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Abstract 

The method of Lagrange multipliers is a very useful and powerful technique in multivariable 

calculus. In this paper interpretation of Lagrange multipliers is given by showing their positive 

values. Three models on optimization are given with detailed mathematical calculations. The 

Implicit Function Theorem is important for solving a system of non-linear equations for the 

dependent variables and calculating partial derivatives of these variables with respect to the 

independent variables. In this paper an attempt has been made to optimize economic models 

subject to a budget constraint, using Lagrange multipliers technique, as well as, using necessary 

and sufficient conditions for optimal value. 

 

Keywords: Lagrange multipliers, optimization, comparative static analysis, necessary and 

sufficient conditions 

 

1. INTRODUCTION 

The method of Lagrange multipliers is a very useful and powerful technique in multivariable calculus and 

has been used to facilitate the determination of necessary conditions; normally, this method was considered 

as device for transferring a constrained problem to a higher dimensional unconstrained problem (Moolio et 

al. 2009, Islam et al. 2010, 2011). Baxley and Moorhouse (1984) considered implicit functions with assumed 

characteristic qualitative features and provided illustration of an example, generating meaningful economic 

behavior. This approach and formulation may enable one to view optimization problems in economics from a 

somewhat wider perspective. 

We examine a set of related examples to highlight the following features (Baxley and Moorhouse 1984, 

Mohajan 2012): 

▪ To begin with, functions are not explicitly given but they have some assumed characteristic features, 

which are meaningful for and give insight into economic behavior. Later, explicit functions are 

considered to clarify the characteristics. 
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▪ Assuming, for example, that a firm wishes to minimize the cost of producing a given output, one may 

want to know how changes in the input prices will affect the situation. So the problem is not: “find the 
minimum”, but, “assuming the minimum is obtained, what consequences can be deduced.” 

▪ The Lagrange multipliers   or i ,  mi ,...,1  for some 1m , as indicated, have usually been used as a 

device. In economic problems, as we shall see, the Lagrange multipliers can be interpreted as rates of 

change of optimal values relative to some parameters. 

▪ In these considerations and discussions, the Implicit Function Theorem is important for solving a system 

of non-linear equations for the endogenous (dependent) variables and calculating partial derivatives of 

these variables with respect to the exogenous (independent) variables. 

In section 2 we illustrate three examples on optimization, namely Model (A), Model (B) and Model (C) 

following Baxley and Moorhouse (1984). Section 3 is developed by mathematical techniques to explain the 

models and necessary conditions for optimal values. Sufficient conditions for implicit functions are given in 

section 4.  

 

2. THREE EXAMPLES ON OPTIMIZATION 

Assume that an individual consumes two commodities x and y; the amounts he purchases in the market place 

are X and Y kg respectively. He keeps a certain quantity L of his leisure time l to himself, when he is not 

earning. We observe that the larger the value of L, implicitly, the less his money income, and vice-versa 

(Baxley and Moorhouse 1984). Let 1P  and 
2P  be the prices of per unit of x and y respectively, let T be the 

total time period available, so that L is the leisure time per period with TL 0 . The time during which the 

individual works, i.e., earns, is therefore   LT   per period. Let his wage per unit time be w, so that his total 

income is  wLT   . Since he spends all his income for purchasing the two commodities, the budget 

constraint is as follows: 

  21 YPXPwLT  .                          (1) 

The utility U of the individual is given by a utility function u unique to him, as a function of X, Y and L; 

  ,,  LYXuU  .          (2) 

We now impose certain general and reasonable conditions on the function u as follows (where a subscript 

denotes partial derivative with respect to the subscript): 

0              ,0           ,0  LYX uuu ,         (3a) 

 0            ,0          ,0  LLYYXX uuu ,       (3b) 

0                                   ,0  YLXL uu ,         (3c) 

either       0or           0or           0  XYXYXY uuu .           (3d) 

