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Abstract

This paper provides an extended analysis of an equilibrium concept for non-cooperative
games with boundedly rational players: a Nash-2 equilibrium. Players think one step ahead
and account all profitable responses of player-specific subsets of opponents because of both
the cognitive limitations to predict everyone’s reaction and the inability to make more deep
and certain prediction even about a narrow sample of agents. They cautiously reject im-
provements that might lead to poorest profit after some possible reasonable response. For
n-person games we introduce a notion of reflection network consisting of direct competitors to
express the idea of selective farsightedness. For almost every 2-person game with a complete
reflection network, we prove the existence of Nash-2 equilibrium. Nash-2 equilibrium sets
in the models of price and quantity competition, and in Tullock’s rent-seeking model with
2 players are obtained. It is shown that such a farsighted behavior may provide a strategic
support for tacit collusion.

Keywords: Iterated thinking, Improving deviation, Direct competitor, Heterogeneous far-
sightedness, Tacit collusion

JEL Classification C72, D03, D43, D70, L13

∗The study has been funded by the Russian Academic Excellence Project ’5-100’. I am deeply indebted to
Jacques-Francois Thisse, Sergey Kokovin, Fuad Aleskerov, and Nikolay Bazenkov for fruitful discussions and com-
prehensive support. I thank Ariel Rubinstein and Francis Bloch for beneficial remarks and suggestions. I also
thank all discussants at the seminars in the Center for Market Studies and Spatial Economics HSE, St. Petersburg
Institute for Economics and Mathematics RAS, Trapeznikov Institute of Control Sciences RAS, International Col-
lege of Economics and Finance (ICEF) HSE, The Center for Research in Economics of the University Saint-Louis
(Brussels), and participants of Summer School of Econometric Society in Kyoto (2016) for valuable debates. I
certify that I have the right to deposit this contribution in its published format with MPRA.

†M. Sandomirskaia: National Research University Higher School of Economics, 20 Myasnitskaya str., Moscow,
101000, Russian Federation. E-mail: sandomirskaya ms@mail.ru



1 Introduction

In a non-cooperative strategic environment making an individual choice is inevitably based on
expectations of what the other players will do. For this reason, there is a great deal of uncertainty
in making predictions of what the outcome of the game might be. The Nash equilibrium (NE)
concept adopts the idea that each player unilaterally maximizes her own payoff under ”expected”
competitors’ strategies. In a static context, this means that players are sophisticated enough to
make correct predictions about the choices made by other participants while these beliefs are
consistent in equilibrium.

This paper builds on the following alternative principle: a player does not have certain beliefs
about what her opponent is going to do. However, she supposes that any action by the opponent
that raises the opponent’s payoff is a priori possible in the absence of information about more
specific predictions. One more limitation concerns non-cooperative games with many players: it
becomes more problematic for a player to forecast which one will immediately react to her deviation
and what these reactions might be. To formalize the idea of predictive heterogeneity among
competitors, I assume that every player recognizes some of their opponents are more important
than others by being ”direct competitors”. Hence, to account for the whole set of profitable
responses by direct competitors, I define an improving deviation for player i with respect to her
set of direct competitors as a profitable strategy si such that this player is never made worse-off
when any of her direct competitors j plays any of the profitable strategies against the strategy si
chosen by player i, including their simultaneous but not coordinated reactions. In this paper, a
player chooses an improving strategy because she understands that guessing what the opponents
are going to do amounts to adopting a risky behavior.

In a two-person game where both players regard each other as direct competitors, a Nash-2
equilibrium is such that no player has a deviation which is profitable and at the same time im-
proving. In other words, both players make an attempt to think ahead but the lack of information
on the competitor’s response forces them to be cautious. This means that they consciously reject
improvements that might lead to poorer outcomes at the end of the game.

Not surprisingly, this approach leads to a multiplicity of possible outcomes which depend on ev-
eryone’s choice of direct competitors. However, for several specific games, these various outcomes
have natural and plausible interpretations. Interestingly enough, these outcomes can correspond
to collusion or to intermediate solutions between the collusive and competitive outcomes. Pre-
dicting the opponent’s behavior one step forward, even under a large range of possible responses,
may play the role of implicit communication between players and foster tacit cooperation. As a
result, players avoid making drastic decisions such as, say, undercutting in Bertrand or Hotelling
competition [?], and thus get more beneficial outcomes.

It is worth noting that an alternative approach to the Nash equilibrium has been developed
through an iterated strategic thinking process, which has been the starting point of a whole line of
research [?]. In particular, multistep player’s reasoning about opponents’ possible responses have
served as a motivation for the development of various concepts of bounded rationality. Related
models of players’ cognitive hierarchy, k-level of rationality, and smart players, are proposed in
[?], [?] and [?]. Several experimental studies support the idea of k-level rationality ([?], [?]).
The key point of hierarchical models is that each player assumes that others have a lower level
of rationality than themselves. In other words, players of level-0 are strategically naive, while
k-level players (k > 0) best respond to beliefs on how their opponents are distributed by lower
levels of rationality. How players determine their opponents’ levels of rationality remains an open
question. Furthermore, these levels may evolve in the course of the game [?] and be the result of
strategic choice based on comparison of the cost of reasoning with the benefits from an extra level
of farsightedness [?].

The lowest, but higher than one-shot Nash, depth of prediction is two. In this case, a player
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takes into account opponents’ best responses. Ever since [?], an example of such an approach is
provided by the concept of conjectural variations (CV) used in oligopoly theory. This approach
accounts for some posteriori interactions among firms by including reaction functions into firms’
profit functions. Although using CV in static models as a substitute for dynamic modeling is
generally plagued with several conceptual problems [?], the CV approach may be a good substitute
for repeated oligopolistic games [?], [?]. In addition, matching beliefs on opponent’s behavior with
their actual best responses solves the problem of CV consistency [?]. The distinctive feature of the
CV approach is that, before acting, a firm must guess what their competitors’ possible reactions
to their own decision will be. This can be viewed as a simple 2-level version of a general iterated
strategic thinking process. The former is a firm’s desire to maximize their own profits, while the
latter is an attempt to predict opponents’ responses, which in turn influences the final outcome.
The multi-level generalization of the idea of reaction function is the concept of Markov perfect
equilibrium [?].

To summarize, several solutions have been proposed to solve the problem of prediction and
belief consistency: by ignoring any possible reactions (Nash approach: analysis of responses is
transferred to fully dynamic setting), by imposing conditions that actual responses are the ex-
pected ones (CV approach), or by constructing models with hierarchy of possibilities to predict
behavior of opponents (cognitive hierarchy models). A common feature of these methods is that
they all select the most plausible reaction, which leads to relatively small sets of equilibria. These
approaches are driven by players’ confidence that they know the competitors’ level of rationality.
Alternatively, the concept of Nash-2 equilibrium allows players to be unsure how sophisticated
their opponents are. I propose that if the agent doesn’t know the opponents’ iteration depth then
they have no grounds to make an unambiguous prediction of other players behavior. The only
reasonable guess is that the opponents will not act to their own detriment. Furthermore, because
responses must be profitable, a Nash-2 equilibrium will guarantee each player an outcome that is
at least as good as the maximin outcome. What is more, in many games Nash-2 equilibria yield
everybody considerably higher payoffs than Nash equilibrium.

