Andrews-Garvan-Liang’s Spt-crank for Marked Overpartitions

Bhattacharjee, Nil and Das, Sabuj and Mohajan, Haradhan

Assistant Professor, Premier University, Chittagong, Bangladesh

13 October 2014

Online at https://mpra.ub.uni-muenchen.de/83047/
MPRA Paper No. 83047, posted 29 Dec 2017 17:37 UTC
Andrews-Garvan-Liang’s spt crank for Marked Overpartitions

Nil Ratan Bhattacharjee
Department of Mathematics, University of Chittagong, Bangladesh

Sabuj Das
Senior Lecturer, Department of Mathematics
Raozan University College, Bangladesh
E-mail: sabujdas.ctg@gmail.com

Haradhan Kumar Mohajan
Premier University, Chittagong, Bangladesh
E-mail: haradhan1971@gmail.com

ABSTRACT
In 2009, Bingmann, Lovejoy and Osburn have shown the generating function for spt_2(n). In 2012, Andrews, Garvan, and Liang have defined the spt crank in terms of partition pairs. In this article the number of smallest parts in the overpartitions of n with smallest part not overlined and even are discussed, and the vector partitions and S-partitions with 4 components, each a partition with certain restrictions are also discussed. The generating function for spt_2(n), and the generating function for M_S(m, n) are shown with a result in terms of modulo 3. This paper shows how to prove the Theorem 1, in terms of M_S(m, n) with a numerical example, and shows how to prove the Theorem 2, with the help of spt crank in terms of partition pairs. In 2014, Garvan and Jennings-Shaffer are capable to define the spt crank for marked overpartitions. This paper also shows another result with the help of 15 SP_2-partition pairs of 8 and shows how to prove the Corollary with the help of 15 marked overpartitions of 8.

Key words: crank, non-negative, overpartitions, overlined, spt crank, weight.

INTRODUCTION
In this paper we give some related definitions of spt_2(n), various product notations, vector partitions and S-partitions, M approve (m, n), M_3(Z, t, n), S(Z, x), marked partition and spt crank for marked overpartitions. We discuss the generating function for spt_2(n) and prove the Corollary 1 with the help of generating function to prove the Result 1 with the help of 3 vector partitions from S_2 of 4. We prove the Theorem 1 with the help of various generating functions and prove the Corollary 2 with a special series S(Z, x), when n =1 and prove the Theorem 2 with the help of spt crank in terms of partition pairs (λ_1, λ_2) when 0 < s(λ_1) ≤ s(λ_2). We prove the Result 2 using the crank of partition pairs λ = (λ_1, λ_2) and
prove the Corollary 3 and 4 with the help of marked overpartition of $3n$ and of $3n+1$ (when $n = 2$) respectively. Finally we analyze the Corollary 5 with the help of marked overpartitions of $5n+3$ when $n = 1$.

Some Related Definitions

In this section we have described some definitions related to the article following (Garvan and Shaffer 2014).

$	ext{spt}_2(n)$ (Bringann et al. 2009): The number of smallest parts in the overpartitions of n with smallest part not overlined and even is denoted by $\text{spt}_2(n)$ for example,

<table>
<thead>
<tr>
<th>n</th>
<th>$\text{spt}_2(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

From above we get; $\text{spt}_2(6) = 6, \text{spt}_2(7) = 6, ...$

Product Notations

$$(x)_\infty = (1-x)(1-x^2)(1-x^3)...$$
$$(x^2;x^2)_\infty = (1-x^2)(1-x^4)...$$
$$(x)_k = (1-x)(1-x^2)(1-x^3)...(1-x^k)$$
$$(-x^5;x)_\infty = (1+x^5)(1+x^6)(1+x^7)...$$

Vector Partitions and $\overline{5}$-Partitions

A vector partition can be done with 4 components each partition with certain restrictions (Bringann et al. 2013). Let, $\overline{V} = D \times P \times P \times D$, where D denote the set of all partitions into distinct parts, P denotes the set of all partitions. For a partition π, we let, $s(\pi)$ denotes the
smallest part of π (with the convention that the empty partition has smallest part ∞), $\#(\pi)$ the number of parts in π, and $|\pi|$ the sum of the parts of π.

For $\pi = (\pi_1, \pi_2, \pi_3, \pi_4) \in \mathcal{V}$, we define the weight $\omega(\pi) = (-1)^{\#(\pi) - 1}$, the crank $c(\pi) = \#(\pi_2) - \#(\pi_3)$, the norm $|\pi| = |\pi_1| + |\pi_2| + |\pi_3| + |\pi_4|$.

