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risk of hypertension among adults in a developing country, Vietnam. The study uses 

biological offspring’s body weight as an instrument for exogenous changes in parents’ body 
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approach to estimate the relationship of interest. The paper finds that on average an addition 

BMI unit causally increases the likelihood of being hypertensive by about 5.1–7.3% points 

for men and 5.6–8.2% points for women. The paper also shows that the impacts of body 

weight on the risk of hypertension are different with various age intervals. Furthermore, 
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1. Introduction 

The existing literature indicates that there is a relationship between body weight and the 

risk of hypertension. In particular, body mass index a common measure of body weight is 

strongly and positively correlated with the risk of hypertension in many countries such as 

Argentina (Stray-Pedersen et al., 2009), Norway (Stray-Pedersen et al., 2009), the United 

States (Kumanyika, 1989; Shihab et al., 2012), China (Li et al., 2017), Iran (Poorolajal et al., 

2016), Japan (Lee et al., 2004; Jiang et al., 2003; Nurdiantami et al., 2017), Indonesia (Tuan 

et al., 2009) and Vietnam (Tuan et al., 2009). For example, Li et al. (2017) find that 

compared to an individual with normal weight, individuals with overweight and obesity are 

more likely to be hypertensive by roughly double and triple than a normal individual in 

China. Moreover, the findings remain apparently even after controlling for highlighting 

characteristics of individuals, lifestyles and family backgrounds as well.  

Yet, it is indispensable to raise a question whether the difference in the risk of 

hypertension due to body weight is causally reliable. The answer relies on what really drives 

the observed difference. To the extent, the difference probably comes from disparities in 

body weight or other unobservable determinants that are also related to hypertension risk. If 

this is a case, the estimate suggests that observed correlations may indicate unobserved 

differences and not a causal relationship between body weight and hypertension risk. A key 

limitation of previous studies is that they provide the estimates of the correlation between 

body weight and hypertension rather than the estimates of the causal impacts.  

A fundamental challenge with identifying the causal effect of body weight on 

hypertension risk is that body weight is likely connected with many latent factors that may be 

related to hypertension risk such as dietary habits. Following Cawley and Meyerhoefer 

(2012) to address the endogeneity of body weight, this paper employs biological offspring’s 
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body mass index as an instrument for the source of exogenous variation on observations’ 

body weight and estimate the causal link between body weight and hypertension risk among 

adults using a nationally representative dataset from Vietnam.  

High blood pressure has been increasingly recognized as the key factor of dangerous 

health problems such as heart attack and failure, stroke, kidney diseases, vision loss, sexual 

dysfunction, angina, peripheral artery disease and premature mortality, that apparently 

threaten human health and quality of life (Kearney et al., 2005; Mohammad et al., 2017). An 

estimated figure by Mills et al. (2016) using data from 90 countries indicates that the global 

prevalence of hypertension is roughly 1.39 billion people, equivalently 31% of total adults 

over the world at the time of 2010. Moreover, the hypertension rate tends to increase over 

time, for instance, 5.2% between 2000 and 2010. Regarding the consequence, hypertension 

annually accounts for an estimated 9.4 million of deaths around the world (Lim et al., 2012).  

Therefore, the study of the causal impact of body weight on hypertension is very 

important not only for the insightful understanding of socio-economic factors of hypertension 

but also for the related interventions, for example, dietary strategy and nutrition to improve 

the situation. Additionally, this line of research is even more vital in the context of the 

growing prevalence of overweight and obesity worldwide (Gakidou, 2014). Such an 

increasing pattern of overweight and obesity have been identified as a global epidemic that is 

a major problem facing healthcare systems worldwide (World Health Organization, 2017). 

Furthermore, the burgeoning prevalence of overweight and obesity is regarded as one of the 

most hazardous factors linking with the widespread expansion of hypertensive population 

over the world (Seravallea and Grassi, 2017; Rahmouni et al., 2005).  

The prevalence of hypertension is even larger in developing countries than developed 

counterparts. Roughly 1.04 billion out of the total 1.39 billion hypertensives comes from low- 

and medium-income countries (Mills et al., 2016). In spite of this fact, developing countries 
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are less efficient in addressing for an increasing prevalence of hypertension because of low 

awareness, moderate treatment and decreased controlling ability (Mills et al., 2016). This 

study hence significantly provides more evidence on the causal link between body weight and 

hypertension from developing countries.  

This paper contributes to the literature of socio-economic factors of hypertension by 

providing a causal inference of the association between body weight and the risk of 

hypertension. The paper finds that on average an addition BMI unit causally increases the 

likelihood of being hypertensive by about 5.1–7.3% points for men and 5.6–8.2% points for 

women. The paper also indicates that the impacts of body weight on the risk of hypertension 

are different with various age intervals. Moreover, overweight or obesity substantially 

contributes the risk of hypertension in a comparison with under or normal weight.  

The remainder of this paper is structured as follows. Section 2 presents the estimation 

methods while section 3 discusses data and the sample for the analysis. Next, section 4 shows 

the empirical results with main results and the results of robustness check while section 5 

provides some further analysis including heterogeneity and the impact of overweight or 

obesity. Finally, section 6 discusses the results and makes some concluding remarks.  

 

2. Estimation methods 

The relationship between body weight and hypertension risk is typically estimated using 

the following equation:  

𝐻𝑦𝑝𝑒𝑟𝑡𝑒𝑛𝑠𝑖𝑜𝑛+ = 𝛼. + 𝛼0𝐵𝑜𝑑𝑦𝑤𝑒𝑖𝑔ℎ𝑡+ + 𝛼6𝑋+ + 𝜀+                                (1) 

where 𝐻𝑦𝑝𝑒𝑟𝑡𝑒𝑛𝑠𝑖𝑜𝑛+ is the probability of hypertension for the individual 𝑖; 𝐵𝑜𝑑𝑦𝑤𝑒𝑖𝑔ℎ𝑡+ 

is the body weight that is measured by body mass index (BMI); 𝑋+ is a vector of control 

variables including age, age squared, dummies for married status, major ethnicity and health 
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insurance status, schooling years, and dummies for urban and eight geographic regions; and 

𝜀+ is an error term.  