The main body of the paper is organized as follows. In Section 2, I begin with the general
concept of reflection network to define the Nash-2 equilibrium in n-person non-cooperative games.
In this network a link from player i to j means that, in the reasoning, player i regards player
j as a direct competitor and accounts for the responses of player j. Since I focus on a non-
cooperative framework, I assume that if player i has several direct competitors, these players do
not coordinate their actions and may deviate simultaneously. Here I consider the setting where
the reflection network is given exogenously before the game starts, as in many spatial competition
models, and is not the result of strategic choices. I show how the structure of the network operates
in the simplest examples of Bertrand competition and the Prisoner’s dilemma, and provide Nash-2
solutions in this games for various types of reflection network.

In the remaining part of the paper I focus on 2-person games. In Section 3, I define the Nash-
2 equilibrium for complete reflection network and examine the connections between the Nash-2
concept and alternative, but related, solution-concepts, such as sequentially stable set [?] and
equilibrium in secure strategies [?].

Section 4 is devoted to the existence of Nash-2 equilibrium. I show that pure Nash-2 equilibria
exist in a much wider class of two-person games than Nash equilibria. For any game with the
bounded payoff functions, the Nash-2 equilibria can be obtained by a small perturbation of the
payoffs. Section 5 discusses the multiplicity of Nash-2 equilibria. The problem of selecting a
particular equilibrium profile can be solved in several ways. Each depends on the characteristics of
the game including the initial conditions (status quo or a priory expectations). Instead of selecting
a single outcome I construct a measure of outcome feasibility on the set of Nash-2 equilibria under
the assumption that originally all game profiles are equiprobable. Several examples illustrate the
relevance of this approach.
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Section 6 provides a detailed analysis of some major economics models: quantity and price
competition in oligopoly games and Tullock’s rent-seeking model. In the classical Cournot model,
the set of Nash-2 equilibria can be divided into two subclasses: the first one involves an extension
of Stackelberg leadership equilibria; the other is formed by profiles associated with various degrees
of toughness in competition. The results for Bertrand competition with imperfect substitutes
and for Tullock contest suggest that the most favorable outcomes involve tacit collusion between
players.

I conclude briefly linking the presented approach with a Bayesian view on the problem of
decision making under uncertainty. Possible sources of inability to make a specific prediction about
opponent’s response which must be accounted in modeling long-time interaction are discussed. I
also propose possible classes of problems where the concept on Nash-2 equilibrium might operate
successfully.

2 Nash-2 equilibrium concept for n-person games: selec-

tive prediction of response

2.1 Reflection network, improving deviation, and Nash-2 equilibrium

Consider an n-person non-cooperative game in the normal form

G = (i ∈ I = {1, . . . , n}; si ∈ Si; ui : S1 × . . .× Sn →R),

where Si is the set of pure strategies and ui is the payoff function of player i = 1, . . . , n. In this
paper I consider pure strategies and do not allow a mixed extension.

This is a one-shot game played in the following manner: players use 2-stage reasoning in
analysis of strategy and outcomes and know that other players may also use 2-stage logic. Namely,
when a player decides whether to do certain profitable deviation or not she supposes that some
other players (direct competitors, strict definition is below) will learn (guess) this choice and may
try in turn to improve in this new situation. However, any of these direct competitors has her
own direct competitors whose future reactions she accounts for. So to predict the decision on the
improving action accurately the initial player must reason on 3 steps: the first step is the initial
profitability of deviation (the incentive to deviate), the second step is the accounting the possible
reactions of direct competitors (caution farsighted element), the third stage is the estimation of
plausibility of such reactions (refining), but this stage can’t be realised under the assumption of
the same depth of reasoning 2. Without the cognitive ability to conduct the third step the player
must account multiple range of possible competitor reactions, even though this competitor is able
to reduce the set of deviations since for them this ”third” step is only the second one. The possible
reaction of players who are not direct competitors is not accounted for.

The formal construction is the following. Let us define the reflection network g on the set
of players I by the following rule:

• nodes are players i in I;

• link gij = 1 from player i to j exists if and only if player i takes into account possible
profitable reactions (this will be formalized in Definition 1) of player j. Player j is called a
direct competitor of player i.

• gij = 0, otherwise.

Denote by Ni(g) the set of neighbours j of player i in the graph g, such that gij = 1.
It is worth mentioning that the term direct and indirect competitor is borrowed from spatial

economics literature [?]. In spatial framework, direct competitors are those firms who potentially
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have some common share of buyers. They strategically compete with each other: a price shift in
a firm immediately yields the change of the share of consumers who make the purchase in this
store. This is caused by the demand structure with the rule of ”mutually exclusive choice”. Firms
themselves behave in accordance with classical oligopoly theory and maximize under Nash logic.
But now I propose to make one step further and suggest that the firms which fight for the same
potential market can be more sophisticated and cautious with their direct competitors than with
other firms in the industry. Leaving aside spatial consideration, this idea forms the basis of the
equilibrium concept presented in this paper.

The profitable deviation of player i at profile s = (si, s−i) is such a strategy that strictly
increases the profit ui(s

′

i, s−i) of player i under fixed strategies s−i of all other players. However,
if a player makes an attempt to predict the reaction of her direct competitors, then she need also
to check if this deviation remains profitable in case of some of their responses.

Definition 1. A profitable deviation s′i of player i at profile s = (si, s−i) is improving with
respect to g if for any subset J ⊆ Ni(g) and any profitable deviation s′j of every player j ∈ J at
intermediate profile (s′i, s−i) in case of simultaneous deviations of all players from J player i is not
worse off, i.e.

ui(s
′

i, s
′

J , s−iJ) ≥ ui(s).

Note that in this definition we consider reacts with any number of direct competitors, including
unilateral deviations. By analogy with most spatial economics papers, it is assumed that all players
act independently (non-cooperatively), but they are able to deviate simultaneously, so that player
i should take this possibility into consideration. In my opinion, such a selective farsightedness
looks more plausible than total ignorance of reaction or perfect prediction of future behavior of
all other competitors. In order to check whether the deviation is improving or not, the player
needs to know only her own direct competitors, not necessarily the whole reflection network. This
property can be useful for operating with equilibrium concept.

If Ni(g) = ∅, player i does not worry about any possible reactions, and so every profitable
deviation is improving by definition. This situation will be referred to as a fully myopic behavior.

Definition 2. A strategy profile is a Nash-2 equilibrium in the game G with reflection network g
if no player has an improving deviation at this profile with respect to g.

We will denote the set of Nash-2 equilibria by NE-2.
It is easy to see that every Nash equilibrium profile is also a Nash-2 equilibrium irrespectively

of architecture of the reflection network. Moreover, in the case of an empty reflection network g
they coincide by definition. It is only in this sense we may regard Nash equilibrium as fully myopic
concept.