We say π is a vector partition of n if $\pi = n$. Let \mathcal{V} denotes the subset of \mathcal{V} and it is given by:

$$\mathcal{V} = \{(\pi_1, \pi_2, \pi_3, \pi_4) \in \mathcal{V}, 1 \leq s(\pi_1) < \infty, s(\pi_1) \leq s(\pi_2), s(\pi_1) \leq s(\pi_3), s(\pi_1) < s(\pi_4)\}.$$

Let \mathcal{S}_2 denotes the subset of \mathcal{V} with $s(\pi_1)$ even.

$M_{\mathcal{S}_2}(m, n)$: The number of vector partitions of n in \mathcal{S}_2 with crank m are counted according to the weight ω is exactly $M_{\mathcal{S}_2}(m, n)$.

$M_{\mathcal{S}_2}(m, t, n)$: The number of vector partitions of n in \mathcal{S}_2 with crank congruent to m modulo t are counted according to the weight ω is exactly $M_{\mathcal{S}_2}(m, t, n)$.

$\mathcal{S}_2(z, x)$: The series $\mathcal{S}_2(z, x)$ is defined by the generating function for $M_{\mathcal{S}_2}(m, n)$.

i.e., $\mathcal{S}_2(z, x) = \sum_{m=\infty}^{n} \sum_{n=\infty}^{\infty} M_{\mathcal{S}_2}(m, n)z^m x^n$.

Marked Partition (Andrews et al. 2013): We define a marked partition as a pair (λ, k) where λ is a partition and k is an integer identifying one of its smallest parts i.e., $k = 1, 2, ..., \nu(\lambda)$, where $\nu(\lambda)$ is the number of smallest parts of λ.

$\text{spt} \cap \text{crank}$ for Marked overpartitions (Chen et al. 2013): We define a marked overpartition of n as a pair (π, j) where π is an overpartition of n in which the smallest part is not overlined and even. It is clear that $\text{spt}_2(n) = \#$ of marked overpartitions (π, j) of n. For example, there are 3 marked overpartitions of 4, like:

$(4,1), (2+2,1)$, and $(2+2,2)$.
Then, \(spt_2(4) = 3 \).

The Generating Function for \(spt_2(N) \)

The generating function (Bringann et al. 2013) for \(spt_2(n) \) is given by;

\[
\sum_{n=1}^{\infty} \frac{x^{2n}(-x^{2n+1};x)_\infty}{(1-x^2)^2(x^{2n+1};x)_\infty} \\
= \frac{x^2(-x^3;x)_\infty}{(1-x^2)^2(x^3;x)_\infty} + \frac{x^4(-x^5;x)_\infty}{(1-x^2)^2(x^5;x)_\infty} + \ldots
\]

\[= o.x + 1.x^2 + o.x^3 + 3.x^4 + 2.x^5 + 6.x^6 + \ldots\]

\[= spt_2(1)x + spt_2(2)x^2 + spt_2(3)x^3 + spt_2(4)x^4 + spt_2(5)x^5 + \ldots\]

\[= \sum_{n=1}^{\infty} spt_2(n)x^n.\]

For convenience, define \(spt_2(1) = 0 \).

From above we get \(spt_2(3) = 0 \), \(spt_2(6) = 6 \), ...

i.e., \(spt_2(3.1) = 0 \equiv 0 \pmod{3} \),
\(spt_2(3.2) = 6 \equiv 0 \pmod{3} \), ...

We can conclude that \(spt_2(3n) \equiv 0 \pmod{3} \).

We also get \(spt_2(4) = 3 \), \(spt_2(7) = 6 \), ...

i.e., \(spt_2(3 + 1) = 3 \equiv 0 \pmod{3} \),
\(spt_2(3.2 + 1) = 6 \equiv 0 \pmod{3} \), ...

We can conclude that \(spt_2(3n + 1) \equiv 0 \pmod{3} \) (Bringann 2009). Again from above we get;
\(spt_2(3) = 0 \), \(spt_2(8) = 15 \), ...

i.e., \(spt_2(3) = 0 \equiv 0 \pmod{5} \),
\(spt_2(5 + 3) = 15 \equiv 0 \pmod{5} \), ...

We can conclude that \(spt_2(5n + 3) \equiv 0 \pmod{5} \).

Corollary 1: \(spt_2(n) = \sum_{m=-\infty}^{\infty} M_{s2}(m,n) \).

Proof: The generating function for \(M_{s2}(m,n) \) is given by;
\[
\sum_{n=1}^{\infty} \sum_{m=-\infty}^{\infty} M_{\mathcal{S}_2} (m, n) \ z^n x^n
\]
\[
= \sum_{n=1}^{\infty} \frac{x^{2n}(x^{2n+1}; x)_\infty (-x^{2n+1}; x)_\infty}{(z x^{2n}; x)_\infty (z^{-1} x^{2n}; x)_\infty}.
\]