The inequalities in (3a) are the so called marginal utilities, which indicate that higher levels of consumption 

of the commodities and more leisure time per period increase utility. The conditions in (3b) of course reflect 

the “law of diminishing marginal utility”. The inequalities (3c) display that the satisfaction of consuming x or 
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y is enhanced by having more leisure time. The three conditions (3d) represent the circumstance, 

respectively, that x and y are: (i) substitutes, (ii) complements, or (iii) unrelated. Baxley and Moorhouse 

(1984) have given by assuming and easily understandable instances of the inequalities involving second 

order derivatives. For (3b): “the third coke one drinks within an hour does not quench one’s thirst as much as 
the second coke”; for (3c): “it takes time to enjoy things”; for (3d): (i) substitutes “tea and coffee”, (ii) 
compliments such as “bun and burger”, and finally, (iii) “mathematics lessons and jellybeans”, are unrelated. 

We now formulate the maximization problem for the utility function u given by (2) in terms of a single 

Lagrange multiplier  , by defining the Lagrange function as follows (Mohajan et al. 2013): 

      21   ,,   ,,,  YPXPwLTLYXuLYXv   .     (4) 

Maximization of utility occurs for values *,*,*,* LYX  of X, Y, L,   that must satisfy the following 

equations: 

     0 21  YPXPwLTv ,         (5a) 

   0 1  Puv XX  ,         (5b) 

0 2  Puv YY  ,         (5c) 

0  wuv LL  .         (5d) 

Here X, Y, L are chosen by the individuals whereas 
1P , 

2P , w are determined by market conditions, changing 

from time to time, to values that are beyond the individual’s influence or control. Hence X, Y, L will referred 

to as endogenous variables, and 
1P , 

2P , w as exogenous variables. If 
1P  were to increase; with 

2P , w 

remaining fixed, one might expect the consumer to decrease X and increase Y or decrease L, so that the 

additional income or saving finances the acquisition of the more expensive x. Mathematically we can write 

twelve partial derivatives as follows: 

















wwww

PPPP

PPPP

LYX

LYX

LYX







             

          

           

2222

1111

.        (6) 

These twelve partial derivatives are called the comparative statics of the problem (Chiang 1984). Now we 

introduce three explicit models (A), (B), and (C) as follows (Mohajan 2012): 

 

2.1 Model (A): 0XYu  

Consider the function u is given by;  

  cba
LYXuX,Y,Lu 0    ,       (7) 

 where 0u , a, b, c are constants. Taking partial derivatives, we get,  

cba

X LYaXuu
1

0  ,  cba

Y LYbXuu
1

0  ,  1

0  cba

L LYcXuu
     

(8a) 

  cba

XX LYXaauu
2

0 1  ,   cba

YY LYXbbuu
2

0 1  ,   2

0 1   cba

LL LYXccuu
  

(8b) 
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11

0  cba

XL LYacXuu ,  11

0  cba

YL LYbcXuu ,   cba

XY LYabXuu
11

0  .   (8c) 

If we now assume the constants a, b and c to satisfy the following inequalities: 

10  a ,  10 b , 10  c        (9) 

and assume X, Y, L to be positive, as is required by the nature of the problem, we readily see that the 

conditions (3a,b,c) are satisfied, and also the first condition in (3d). 

 

2.2 Model (B): 0XYu  

Consider the function u is given by,  

      LfbYaX
CXYeeAuX,Y,Lu

  1   0 ,     (10) 

where 0u , a, b, A, C are positive constants, and   Lf  is a function of L and is  given by; 

    1

0

 LLcLf ,       (10a) 

with c, 0L  positive constants which are distinct to those of Model (A). Taking partial derivatives of (10) we 

get; 

  LfbYaX

X CYeAaeuu
  0 ,      (11a) 

  LfbYaX

Y CXeAbeuu
  0 ,      (11b) 

   Lf

L XYeLLCcuu
 2

00
,        (11c) 

                            with     2

0

 LLcdLdfLf .                                     (11d) 