Remark 1. The origin of the reflection network is a special problem, but for simplicity in our
setting it is assumed to be an exogenous parameter of the game. In particular, the appropriate
network structure may be generated by spatial distribution of agents, or history of the interactions.
One can consider the problem of strategic formation of the reflection network as an additional
(first) stage in the proper game, but this requires clarifying the information on the rules and the
cost of making the direct link.

Remark 2. One more burning question is a detection of the existing reflection network. I believe
that this could be done by analyzing historical data and finding statistical regularities in the
procedure of strategy changes.

It turns out that the set of Nash-2 equilibrium crucially depends on the topology of the
reflection network. The more dense reflection network the game has, the richer Nash-2 equilibrium
set might be. Avoiding potentially harmful perspective situations can provide necessary support
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for strategic cooperation: cautious players may appreciate their more high current profits and
refuse myopic momentary improvements.

Now let us illustrate the idea how a tacit collusion might be supported by Nash-2 equilibrium
with a non-empty reflection network. I will examine two classical models — Bertrand competition
and Prisoner’s dilemma — with n participants and provide solutions of them for various types of
reflection network.

2.2 Bertrand competition with homogeneous product: either total

cooperation, or zero profits

Consider the simplest model of price competition of n firms, concentrating at one point and
producing homogeneous goods. Assume that they have equal marginal costs c, the demand is
linear,

πi(p1, . . . , pn) =

{

(pi − c)(1− pi)/K, if pi = min{pj},
0, if pi > pj for some j 6= i,

where K is the number of firms setting the minimum price pi.
Nash solution yields zero-profit equilibrium, at least two firms price marginal costs and equally

share the market. Nevertheless, in a case of non-trivial reflection network, equilibrium set occurs
considerably wider, and for some structures of reflection network Bertrand paradox is resolved.

If each firm takes into account possible deviations of at least one other firm, or, in graph
terminology, if for all nodes i in the network g their out-degree is greater or equal to 1 (see Figure
??), then any price level p1 = p2 = . . . = pn ≥ c is also a Nash-2 equilibrium, together with Nash
equilibrium prices.

Figure 1: Complete and cycle reflection networks with 4 players, out-degree of every player is not
less than 1

Indeed, without loss of generality, assume that firm 1 proposes a price p1 > pi, where pi =
min{pj} > c, and gets zero profit. Let N1(g) = {k}. Then firm 1 can undercut firm i and set the
price pi − ε with sufficiently small ε. This deviation from the strategy p1 to pi − ε is profitable
and now firm 1 gets the whole market. Moreover, it is also improving since the worst that can
happen with firm 1 is that the firm k in turn undercuts it and firm 1 comes back to zero profit.
So, any situation with p1 6= pi is not a Nash-2 equilibrium.

If at least one firm is fully myopic (see Figure ??), then the unique Nash-2 equilibrium coincides
with Nash solution.

This is due to the threshold structure of demand: every single infinitesimal decrease in price
with respect to the common price level leads to immediate winning of the whole market. Thus,
this model is extremely sensitive to such myopic deviations of any firm, and even one firm acting
in a fully myopic way can break insecure tacit cooperation. There is no ability for cooperation
among only several firms. However, in oligopoly markets with tough competition, because of
homogeneous product, the assumption that each firm has at least one direct competitor appears
to be not too incredible.
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Figure 2: The reflection networks with 4 players, player 4 is fully myopic

I will go back to this example further in the paper, since it demonstrates in a very intuitive
way the main features of the Nash-2 equilibrium concept.

2.3 Prisoner’s dilemma: self-sufficient cooperation in a small group

Consider the model of n-player prisoner’s dilemma as it is introduced in [?]. Each player has two
possible strategies: to cooperate with the community or to defect. The utility function is

ui =

{

bA/n− c, if player i cooperates,
bA/n, if player i defects,

where A is the number of cooperators in the game, each of them brings profit b to the society
but pays the cost c. The total profit is equally divided to all n players irrespective of their real
contribution. Unilateral defection is preferred for every player c > b

n
, nevertheless, full cooperation

is more preferable for everyone than common defection b > c > 0.
According to Nash’s approach, cooperation is unlikely to emerge in the n-player prisoner’s

dilemma, and the same result is predicted by the evolutionary game theory [?].
Surprisingly, in the case of a non-empty reflection network cooperation is possible and the

number of cooperators depends both on the architecture of the network and the relation between
b and c.

Firstly note that for any player who defects unilateral switching to cooperation is never a
profitable deviation. Let us find the conditions under which the reverse deviation is not improving.

Assume that initially A players (altruists) cooperate and any cooperator i reflects about ni

other cooperators. Their defection which is always profitable fails to be improving with respect to
such a type of reflection network if

bA

n
− c >

b(A− 1− ni)

n
, and

bA

n
− c > 0,

that yields

ni > n∗ =
cn

b
− 1, A >

cn

b
.

This means that a player reflecting about a relatively small number of agents never cooperates.
In Nash-2 equilibrium, any subset of players with a sufficient number of links with other coopera-
tors (more than n∗) is able to cooperate while all others defect if the total number of cooperators
is enough to provide positive profits for all of them. In particular, if these profits are close to
zero then for cooperation we need a complete reflection network among cooperators. However, if
cooperative strategy leads to material losses then nothing will force players to cooperate.

So, for supporting cooperative behavior it is important not only to provide a balance between
the value of individual return and the cooperation cost, but also to ensure close contacts between
cooperators. I believe that underlying idea, despite its simplicity, can be operative in explanation
of functioning the social norms. Indeed, taking into consideration that your own defection might
cause the defection of a great number of other individuals, especially learned in childhood, often
prevents a person from antisocial activities.
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Remark 3. The examples above demonstrate how significant is to take into account the agent
reflection about possible behavior of the opponents. No matter what considerations (spatial or
some others) underlie the reflection network, it fundamentally affects possible equilibria.

In the remaining part of the paper I will focus on 2-person games where every player regards her
opponent as a direct competitor. I will discuss the connections of Nash-2 equilibrium with some
existing concepts, clarify the problems of existence and multiplicity. Finally, I will analyze several
models of competition with two agents: Cournot duopoly, general model of Bertrand competition
with differentiated product, and Tullock’s rent-seeking contest.

3 Nash-2 equilibrium for 2-person games: mutual re-

straint

3.1 Rethinking the definition in the light of security idea

Let us consider now a 2-person non-cooperative game G with players i = 1, 2 and the complete
reflection network g. Further I will omit mentioning the reflection network. It was originally
introduced in [?].

Checking whether the profitable deviation is improving or not, every player now takes into
consideration all profitable responses of the opponent. The player refuses profitable deviations
if there exists at least one profitable response of the opponent that leads to the worse situation
than the initial one. This logic might look rather pessimistic, but I suppose that this is the only
reasonable prediction that the player is able to do under lack of knowledge about the opponents’
level of rationality (depth of thinking). Moreover, I do not add the idea of a possible punishment for
deviation: nobody will behave in a way which is harmful for themselves. This is what distinguished
given approach from the maximin principle.