If \(z = 1 \), then,
\[
\sum_{n=1}^{\infty} \sum_{m=-\infty}^{\infty} M_{\mathcal{S}_2} (m, n) \ x^n
\]
\[
= \sum_{n=1}^{\infty} \frac{x^{2n}(x^{2n+1}; x)_\infty (-x^{2n+1}; x)_\infty}{(x^{2n}; x)_\infty (x^{2n}; x)_\infty} + \frac{x^{4}(x^{4}; x)_\infty (x^{5}; x)_\infty}{(x^{4}; x)_\infty} + \ldots
\]
\[
= \frac{x^{2}(x^{2}; x)_\infty (1-x^3)(1-x^4)\ldots}{(1-x^3)^2 (1-x^4)^2 \ldots} + \frac{x^{4}(x^{4}; x)_\infty (1-x^5)(1-x^6)\ldots}{(1-x^4)^2 (1-x^6)^2 \ldots} + \ldots
\]
\[
= \frac{x^{2}(x^{2}; x)_\infty}{(1-x^3)^2 (1-x^4)^2 \ldots} + \frac{x^{4}(x^{4}; x)_\infty}{(1-x^4)^2 (1-x^6)^2 \ldots} + \ldots
\]
\[
= \sum_{n=1}^{\infty} \frac{x^{2n}(-x^{2n+1}; x)_\infty}{(1-x^{2n+1}; x)_\infty}
\]
\[
= \sum_{n=1}^{\infty} \overline{spt}_2 (n) x^n.
\]

i.e., \(\sum_{n=1}^{\infty} \overline{spt}_2 (n) x^n = \sum_{n=1}^{\infty} \sum_{m=-\infty}^{\infty} M_{\mathcal{S}_2} (m, n) \ x^n \).

Now equating the co-efficient of \(x^n \) from both sides we get;
\[
\overline{spt}_2 (n) = \sum_{m=-\infty}^{\infty} M_{\mathcal{S}_2} (m, n).
\]

Hence the Corollary.

Result 1:
\[
M_{\mathcal{S}_2} (0,3,4) = M_{\mathcal{S}_2} (1,3,4) = M_{\mathcal{S}_2} (2,3,4) = \frac{1}{3} \overline{spt}_2 (4).
\]

Proof: We prove the result with the help of examples. We see the vector partitions from \(\mathcal{S}_2 \) of 4 along with their weights and cranks and are given as follows:

Here we have used \(\phi \) to indicate the empty partition. Thus we have,
\[
M_{\mathcal{S}_2} (0,3,4) = 1, \quad M_{\mathcal{S}_2} (1,3,4) = 1 \,
\]
\[
M_{\mathcal{S}_2} (2,3,4) = M_{\mathcal{S}_2} (1,-3,4) = 1
\]
\[
\therefore M_{\mathcal{S}_2} (0,3,4) = M_{\mathcal{S}_2} (1,3,4)
\]
\[M_{S_2}(2,3,4) = 1 = \frac{1}{3} \cdot 3 = \frac{1}{3} \text{sp}_{S_2}(3) \].

Hence the Result.

Table 1

<table>
<thead>
<tr>
<th>\vec{S}_2-vector partition ($\vec{\pi}$) of 4</th>
<th>Weight ($\omega(\vec{\pi})$)</th>
<th>Crank ($\phi(\vec{\pi})$)</th>
<th>mod 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\vec{\pi}_1 = (4, \phi, \phi, \phi)$</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\vec{\pi}_2 = (2 + 2, \phi, \phi)$</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$\vec{\pi}_3 = (2, \phi, 2, \phi)$</td>
<td>1</td>
<td>-1</td>
<td>2</td>
</tr>
</tbody>
</table>

$\sum \omega(\vec{\pi}) = 3$

Now from table 1 we get; \(\sum \omega(\vec{\pi}) = 3 \), i.e., \(\sum_{k=0}^{3} M_{S_2}(k,3,4) = 3 \).

\[\therefore \text{sp}_{S_2}(4) = \sum_{k=0}^{3} M_{S_2}(k,3,4) = \sum \omega(\vec{\pi}). \]

Now we can define;

\[M_{S_2}(k,t,n) = \sum_{m=k \text{ (mod } t)} M_{S_2}(m,n) \]

and \(\text{sp}_{S_2}(n) = \sum_{m=-\infty}^{\infty} M_{S_2}(m,n) = \sum_{k=0}^{\infty} M_{S_2}(k,t,n) \).

Theorem 1: The number of vector partitions of \(n \) in \(S_2 \) with crank \(m \) counted according to the weight \(\omega \) is non-negative, i.e., \(M_{S_2}(m,n) \geq 0 \).