However, the OLS estimator using equation (1) merely produces the estimate of the 

association between body weight and hypertension risk rather than the reliable estimate of the 

causal effect. This is likely because there exist unobservable characteristics related to an 

individual that jointly determine body weight and hypertension risk. In other words, the 

endogeneity problem is a threat to identification for the estimation. To overcome the 

endogeneity problem, this paper uses biological offspring’s body mass index-for-age z-scores 

(BAZ) as an instrument for exogenous changes in one’s body weight and estimate the causal 

effect of interest using the following 2SLS procedure:  

𝐵𝑀𝐼+ = 𝛽. + 𝛽0𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝐵𝐴𝑍+ + 𝛽6𝑋+ + 𝜖+                                      (2) 

𝐻𝑦𝑝𝑒𝑟𝑡𝑒𝑛𝑠𝑖𝑜𝑛+ = 𝛾. + 𝛾0𝐵𝑀𝐼+ + 𝛾6𝑋+ + 𝜁+                                        (3) 

where 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝐵𝐴𝑍+ which is BAZ of the biological child of the individual 𝑖 is the 

instrumental variable for body weight. While the equation (2) indicates the first stage 

regression of body weight on the instrument, the equation (3) presents the regression of 

outcomes of interest on the predicted body weight for the individual 𝑖 (𝐵𝑀𝐼+) that is 

calculated using the first stage. The coefficient 𝛾0 that is the parameter of interest captures the 

causal effect of body weight on hypertension risk. In this study, the estimated results using 

both non-IV and IV estimators are reported. For the non-IV estimator, the paper applies the 

Probit model for the non-IV estimator while the paper employs the IV-Probit model as the IV 

estimator.  

Using a biological relative’s body weight as the IV for the respondent’s body weight is a 

recently used strategy to estimate the causal effect of body weight, overweight and obesity in 

particular, on health outcomes (Cawley and Meyerhoefer, 2012; Doherty et al., 2017; Smith 
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et al., 2009). In principle, the IV has to satisfy two following requirements. Firstly, the IV 

must be a powerful predictor of the explanatory variable. In this case, the body weight of a 

biological relative can be used to strongly predict the body weight of the respondent because 

evidence from human biology and medicine shows that genetic factors can originally explain 

the variation in human body weight (Barsh et al., 2000; Comuzzie and Allison, 1998). 

Furthermore, all values of the F-statistic in the first stage regressions in this study are over 

the traditional minimum standard value of 10.
1
 Therefore, offspring’s BAZ can be used as a 

powerful predictor of parents’ body weight	in this study (Stock et al., 2002).  

Secondly, the requirement of validity indicates that the IV has to be uncorrelated with the 

residual term in the second stage regression. This study arguably assumes that a child’s body 

weight is not correlated with parents’ residual hypertension after controlling for projected 

body weight of parents and observed characteristics. The rationale for this assumption stems 

from consistent evidence on undetectable and ignorable impacts of a joint family 

environment on body weight
2
 for individuals living in same households such as parents and 

biological children that have been revealed from the genetic and medical literature 

(Haberstick et al., 2010; Hewitt, 1997; Grilo and Pogue-Geile, 1991; Maes et al., 1997; 

Nelson et al., 2006; Wardle et al., 2008). This argument for the validity of employing a 

biological relative’s body weight as the IV for the respondent’s body weight to address the 

endogeneity of body weight has been used in recent studies (Biener et al., 2017; Cawley, 

																																																								
1
 The F-statistic values for the first stage regression are specifically presented in the section 

of results. 

2
 One can argue that the body weight of both parents and biological children are jointly 

determined by a shared living environment which is also directly related to parents’ 

probability of hypertension. If this is a case, the validity of the IV would be threatened.  
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2004; Cawley and Meyerhoefer, 2012; Doherty et al., 2017; Grossbard and Mukhopadhyay, 

2017).
3
   

 

3. Data 

This paper uses data from the Vietnam National Health Survey (VNHS) of 2001-2002. 

The VNHS is a nationally representative survey on health that consists of roughly 158,000 

individuals from 36,000 households across the country. The survey was sampled based on the 

Population Census of 1999. Anthropometric information was collected from the survey is 

used to construct body mass index (BMI) that is the adopted measure of body weight for 

adults. BMI (kg/m
2
) is defined as 𝑤𝑒𝑖𝑔ℎ𝑡/ℎ𝑒𝑖𝑔ℎ𝑡6 in which weight is measured in 

kilograms (kg) and height is measured in meters (m).  

The paper takes information on blood pressure to construct the variable of hypertension 

risk. Blood pressure measures include systolic blood pressure (SBP) and diastolic blood 

pressure (DBP). Both SBP and DBP were measured three times using medical tools with the 

aim to minimize the measurement error. SBP and DBP, which are used in this study, are the 

average values. The risk of hypertension is defined as the probability of for an individual to 

be hypertensive that takes a value of 1 if average SBP≥140 or/and average DBP≥90, and 0 

otherwise. Importantly, the previous literature of the causal impacts of body weight indicates 

that the estimates using data from self-reported weight and height are likely biased due to 

																																																								
3
 Cawley and Meyerhoefer (2012) further conduct a falsification test for the validity of the IV 

(biological children’s body weight) by using step-children’s body weight instead and show 

that step-children’s body weight is not a significant predictor of the respondents’ weight and 

conclude that using biological children’s body weight is an acceptable strategy.  
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measurement error (Burkhauser and Cawley, 2008). Therefore information on 

anthropometrics and blood pressure independently measured using medical tools by 

enumerators rather than self-reported information from respondents in the VNHS 

significantly allows this paper to avoid the potential bias in the measurement of body weight 

and hypertension. 