So, the notion of improving deviation includes some intermediate scenario between the worst
response (for the initial deviator) and the best response (for the follower) in the meaning of
credible threat in sequential games with backward induction. In other words, the notion of a
credible threat is maximally extended to any possible profitable response.

Such a reasoning allows to find an interesting connection between a bounded rationality with
limited iteration thinking and a security in decision making. As an additional motivation for
players’ behavior, security arose for cooperative games in the concept of the bargaining set [?]
based on the notion of threats and counter-threats. Later these ideas were imported into a
non-cooperative setting: several papers introduce equilibrium concepts equivalent to Nash-2 equi-
librium for 2-player games independently of our study: they are threatening-proof profile [?],
equilibrium contained by counter-threats [?], and equilibrium in threats and counter-threats [?]1.
In turn, these concepts were proposed as a relaxation of so-called equilibrium in secure strategies.
In order to explain the former concepts, one need to start with a formal idea of threat and the
latter one.

3.2 Secure and risky profiles: equilibrium in secure strategies

Equilibrium in secure strategies [?] implies that a deviating player worries not only about her
own first-stage benefit and profitability after opponents’ responses, but also about the absence of
harmful actions (”threats”) of opponents.

1These are the same concepts. We will accurately refer to existing results during the further exposition in case
of some intersection with ours.
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Definition 3. A threat of player i to player −i at strategy profile s is a strategy s′i such that

ui(s
′

i, s−i) > ui(si, s−i) and u−i(s
′

i, s−i) < u−i(si, s−i).

The strategy profile s is said to pose a threat from player i to player −i. A strategy profile s is
secure for player i if s poses no treats from other players to i.

Authors in [?] use a notion of secure deviation which coincides with improving deviation for
2-person game.

The definition of equilibrium in secure strategies looks as follows [?].

Definition 4. A strategy profile is an equilibrium in secure strategies (EinSS) if
i) it is secure,
ii) no player has a profitable and secure deviation.

In [?], [?], [?] authors mentioned the possibility of omitting the condition of security as an ex-
tension of equilibrium set and introduced the concept equivalent to Nash-2 equilibrium with several
different names. However, the key point of this paper is that Nash-2 equilibrium is explained by
the non-trivial farsightedness of agents which have limited information on the opponents’ responses
and, as a consequence of the logic, includes secure and non-secure situations.

It is worth mentioning that for the larger number of players definitions of secure and improving
deviations are not equivalent and these equilibrium concepts do not coincide with the Nash-2
equilibrium. So we discuss here only connections for 2-person games.

The following relation for two-person games takes place [?]: any Nash equilibrium is an equi-
librium in secure strategies, and any equilibrium in secure strategies is a Nash-2 equilibrium2. The
converse is generally not true.

So, the set of Nash-2 equilibria can be naturally divided into two sets: secure profiles that form
the set of equilibrium in secure strategies and risky outcomes containing threats. This division
is driven by nature of profitable deviations which may exist at Nash-2 equilibrium (but they are
not improving) and be of two types. The first kind is harmful for the opponent, while the second
type is not. This can be regarded as various degrees of competition toughness among players.

Secure part corresponds to a tough competition where agents avoid any possible threats, even
”non-credible”. It often leads to the situations with low profits since players in such situations
have nothing to lose. The paper [?] provides secure outcomes for Hotelling linear city model:
EinSS is treated as dumping pricing for nearby firms.

The main feature of risky situations (NE-2 \EinSS) is that agents have opportunities to harm
one to another but they do not actualize these threats because of possible credible ”sanctions”.
In a number of situations such a cautious behavior enables agents to hold on higher profits than
in case when players also care about security. As it will be shown in Section 6, risky Nash-2
equilibrium might support tacit collusion in Cournot, Bertrand and Tullock’s competitions.

3.3 Graph model of conflict resolution

In 1980th the idea of accounting ambiguous responses to unilateral improvements has been elab-
orated in the graph model of conflict resolution theory, which gives a methodology for analyzing
real-world conflicts [?]. Authors proposed a new theory for non-cooperative games allowing play-
ers to make moves and chains of counter-moves with some limited horizon, and to carry out
non-myopic calculations. Their analysis focused on 2 × 2 games and highlighted the importance
of starting point, threat power, and abilities of players to think ahead for prediction of stable
outcomes. Discussion in favor of applicability of this theory to modeling real-life situations pre-
sented in [?] and [?] is entirely suitable for the theory of Nash-2 equilibrium. In contrast with

2Authors formulated this result in terms of threatening-proof profile.
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graph model approach accounting only ordinal preferences, Nash-2 equilibrium allows to make a
description of stable situations for models with an infinite number of possible game situations.

The nearest to Nash-2 equilibrium concept within graph models of conflict resolution is the
sequential stability [?], [?]. Let us reformulate the definition of a sequentially stable state here in
terms of two-person games introduced in Section 2.1.

Definition 5. For two players N = {i, j} and a conflict G, an outcome sSEQ ∈ S is sequentially
stable for player i iff for every unilateral profitable deviation of player i to profile s1 there exists a
unilateral profitable deviation of player j from s1 to s2 such that ui(s

SEQ) ≥ ui(s2). A state sSEQ

is sequentially stable for the conflict iff it is sequentially stable for both players.

Note that the deviation from from s1 to s2 is what is called counter-threat in [?].
This definition differs from the definition of Nash-2 equilibrium only in the strictness of the

last inequality. Obviously, in 2-person games if profile s is a Nash-2 equilibrium, then s is a
sequentially stable state.

Despite the similarity of these two concepts, the difference turns out to be highly significant
for specific models. A striking example is the basic Bertrand model of price competition.

Example 1. Consider the model introduced in Section 2.2 with two firms. Firms’ profits under
prices (p1, p2) are given by

πi(p1, p2) =







(pi − c)(1− pi), if pi < p−i,
(pi − c)(1− pi)/2, if pi = p−i,
0, if pi > p−i,

i = 1, 2

Nash-2 concept states that the equilibrium might be with any price level p = p1 = p2 ∈ [c, 1].
In particular, NE-2 includes the collusive (monopoly) price level p = 1+c

2
.

On the contrary, if one accepts the sequential stability as a solution concept, then any profile
in Bertrand duopoly is sequentially stable. In asymmetric profiles, where firm i sets the price
pi higher than firm −i and gets zero profit, any attempt to increase this profit leads to counter
undercutting and a return to the initial profit level. This immediately means that the situation
with pi > p−i is also a sequentially stable.

This example demonstrates the crucial importance of allowing players to deviate from the
initial state even if there is a slight possibility to come back to the initial profit.

3.4 Explicit and tacit collusion

As it has been already stated in Introduction, Nash-2 equilibrium often gives a suitable explanation
for the phenomenon of a tacit collusion between two players. Naturally, the question on the relation
of Nash-2 equilibrium and explicit collusion (cooperative behavior) arises. Let us start with simple
example.

Example 2. Consider the following game which does not have pure Nash equilibrium.