Proof: The generating function for \(M_{S_2}(m,n) \) is given by;

\[
\sum_{n=1}^{\infty} \sum_{m=-\infty}^{\infty} M_{S_2}(m,n)z^m x^n
\]

\[
= \sum_{n=1}^{\infty} x^{2n} (x^{2n+1};x)_\infty (-x^{2n+1};x)_\infty
\]

\[
= \sum_{n=1}^{\infty} \frac{x^{2n}}{(zx^{2n};x)_\infty} (z^{-1} x^{2n};x)_\infty
\]

\[
= \sum_{n=1}^{\infty} (x^{2n+1};x)_\infty (-x^{2n+1};x)_\infty
\]

[Since \(\sum_{n=1}^{\infty} (x^{2n+1};x)_\infty (-x^{2n+1};x)_\infty \)

\[
= (x^2;x)_\infty - x (x^3;x)_\infty + (x^4;x)_\infty - x (x^5;x)_\infty + ... = (1-x^3)(1-x^4)...(1+x^3)(1+x^4)... + (1-x^3)(1-x^6)...(1+x^4)... + ...
\]

\[
= (1-x^6)(1-x^8)... + (1-x^{10})(1-x^{12})... + (1-x^{14})... + ...
\]
\[= (x^6; x^2)_{\infty} + (x^{10}; x^2)_{\infty} + \ldots\]
\[= \sum_{n=1}^{\infty} (x^{4n+2}; x^2)_{\infty}\]
\[= \sum_{n=1}^{\infty} \frac{x^{2n}(x^{4n}; x)_{\infty}}{(z^{2n}; x)_{\infty}(z^{-\frac{1}{2}}x^{2n}; x)_{\infty}} \cdot \frac{(x^{4n+2}; x^2)_{\infty}}{(x^4; x)_{\infty}}\]
\[= \sum_{n=1}^{\infty} \frac{x^{2n}(x^{4n}; x)_{\infty}}{(z^{2n}; x)_{\infty}(z^{-\frac{1}{2}}x^{2n}; x)_{\infty}} \cdot \frac{1}{(1-x^{4n})(x^{4n+2}; x^2)_{\infty}}\]

[Since, \[\sum_{n=1}^{\infty} \frac{(x^{4n+2}; x^2)_{\infty}}{(x^{4n}; x)_{\infty}} = \frac{(x^6; x^2)_{\infty}}{(x^4; x)_{\infty}} + \frac{(x^{10}; x^2)_{\infty}}{(x^4; x)_{\infty}} + \ldots\]
\[= \frac{(1-x^6)(1-x^{10})\ldots}{(1-x^4)(1-x^8)(1-x^{12})\ldots} + \frac{(1-x^{10})(1-x^{12})\ldots}{(1-x^8)(1-x^{10})(1-x^{14})\ldots} + \ldots\]
\[= \frac{1}{(1-x^4)(1-x^8)(1-x^{12})\ldots} + \frac{1}{(1-x^8)(1-x^{10})(1-x^{14})\ldots} + \ldots\]
\[= \sum_{n=1}^{\infty} \frac{1}{1-x^{4n}} \cdot (x^{4n+1}; x^2)\]
\[= \sum_{n=1}^{\infty} \sum_{k=0}^{\infty} \frac{(z^{-1}x^{2n})^k}{(z^{2n+k}; x)_{\infty}(x)_{\infty}} \cdot \frac{1}{(1-x^{4n})(x^{4n+2}; x^2)_{\infty}}\]

[Since, \[\sum_{n=1}^{\infty} \frac{x^{2n}(x^{4n}; x)_{\infty}}{(z^{2n}; x)_{\infty}(z^{-\frac{1}{2}}x^{2n}; x)_{\infty}}\]
\[= \sum_{n=1}^{\infty} \sum_{k=0}^{\infty} \frac{(z^{-1}x^{2n})^k}{(z^{2n+k}; x)_{\infty}(x)_{\infty}} \cdot \frac{1}{(1-x^{4n})(x^{4n+2}; x^2)_{\infty}}\] (by Berkovich and Garvan 2008)

We see that the coefficient of any power \(x\) in the right hand side is non-negative so the coefficient \(M_{\overline{2}}(m, n)\) of \(z^nx^n\) is non-negative, i.e., \(M_{\overline{2}}(m, n) \geq 0\). Hence the Theorem.

Numerical example 1

The vector partitions from \(\overline{S}_2\) of 5 along with their weights and cranks are given as follows:

Here we have used \(\phi\) to indicate the empty partition. Thus we have:

\(M_{\overline{2}}(0, 5) = 1 - 1 = 0, M_{\overline{2}}(1, 5) = 1, \) and \(M_{\overline{2}}(-1, 5) = 1, \) i.e., \(\sum M_{\overline{2}}(m, 5) = 2,\)

i.e., every term is non-negative, i.e., \(M_{\overline{2}}(m, n) \geq 0\).

So we can conclude that, \(M_{\overline{2}}(m, n) \geq 0.\)
Corollary 2: \(\tilde{S}_2(1, x) = \sum_{n=1}^{\infty} \text{spt}_2(n) x^n \).