The paper also uses anthropometric information (weight and height) for children to 

construct the instrumental variable (IV). The IV is offspring’s body mass index-for-age z-

scores (BAZ). BAZ is calculated using the 2007 World Health Organization (WHO) growth 

reference for children aged between 5 and 19 (de Onis et al., 2007). Using BAZ allows us to 

address the problem of age-induced variation in BMI. Moreover, because BAZ for children 

aged under 5 and children aged 5–19 are calculated using different reference growth groups
4
, 

this study only uses BAZ for children aged 5–19 as the IV for parents’ body weight. The 

main reason why this study chooses the 5–9 group rather than the under 5 group is because 

the sample size is larger with parents having biological children aged 5-9 than with parents 

only having biological children aged under 5.  

The final samples for this study’s analysis include (i) 24,678 pairs of father-offspring, 

and (ii) 26,112 pairs of mother-offspring. When using father-offspring or mother-offspring 

samples, the paper uses biological children’s BAZ as an instrumental variable in general. 

Moreover, the paper also estimates the sub-samples with pairs of father-son (12,698 

observations), father-daughter (11,980 observations), mother-son (13,437 observations) and 

mother-daughter (12,675 observations). Table 1 presents summary statistics of the variables 

for these samples. The rates of hypertension from all samples are around 16.7% for men 

																																																								
4
 BAZ for children aged under 5 is calculated using the 2006 WHO growth standards for 

preschool children (World Health Organization, 2006) 	
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while the corresponding figures are nearby 7.8% for women’s samples. The mean ages from 

all samples for men and women are roughly 40 and 38 years old.  

 

4. Empirical results 

Main results 

Table 2 and 3 respectively present the main marginal coefficients of the causal impact of 

BMI on the likelihood of hypertension for men and women. The paper uses both the Probit 

and IV-Probit models and three samples (the full sample with parent-offspring pairs, one sub-

sample with parent-son pairs, and one sub-sample with parent-daughter pairs) to produce the 

estimates of interest. While the Probit model only estimates the full sample, the IV-Probit 

model estimates the full sample and two sub-samples. Moreover, the set of control variables 

for the baseline specification includes age, age squared, dummy for married, dummy for the 

ethnic majority, dummy for health insurance, schooling years, dummy for urban areas, and 

dummies for eight geographic regions in Vietnam.  

Table 2 shows the marginal effects of men’s body weight on the risk of hypertension. 

When the Probit model is used for the estimation using the full sample, the paper finds that 

BMI causally increases the probability of hypertension by about 1.8% points for an additional 

unit of BMI (kg/m
2
) as shown in column 1. The coefficient is statistically significant at 1%.  

When the IV-Probit model is applied, the paper also finds the positive impacts of men’s 

BMI on the likelihood of hypertension. However, the impacts are only statistically significant 

with the full sample (column 2) and the sub-sample of father-daughter pairs at 1% whereas 

the coefficient estimated using the sub-sample of father-son pairs loses its statistical 

significance at any conventional level. In particular, a man having one more BMI is more 

likely to be hypertensive by 5.1% points than the counterpart man if the paper uses both sons’ 
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and daughters’ BAZ as the IV (column 2). The marginal impact is even statistically larger 

when the paper estimates the sub-sample that only daughter’s BAZ is used for the IV with 

7.3% points (column 4). These results indicate that the estimates estimated using the Probit 

estimator are likely downward biased compared to those estimated by the IV-Probit 

estimator. The values of the F-statistic for the first stage regressions in Table 2 range between 

619 and 1246.  

The paper also finds the positive impacts of body weight on the possibility of 

hypertension among Vietnamese women. The marginal coefficients of the effect are 

presented in Table 3. By estimating the Probit model and the full sample, the paper shows 

that an extra BMI unit increases the probability of hypertension by approximately 1% points 

for a Vietnamese female (column 1). This estimate is statistically significant at 1%.  

Meanwhile, the estimates using the IV-Probit model indicate that an additional BMI unit 

is causally linked to increases in the rate of hypertension for a Vietnamese woman by about 

5.6% points using the full sample (column 2) and 8.2% points using the sub-sample of 

mother-son pairs (column 3) with a 1% level of statistical significance. Using IV-Probit to 

estimate the sub-sample of mother-daughter pairs produce a positive impact of women’s BMI 

on the likelihood of hypertension but the estimate is statistically insignificant at any 

conventional level (column 4). The values of the F-statistic for the first stage regressions in 

Table 3 range between 717 and 1448. 

 

Robustness checks 

This paper implements some robustness checks for the main results by using various sets 

of control variables for the econometric specification. In particular, there are three different 

sets of control variable: (i) a set that removes age and age squared from the baseline set 
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(specification 1), (ii) a set that removes dummy for urban areas, and dummies for eight 

geographic regions from the baseline set (specification 2), and (iii) a set that removes all 

control variables from the baseline set (specification 3). The results of robustness checks are 

specifically presented in Tables 4 and 5 corresponding for men and women. Generally, the 

paper finds that the main estimates using the baseline specification are highly robust to other 

various specifications in terms of both the signs of the effect and the magnitude.  

Table 4 demonstrates the robustness checks for men. Column 1 shows that the marginal 

estimates using the Probit estimator are between 1.7–1.8% points for three various 

specifications. The coefficients are statistically significant at 1%. This result is same as the 

main marginal estimate using the same estimator. For the estimates using the IV estimator, 

the paper finds the most similar patterns as the main estimator. In particular, when both sons’ 

and daughters’ BAZ are used as the IV for men’s body weight, the estimates in column 2 

indicate that one more BMI unit increases the probability of hypertension by 5.5% points, 

5.9% points and 7.0% points corresponding to the use of specifications 1, 2 and 3. The 

marginal coefficient using the baseline specification is 5.1% points (column 2 of Table 2).  

The IV-Probit estimators with sons’ BAZ as the IV produces the marginal coefficients 

with 3.0% points (specification 1), 3.9% points (specification 2) and 4.8% points 

(specification 3) as demonstrated in column 3 Table 4. While the coefficient using 

specification 1 loses its statistical significance as the main estimate using the baseline 

specification (column 3 of Table 2), the coefficients using specifications 2 and 3 are 

statistically significant at 10% and 5% respectively.  