L C R
T (1.5,3) (0,0) (4.5,0)
B (2,0) (0,1) (2.5,2)

(B,C) is a Nash-2 equilibrium and an equilibrium in secure strategies. (T,L) and (B,R) are
Nash-2 equilibria, but not equilibria in secure strategies.

In this example three profiles (T,L),(T,R), and (B,R) can be chosen during cooperation, but
only (T,L) and (B,R) are supported by non-cooperative concept of Nash-2 equilibrium. Note that
all they are risky outcomes.
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Generally, in a two-person game, if an explicitly collusive outcome is a Nash-2 equilibrium
then it is typically in NE-2 \ EinSS, or more strictly:

Theorem 1. If a collusion outcome is not a Nash equilibrium, then it is not a secure profile.

Proof. Let (sc1, s
c
2) = argmaxs1,s2(u1(s1, s2) + u2(s1, s2)) be a collusive outcome. Assume that it is

secure. It means that it poses no threats from one player to another. The two cases are possible:
there no profitable deviations, or for any profitable deviation sc1 → s′i of player i her opponent is
not worse off u−i(s

′

i, s
c
−i) ≥ u−i(si, s−i).

In the first case we deal with Nash equilibrium. In the second case ui(s
′

i, s
c
−i) + u−i(s

′

i, s
c
−i) >

ui(s
c
1, s

c
2) + u−i(s

c
1, s

c
2). This contradicts to (sc1, s

c
2) be a collusive outcome.

4 Existence and multiplicity of Nash-2 equilibrium in 2-

person games

4.1 Existence for finite 2-person games: improving path and non-

improving cycle

An important advantage of Nash-2 equilibrium concept is that it exists in most games and fails
to exist only in ”degenerate” cases. This result was firstly mentioned in [?], but without strict
grounding. Let us start with finite games and present this idea formally. Recall the notion of
improving path as a sequence of alternate improving deviations and non-improving cycle.

Definition 6. A path of profiles {(sti, s
t
−i)}t=1,...,T is called an improving path of length T if each

its arc (sti, s
t
−i) → (st+1

i , st+1
−i ) = (st+1

i , st
−i) is an improving deviation from sti to s

t+1
i for some player

i. This path is called a non-improving cycle if it is closed: (s1i , s
1
−i) = (sTi , s

T
−i), the minimum of

such T is called a length of cycle.

Using this notion, I state the criterion for an absence of Nash-2 equilibrium in two-person finite
games.

Proposition 1. A finite 2-person game in normal form does not have the Nash-2 equilibrium
if and only if it contains at least one non-improving cycle of finite length, and there is a finite
improving path from any profile to some profile in a non-improving cycle.

Proof. Assume that no profile is a Nash-2 equilibrium, then from any profile an improving devi-
ation exists at least for one player. Without loss of generality, assume that player 1 deviates at
odd steps while player 2 deviates at even ones. For any improving path starting from (s11, s

1
2) the

following inequalities hold

u1(s
2t+1
1 , s2t+1

2 ) ≥ u1(s
2t+3
1 , s2t+3

2 ), t = 0, 1, . . . ,

u1(s
2t+1
1 , s2t+1

2 ) > u1(s
2t+2
1 , s2t+2

2 ), t = 0, 1, . . . ,

u2(s
2t
1 , s

2t
2 ) ≥ u2(s

2t+2
1 , s2t+2

2 ), t = 1, . . . ,

u2(s
2t
1 , s

2t
2 ) > u2(s

2t+1
1 , s2t+1

2 ), t = 1, . . . .

Since the game is finite, at some moment Θ < ∞ (and not exceeding the number of possible
game profiles) this path necessarily begins to reach the same situations again and forms a cycle
of length T ≤ Θ. Moreover, it is necessary and sufficient for this that all non-strict inequalities
above become equalities for all profiles forming the non-improving cycle.
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It is important to observe that non-improving cycles have a special form: all nodes where
player 1 deviates should have the same payoff for this player

u1(s
2t+1
1 , s2t+1

2 ) = u1(s
2t+3
1 , s2t+3

2 ) ∀t,

the same is true for even nodes and player 2: (u2(s
2t
1 , s

2t
2 ) = u2(s

2t+2
1 , s2t+2

2 )).

Corollary 1. Whenever a game does not have a Nash-2 equilibrium, any perturbation of payoffs
that breaks at least one equality for payoffs in non-improving cycle, yields NE-2 existence.

Every 2-person game with n strategies for player 1 and m strategies for player 2 can be
associated with a point inR2nm (ordered payoffs for each pair of strategies are coordinates of this
point). So, we can define a measure on the set of games as a measure of corresponding subset in
the Euclidean space.

The minimum length of non-improving cycle is four, and at least two equalities on payoffs
should take place for a game which does not have a Nash-2 equilibrium. So, the dimension of the
subset of all such games does not exceed 2nm− 2, and this subset has measure 0 inR2nm. So, the
following theorem holds.

Theorem 2. Nash-2 equilibrium exists in almost every 2-person finite game.

Note that Theorem ?? demonstrates the existence of Nash-2 equilibrium but not the optimal
algorithm of finding it in an arbitrary game.

4.2 Existence for 2-person games with infinite number of strategies:

costly deviation

The logic underlying discrete games can be easily extended to the case of the infinite number of
strategies. Loosely speaking, one need the boundedness of utility function and some conditions
ensuring the sequence of utilities in an improving path to grows up to the limit value not too
slowly.

One way is to define an ε-equilibrium and to claim the existence of ε-equilibrium for 2-person
games with some conditions on the limit of utilities. This is realized in [?, Propositions 2 and 8].

I develop other approach for games with infinite strategy sets (continuous or discontinuous
2-person games). The only reason why the logic of Section 4.1 may fail is that if players are
permitted to use hardly different strategies they may ensure very slow but infinite growth of
profits. In order to exclude such a possibility, I consider the games in which a deviation is costly.
Assume now that player have to pay some fixed cost d ≥ 0 for any unilateral changing of chosen
strategy, we call d a cost of deviation.

Then, definitions of profitable and improving deviations for 2-person games with positive cost
of deviation d can be rewritten as following.

Definition 7. A deviation s′i of player i at profile s = (si, s−i) is d-profitable if ui(s
′

i, s−i) >
ui(si, s−i) + d.

Definition 8. A d-profitable deviation s′i of player i at profile s = (si, s−i) is improving if for any
d-profitable deviation s′

−i of the opponent at intermediate profile (s′i, s−i) player i is not worse off:

ui(s
′

i, s
′

−i) ≥ ui(si, s−i) + d.

Note that this definition coincides with definition 1 if d = 0. The definition of Nash-2 equilib-
rium remains the same.

An introducing arbitrary d > 0 guarantees that the game does not contains any non-improving
cycle. Similarly to Theorem 2, the following theorem holds.
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Theorem 3. Nash-2 equilibrium exists in every 2-person game with strictly positive cost of devi-
ation and utility functions bounded from above.

Really, starting from arbitrary profile, profits in the improving path should grow at least by d
at each step. But if the utility functions are bounded, then this sequence will necessarily stop at
Nash-2 equilibrium profile.