Proof: We get;
\[
\tilde{S}_2(z, x) = \sum_{n=1}^{\infty} \frac{x^{2n}(x^{2n+1}; x)_n}{(x^{2n}; x)_n} (-1)^n (-x^{2n+1}; x)_n
\]

If \(z = 1 \), then we get;
\[
\tilde{S}_2(1, x) = \sum_{n=1}^{\infty} \frac{x^{2n}(x^{2n+1}; x)_n}{(x^{2n}; x)_n} \frac{(-1)^n x^{2n+1}}{(x^{2n}; x)_n} \frac{x^n}{(x^{2n}; x)_n} + \ldots
\]
\[
= \frac{x^2(x^3; x)_n}{(x^2; x)_n} \frac{(-x^3; x)_n}{(x^2; x)_n} + \frac{x^4(x^5; x)_n}{(x^4; x)_n} \frac{(x^5; x)_n}{(x^4; x)_n} + \ldots
\]
\[
= \frac{x^2(-x^3; x)_o}{(1-x^2)^2(1-x^4)} + \frac{x^4(-x^5; x)_o}{(1-x^4)^2(1-x^8)} + \ldots
\]
\[
= \sum_{n=1}^{\infty} \frac{x^{2n}(-x^{2n+1}; x)_o}{(1-x^{2n})^2(x^{2n+1}; x)_o}
\]
\[
= \sum_{n=1}^{\infty} \text{spt}_2(n) x^n .
\]
i.e., \(\tilde{S}_2(1, x) = \sum_{n=1}^{\infty} \text{spt}_2(n) x^n \). Hence the Corollary.

Theorem 2: \(\overline{\text{spt}}_2(n) = \sum_{\overset{\lambda \in \overline{SP}_2}{|\lambda| = n}} 1 \)

Proof: First we define the \(\text{sptcrank} \) in terms of partition pairs,
\(\overline{SP} = \{ \overline{\lambda} = (\lambda_1, \lambda_2) \in P \times P : 0 < s(\lambda_1) \leq s(\lambda_2) \} \) and all parts of \(\lambda_2 \) that are \(\geq 2s(\lambda_1) + 1 \) are odd.

Let \(\overline{SP}_2 \) be the set of \(\lambda = (\lambda_1, \lambda_2) \in \overline{SP} \) with \(s(\lambda_1) \) even. The generating function for \(\overline{\text{spt}}_2(n) \) is given by;
\[
\sum_{n=1}^{\infty} \overline{\text{spt}}_2(n) x^n = \sum_{n=1}^{\infty} \frac{x^{2n}(-x^{2n+1}; x)_o}{(1-x^{2n})^2(x^{2n+1}; x)_o}
\]
\[
= \sum_{n=1}^{\infty} \frac{x^{2n}}{(1-x^{2n})^2(x^{2n+1}; x)_o} \frac{(-x^{2n+1}; x)_o}{(x^{2n+1}; x)_o}
\]
\[
= \sum_{n=1}^{\infty} \frac{x^{2n}}{(1-x^{2n})^2(x^{2n+1}; x)_o} \frac{x^{4n+2n^2}}{(x^{2n+1}; x)_o} \frac{x^2}{(x^{2n+1}; x)_o}
\]
[Since, \(\sum_{n=4}^{\infty} (-x^{2n+1}; x)_o = (-x^3; x)_o + (-x^5; x)_o + \ldots \)
\[(1 + x^3)(1 + x^4) + (1 + x^5)(1 + x^6) + (1 + x^7)(1 + x^8) + \ldots = (1 - x^6)(1 - x^8) + (1 - x^{10})(1 - x^{12}) + (1 - x^{14}) + \ldots\]
\[= \frac{(x^6; x^2)_{\infty}}{(x^3; x)_{\infty}} + \frac{(x^{10}; x^2)_{\infty}}{(x^5; x)_{\infty}} + \ldots\]
\[= \sum_{n=1}^{\infty} \frac{(x^{4n+2}; x^2)_{\infty}}{(x^{2n+1}; x)_{\infty}}\]

\[\frac{x^{2n}}{(1 - x^{2n+1}; x)_{\infty}} = \frac{(x^{4n+2}; x^2)_{\infty}}{(x^{2n+1}; x)_{\infty}}\]
\[= \sum_{n=1}^{\infty} \frac{x^{2n}}{(x^{2n}; x)_{\infty}} \cdot \frac{1}{(1 - x^{2n})}\]
\[= \sum_{n=1}^{\infty} \frac{x^{2n}}{(x^{2n}; x)_{\infty}} \cdot \frac{1}{(1 - x^{2n})}\]
\[= \frac{(x^{4n+2}; x^2)_{\infty}}{(x^{2n+1}; x)_{\infty}} = \frac{(x^6; x^2)_{\infty}}{(x^3; x)_{\infty}} + \frac{(x^{10}; x^2)_{\infty}}{(x^5; x)_{\infty}} + \ldots\]
\[= \frac{(1 - x^6)(1 - x^8)}{(1 - x^3)(1 - x^4)} + \frac{(1 - x^{10})(1 - x^{12})}{(1 - x^5)(1 - x^6)} + \ldots\]
\[= \frac{1}{(1 - x^3)(1 - x^4)(1 - x^5)} + \frac{1}{(1 - x^5)(1 - x^6)(1 - x^9)} + \ldots\]
\[= \sum_{n=1}^{\infty} \frac{1}{(1 - x^{2n+1}) \ldots (1 - x^{2n}) (x^{4n+1}; x^2)_{\infty}}\]
\[= \sum_{n=1}^{\infty} \sum_{\lambda_2 \geq 2n + 1 \text{ odd}} \lambda_2 \alpha_{\lambda_2} \sum_{\lambda_1 \leq n} \lambda_1 \beta_{\lambda_1}\]