Finally, the estimates in column 4 of Table 4 for the impact of men’s body weight on the 

likelihood of hypertension using daughters’ BZA as the IV are all statistically significant at 

1% for three specifications. In terms of the magnitude, a male with one more BMI unit tends 

to have a higher probability of hypertension by about 8.4% points (specification 1), 8.0% 
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points (specification 2) and 9.6% points (specification 3). These results are slightly larger 

than the main effect with 7.3% points as indicated in column 4 of Table 2. The values of the 

F-statistic for the first stage regressions in Table 4 range between 609 and 1429. 

Table 5 presents the robustness estimates for women. The Probit estimates in column 1 

indicate that one additional BMI unit is associated with an increase in the probability of 

hypertension by about 1.1% points (specification 1), 0.9% points (specification 2) and 1% 

points (specification 3). These estimated coefficients are statistically significant at 1%.  

 When the IV-Probit estimator is used, the marginal effects are roughly robust to the 

main estimates. The estimates in column 2 show that with both sons’ and daughters’ BAZ as 

the IV the paper finds that a female with one more BMI unit is more likely to have a higher 

likelihood of hypertension by approximately 5.8% points (specification 1), 5.1% points 

(specification 2) and 5.2% points (specification 3) with a 1% level of statistical significance. 

Meanwhile, the marginal effects of one more BMI unit on the likelihood of hypertension 

using only sons’ BAZ as the IV for women’s body weight are 7.5% points, 7.3% points and 

6.3% points corresponding to the use of specifications 1, 2 and 3 as demonstrated in column 

3. The estimated coefficients in column 3 are all statistically significant at 1%.  

Column 3 of Table 5 presents the estimated coefficients for the impact of interest when 

only daughters’ BAZ is used to instrument for female’s BMI. The paper finds statistically 

insignificant results for specifications 1 and 2, except for specification 3 that produces a 

marginal impact of 3.9% points with a 1% level of statistical significance. The values of the 

F-statistic for the first stage regressions in Table 5 range between 712 and 1672. 

 

5. Further analysis  

Heterogeneity  



 13 

The effect of body weight on the risk of hypertension may vary with various age 

intervals. This section presents the marginal effects of body weight on the probability of 

hypertension by age groups. The marginal coefficients for four age groups including (i) 

age≤30, (ii) 30<age≤40, (iii) 40<age≤50, and (iv) age>50 are presented in Tables 6 and 7 

for male and female respectively.  

Table 6 shows the results for men. The results indicate that if Probit model is used, the 

association between BMI and the likelihood of hypertension does not vary considerably 

among different groups (column 1). In particular, the marginal effects are between 1.7% 

points and 1.9% points. However, the impacts are different among various age groups using 

the IV approach. Specifically, when sons’ and daughters’ BAZ are used as the IV, the 

marginal effects are about 22.3% points for age≤30, 4.6% points for 30<age≤40, and 11.4% 

points for age>50. These estimates are statistically significant at 5% or 10% (column 2). The 

coefficient for 40<age≤50 loses its statistical significance at any conventional level.  

Meanwhile, all coefficients estimated using only sons’ BAZ as the IV (column 3) are 

statistically insignificant at any conventional level for any age group as the main estimates. 

Finally, the estimates estimated using only daughters’ BAZ as the IV (column 4) show that 

the marginal effects for the groups age≤30 and age>50 are 26.9% points with a statistical 

significance at 5% and 17.8% points with a statistical significance at 1%, respectively. The 

coefficients for the groups 30<age≤40 and 40<age≤50 are statistically insignificant at any 

conventional level. These findings indicate that the causal impact of body weight on the risk 

of hypertension is largest among youngest and oldest males while the middle group (males 

aged between 31 and 40) has the smallest effect. The values of the F-statistic for the first 

stage regressions in Table 6 range between 36 and 637. 

Table 7 gives the coefficients of the marginal effect for women’s various age groups. 

The marginal effects in the case of using Probit estimator consist of 0.3% points for age≤30, 
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0.7% points for 30<age≤40, 1.6% points for 40<age≤50, and 2.2% points for age>50 

(column 1). All coefficients in column 1 are statistically significant at 1%. When the IV 

estimator is used to produce estimates of interest, the results are changing with different age 

groups. The estimated coefficients using sons’ and daughters’ BAZ as the IV in column 2 

indicate that the effect is only statistically significant for the groups 30<age≤40 (at 10%) and 

40<age≤50 (significant at 1%) with the marginal effects of 5.1% points and 7.8% points 

respectively.  

For the case that the IV is only sons’ BAZ in column 3, the coefficients for the groups 

30<age≤40 and 40<age≤50 are both statistically significant at 5% with the marginal effects 

of both 8.9% points whereas the coefficients for other groups lose its statistical significance. 

Finally, the coefficients estimated when daughters’ BAZ is used as the IV in column 4 are all 

statistically insignificant at any conventional level for most age groups, except for the group 

40<age≤50 with the marginal effect of 6.5% points (significant at 5%). The values of the F-

statistic for the first stage regressions in Table 7 range between 12 and 938. 

 

The impact of overweight or obesity on hypertension 

Overweight or obesity can also have a distinct impact on hypertension compared to 

healthy weight or underweight because the different statuses of BMI are likely to link with 

various health risks (Stommel and Schoenborn, 2010). This section provides the estimated 

results of the impact of overweight or obesity on the probability of hypertension. This paper 

defines a person is overweighted or obese if his or her BMI is equal to or over 25. The 

dummy variable takes a value of 1 if overweight or obesity, and 0 otherwise. The estimated 

coefficients demonstrate the probability of hypertension for an overweighted or obese person 

relative to that of an underweighted or healthy weighted person.  
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Generally, the paper finds that overweighted or obese adults have considerable positive 

impacts on the risk of hypertension relative to those with under or healthy weight for both 

male and female as shown in Tables 8 and 9. The signs and statistical significance of the 

impact are totally consistent with the impact of BMI.  