It is to be stressed that the continuity of utilities or compactness of action sets are not required.
Moreover, for most games Nash-2 equilibrium exists even in case of zero cost of deviations.

Examples in Section 6 explicitly demonstrate this.

5 Selection among multiple equilibria profiles: measure of

feasibility

The reverse side of the existence is the multiplicity of predicted outcomes. This problem can be
resolved in several ways in dependence of a concrete game framework.

In the case of tough competition between firms, one can choose an equilibrium in secure
strategies as the most attractive. For instance, in Hotelling linear city model EinSS concept
provides the unique equilibrium corresponding to dumping pricing [?].

The alternative approach is to choose the collusive outcome, like in Bertrand or Cournot model,
or, at least, a Pareto efficient profile in the set of Nash-2 profiles.

If players join the game successively, one after another, then Nash-2 equilibrium is an operative
explanation why the Stackelberg leadership outcome remains stable. So, in games with such a
prehistory, Stackelberg equilibrium can be selected as a specific Nash-2 profile. An example is the
Cournot duopoly.

One more way of solving the selection problem is not to choose the unique outcome, but to
introduce the measure on the set of Nash-2 equilibria that reflects the probability with which every
certain equilibrium can be realized. This can be done in different ways, and I present here one of
the simplest.

Suppose that originally players randomly get into any game profile s with equal probabilities
ν0(s) =

µ(s)
µ(S1×S2)

, where µ(A) is a measure of the set A. If the profile s is not a Nash-2 equilibrium,
then, in general, an improving path from this profile to some Nash-2 profile exists. Denote the
subset of NE-2 that can be achieved from profile s by some improving path by NE-2s. For
simplicity I assume that when player learns the whole range of reachable from s Nash-2 profiles,
she chooses each of them also with equal probabilities. (Naturally, more complicated method is
to assign a probability proportional to the number of improving paths from s to concrete Nash-2
equilibrium.) So, the final probability of each Nash-2 profile to be realised is

ν(s) =
µ(s)

µ(S1 × S2)
+

∑

s̃:s∈NE-2s̃

µ(s̃)

µ(NE-2s̃)µ(S1 × S2)
, ∀s ∈ NE-2.

These probabilities form the measure of feasibility on the set NE-2. What actually happens is
the redistribution of initial probabilities in accordance with improving dynamic procedure.

If a Nash-2 profile s is not reachable from any point of S1 × S2 \ {s}, we will call it isolated
and ν(s) = ν0(s).

For the sake of visualization in the case of discrete action sets, let us construct a directed graph
Γ by the following rule. The nodes of Γ are game profiles. The directed link from node s to node
s′ exists if there is an improving path from s to s′ and there are no improving paths starting at s′.

In this graph the nodes s with zero outdegree deg+(s) = 0 are Nash-2 equilibria. The links
demonstrate how not Nash-2 profiles transmit their initial probabilities to Nash-2 profiles by
improving paths. Here for all s ∈ NE-2, the number of profiles from which an improving path to s
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exists equals to the indegree deg−(s) of s in Γ. In particular, if ∀s ∈ Γ not more than one Nash-2
profile can be reached, or deg+(s) ≤ 1, then

ν(s) =
1

|S1| · |S2|

(

1 + deg−(s)
)

, ∀s ∈ NE-2,

|A| is the number of elements in the set A.
Let us give several examples.

Example 3.
In this example two situations are Nash-2 equilibria, players get zero profits in both. Indeed,

strategy profile (B,R) is a NE and Nash-2 equilibrium, and profile (B,L) is a Nash-2 equilibrium,
but not a NE.

L R
T 1 -1
B 0 0

The graph Γ is shown on the right. As one can see, (B,L) is an isolated Nash-2 profile, thus
ν(B,L) = 1/4.

deg−(B,R) = 2. Thereby, ν(B,R) = 1
4
(1 + 2) = 3/4.

The probability of NE to be realized is considerably greater than for the another profile.

Example 4.
In this example Nash equilibrium fails to exist.

L R
T (2/3, 1/3) (-1, 2)
C (1/2, 1/2) (1, 0)
B (1, 0) (0, 1)

NE-2 set consists of two strategy profiles (C,L) and (T,L) with profits (1/2, 1/2) and (2/3,
1/3), respectively. (T,L) is an isolated Nash-2 equilibrium, thus ν(T, L) = 1/6. deg−(C,L) = 4.
Thereby, ν(C,L) = 1

6
(1 + 4) = 5/6.

Hence, though at first sight two Nash-2 profiles are similar, it is much more plausible that
(C,L) will occur.

Example 5 (Bertrand model with homogeneous product).
Consider the simplest model of price competition, as in Example 1. In this case there is an

improving path from each profile (p1, p2), p1 6= p2, p1, p2 ∈ [c, 1], to every Nash-2 profile (p, p) with
p ∈ [c,min(p1, p2)]. Figure 3 reflects the structure of possible improving paths in this game.

Technically, in the formula for v(s) the sum should be rewritten in terms of integration, buy
here we omit standard details. Explicit calculations yield (see Figure 4)

ν(p, p) =
2

1− c

(

ln
1− c

p− c
−

1− p

1− c

)

, ∀p ∈ [c, 1].

One can think about this measure function in the sense that the probability to come into
an ǫ-neighbourhood of the prices (p, p) is

∫ p+ε

p−ε
ν(x)dx. Note that the probability of low prices

close to marginal cost is appreciably greater than that for high prices. It is caused by the high
attractiveness of undercutting an opponent. However, the collusion price level (1+c

2
, 1+c

2
) also has

a positive measure of feasibility.
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Figure 3: The structure of improving paths in Bertrand model
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Figure 4: The measure of feasibility on the set NE-2 in Bertrand model with c = 0.1

6 Nash-2 equilibrium in duopolies and Tullock rent-

seeking contest

Let us turn now to some applications of Nash-2 equilibrium concept to well-known microeconomics
models. The section starts with Cournot duopoly with homogeneous product, linear demand, and
equal marginal costs, and demonstrate in terms of Nash-2 equilibrium whether the possibility
for collusion or more strong competition exists or not. Then the model of price competition
between two firms producing imperfect substitutes is examined. Finally, this section contains
the computational solution of rent-seeking game (Tullock contest) and outlines the difference
between secure-but-strong-competitive and risky-but-collusive outcomes. For Tullock’s model I
demonstrate that risky Nash-2 profiles are typically more efficient than Nash equilibrium.

6.1 Cournot duopoly

Consider a model of competition between two firms producing q1 and q2 units of homogeneous
product, respectively, with equal constant marginal costs c per unit. Assume that the equilibrium
price p(Q) is a linear decreasing function p(Q) = 1 − Q of total output Q = q1 + q2. The profit
function of the firm i = 1, 2 is

πi(q1, q2) = qi · (p(Q)− c) = qi(1− q1 − q2 − c).