Taking the second partial derivatives of (11) we get, 

bYaX

XX Aeauu
 2

0 , bYaX

YY Aebuu
 2

0 ,        Lf

LL eLfLfCcXYuu
  

2

0
   (12a)    

   Lf

XL YeLfCuu
 0 ,    Lf

YL XeLfCuu
 0 ,   LfbYaX

XY CeabAeuu
  0    (12b)   

with     3

0 2
 LLcLf , so that; 

            4

0

23

0

2
 2 

  LLcLLcLfLf .      (13) 

Since 
XXu  and 

YYu  given in (12a), are clearly negative, as required by (3b). Again 
LLu , given in (12a), to be 

negative, the quantity on the right hand side of (13) must be positive, so that;  

  cLL 02 , 

which is satisfied by all positive L if we choose 0L  , c  so that cL 02 ; this we assume to be the case. Hence 

all the conditions of (3a,b) are satisfied, as can be verified from (11a–d) and (12a). Consider now 
XYu  is 

given by the last relation in (12b). We shall see that the constants or parameters A, C, a, b and c can be 

chosen so that 0XYu  is satisfied. 
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2.3 Model (C): 0XYu  

It is similar to Model (A), but u consists of two parts as follows:  

     cbca
LYuLXuLYXu 21,,  ,        (14) 

where cbauu ,,;, 21
 are new constants. Taking partial derivatives of (14) we get; 

ca

X LaXuu
1

1

 ,  cb

Y LbYuu
1

2

 ,    1

21    cba

L LYuXucu ,   (15a) 

  ca

XX LXaauu
2

1 1  ,   cb

YY LYbbuu
2

2 1  ,     2

21   1  cba

LL LYuXuccu ,  (15b) 

11

1

 ca

XL LacXuu ,  11

2

 cb

YL LbcYuu , 0XYu .    (15c) 

Hence, (3a,b,c) and the last relation in (3d) are satisfied, if we choose 
21   , uu  to be positive and a, b, c to 

satisfy (9) of Model (A). 

 

3. MATHEMATICAL DISCUSSIONS OF THE MODELS 

Consider the four equations (5a–d) in seven variables X, Y, L, wPP ,,, 21 . We solve for X, Y, L,  in terms of 

wPP ,, 21
 and denote the solution as follows (Moolio et al. 2009, Islam et al. 2010): 

 wPPX ,,*
21 ,   wPPY ,,*

21 ,   wPPL ,,*
21 ,   wPP ,,*

21 ,   (16) 

and set,  

   wPPuLYXuU ,, ~*,*,* 21 .      (17) 

If the left hand sides of (5a–d) are assumed to be continuously differentiable, then by the implicit function 

(will be discussed later) *,*,*,* LYX  will all continuously differentiable functions of wPP ,, 21  provided the 

following Jacobian matrix is non-singular at  *,*,*
LYX : 



























LLLYLX

YLYYYX

XLXYXX

uuuw

uuuP

uuuP

wPPo

H

              

              

             

                 

2

1

21

.                                               (18) 

Omitting ‘star’ from (17) and (18), and using chain rule we get,  




































w

L
w

w

Y
P

w

X
P

w

L
u

w

Y
u

w

X
u

w

U
LYX 21  

*
 .                        (19) 

From (5a) we get, 

     wLYPXPwT  21 ,        (20) 

so that taking partial derivative we get,  

     L
w

L
w

w

Y
P

w

X
PT 












 21 .     (21) 
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Using (21) in (19) we get,  

  w

U

LT 





*1 .       (22) 

We have mentioned that  LT   is the period of work, so that λ could be constructed as the marginal utility 

of w, the wage rate, per unit time. Let,  LTw  , the money earned by the individual, be denoted by B;  

       LTwB   .       (23) 

Since L is a function of wPP ,, 21
; so that (23) can be written as, 

   wwPPLTwwPPfB  ,, ,, 2121  .     (24) 

 Solution of (24) is as follows: 

 BPPgw ,, 21 , say,        (25) 

and we express *
U in terms of BPP ,, 21

;  

