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Abstract 

 

This paper considers logistic (asymmetric) and exponential (symmetric) smooth transition 

adjustments of real and nominal exchange rates for six major oil-exporting countries in response 

to different shocks affecting oil prices.  Real exchange rate movements affect the terms of trade 

and hence may affect relative competitiveness. We detect no statistically significant non-linearities 

for the adjustment process of real exchange rate returns, be they asymmetric or symmetric, in 

response to oil supply shocks, idiosyncratic oil-market-specific shocks, and speculative (crude oil 

inventory) oil-market shocks. On the other hand, global aggregate demand shocks, which are 

shocks that do not directly originate in the oil market, have nonlinear asymmetric effects on real 

exchange rate returns for Canada, Mexico, Norway and Russia, and linear effects for the UK.  

These qualitative results mostly hold for nominal exchange rate returns as well.  Exceptions are 

that linear effects are found for aggregate demand shocks for Brazil and for idiosyncratic shocks 

for Norway, whereas the aggregate demand shocks for the UK have nonlinear and asymmetric 

effects instead of linear ones.   
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1. Introduction 

A large number of studies explored the empirical relationship between oil prices and exchange 

rates with mainly three different types of econometric tools: linear cointegration methods, linear 

and nonlinear Granger-causality tests, and linear vector autoregression (VAR) models. For 

example, Amano and van Norden (1998) used linear cointegration tests and Granger causality tests 

and found a positive long-run relationship between real oil prices and US-dollar exchange rates.  

However, Reboredo (2012) found instead weak evidence for co-movements between nominal oil 

prices and exchange rates of several oil exporting and oil importing countries. Linear and nonlinear 

correlations and copula functions for symmetric and asymmetric co-movements, which may vary 

over time, were considered.   

In a seminal paper Kilian (2009) showed that the impact of an oil price change on the economy 

depends upon whether the oil price change is due to an oil supply shock, a global aggregate demand 

shock, or an oil-market-specific demand shock.  Numerous studies followed using Kilian’s (2009) 

framework to analyze the effects of these oil-market shocks on macroeconomic and financial 

variables in various countries.  Atems et al. (2015) and Basher et al. (2016) used Kilian’s (2009) 

methodology in order to study the effects of these oil-market shocks on exchange rates. Atems et 

al. (2015) found that whether US exchange rates respond asymmetrically to oil-market shocks 

depends on the size and sign of a shock, using an exchange rate model with otherwise linear 

relationships.  Basher et al. (2016) used instead a nonlinear Markov-switching model for exchange 

rates and found only limited evidence that oil supply shocks affect exchange rates, whereas global 

aggregate demand shocks played an important role.1      

There is an ongoing debate in the literature about whether the effects of oil price shocks have 

linear or nonlinear effects on other macroeconomic variables.  Mork (1989) argued that increasing 

real oil prices have significantly different effects on US real GDP growth compared to declining 

oil prices.  Hamilton (1996, 2003) used a net oil price increase to model effects of oil prices.  His 

net oil price measure is defined as observed oil price increases that represent new highs relative to 

the recent experience, or reversals of recent decreases, and zero values in other periods without 

                                                           
1 The regime classification measures (RCMs) for the fit of the Markov-switching models reveal relatively large 

values for oil exporting countries, indicating room for improvements in nonlinear modelling by using alternative 

models.  The Markov model with t-distributed innovations seems to achieve a low value (of 7.84 in Table 6, p. 21) 

only for Russia.  Other values for oil exporters in Table 6 range from 39.30 (UK) to 74.07 (Canada) and from 22.46 

(UK) to 86.66 (Norway) in Table 5 (p. 19) for normally distributed innovations.  The RCM can take values from 0 

(perfect regime classification) to 100 (no regime classification is detected).  
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such changes. On the other hand, Kilian and Vigfusson (2011a, 2011b) discussed econometric 

issues in regard to oil price shocks and presented empirical evidence in favor of effects on output 

being linear and symmetric.2 Instead, a threshold model, say with smooth transition between 

regimes, allows estimating the adjustment process itself from the data without imposing a strict 

formula for switches as Hamilton’s net oil price does.  Flexible nonlinear functional forms can be 

specified for alternative processes for such smooth transition regression models that are symmetric 

or asymmetric for adjustments in response to negative and positive changes (Teräsvirta et al., 

2010).  An alternative nonlinear model is a Markov-switching model that determines regimes from 

the data as well, pursued in Basher et al. (2016) and Basher et al. (2017).   

In this paper, we employ a nonlinear smooth transition model for modelling the effects of oil-

market shocks on exchange rates.  In contrast to Markov-switching models where the adjustment 

process is abrupt and in a way a “black box,” smooth transition models specify the functional form 

of the adjustment process and are explicit about what variables drive the process.  These types of 

smooth transition models have been successfully used to model the time series behavior of 

exchange rate movements (see, e.g., and Kilian and Taylor, 2003, and Taylor et al., 2001) but have 

not yet been used to explain how exchange rates react to changes in oil prices, as far as we know.      