all parts in \(\lambda_2 \geq 2n + 1 \) are odd

\[\sum_{n=1}^{\infty} \frac{\lambda_2 \alpha_{\lambda_2}}{\lambda_1 \beta_{\lambda_1}} \sum_{\lambda_1 \leq n} \lambda_1 \beta_{\lambda_1}\]

Equating the co-efficient of \(x^n \) from both sides we get;
\[\overline{spt_2}(n) = \sum_{\lambda \in \overline{SP}_2} 1 \] . Hence the Theorem.

Numerical Example 2

The overpartitions of 6 with smallest parts not overlined and even are 6, 4+2, \(\bar{4} + 2 \), and 2+2+2. Consequently, the number of smallest parts in the overpartitions of 6 with smallest part not overlined and even is given by:

\[6, 4 + 2, \bar{4} + 2, 2 + 2 + 2, \]

so that \(\overline{spt_2}(6) = 6 \) i.e., there are \(6 \overline{SP}_2 \)-partition pairs of 6 like:

\((6, \phi), (4 + 2, \phi), (2, 4), (2 + 2 + 2, \phi), (2, 2, 2) \) and \((2, 2, 2) \).

Result 2:

\[M_{\overline{SP}_2}(0,5,8) = M_{\overline{SP}_2}(1,5,8,) = M_{\overline{SP}_2}(2,5,8,) = \]

\[M_{\overline{SP}_2}(3,5,8) = M_{\overline{SP}_2}(4,5,8) = 3 = \frac{1}{5} \overline{spt_2}(8). \]

Proof: We prove the result with the help of examples. We can define a \(\text{crank} \) of partition pairs \(\lambda = (\lambda_1, \lambda_2) \in \overline{SP}_2. \)

For \(\lambda = (\lambda_1, \lambda_2) \in \overline{SP}_2 \), we define, \(k(\lambda) = \# \) of pairs \(j \) in \(\lambda_2 \) such that \(s(\lambda_1) \leq j \leq 2 s(\lambda_1) - 1 \),

and also define:\(\text{crank}(\lambda) = \begin{cases} \# \text{of parts of } \lambda_1 \geq s(\lambda_1) + k - k & \text{if } k > 0 \\ \# \text{of parts of } \lambda_1 - 1 & \text{if } k = 0 \end{cases} \) \(\text{where } k = k(\lambda). \)

We know that \(\overline{spt_2}(8) = 15 \). There are 15 \(\overline{SP}_2 \)-partition pairs of 8.

Table 2

<table>
<thead>
<tr>
<th>(\overrightarrow{S_2})-vector partition of 5 ((\overrightarrow{\pi}))</th>
<th>Weight (\omega(\pi))</th>
<th>Crank (\text{crank}_c(\pi))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\overrightarrow{\pi}_1 = (3 + 2, \phi, \phi, \phi))</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>(\overrightarrow{\pi}_2 = (2, \phi, \phi, 3))</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(\overrightarrow{\pi}_3 = (2, 3, \phi, \phi))</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(\overrightarrow{\pi}_4 = (2, \phi, 3, \phi))</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

\[\sum \omega(\pi) = 2 \]
From the table 2 we get;

\[M_{\overline{\mathcal{S}}_2}(0,5,8) = M_{\overline{\mathcal{S}}_2}(1,5,8,.) = M_{\overline{\mathcal{S}}_2}(2,5,8,.) = \]

\[M_{\overline{\mathcal{S}}_2}(3,5,8) = M_{\overline{\mathcal{S}}_2}(4,5,8) = 3 = \frac{1}{5} \overline{spt}_2(8). \] Hence the Result.