 BPPuU ,, ~*
21   BPPgPPu ,,,, ~

2121  BPPu ,, 
~~

21 .    (26) 

Taking partial derivative with respect to B we obtain; 

 BPPu
BB

U
,, 

~~
*

21






B

w

w

U








*

 
B

w
BPPu

B 





 ,, ~
21 .   (27) 

To find a convenient expression for 
B

w




, we consider for a moment BwPP ,,, 21  as independent variables and 

define a function of these four variables as follows: 

    BwPPfBwPPh  ,, ,,, 2121 ,      (28) 

dB
B

h
dw

w

h
dP

P

h
dP

P

h
dh
















 2

2

1

1

.      (29) 

We set 21 0 dPdP  , 0dh  in (29) that is, we hold 21, PP  constant and confine BwPP ,,, 21  to the ‘surface’ 
(24), i.e., consider B to be given by (24), (or (25)). Now (29) becomes; 

w

B

h

h

wh

Bh

dB

dw





 .       (30) 

Since 21, PP  are constants we can write, BwdBdw  , also from (28), ww fh  , 1Bh , so that , 

 
   wPPfBwPPh

BwPPh

B

w

ww

B

,,

1

,,,

,,,

2121

21 



,        (31) 

where   0,, 21 wPPfw . From (23) and (24) we get, 
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   LTwwPPf   ,, 21
, 

and taking the partial derivative with respect to w we get; 

          Sw LTLT
wLT

w
LTLT

w
wLTwPPf 







 










 1 1 ,, 21

  

(32) 

where  LT
wLT

w
S 





  is the individual’s elasticity of labor supply. The quantity S  can be interpreted 

as the ratio of a fractional change in work time to that in wage rate. Using (27), (31) and (32) we get; 

        w

U

LTB

U

S 






 *

1 

1*


,      (33) 

where 1S and so that the expression for  λ  is given by (22) now becomes, 

      
B

U
S 



*

1  .       (34) 

From (34) we see that the Lagrange multiplier λ is proportional to the marginal utility of income, the 

proportionality being the elasticity of labor supply plus unity; λ equals the marginal utility of income if 

0S , i.e., if there is no supply response to change in wage rate. 

Now we consider wPP ,, 21
 are all positive in the Jacobian matrix (18). We see from (3b,c), and whichever 

choice is made in (3d), it is not clear that the determinant of H will be non-singular, since some of the terms 

in the expansion will be positive and others negative. Baxley and Moorhouse (1984) say that there is a 

‘widespread economic folklore’ which assumes H to be negative. These authors also say, that at this point 

‘the economist deeply wishes that the sufficient conditions be necessary’. They state the two conditions for 

this as follows (for a relative maximum to occur at a solution 
*,*,*,* LYX  ): 

i.the determinant of Jacobian Matrix H, is given in (18), is negative, 

ii.the determinant of the Hessian matrix, 

      






















              

             

             0    

2

1

21

YYYX

XYXX

uuP

uuP

PP

,     (35) 

is positive. 

In models (A) and (C) the parameters can be chosen so that properties i) and ii) of (35), important as they are, 

can also be satisfied. In model (A), with the use of (8b,c), the determinant of the Jacobian matrix (18) can be 

written as follows (Mohajan 2012): 
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 

 

  2

0

11

0

11

0

11

0

2

0

11

02

11

0

11

0

2

01

21

1                            

       1                

                1        

                                                                       0    

  















cbacbacba

cbacbacba

cbacbacba

LYXccuLYbcXuLYacXuw

LYbcXuLYXbbuLYabXuP

LYacXuLYabXuLYXaauP

wPP

   (36) 

After expanding and simplifying we get, 

   
 
 



























21

221212

1

122212

2

121222

222222

2

2

222222

1

22222

2

0

 2

1 

1 1 

ˆ

PPLYXwPLYXwPLYXabc

wLYXbaab

PLYXcaacPLYXcbbc

uHH

cbacbacba

cba

cbacba

 

 (37) 

It looks as if for various sets of values of the constants a, b, c in the allowed range (9), this expression could 

be positive or negative. We consider cba  ; 10  a . Then we can write (37) as follows: 

     wYLPwXLPXYPPaLwYPXPaLYXauH
aaa

2121

2222

2

22

1

22222222

0  2 12 ˆ  

  
(38) 

Now for this model the determinant of the Hessian matrix (35) can be written as follows (Mohajan et al. 