Kilian and Murphy (2014) extended the oil-market model of Kilian (2009) by including as an 

additional variable changes to above-ground global crude oil inventories.  This allows for explicit 

identification of oil-market shocks due to speculative trading in the crude oil market.  We employ 

both models to derive the oil-market shocks:  Kilian’s (2009) model and alternatively the extended 

oil-market model of Kilian and Murphy (2014).  The latter model allows to separate the oil-market-

specific demand shock in Kilian (2009) into an idiosyncratic oil-market-specific demand shock 

and an explicitly identified speculative (crude oil inventory) demand shock. We follow Kilian 

(2009) and apply a two-stage approach to examine the response of the real exchange rate to oil 

price shocks.  We first estimate a structural VAR model with monthly data, following (i) Kilian 

(2009) with a Cholesky identification scheme and (ii) Kilian and Murphy (2014) by imposing 

contemporaneous and dynamic sign restrictions and bounds for short-run price elasticities of oil 

production and “demand for oil in use” in order to identify structural oil-market shocks. We then 

analyze the impact of these shocks on exchange rates in second-stage regressions.   

                                                           
2 See the reply by Hamilton (2011).  For a comprehensive recent study with different definitions of net oil price 

increases see Herrera et al. (2016). 
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We consider as a transition variable in the nonlinear model, in turn, each of the oil-market 

shocks. The transition variable triggers the transition from one regime to another and allows for a 

smooth transition, or abrupt transition as a limiting case.  The logistic form renders asymmetric 

transitions so that positive and negative shocks can have different transition paths.  On the other 

hand, the exponential transition function renders symmetric transition paths for positive and 

negative shocks.  The potential nonlinearity takes two forms that have been used commonly and 

successfully for nonlinear modelling in economics and finance.3 

Most of the literature on the effects of oil price changes has concentrated on the US economy.  

A good number of papers studied oil-importing countries but there are only a few that considered 

oil-exporting countries.  This paper contributes to the literature on the effects of oil price changes 

for developed and emerging oil-exporting countries by allowing for potentially nonlinear effects 

on real exchange rates, which affect a country’s terms of trade and therefore may affect its 

competitiveness.  We choose for our analysis major net oil exporting countries for which sufficient 

data for flexible exchange rate periods are available:  Canada, Brazil, Mexico, Norway, Russia, 

and the UK.4 These countries are among the top twenty crude oil exporters in 2009 (Europe’s 

Energy Portal, 2016) and comprise developed (Canada, Norway, and the UK) as well as emerging 

economies (Brazil, Mexico, and Russia).   

The paper is organized as follows. Section 2 provides a brief review of the related literature on 

exchange rates and Section 3 describes the econometric models, the data and presents the results. 

Section 4 concludes the paper.   

 

2. Related literature: a brief review 

 The theoretical literature on exchange rates considered two channels through which an oil 

price shock can be transmitted to a country’s exchange rate:  the terms of trade channel and the 

wealth effect channel. The terms of trade channel was explored, for example, by Backus and 

Crucini (2000), and Chen and Rogoff (2003).  For oil-exporting countries, an increase in oil prices 

generally leads to improvements of the trade balance and subsequently to an appreciation of the 

local currency, which may eventually lead to a Dutch Disease problem by driving up the price of 

                                                           
3 See Granger and Teräsvirta (1993), Teräsvirta (1994, 1998), Teräsvirta et al. (2010), and Ma and Wohar (2014).  
4 For most of the estimation period the UK was a net crude oil exporter, except since 2005 when it became a net 

importer.  See https://www.eia.gov/todayinenergy/detail.cfm?id=16971. 

https://www.eia.gov/todayinenergy/detail.cfm?id=16971
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the non-tradable goods (Buetzer et al., 2012).  Empirical support for this view was presented by 

Backus and Crucini (2000), showing that oil price changes determine most of the variation in the 

terms of trade.  

The distinction between oil-exporting and oil-importing countries appears particularly 

important for the wealth effect channel.  An increase in oil prices is associated with a wealth 

transfer from oil-importing to oil-exporting countries that leads to a real appreciation of the 

exchange rates of the oil-exporting country due to portfolio reallocations (e.g., Buetzer et al., 2012, 

and Fratzscher et al., 2014). The basic theory for the wealth channel was developed by Golub 

(1983) and Krugman (1983), and related empirical evidence was presented in Kilian et al. (2009) 

and Bodenstein et al. (2011), among others. 

Early research on the relationship between oil prices and exchange rates commonly applied 

linear cointegration methods and Granger causality tests.   Numerous studies reported finding 

evidence of an appreciation of the US dollar in response to rising oil prices.  In reviewing the large 

and growing literature on the relationship between exchange rates and oil prices, Coudert et al. 