Table 8 presents the results for men. The marginal effect estimated using the Probit 

model is 14.3% points with a 1% level of statistical significance (column 1). The marginal 

effects using the IV in columns 2 and 4 respectively are 116.2% points and 167.5% points. 

The estimated coefficients are statistically significant at 1%. Meanwhile, the estimated 

coefficient in column 3 is statistically insignificant at any conventional level. The values of 

the F-statistic for the first stage regressions in Table 8 range between 97 and 202. 

Table 9 shows the estimated coefficients for female. The marginal effect estimated using 

the Probit estimator is 8.1% points with a 1% level of statistical significance (column 1). 

Meanwhile, the marginal effects estimated using the IV-Probit estimators in columns 2 and 3 

are respectively 120.6% points and 187.1% points. These estimated coefficients are 

statistically significant at 1%. Meanwhile, the estimated coefficient in column 4 is 

statistically insignificant at any conventional level. These findings explicitly indicate that 

overweight or obesity is an extremely severe source of the prevalence of hypertension among 

Vietnamese adults. The values of the F-statistic for the first stage regressions in Table 9 

range between 111 and 256. 

 

6. Discussion and conclusion 

While pervasive hypertension has increasingly become a major public health worldwide 

especially from developing countries (Kearney et al., 2005), the understanding of the 

contribution of body weight to the prevalence of hypertension is more important from the 
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existing literature of the determinants of hypertension. This study investigates the causal 

relationship between body weight and the risk of hypertension using a nationally 

representative dataset from a developing country in Asia, Vietnam.  

Over last few decades, Vietnam has witnessed a rising rate of hypertensives (Ministry of 

Health of Vietnam, 2016). Although the prevalence of hypertension is relatively high among 

Vietnamese adults and its consequences in terms of hypertension-induced mortality and 

illness are severe, the awareness, the treatment and the control of this non-communicable 

disease are comparatively low in this developing country (Do et al., 2015; Son et al., 2012). 

Therefore, identifying the causal relationship between key associated factors and 

hypertension is generally very crucial for addressing the hypertension prevalence in Vietnam 

and other developing countries as well.  

This study significantly contributes to the literature of the association between body 

weight and the risk of hypertension in some ways. Firstly, this study is one of the first studies 

devoted to estimating the causal effect of body weight on the risk of hypertension. The 

previous studies identify that body weight is positively linked to the prevalence of 

hypertension among other key factors. For example, Tuan et al. (2009) using the VNHS like 

this paper find that one increased BMI unit is correlated with higher probabilities of 

hypertension by roughly 14% and 16% for Vietnamese men and women respectively. Also, 

Do et al. (2015) uses a nationally representative sample from the 2005 Vietnam National 

Overweight Survey to show that overweight men and women are more likely to be 

hypertensive by about 43% and 29% respectively than those with normal weight or 

underweight. However, these results from previous studies naively provide the correlated 

estimates rather than the true causal estimates of the association between body weight and the 

risk of hypertension because the obtained estimates are produced while there are the co-

existent impacts of other observed fundamental factors such as low birth weight (Ediriweera 
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et al., 2017), height (Sohn 2017), early-life conditions (Sotomayor 2013) or even latent 

characteristics on the hypertension prevalence. Therefore, while body weight should be 

considered as a cause of the risk of hypertension (Francischetti and Genelhu, 2007), it is very 

challenging to make causal inference using such estimates.  

In a different manner, this study treats body weight as a cause of hypertension and 

estimates its causal effect on the prevalence of hypertension by using an IV approach to 

address the endogeneity problem. Using the IV approach enables this study to disentangle the 

reliable estimates of the causal effect of body weight on the risk of hypertension. The 

findings estimated using the IV approach in this study reveal that there is an underestimation 

of the impact using the non-IV estimator such as the Probit estimator. Therefore, this study 

suggests that previous studies that did not address the potential endogeneity problem of body 

weight likely considerably underestimated the impact of body weight on the prevalence of 

hypertension. This is the most important contribution that this paper makes.  

The key finding is that body weight causally increases the likelihood of hypertension for 

both Vietnamese male and female. The marginal effects of an extra BMI unit on the risk of 

hypertension are between 5.1–7.3% points for men and 5.6–8.2% points for women. The 

statistic summary of the sample in Table 1 shows that while the percentage of hypertensive 

among women is only around 7.8%, the corresponding figure for men is about 17% of the 

samples. However, the marginal effects of body weight on the prevalence of hypertension are 

larger for women than men in Vietnam. The study also finds that the impacts of body weight 

on the prevalence of hypertension substantially vary with various age intervals for men and 

women as well. Therefore, the implication related to policies for addressing the problem of 

high blood pressure can be different with different age groups. In the other hand, the impact 

of body weight on the risk of hypertension probably changes among different periods of the 

human life. In addition, overweight and obesity are probably favorable to the possibility of 
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being hypertensive (Francischetti and Genelhu, 2007). Many previous studies show that 

overweight and obesity are strongly and considerably correlated to increases in the risk of 

high blood pressure in many developing countries, for examples Nurdiantami et al. (2017) for 

Indonesia, and Cao et al. (2017) for China. This study confirms the findings from the 

literature by providing a causal inference that overweight or obesity causally increases the 

probability of hypertension for both men and women compared to under or normal weight.  