2013): 

 

         1                

                1        

                                                           0      

H  

2

0

11

02

11

0

2

01

21

cbacba

cbacba

LYXbbuLYabXuP

LYabXuLYXaauP

PP











 ,     (39)      

for general values of a, b and c. After expanding and simplifying we get, 

    XYPabPYPaaXPbbLYXuH
cba

21

22

2

22

1

22

0 21  1    .   (40) 

Now we choose in the range of (9) cba  , to obtain the following expression for H  : 

    XYPaPYPXPaLYaXuH
aaa

21

22

2

22

1

22

0 2 1   .    (41) 

Now we show that there are at least two values of ‘a’ in the range 10  a  such that the determinant of the 

Jacobian matrix Ĥ given by (36) is negative definite while the determinant of the Hessian matrix H   given 

by (39) is positive definite, as required by the sufficient conditions i) and ii) of (35). First we choose 
2

1
a , 

then we get, 

   wYLPwXLPXYPPXYLuH 2121

12

0
4

1ˆ  
,     (41a) 

   221
2

1

0

2

3

4

1
YPXPLXYuH 



.     (41b) 
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Now we set 
3

1
a , then we get, 

    ,
27

1ˆ 2

21
3

4
2

0 wLYPXPXYLuH  
    (42a) 

       XYPPYPXPLXYuH 21

22

2

22

1
3

1

3

5

0
9

2
 

.    (42b) 

In each case given above Ĥ  is negative definite and H  is positive definite, supporting the ‘widespread 
economic folklore’ and the ‘economist’s deep wish’! Now for the Model (C) we will show that similar 
situation holds, where 0XXu . 

 

In Model (C) the determinant of the Jacobian matrix (18) can be written as follows (Mohajan et al. 2013): 

 

 

    2

21

11

2

11

1

11

2

2

22

11

1

2

11

21

 1                           

         1                       0                

                         0                1       

                                                                      0    

  















cbacbca

cbcb

caca

LYuXuccLbcYuLacXuw

LbcYuLYbbuP

LacXuLXaauP

wPP

 

  (43) 

Similarly, as before after expanding and simplifying we get, 

    
    
   

    









































wPLYXbbwPLYXaaPPLYXabcuu

wLYXbaabuu

PLYXuaccaXucaacu

PLYXubccbYucbbcu

H

cbacbacba

cba

cbaa

cbab

1

1221

2

1212

21

22112

21

2222

21

2

2

222

2

22

11

2

1

222

1

22

22

1 1  2

1 1 

  1 1 

  1 1 

ˆ    (44) 

We set, 
2

1
 cba , so that for  Model (C)  inequalities in (9) are satisfied. Hence (44) can be written as: 

    ,
16

1ˆ 2

21

1
2

3

21 wLYPXPLXYLuuH  
     (45) 

which is negative definite, as required. The determinant for the Hessian matrix (35) for Model (C) can be 

written as; 

 

      1                     0                

       0                     1        

                                                    0      

H  

2

22

2

11

21

cb

ca

LYbbuP

LXaauP

PP











      (46) 
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Similarly, as before after expanding and simplifying we get, 

     cab
LPXaauPYbbuH  1  1  2

2

2

1

2

1

2

2

       (47) 

which is positive definite for allowed values of a, b and c. Hence for suitable values of the parameters, Model 

(C) also satisfies sufficient conditions i) and ii) of (35). 