Table 3

<table>
<thead>
<tr>
<th>(3P_k)-partition pair of 8</th>
<th>(k)</th>
<th>(\overline{\text{crank}})</th>
<th>(mod 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((3+2,3))</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>((4+2,2))</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>((8,\phi))</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>((2+2,4))</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>((4+4,\phi))</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>((6+2,\phi))</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>((2,2+2+2))</td>
<td>3</td>
<td>-3</td>
<td>2</td>
</tr>
<tr>
<td>((3+3+2,\phi))</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>((4+2+2,\phi))</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>((2,3+3))</td>
<td>2</td>
<td>-2</td>
<td>3</td>
</tr>
<tr>
<td>((2+2,2+2))</td>
<td>2</td>
<td>-2</td>
<td>3</td>
</tr>
<tr>
<td>((2+2+2+2,\phi))</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>((2,4+2))</td>
<td>1</td>
<td>-1</td>
<td>4</td>
</tr>
<tr>
<td>((4,4))</td>
<td>1</td>
<td>-1</td>
<td>4</td>
</tr>
<tr>
<td>((2+2+2,2))</td>
<td>1</td>
<td>-1</td>
<td>4</td>
</tr>
</tbody>
</table>

Now we will describe the \(\overline{spt_{crank}}\) of a marked overpartition (Chen et al. 2013). To define the \(\overline{spt_{crank}}\) of a marked overpartition we first need to define a function \(k(m,n)\) for positive integers \(m, n\) such that \(m \geq n + 1\), we write \(m = b2^j\), where \(b\) is odd and \(j \geq 0\). For a given odd integer \(b\) and a positive integer \(n\) we define \(j_0 = j_0(b,n)\) to be the smallest non-negative integer \(j_0\) such that \(b2^{j_0} \geq n + 1\).

We define; \(k(m,n) = \)
\[
\begin{cases}
0, & \text{if } b \geq 2n \\
2^{j_0} & \text{if } b2^{j_0} < 2n \\
0, & \text{if } b2^{j_0} = 2n.
\end{cases}
\]
Table 4

<table>
<thead>
<tr>
<th>Marked overpartition ((\pi, j)) of 6</th>
<th>(\pi_1)</th>
<th>(\pi_2)</th>
<th>(\nu(\pi_1))</th>
<th>(k((\pi_2, s(\pi_1))))</th>
<th>(\bar{k})</th>
<th>sptcrank</th>
<th>((\text{mod } 3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>((6, 1))</td>
<td>6</td>
<td>(\phi)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>((4+2, 1))</td>
<td>4+2</td>
<td>(\phi)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>((4+1, 1))</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>((2+2+2, 1))</td>
<td>2+2+2</td>
<td>(\phi)</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>–2</td>
<td>1</td>
</tr>
<tr>
<td>((2+2+2, 2))</td>
<td>2+2+2</td>
<td>(\phi)</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>–1</td>
<td>2</td>
</tr>
<tr>
<td>((2+2+2, 3))</td>
<td>2+2+2</td>
<td>(\phi)</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

For a marked overpartitions \((\pi, j)\) we let \(\pi_1\) be the partition formed by the non-overlined parts of \(\pi\), \(\pi_2\) be the partition (into distinct parts) formed by the overlined parts of \(\pi\) so that \(s(\pi_j) > s(\pi_i)\), we define \(\bar{k}(\pi, i) = i + k(\pi_2, s(\pi_1))\), where \(\nu(\pi_1)\) is the number of smallest parts of \(\pi_1\).

Now we can define:

\[
\text{sptcrank}(\pi, j) = \begin{cases}
\text{# of parts of } \pi_i \geq s(\pi_1) - \bar{k}, & \text{if } \bar{k} = \bar{k}(\pi, j) > 0 \\
\text{# of parts of } \pi_i - 1, & \text{if } \bar{k} = \bar{k}(\pi, j) = 0.
\end{cases}
\]

Table 5

<table>
<thead>
<tr>
<th>Marked overpartition ((\pi, j)) of 7</th>
<th>(\pi_1)</th>
<th>(\pi_2)</th>
<th>(\nu(\pi_1))</th>
<th>(k((\pi_2, s(\pi_1))))</th>
<th>(\bar{k})</th>
<th>sptcrank</th>
<th>((\text{mod } 3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>((5+2, 1))</td>
<td>5+2</td>
<td>(\phi)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>((5+2, 1))</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>((3+2+2, 1))</td>
<td>3+2+2</td>
<td>(\phi)</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>((3+2+2, 2))</td>
<td>3+2+2</td>
<td>(\phi)</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>((3+2+2, 1))</td>
<td>2+2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>–2</td>
<td>1</td>
</tr>
<tr>
<td>((3+2+2, 2))</td>
<td>2+2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>–1</td>
<td>2</td>
</tr>
</tbody>
</table>
Table 6