Furthermore, this study provides more evidence on the same research topic from a 

developing country. Developing countries are likely extremely suffered from the epidemic of 

hypertension because of both their high and increasing proportion of hypertension but an 

unacceptably low capability of awareness, treatments, and controls there. When the causal 

link between body weight and the incidence of hypertension is robustly discovered, the 

implication for controlling the problem of high blood pressure should be raised in the 

developing world. The actions related to the control of body weight through which 

hypertension can be restricted include lifestyle changes, nutritional intake, or 

pharmacological treatments (Dinh et al., 2017; Francischetti and Genelhu, 2007; Lee et al., 

2004; Sabaka et al., 2017). Hence, the findings from this study meaningfully provide 

backgrounds for the public health policies related to the control of overweight and obesity as 

a solution to the prevalence of hypertension.  
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Table 1 

Descriptive statistics of the samples (Means and standard deviations in parentheses are reported)  

Variable Men  Women 

Both Son Daughter  Both Son Daughter 

Hypertension 0.167 

(0.373) 

0.164 

(0.371) 

0.169 

(0.375) 

 

 

0.078 

(0.268) 

0.077 

(0.267) 

0.078 

(0.269) 

BMI 20.340 

(2.322) 

20.315 

(2.332) 

20.367 

(2.310) 

 

 

20.371 

(2.656) 

20.350 

(2.656) 

20.393 

(2.655) 

Overweight or obesity 0.043 

(0.203) 

0.043 

(0.203) 

0.043 

(0.203) 

 

 

0.057 

(0.231) 

0.056 

(0.231) 

0.057 

(0.231) 

Child BMI-for-age z-scores  -1.141 

(1.034) 

-1.164 

(1.072) 

-1.117 

(0.991) 

 

 

-1.153 

(1.030) 

-1.174 

(1.063) 

-1.131 

(0.993) 

Age 40.412 

(7.014) 

40.391 

(6.981) 

40.435 

(7.049) 

 

 

37.844 

(6.357) 

37.875 

(6.339) 

37.811 

(6.377) 

Married 0.993 

(0.081) 

0.993 

(0.081) 

0.993 

(0.080) 

 

 

0.953 

(0.211) 

0.952 

(0.215) 

0.955 

(0.208) 

Majority 0.810 

(0.392) 

0.812 

(0.391) 

0.809 

(0.393) 

 

 

0.851 

(0.356) 

0.853 

(0.354) 

0.849 

(0.358) 

Health insurance 0.170 

(0.376) 

0.170 

(0.376) 

0.171 

(0.376) 

 

 

0.127 

(0.333) 

0.129 

(0.335) 

0.124 

(0.330) 

Schooling years 6.876 

(4.377) 

6.895 

(4.375) 

6.856 

(4.379) 

 

 

6.211 

(4.352) 

6.241 

(4.375) 

6.179 

(4.328) 

Urban  0.271 

(0.445) 

0.273 

(0.446) 

0.269 

(0.443) 

 

 

0.280 

(0.449) 

0.284 

(0.451) 

0.276 

(0.447) 

Red River Delta  0.167 

(0.373) 

0.170 

(0.376) 

0.164 

(0.370) 

 

 

0.183 

(0.387) 

0.186 

(0.389) 

0.181 

(0.385) 

Northeast  0.154 

(0.361) 

0.152 

(0.359) 

0.156 

(0.363) 

 

 

0.151 

(0.358) 

0.149 

(0.356) 

0.153 

(0.360) 

Northwest  0.049 

(0.215) 

0.050 

(0.218) 

0.047 

(0.213) 

 

 

0.038 

(0.191) 

0.039 

(0.193) 

0.037 

(0.188) 

North Central Coast  0.126 

(0.332) 

0.123 

(0.329) 

0.129 

(0.335) 

 

 

0.135 

(0.341) 

0.133 

(0.339) 

0.136 

(0.343) 

South Central Coast  0.097 

(0.296) 

0.098 

(0.298) 

0.096 

(0.295) 

 

 

0.101 

(0.302) 

0.101 

(0.302) 

0.101 

(0.302) 

Central Highlands  0.088 

(0.283) 

0.090 

(0.286) 

0.085 

(0.279) 

 

 

0.079 

(0.270) 

0.081 

(0.273) 

0.077 

(0.267) 

Southeast  0.135 

(0.342) 

0.133 

(0.340) 

0.137 

(0.344) 

 

 

0.135 

(0.341) 

0.134 

(0.340) 

0.135 

(0.342) 

Mekong River Delta  0.184 

(0.387) 

0.183 

(0.387) 

0.185 

(0.388) 

 

 

0.179 

(0.383) 

0.178 

(0.382) 

0.179 

(0.384) 

Observations 24,678 12,698 11,980  26,112 13,437 12,675 
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Table 2 

The effect of men’s BMI on the probability of hypertension (Baseline estimates) 

Variable Probit  IV-Probit 

(1)  (2) (3) (4) 

BMI 0.018*** 

(0.001) 

 0.051*** 

(0.018) 

0.032 

(0.024) 

0.073*** 

(0.026) 

Age 0.010*** 

(0.003) 

 0.044*** 

(0.011) 

0.046*** 

(0.015) 

0.043*** 

(0.016) 

Age squared -0.00003 

(0.00003) 

 -0.0001 

(0.0001) 

-0.0002 

(0.0002) 

-0.0001 

(0.0001) 

Married -0.035 

(0.026) 

 -0.142 

(0.110) 

-0.158 

(0.150) 

-0.131 

(0.162) 

Majority -0.007 

(0.007) 

 -0.038 

(0.030) 

-0.084* 

(0.042) 

0.015 

(0.043) 

Health insurance  0.0006 

(0.007) 

 0.016 

(0.030) 

0.046 

(0.041) 

-0.015 

(0.043) 

Schooling years -0.002** 

(0.0006) 

 -0.006** 

(0.003) 

-0.006 

(0.004) 

-0.006 

(0.004) 

Urban  -0.004 

(0.006) 

 0.001 

(0.027) 

0.014 

(0.037) 

-0.017 

(0.039) 

Red River Delta 0.005 

(0.009) 

 0.008 

(0.037) 

0.008 

(0.053) 

-0.009 

(0.053) 

Northeast 0.041*** 

(0.009) 

 0.158*** 

(0.039) 

0.149*** 

(0.054) 

0.172*** 

(0.055) 

Northwest 0.088*** 

(0.012) 

 0.362*** 

(0.052) 

0.355*** 

(0.072) 

0.373*** 

(0.075) 

North Central Coast  0.029*** 

(0.009) 

 0.110*** 

(0.038) 

0.167*** 

(0.053) 

0.052 

(0.055) 

South Central Coast  0.003 

(0.010) 