 

4. SUFFICIENT CONDITIONS FOR IMPLICIT FUNCTIONS 

We consider (5a–d) incorporating necessary conditions for an extremum, and examine the sufficiency 

conditions for a solution *,*,*,* LYX  to be a maximum (or minimum). Again we follow closely the 

discussion of this matter given by Baxley and Moorhouse (1984), but we make the calculations more explicit 

so that the novice or the economist not sufficiently familiar with mathematical concepts and manipulations 

can follow the steps relatively easily. 

Since u is a function of the endogenous variables X, Y, L, the functions 
Xu , 

Yu , 
Lu  also depend on the same 

variables: 

 LYXuu XX ,, ,       LYXuu YY ,, ,        LYXuu LL ,,    (47a) 

We denote the left hand sides of (5a–d) by the four components of a vector F, which all depend on 

,,,,,,, 21 wPPLYX  which may be regarded as points in a 7-dimensional Euclidean space, 7
R . Hence, 

 4321 ,,, FFFFF ,    0,,,,,, 21  wPPLYXFF ii  ; i = 1, 2, 3, 4,           (48) 

the latter representing the four equations (5a–d). Hence F is a four-vector valued function taking values in 
4

R  and defined for points in 
7

R . The solution of (48) be, 

 wPP

L

Y

X
,, 21G



















,      (49) 

where  4321 ,,, GGGGG , being a four vector valued function of wPP ,, 21 . The Jacobian matrix for G, GJ  is 

given by; 






















































w

Y

P

Y

P

Y

w

X

P

X

P

X

wPP

JG

          

          

           

21

21

21



.       (50) 

Assuming the solution λ, X, Y, L to be given as functions of wPP ,, 21  as in (49), we write (5a–d) explicitly 

(with the use of (48)) as follows (Mohajan et al. 2013): 
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         0,,,,,, 22112121  PwPPYPwPPXwPPLTw ,    (51a) 

         0,,,,,,,,,, 121212121  PwPPwPPLwPPYwPPXuX  ,     (51b) 

         0,,,,,,,,,, 221212121  PwPPwPPLwPPYwPPXuY  ,     (51c) 

         0,,,,,,,,,, 21212121  wwPPwPPLwPPYwPPXuL  .    (51d) 

Appling the first partial derivatives with respect to wPP ,, 21
 respectively, of (51a), to get the following three 

equations: 

XP
P

Y
P

P

X

P

L
w 












2

1

1

11

,       (52a) 

   YP
P

Y
P

P

X

P

L
w 












2

2

1

22

,       (52b) 

LTP
w

Y
P

w

X

w

L
w 












21 .       (52c) 

Similarly taking the second order partial derivatives of (51b–d) we get as follows: 

   

















1

1111

P
PP

L
u

P

Y
u

P

X
u XLXYXX ,      (53a) 

01

2222

















P
PP

L
u

P

Y
u

P

X
u XLXYXX


,     (53b) 

   01 














P
ww

L
u

w

Y
u

w

X
u XLXYXX


.      (53c) 

   02

1111

















P
PP

L
u

P

Y
u

P

X
u YLYYYX


,     (54a) 



















2

2222

P
PP

L
u

P

Y
u

P

X
u YLYYYX ,     (54b) 

   02 














P
ww

L
u

w

Y
u

w

X
u YLYYYX


.     (54c) 

   01

1111

















P
PP

L
u

P

Y
u

P

X
u LLLYLX


,     (55a) 

   0
2222

















w
PP

L
u

P

Y
u

P

X
u LLLYLX


,     (55b) 

   

















w
ww

L
u

w

Y
u

w

X
u LLLYLX .     (55c) 

Assuming that the Jacobian matrix H is given by (18), and the Jacobian matrix for G, GJ , is given by (50), 

four sets of equations (52) to (55) can be written as follows: 
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























 






     0      0   

0           0   

0        0      

       

1

LTYX

HJG .      (56) 

According to the rules of matrices, we get; 

T
C

H
H

det

11 
, where  

ijCC  , the matrix of cofactors of H and T for transpose. From (18) and (56) we 

get, 

 2212

1 det

1
CXC

HP

X 



,      (57) 

where 12C , 22C  are given by; 

      XLYYLLXYXLLYLLXYLYLLYY uuuuwuuuuPuuuPC       2

2

112 ,  

 (58a) 

LYYYLL uwPuwuPC 2

22

122 2 .       (58b) 

We confine ourselves to Models (A) and (C), so that, 0XYu , or 0XYu . With 0XYu , and conditions 

(3b,c), the second and third terms in 12C  are positive.  