In Nash equilibrium, firms produce by one third of maximal total output which ensures positive
prices on the market

q∗1 = q∗2 =
1− c

3
, π∗

1 = π∗

2 =

(

1− c

3

)2

.
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Theorem 4. Nash-2 equilibria (q1, q2) are of two kinds:
a) they belong to the set

{(

b;
1− c− b

2

)

∪

(

1− c− b

2
; b

)

| b ∈

[

1− c

3
; 1− c

)}

.

b) they are
q1 = q2 ∈ (0, (1− c)/3)

including collusive outcome (1− c)/4, (1− c)/4.

Figure 5: Bold point is NE, NE-2. Bold lines are NE-2.

One can easily check that the equilibrium subset satisfying condition (a) consists of secure

profiles. For b ∈
(

1−c
3
; 2(1−c)

3

)

such situations are fruitful for the firm that overproduces, and

maximum is reached at b = 1−c
2
, and for any b they are bad for the another firm (in comparison

with Nash equilibrium profits). Special cases of secure Nash-2 equilibria are Stackelberg outcomes
(

1−c
2
; 1−c

4

)

if the firm 1 is a leader, and
(

1−c
4
; 1−c

2

)

if the firm 2 is a leader. So, EinSS in Cournot
model can be treated as an extension of Stackelberg equilibrium.

The set NE-2 \ EinSS (condition (b)) includes collusive outcome. Hence, in Cournot duopoly
collusion is strategically (tacitly) supported by the concept of Nash-2 equilibrium. The profiles
with q1 = q2 ∈

(

1−c
4
, 1−c

3

)

cover all intermediate situations between a classic Nash competition
and a cooperative behavior.

Proof. Reaction functions of both firms are

r1(q2) = (1− c− q2)/2, r2(q1) = (1− c− q1)/2.

Note that any decreasing of production of any player is profitable for the opponent. This
immediately yields that if for one player decreasing her price is profitable, then other player (if
she is not at her best response) has an improving deviation. Therefore, such situations are not
Nash-2 equilibria.

If one player (for definiteness, firm 1) plays exactly her best response on the firm’s 2 output,
while the firm 2 produces more than it best response level, then such a situation is a Nash-2
equilibrium. Indeed, firm 1 has not a profitable deviation, and any profitable deviation of firm 2
decreases the output: q2 → q2 − ε, for some ε > 0. If firm 2 deviates, then firm 1 acquires the
profitable deviation q1 → q1 + ε− δ with enough small 0 < δ < ε, such that the deviation q2 − ε
is not improving for firm 2.

Now turn out to the case when both firms produce less than their best response level: q1 ≤
(1− c− q2)/2 and q2 ≤ (1− c− q1)/2.
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Assume first that q1 > q2 (the symmetric case is similar). Then firm 2 has the improving
deviation deviation from q2 to 1 − c − q1 − q2 − ε with 0 < ε < q1 − q2. After this q1 becomes
greater than new best response level and any profitable deviation of firm 1 decreases q1 which
guarantees that the initial deviation of firm 2 is improving.

The last possible situation is q1 = q2 = q. Let us show that the profile (q, q), q ≤ (1 − c)/3,
is a Nash-2 equilibrium. Carry out the reasoning for firm 1. Any profitable deviation of firm 1
has a form q1 → q + ε with 0 < ε < 1 − c − 3q. After this firm 2 has the profitable deviation
from q2 to 1 − c − 2q − ε − δ which leads to breaking the improving inequality for firm 1, if
0 < δ < q

q+ε
(1− c− 3q − ε).

Nash-2 equilibrium provides a number of regimes with various degree of toughness from com-
petitive till collusive. An explanation which outcome will actually be observed can be given on the
base of the oligopolistic equilibrium [?], which suitably generalizes conjectural variation approach
by introducing an extra coefficient of competitive toughness.

6.2 Bertrand competition with differentiated product

Consider more general model of price competition between two firms producing imperfect substi-
tutes with marginal costs equal c1 and c2, respectively. The coefficient of substitution is γ ∈ [0, ∞).
Firms’ demands are given by

q1 = 1− p1 − γ(p1 − p2), q2 = 1− p2 − γ(p2 − p1).

The firms’ profits are
π1(p1, p2) = (p1 − c1)(1− p1 − γ(p1 − p2)).

π2(p1, p2) = (p2 − c2)(1− p2 − γ(p2 − p1)).

The case of γ = 0 corresponds to the monopoly. When γ → ∞ the product becomes more and
more homogeneous.

In Nash equilibrium, prices are equal to

p∗1 =
2 + 3γ + 2(1 + γ)2c1 + γ(1 + γ)c2

(2 + 3γ)(2 + γ)

p∗2 =
2 + 3γ + 2(1 + γ)2c2 + γ(1 + γ)c1

(2 + 3γ)(2 + γ)
,

if p∗1 ≥ c1, p
∗

2 ≥ c2.

If marginal costs are equal c1 = c2 = c, then p∗1 = p∗2 =
1+(1+γ)c

2+γ
> c. As γ → ∞, one faces the

classical Bertrand paradox.
Let us describe the conditions which the set of Nash-2 profiles (p1, p2) meets.
Note firstly that two following conditions mean that the markup and the demand in an equi-

librium should be non-negative
p1 ≥ c1, p2 ≥ c2, a)

q1(p1, p2) ≥ 0, q2(p1, p2) ≥ 0. b)

The next condition states that only prices exceeding the best response level can be a Nash-2
equilibrium:

p1 ≥
1 + γp2 + c1(1 + γ)

2(1 + γ)
, p2 ≥

1 + γp1 + c2(1 + γ)

2(1 + γ)
. c)

One more claim is that in a Nash-2 equilibrium firms get not less than their maximin benefits

π1(p1, p2) ≥
(1− c1(1 + γ))2

4(1 + γ)
, π2(p1, p2) ≥

(1− c2(1 + γ))2

4(1 + γ)
. d)
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The last conditions directly state the absence of improving deviations

(

1−c1
2

− γ(1+γ)(p2−c2)
2(1+2γ)

)(

1+2γ+γ2c2−(1+γ)2c1
2(1+γ)

+ 3
2
(p2 − c2)

)

≤ π1(p1, p2),
(

1−c2
2

− γ(1+γ)(p1−c1)
2(1+2γ)

)(

1+2γ+γ2c1−(1+γ)2c2
2(1+γ)

+ 3
2
(p1 − c1)

)

≤ π2(p1, p2).
e)

Figure 6: c1 = c2 = 0.5, γ = 2. Bold point is
NE, EinSS, NE-2. Shaded area is NE-2.

Figure 7: c1 = 0.5, c2 = 0.3, γ = 2. Bold point
is NE, EinSS, NE-2. Shaded area is NE-2.

Figure 8: c1 = 0.5, c2 = 0.1, γ = 2. Bold point
is NE, EinSS, NE-2. Shaded area is NE-2.

Figure 9: c1 = c2 = 0, γ = 2. Bold point is
NE, EinSS, NE-2. Shaded area is NE-2.

In the proof of these sufficient conditions, let us start with the observation that, in contrast to
Cournot duopoly, any increase in price of any firm is profitable for the opponent. From this fact
it follows that if one firm assign a price less than best response level then it or its opponent have
an improving deviation. It provides condition (c).