<table>
<thead>
<tr>
<th>Marked overpartition ((\pi, j)) of (8)</th>
<th>(\pi_1)</th>
<th>(\pi_2)</th>
<th>(\nu(\pi_1))</th>
<th>(k((\pi_2, s(\pi_1)))</th>
<th>(\text{sprank})</th>
<th>((\text{mod } 5))</th>
</tr>
</thead>
<tbody>
<tr>
<td>((6 + 2, 1))</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>(-2)</td>
</tr>
<tr>
<td>((4 + 2 + 2, 1))</td>
<td>2 + 2</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>(-1)</td>
</tr>
<tr>
<td>((4 + 2 + 2, 2))</td>
<td>2 + 2</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>((3 + 3 + 2, 1))</td>
<td>3 + 2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>((2 + 2 + 2 + 2, 1))</td>
<td>2 + 2 + 2 + 2</td>
<td>(\phi)</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>(-3)</td>
</tr>
<tr>
<td>((2 + 2 + 2 + 2, 2))</td>
<td>2 + 2 + 2 + 2</td>
<td>(\phi)</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>(-2)</td>
</tr>
<tr>
<td>((2 + 2 + 2 + 2, 3))</td>
<td>2 + 2 + 2 + 2</td>
<td>(\phi)</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>(-1)</td>
</tr>
<tr>
<td>((2 + 2 + 2 + 2, 4))</td>
<td>2 + 2 + 2 + 2</td>
<td>(\phi)</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>((3 + 3 + 2, 1))</td>
<td>3 + 3 + 2</td>
<td>(\phi)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>((4 + 2 + 2, 1))</td>
<td>4 + 2 + 2</td>
<td>(\phi)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>((4 + 2 + 2, 2))</td>
<td>4 + 2 + 2</td>
<td>(\phi)</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>((6 + 2, 1))</td>
<td>6 + 2</td>
<td>(\phi)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>((4 + 4, 1))</td>
<td>4 + 4</td>
<td>(\phi)</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>(-1)</td>
</tr>
<tr>
<td>((4 + 4, 2))</td>
<td>4 + 4</td>
<td>(\phi)</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>((8, 1))</td>
<td>8</td>
<td>(\phi)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Corollary 3 (Lovejoy and Osburn 2009): The residue of the \(\text{sprank}(\text{mod } 3)\) divides the marked overpartitions of \(3n\) with the smallest part not overlined and even into 3 equal classes.
Proof: We prove the Corollary with the help of an example when \(n = 2\). There are 6 marked overpartitions of \(3n\) (when \(n = 2\)) with the smallest part not overlined and even so that, \(\text{spt}_2(6) = 6\).

We see that the residue of the \(\text{sprank}(\text{mod } 3)\) divides the marked overpartitions of \(3n\) (when \(n = 2\)) with smallest part not overlined and even into 3 equal classes. Hence the Corollary.

Corollary 4: The residue of the \(\text{sprank}(\text{mod } 3)\) divides the marked overpartitions of \(3n+1\) with smallest part not overlined and even into 3 equal classes.
Proof: We prove the Corollary with the help of an example when \(n = 2\). There are 6 marked overpartitions of 7 with the smallest part not overlined and even, so that \(\text{spt}_2(7) = 6\). We see that the residue of the \(\text{sprank}(\text{mod } 3)\) divides the marked overpartitions of \(3n+1\) (when \(n = 2\)) with smallest part not overlined and even. Hence the Corollary.

Corollary 5: The residue of the \(\text{sprank}(\text{mod } 5)\) divides the marked overpartitions of \(5n+3\) with smallest part not overlined and even into 5 equal classes.
Proof: We prove the Corollary with the help of example when \(n = 1 \). There are 15 marked overpartitions of \(5n + 3 \) (when \(n = 1 \)) with the smallest part not overlined and even so that \(spt_2(8) = 15 \). We see that the residue of the divides the marked overpartitions of 8 with the smallest part not overlined and even into 5 equal classes. Hence the corollary.

CONCLUSION

In this study we have found the number of smallest parts in the overpartitions of \(n \) with the smallest part not overlined and even for \(n = 1, 2, 3, 4 \) and 5. We have shown various relations \(spt_2(3n) \equiv 0(\text{mod } 3), \ spt_2(3n + 1) \equiv 0(\text{mod } 3), \ spt_2(5n + 3) \equiv 0(\text{mod } 5), \)

\[
M_{s_2}(0,3,4) = M_{s_2}(1,3,4) = M_{s_2}(2,3,4) = \frac{1}{3} spt_2(4) \quad \text{and} \quad M_{s_2}(0,5,8) = M_{s_2}(1,5,8) = M_{s_2}(2,5,8)
\]

\[
= M_{s_2}(3,5,8) = M_{s_2}(4,5,8) = 3 = \frac{1}{5} spt_2(8) \quad \text{with numerical examples respectively.}
\]

We have verified the Theorem 1 when \(n = 5 \) and have verified the Theorem 2 when \(n = 6 \). We have verified the Corollary 3 with 6 marked overpartitions of 6 and have verified the Corollary 4 with 6 marked overpartitions of 7 and also have established the Corollary 5 with 15 marked overpartition of 8.

REFERENCES