The determinant of the Jacobian matrix (18) is given as follows: 

LLLY

XLXY

YYYX

XYXX

LLLX

XLXX

LLLY

YLYY

uu

uu
PP

uu

uu
w

uu

uu
P

uu

uu
PH 21

22

2

2

1 2det   22 21

LYLX

XYXX

YLYY

XLXY

uu

uu
wP

uu

uu
wP  . 

Let us assume that; 

       0
    

    
det

2 







LYYYLL

YYYL

LYLL
uuu

uu

uu
,     (59)  

“as economist generally do”, say Baxley and Moorhouse (1984). Then, 012 C ; from (3b,c), 022 C . Thus, 

0
1





P

X
, that is, if the price of x increases, then the amount of x, given by X, decreases, which is reasonable. 

For Model (A) we have, from (8b,c), after some calculations,  

        222222

0

2
1  cba

LYYYLL LYXcbbcuuuu ,    (60) 

which is positive if  1cb , which is valid for suitable choice of  b, c, consistent with (9). 

For Model (C) we have, from (15b,c), after some manipulation, 

       22222

2

222

21

2
1  1 1   cbcba

LYYYLL LYcbbcuLYXuucbbcuuu .  (61) 
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Assuming as before 0XXu , (3b,c) lead to 
44C  as well as the first two terms in 

14C  being positive. The 

assumption (“with the economist”) that;  

  0
    

    
det

2 







XYYYXX

YYYX

XYXX
uuu

uu

uu
,      (62) 

then implies that 
14C  is positive. We pause to examine (62) for models (A) and (C). For the format we get,  

    cba

XYYYXX LYXbaabuuuu
222222

0

2
1  ,   (63a) 

which is positive definite if 1ba ;  a, b can be chosen to satisfy this inequality, consistent with (9). For 

Model (C), since 0XXu , (62) follows trivially from (3b). Having established that both 
14C  and 

44C  are 

positive, it is clear from (61) that this implies that the sign of wL   is ambiguous; “this is itself a very 
interesting result” (Baxley and Moorhouse 1984).  

We have detH is negative, as has been established in some specific cases above; we confine ourselves to such 

cases. Thus the factor,   1
det

 H  is positive. We find that; 

  1444  
det

1
CLTC

Hw

L



  ,      (64) 

where   

      2

2114    XYYYXXXYLXLYXXYYLXLYYX uuuwuuuuPuuuuPC  ,  

XYYYXX uPPuPuPC 21

2

2

2

144 2 .  

Of the two terms in the brackets, 44C  is negative and   14 CLT   is positive. Recall that L is the leisure 

time so that  LT   is the work period. If the wage increases, one effect is an urge to work longer, that is, 

decreases the leisure time. This contributes a negative component to wL  ; for this reason the term, 44C  

is referred to as the substitution effect of an increase in w. Another effect of a wage increase is for the 

individual to resort to more leisure time to enjoy the extra goods he can purchase; this term (   14 CLT  ) is 

called the income effect. Thus a wage increase can give rise to both income and substitution effects which 

have opposite influences (Mohajan et al. 2013). 