Condition (d) immediately follows from the fact that if a firm gets less than maximin value,
then it has an improving deviation to the strategy which ensures it.

Now look at the residual area and establish which situations are Nash-2 equilibria. In this
area firms propose prices more than at the best response level (condition (c)). Let us look on the
situation by firm 1. Any profitable deviation of firm 1 decreases the price p1 up to some p̃ε1 = p1−ε

with ε ∈
(

0; 2
(

p1 −
1+γp2+c1(1+γ)

2(1+γ)

))

. The most harmful response of firm 2 is maximal decreasing

the price: p2 → p̃ε2 = 2 · 1+γ(p1−ε)+c2(1+γ)
2(1+γ)

− p2 + δ with δ = +0.

If (p1, p2) is a Nash-2 profile, then for any ε firm 1 should get worse: π1(p̃
ε
1, p̃

ε
2) < π1(p1, p2),

or, equivalently, maxε π1(p̃
ε
1, p̃

ε
2) < π1(p1, p2).

19



Figure 10: c1 = c2 = 0, γ = 7. Bold point is
NE, EinSS, NE-2. Shaded area is NE-2.

Figure 11: c1 = c2 = 0, γ = 15. Bold point is
NE, EinSS, NE-2. Shaded area is NE-2.

Explicit calculation of this maximum provides condition (e).
As one can observe, the set of Nash-2 equilibria becomes more asymmetric as the difference

between marginal costs increases (see Figures 6 – 8). On the other hand, it becomes narrower and
elongate as γ → ∞ (see Figures 9 – 11).

Note that in the case of c1 = c2 = c, the collusion profile p1 = p2 = (1 + c)/2 is in the Nash-2
set. Nevertheless, some other outcomes on the Pareto frontier of the set of Nash-2 equilibrium
profits exist.

6.3 Tullock contest

In a rent-seeking modeling, most papers focus on the manipulation efforts of firms to gain monop-
olistic advantage on the market. Tullock contest [?] is a widespread way to examine the processes
of political lobbying for government benefits or subsidies, or to impose regulations on competitors
in order to increase a market share.

In the classical Tullock contest setting, the efforts x = (x1, x2) of the participants affect the
probability of winning the resource R in accordance with the following success function pi(xi, x−i)

pi(xi, x−i) =
xα
i

xα
i + xα

−i

, x 6= 0, i = 1, 2.

If x = (0, 0) then pi = p−i = 1/2.
The payoff function of each player is

ui(xi, x−i) = Rpi(xi, x−i)− xi.

Without loss of generality, assume R = 1, xi ∈ [0, 1].
Players’ behavior essentially depends on the value α. It can be treated as a sensitivity of the

utility function to increasing the effort.
When α ≤ 2, Nash equilibrium exists and equilibrium efforts are equal to α/4. In [?] the

equilibrium in secure strategies in Tullock model was obtained for all α, and it was shown that
for α > 1 it is not unique.

Here I present the computer solution (using simple MatLab computations based on the defi-
nition of improving deviation) for the whole set of Nash-2 equilibria (see Fig. 12 – 14).

Note that all equilibria in secure strategies, and in particular Nash equilibrium, are Pareto
dominated by some risky Nash-2 profiles (see Fig. 15)
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Figure 12: α = 0.7. Bold
point is NE, EinSS, NE-2.
Shaded area is NE-2.

Figure 13: α = 1.5. Bold cen-
tral point is NE, EinSS, NE-2.
Bold curve and points on the
axes are EinSS, NE-2. Shaded
area is NE-2.

Figure 14: α = 2.3. Bold
points are EinSS, NE-2.
Shaded area is NE-2.

Figure 15: α = 1.5. Efforts and profits. Bold curves and points on the axes are profits at
equilibrium in secure strategies (and Nash-2 equilibrium), shaded area is the set of profits at risky
Nash-2 profiles.

The set NE-2\EinSS seems to be intuitively clear: farsighted players in some sense are engaged
in a tacit collaboration and make smaller efforts to reach the same probability of obtaining the
resource. This is what I mean by tacit collusion.

Remark 4 (on the efficiency of equilibrium obtained). The rent dissipation is often used as a
measure of solution efficiency in rent-seeking games. If R = 1, it is equal to the sum of agent
efforts in equilibrium. If α ≤ 2, the rent dissipation in Nash equilibrium is equal to α/2. The paper
[?] shows that when α > 2 and the strategy space is continuous, full rent dissipation occurs in a
symmetric mixed-strategy equilibrium. It follows from our simulations that there is a wide range
of risky Nash-2 equilibria that are more efficient than Nash pure or mixed strategy equilibrium
for any α. To be exact, for α ≤ 2 any risky Nash-2 equilibrium together with some secure Nash-2
equilibrium (for accurate characterization of secure part see [?]) are more efficient. For α > 2
some part of risky Nash-2 equilibria (for which x1 + x2 < 1) and only ”monopolistic” (when only
one player makes positive efforts) secure Nash-2 equilibria are more efficient. However, it is to be
noted that sometimes zero efforts for one participant of the contest may be not allowed by rules
of the contest (for instance, if in this case the contest may be declared invalid). Then only risky
Nash-2 profiles ensure smaller rent dissipation than mixed-strategy Nash equilibrium.
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7 Conclusion

This paper is closely related to the analysis of rational expectations and equilibrium under un-
certainty. A Bayesian approach requires a definite probabilities of possible game scenarios which
may be updated during the game is played. However, process of assignment of initial expectations
about agent rationality lies beyond most papers using Bayesian technique, may use some invalid
data or non-strict procedures, and so might lead to disagreement between theoretical predictions
and empirical evidence. Here I presented an alternative way to handle games with lack of infor-
mation about possible responses: to account all reactions which agree the main principle of utility
increasing without accurate estimation of probabilities for all possible scenarios.

Moreover, my belief is that some aspects of rationality exceed standard utility function expres-
sion of a game, namely, a ”quasi-social” structure of links among non-anonymous competitors.
This factor together with initial point of consideration and natural limitations of iteration thinking
depth leads to the equilibrium concept providing multiple predictions. This multiplicity seems to
be a natural expression of a great variety of real-life agents’ behavior.

One more source of uncertainty is a problem of appropriate timing because of a lack of informa-
tion on the duration of interaction and intermediate moments of opponent’s update of strategies.
Using n-stage games is sometimes a rather restrictive way to treat such situations. In order to
incorporate the idea of potentially long-time interaction, the two-stage simplification is developed,
by analogy with conjectural variation approach.

Nash-2 equilibrium can be useful for analyzing oligopolies with a few agents familiar with
each other. Moreover, in oligopoly models with large number of agents it also could provide
interesting results by examining heterogeneous reflection networks. For example, this concept
allows to explain higher price dispersion in online sales, than models ignoring this structure.

Certainly, a lot of related issues must be clarified and checked in future research. The most
interesting part concerns games with many players and detecting some patterns of reflection
networks in real-world data.
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