 0.002 

(0.041) 

0.033 

(0.057) 

-0.027 

(0.059) 

Central Highlands  0.097*** 

(0.009) 

 0.391*** 

(0.042) 

0.439*** 

(0.058) 

0.338*** 

(0.059) 

Southeast  0.046*** 

(0.008) 

 0.188*** 

(0.035) 

0.210*** 

(0.049) 

0.164*** 

(0.049) 

Mekong River Delta Reference  Reference Reference Reference 

First stage F-stat   1245.70 633.55 618.73 

Observations 24,678  24,678 12,698 11,980 

Notes: ***p < 0.01, **p < 0.05, *p < 0.1. Probit model is used in column 1; IV-Probit models are used 

for columns 2, 3 and 4; IVs are children’s BAZ in column 2, sons’ BAZ in column 3 and daughters’ BAZ 

in column 4. Coefficients are marginal effects. Robust standard errors are reported in parenthesis.  
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Table 3 

The effect of women’s BMI on the probability of hypertension (Baseline estimates) 

Variable Probit  IV-Probit 

(1)  (2) (3) (4) 

BMI 0.010*** 

(0.001) 

 0.056*** 

(0.019) 

0.082*** 

(0.027) 

0.029 

(0.025) 

Age 0.011*** 

(0.002) 

 0.083*** 

(0.017) 

0.095*** 

(0.024) 

0.074*** 

(0.024) 

Age squared -0.00005* 

(0.00003) 

 -0.0004** 

(0.0004) 

-0.0005* 

(0.0003) 

-0.0003 

(0.0003) 

Married -0.014** 

(0.007) 

 -0.103** 

(0.050) 

-0.145** 

(0.068) 

-0.052 

(0.073) 

Majority 0.002 

(0.005) 

 0.010 

(0.040) 

0.054 

(0.058) 

-0.028 

(0.055) 

Health insurance  -0.010* 

(0.005) 

 -0.069* 

(0.039) 

-0.138** 

(0.055) 

-0.002 

(0.055) 

Schooling years -0.0004 

(0.0005) 

 -0.002 

(0.003) 

-0.001 

(0.005) 

-0.004 

(0.005) 

Urban  -0.010*** 

(0.004) 

 -0.054 

(0.035) 

-0.085* 

(0.051) 

-0.020 

(0.048) 

Red River Delta  0.025*** 

(0.006) 

 0.165*** 

(0.047) 

0.219*** 

(0.068) 

0.111* 

(0.066) 

Northeast  0.010 

(0.006) 

 0.051 

(0.053) 

0.102 

(0.076) 

-0.0009 

(0.073) 

Northwest  0.022** 

(0.010) 

 0.150** 

(0.075) 

0.166 

(0.107) 

0.136 

(0.104) 

North Central Coast  0.013** 

(0.006) 

 0.076 

(0.050) 

0.173** 

(0.071) 

-0.027 

(0.071) 

South Central Coast  -0.008 

(0.007) 

 -0.074 

(0.051) 

-0.043 

(0.074) 

-0.108 

(0.071) 

Central Highlands  0.056*** 

(0.006) 

 0.399*** 

(0.051) 

0.503*** 

(0.071) 

0.292*** 

(0.072) 

Southeast  -0.016*** 

(0.006) 

 -0.121*** 

(0.044) 

-0.048 

(0.062) 

-0.198*** 

(0.063) 

Mekong River Delta  Reference  Reference Reference Reference 

First stage F-stat   1447.53 731.18 716.60 

Observations 26,112  26,112 13,437 12,675 

Notes: ***p < 0.01, **p < 0.05, *p < 0.1. Probit model is used in column 1; IV-Probit models are used 

for columns 2, 3 and 4; IVs are children’s BAZ in column 2, sons’ BAZ in column 3 and daughters’ BAZ 

in column 4. Coefficients are marginal effects. Robust standard errors are reported in parenthesis.  
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Table 4 

The effect of men’s BMI on the probability of hypertension (Robustness checks) 

BMI Probit  IV-Probit 

(1)  (2) (3) (4) 

Specification 1 0.017*** 

(0.001) 

 0.055*** 

(0.018) 

0.030 

(0.024) 

0.084*** 

(0.026) 

First stage F-stat   1228.99 627.61 608.60 

Specification 2  0.018*** 

(0.001) 

 0.059*** 

(0.016) 

0.039* 

(0.022) 

0.080*** 

(0.024) 

First stage F-stat   1351.55 671.47 691.80 

Specification 3 0.017*** 

(0.001) 

 0.070*** 

(0.015) 

0.048** 

(0.021) 

0.096*** 

(0.023) 

First stage F-stat   1428.89 725.20 713.17 

Observations 24,678  24,678 12,698 11,980 

Notes: ***p < 0.01, **p < 0.05, *p < 0.1. Probit model is used in column 1; IV-Probit models are used 

for columns 2, 3 and 4; IVs are children’s BAZ in column 2, sons’ BAZ in column 3 and daughters’ BAZ 

in column 4. Coefficients are marginal effects. Robust standard errors are reported in parenthesis. Control 

variables for specification 1 include dummies for married status, major ethnicity and health insurance 

status, schooling years, and dummies for urban and eight geographic regions. Control variables for 

specification 2 include age, age squared, dummies for married status, major ethnicity and health 

insurance status, and schooling years. There is no control variable for specification 3.  
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Table 5 

The effect of women’s BMI on the probability of hypertension (Robustness checks) 

BMI Probit  IV-Probit 

(1)  (2) (3) (4) 

Specification 1 0.011*** 

(0.0006) 

 0.058*** 

(0.018) 

0.075*** 

(0.027) 

0.039 

(0.035) 

First stage F-stat   1429.13 718.07 711.73 

Specification 2  0.009*** 

(0.0006) 

 0.051*** 

(0.016) 

0.073*** 

(0.023) 

0.027 

(0.021) 

First stage F-stat   1672.49 839.05 831.89 

Specification 3 0.010*** 

(0.0006) 

 0.052*** 

(0.016) 

