  be the partition (into distinct parts) formed by the overlined parts of   so that 

),()( 12  ss   we define )),(,()(),( 121  skjik   where )( 1  is the number of 

smallest parts of 
1 . 

 

Now we can define; 

 

  
 

 
 





















.0, if

  ;1 of parts of#

0, if 

 , of parts of#

),(
1

11

jkk

jkk

ks

jsptcrank








  

 

Table 5 

 

Marked 

overpartition ( ), j
of 7 

1  
2  )( 1

 

 )(,( 12  sk

 

k

 

sptcrank

 

(mod 

3) 

(5+2, 1) 5+2   1 0 0 1 1 

)1,25(   2 5 1 0 0 0 0 

(3+2+2, 1) 3+2+2   2 0 1 0 0 

(3+2+2, 2) 3+2+2   2 0 0 2 2 

(3 +2+2, 1) 2+2 3 2 1 2 –2 1 

(3 +2+2, 2) 2+2 3 2 1 1 –1 2 
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Table 6 

 

Marked 

overpartition ( ), j  of 

8 

1  
2  )( 1

 

 )(,( 12  sk

 

k  sptcrank

 

(mod 

5) 

)1,26(   2 6 1 2 2 –2 3 

)1,224(   2+2 4 2 0 1 –1 4 

)2,224(   2+2 4 2 0 0 1 1 

)1,233(   3+2 3 1 1 1 0 0 

(2+2+2+2, 1) 2+2+2+2   4 0 3 –3 2 

(2+2+2+2, 2) 2+2+2+2   4 0 2 –2 3 

(2+2+2+2, 3) 2+2+2+2   4 0 1 –1 4 

(2+2+2+2, 4) 2+2+2+2   4 0 0 3 3 

(3+3+2, 1) 3+3+2   1 0 0 2 2 

(4+2+2, 1) 4+2+2   1 0 1 0 0 

(4+2+2, 2) 4+2+2   2 0 0 2 2 

(6+2, 1) 6+2   1 0 0 1 1 

(4+4, 1) 4+4   2 0 1 –1 4 

(4+4, 2) 4+4   2 0 0 1 1 

(8, 1) 8   1 0 0 0 0 

 

 

Corollary 3 (Lovejoy and Osburn 2009): The residue of the  3modsptcrank  divides the 

marked overpartitions of 3n with the smallest part not overlined and even into 3 equal classes. 

Proof: We prove the Corollary with the help of an example when n = 2. There are 6 marked 

overpartitions of 3n (when n = 2) with the smallest part not overlined and even so that, 

6)6(2 spt . 

 

We see that the residue of the  3modsptcrank  divides the marked overpartitions of 3n 

(when n = 2) with smallest part not overlined and even into 3 equal classes. Hence the 

Corollary.  

 

Corollary 4: The residue of the  3modsptcrank  divides the marked overpartitions of 3n+1 

with smallest part not overlined and even into 3 equal classes. 

Proof: We prove the Corollary with the help of an example when n = 2. There are 6 marked 

overpartitions of 7 with the smallest part not overlined and even, so that .6)7(2 spt  We see 

that the residue of the sptcrank (mod 3) divides the marked overpartitions of 3n+1 (when n = 

2) with smallest part not overlined and even. Hence the Corollary. 

 

Corollary 5: The residue of the  5modsptcrank  divides the marked overpartitions of 5n+3 

with smallest part not overlined and even into 5 equal classes. 
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Proof: We prove the Corollary with the help of example when n = 1. There are 15 marked 

overpartitions of 5n + 3 (when n =1) with the smallest part not overlined and even so that 

.15)8(2 spt  We see that the residue of the divides the marked overpartitions of 8 with the 

smallest part not overlined and even into 5 equal classes. Hence the corollary.  

 

 

CONCLUSION 

 

In this study we have found the number of smallest parts in the overpartitions of n with the 

smallest part not overlined and even for n=1, 2, 3, 4 and 5. We have shown various relations 

 3mod0)3(2 nspt ,   3mod0)13(2 nspt ,  0)35(2 nspt (mod 5), 

)4,3,0(
2S

M )4,3,1(
2S

M  )4,3,2(
2S

M  )4(
3

1
2spt  and )8,5,0(

2S
M )8,5,1(

2S
M )8,5,2(

2S
M

= )8,5,3(
2S

M )8,5,4(
2S

M
5

1
3  )8(2spt  with numerical examples respectively. We have 

verified the Theorem 1 when n = 5 and have verified the Theorem 2 when n = 6. We have 

verified the Corollary 3 with 6 marked overpartitions of 6 and have verified the Corollary 4 

with 6 marked overpartitions of 7 and also have established the Corollary 5 with 15 marked 

overpartition of 8.  
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