 

Now we consider two other ways of looking at wL   which is given by (57). Again in (22), λ can be 

interpreted as the marginal utility of w per unit time. Hence (64) can be written as; 

    14

2

44

1

det

1
CLTCuLT

Hw

L
w 


 

.   (64a) 

We see from (64a) that if wu is small or if  LT   is large, i.e., the individual spends longer work time, then 

0 wL , so that the income effect dominates. On the other hand if wu  is large or if  LT   is small, then 

0 wL ,  so the substitution effect is more important. 
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Consider in the present context, the elasticity of labor supply S , then (64) can be written as; 

S  
 

 
  14

2 

442 
det

1
CLTCu

LT

w

Hw

LT

LT

w
w 








.    (65) 

If we assume  LT  , that is, the individual does the some work, then 0S , if and only if,  

  14

2 

44 CLTCuw  .       (66) 

This implies that the income effect equals the substitution effect. The properties of the comparative statics 

1PX   and wL   derived here may be of interest in wider contexts. One such circumstance is that of 

income tax. An increase of after tax wages is often carried out with a view to stimulate further work. We see 

from the above analysis that the tax cut may lead to both substitution and income effect, so that the desired 

response may not be forthcoming. Normally, policy makers, perhaps more often than not, discuss these 

matters in intuitive, qualitative and verbal terms (Mohajan 2012).  

From the expansion of the determinant of the matrix (18), by considering goods x and y weakly dependent 

with respect to u, we can write, 

        0 
     

     2  XYYYXX

YYYX

XYXX
uuu

uu

uu
.     (67) 

As mentioned, this condition has been shown to hold for Modes (A) and (C). Let us assume that the pairs 

 yx, ,  lx, ,  ly, , are weakly dependent, and 0XYu . Then it is readily verified, with the use of (3b,c) and 

others previous results, that   0det H . The case 0XYu , as mentioned earlier, will be considered on 

another occasion. 

Now consider the property of weak dependence, Baxley and Moorhouse (1984) say that “widespread 
economic folklore has held that” 

XXXY uu  , YYXY uu  ,      (68) 

would hold. The idea is that if 0XYu , the inequalities are trivial, while if, e.g., YX  , these becomes 

equations and other cases are intermediate. We examine (68) for model (A). Using (8a,b) we get, 

     YabX  1    and   XbaY  1 .     

 (69) 

One may choose to restrict a, b, X, Y (recall that 0a , 1b ) so that (69) is satisfied. In particular, in the 

three cases (i) YX
2

1
 , (ii) YX 

2

1
, (iii) YX  , we get from (69): 

i)       ab  1
2

1
,  ba  1

2

1
;     (70a) 

 ii)        ab  1
2

1
,  ba  1

2

1
.        (70b)  
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If we set YX  , it might appear from (69), that the inequalities become equations. However, as the 

following simplified form of the utility function (7) shows, this is not necessarily the case. For simplicity 

here we ignore the leisure time L; 

  ba
YXYXu  , , with     ba

XX YXaau
21  ,  11  ba

XY YabXu ,     21  ba

YY YXbbu , 

so that we get,  

  21 
  ba

YXXX Xaau , 2
  ba

YXXY abXu ,    21 
  ba

YXYY Xbbu . 

Thus the inequalities do not straightway become equations. The more relevant inequality in the present 

context is (67), which follows from (68), but the converse is not true. That the later is somewhere unrealistic 

can be seen from the following example:  

For some particular situation, let 1.0XYu , 1XXu . We change units of Y so it changes to YY
12

1
  (i.e., Y 

is measured in inches and Y   in feet). At this situation we get;  

   .2.1 12 


 XYXYYX u
Yd

dY
uu  

Hence 
XXYX uu   is not satisfied after a change of units. However, it can be verified that the determinant 

(67) does not change sign when units are changed. If we measure the unit in yard, then the inequality is 

satisfied (Mohajan et al. 2013).  

 

5. CONCLUSIONS 

In this study we have established that the value of the Lagrange multiplier is positive and sometimes it 

indicates shadow price. We have used necessary and sufficient conditions to obtain optimal value in each 

case. With the help of comparative static analysis and application of Implicit Function Theorem, we 

mathematically have shown the behavior of the firm (including explicit examples).  
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