0.063*** 

(0.023) 

0.039* 

(0.022) 

First stage F-stat   1665.72 837.87 827.93 

Observations 26,112  26,112 13,437 12,675 

Notes: ***p < 0.01, **p < 0.05, *p < 0.1. Probit model is used in column 1; IV-Probit models are used 

for columns 2, 3 and 4; IVs are children’s BAZ in column 2, sons’ BAZ in column 3 and daughters’ BAZ 

in column 4. Coefficients are marginal effects. Robust standard errors are reported in parenthesis. Control 

variables for specification 1 include dummies for married status, major ethnicity and health insurance 

status, schooling years, and dummies for urban and eight geographic regions. Control variables for 

specification 2 include age, age squared, dummies for married status, major ethnicity and health 

insurance status, and schooling years. There is no control variable for specification 3.  
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Table 6 

The effect of men’s BMI on the probability of hypertension (Heterogeneity by age groups) 

BMI Probit  IV-Probit 

(1)  (2) (3) (4) 

age≤30 

 

0.018*** 

(0.004) 

 0.223** 

(0.093) 

0.149 

(0.136) 

0.269** 

(0.120) 

First stage F-stat   76.56 38.42 42.27 

Observations 1,218  1,218 615 603 

30<age≤40 

  

0.017*** 

(0.001) 

 0.046* 

(0.027) 

0.038 

(0.034) 

0.058 

(0.042) 

First stage F-stat   637.43 336.86 303.86 

Observations 12,404  12,404 6,416 5,988 

40<age≤50 

 

0.019*** 

(0.002) 

 0.028 

(0.027) 

0.020 

(0.038) 

0.030 

(0.039) 

First stage F-stat   452.01 231.05 226.50 

Observations 8,976  8,976 4,623 4,353 

age>50 

 

0.019*** 

(0.004) 

 0.114** 

(0.053) 

0.040 

(0.086) 

0.178*** 

(0.066) 

First stage F-stat   90.36 36.24 51.78 

Observations 2,080  2,080 1,044 1,036 

Notes: ***p < 0.01, **p < 0.05, *p < 0.1. Probit model is used in column 1; IV-Probit models are used 

for columns 2, 3 and 4; IVs are children’s BAZ in column 2, sons’ BAZ in column 3 and daughters’ BAZ 

in column 4. Coefficients are marginal effects. Robust standard errors are reported in parenthesis. Control 

variables include age, age squared, dummies for married status, major ethnicity and health insurance 

status, schooling years, and dummies for urban and eight geographic regions.  
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Table 7 

The effect of women’s BMI on the probability of hypertension (Heterogeneity by age groups) 

BMI Probit  IV-Probit 

(1)  (2) (3) (4) 

age≤30 

 

0.003*** 

(0.001) 

 0.052 

(0.100) 

0.085 

(0.130) 

-0.022 

(0.172) 

First stage F-stat   148.12 114.77 42.30 

Observations 3,058  3,058 1,419 1,511 

30<age≤40  0.007*** 

(0.0007) 

 0.051* 

(0.027) 

0.089** 

(0.040) 

0.013 

(0.035) 

First stage F-stat   937.53 444.50 499.88 

Observations 14,774  14,774 7,607 7,167 

40<age≤50 0.016*** 

(0.001) 

 0.079*** 

(0.027) 

0.089** 

(0.039) 

0.065* 

(0.038) 

First stage F-stat   373.81 194.17 178.12 

Observations 7,332  7,332 3,788 3,544 

age>50 0.022*** 

(0.004) 

 0.006 

(0.086) 

-0.037 

(0.138) 

0.027 

(0.112) 

First stage F-stat   31.85 11.69 19.80 

Observations 948  948 495 453 

Notes: ***p < 0.01, **p < 0.05, *p < 0.1. Probit model is used in column 1; IV-Probit models are used 

for columns 2, 3 and 4; IVs are children’s BAZ in column 2, sons’ BAZ in column 3 and daughters’ BAZ 

in column 4. Coefficients are marginal effects. Robust standard errors are reported in parenthesis. Control 

variables include age, age squared, dummies for married status, major ethnicity and health insurance 

status, schooling years, and dummies for urban and eight geographic regions.  
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Table 8 

The effect of men’s overweight or obesity on the probability of hypertension  

Variable Probit  IV-Probit 

(1)  (2) (3) (4) 

Overweight or obesity 0.143*** 

(0.010) 

 1.162*** 

(0.419) 

0.702 

(0.568) 

1.675*** 

(0.600) 

First stage F-stat   202.32 106.65 97.26 

Observations 24,678  24,678 12,698 11,980 

Notes: ***p < 0.01, **p < 0.05, *p < 0.1. Probit model is used in column 1; IV-Probit models are used 

for columns 2, 3 and 4; IVs are children’s BAZ in column 2, sons’ BAZ in column 3 and daughters’ BAZ 

in column 4. Coefficients are marginal effects. Robust standard errors are reported in parenthesis. Control 

variables include age, age squared, dummies for married status, major ethnicity and health insurance 

status, schooling years, and dummies for urban and eight geographic regions.  
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Table 9 

The effect of women’s overweight or obesity on the probability of hypertension  

Variable Probit  IV-Probit 

(1)  (2) (3) (4) 

Overweight or obesity 0.081*** 

(0.006) 

 1.206*** 

(0.421) 

1.871*** 

(0.572) 

0.504 

(0.563) 

First stage F-stat   255.50 110.50 150.11 

Observations 26,112  26,112 13,437 12,675 

Notes: ***p < 0.01, **p < 0.05, *p < 0.1. Probit model is used in column 1; IV-Probit models are used 

for columns 2, 3 and 4; IVs are children’s BAZ in column 2, sons’ BAZ in column 3 and daughters’ BAZ 

in column 4. Coefficients are marginal effects. Robust standard errors are reported in parenthesis. Control 

variables include age, age squared, dummies for married status, major ethnicity and health insurance 

status, schooling years, and dummies for urban and eight geographic regions.  

 

 

 