(2011) found a long-run elasticity between oil prices and exchange rates of 0.3 for oil exporting 

countries.  In contrast to these studies, Buetzer et al. (2012) used the two-step approach of Kilian 

(2009) for assessing the impact of oil price shocks on exchange rates. They analyzed in a linear 

framework their impact on nominal and real exchange rates, as well as stock returns, for 44 

advanced and emerging countries.  Oil supply and global aggregate demand shocks are found to 

not systematically lead to an appreciation of oil exporters’ currencies relative to oil importers’, 

contrary to the predictions of theory.  On the other hand, oil-market specific demand shocks do 

exert pressure on oil exporters’ currencies to appreciate.  Basher et al. (2012) extended Kilian’s 

(2009) three-variable linear structural VAR model of the crude oil market to include other key 

macroeconomic variables and found no significant effects of oil supply shocks on exchange rates, 

whereas an unanticipated global demand expansion lead to a depreciation of the US dollar.  

Furthermore, the impact of a positive oil-market-specific demand shock was also negative 

(reflecting the so-called numeraire effect). These findings supported the conclusion that exchange 

rate movements are determined primarily by current account movements (Krugman, 1983). 

Atems et al. (2015) studied the role of Kilian’s (2009) oil-market shocks for real and trade-

weighted exchange rates for net oil importers and exporters.  They separated each of the three oil-

market shocks into negative and positive shocks and alternatively into large and small shocks and 
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considered linear adjustment processes for these shocks.  Basher et al. (2016) explored instead 

nonlinearities for the adjustment effects of the three oil-market shocks on real exchange rates of 

oil exporters and importers.  The nonlinearities were modelled in the form of Markov-type regime 

changes, however, the model fit was somewhat questionable for oil exporting countries (see 

footnote 1).  Atems et al. (2015) and Basher et al. (2016) found that global oil supply shocks have 

generally no statistically significant, or only very limited effects, on real exchange rates.  They 

further found that positive oil-market-specific demand shocks usually lead to an appreciation of 

currencies of oil-exporting countries but these effects are at times borderline cases for the 95% 

confidence bands reported.  On the other hand, global aggregate demand shocks generally had 

statistically significant effects on real exchange rates in both studies, but a clear pattern did not 

always emerge for oil-exporting countries.  

 

3. Econometric methodology, data, and results 

3.1 Modelling nonlinear smooth adjustment 

An important advantage of smooth transition models, in comparison to other available 

nonlinear models, is that nonlinear models can be specified in a relatively parsimonious way so 

that only a small number of parameters needs to be estimated and samples do not have to be 

particularly large to achieve reliable statistical inference.  Hamilton (2016) surveyed and compared 

various nonlinear econometric models, i.e., models with regime changes, available in the literature, 

and pointed out (pp. 33-34) that smooth transition models allow basing the changes in regime on 

the entire history of the transition variable (i.e., its time series process) and not just on a single 

value (probability) as in the standard Markov switching model.   

We will consider smooth transition regression (STR) models, however, the threshold case with 

abrupt change from one regime to another is embedded as a special case when the adjustment 

speed goes to infinity. We determine how real exchange rate returns react to oil-market shocks 

empirically, in particular, we estimate the adjustment speeds.  Negative and positive oil-market 

shocks can have different effects and also small and large oil-market shocks (in absolute terms) 

are allowed to influence exchange rates differently.  Our model therefore allows us to test 

Hamilton’s (1996, 2003) hypothesis that only oil price increases matter.  We should note that we 

do not model the time-series behavior of exchange rates themselves but rather assess only the 

impact that oil-market shocks have on them, following the two-step methodology of Kilian (2009).  
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We estimate a nonlinear model of the form ∆𝑓𝑥𝑡 = 𝛼 + 𝛽1′𝑋𝑡 + (𝛽2′𝑋𝑡)𝐹(𝜏𝑡;  𝛾,  𝑘) +  𝜆∆𝑓𝑥𝑡−1 +   𝜂𝑡,                                (1) 

where Δfxt is the change in the log exchange rate, and F(·), the transition function, is generally 

bounded between 0 and 1, γ is a positive parameter indicating how fast the transition from one 

regime to another occurs, k locates where the transition occurs, and τt is a covariance-stationary and 

ergodic transition variable. Xt is a vector of regressors that contains in our case just one of the oil-

market shocks, and β1 and β2 are associated parameters.  We include the lag on the exchange rate 

as it improves the fit of the model.  

The transition variable triggers the smooth transition from one regime to another (Granger 

and Teräsvirta, 1993; Teräsvirta, 1994, 1998). Generally, the transition function is assumed to be 

either of the logistic (LSTR) or exponential (ESTR) form.  The class of nonlinear models is infinite.  

But, the choice of LSTR and ESTR models is based on a relatively simple form with only a few 

parameters to estimate.  Also, we rely on the successful application of such models to exchange 

rate behavior in the literature and on the availability of a complete econometric toolkit for 

estimation and inference.   

In the LSTR model, the transition function is monotonically increasing in the transition 

variable:    𝐹(𝜏𝑡; 𝛾, 𝑘) = {1 + exp [−𝛾(𝜏𝑡 − 𝑘)]}−1,  γ>0.                                                                (2) 

The logistic function 𝐹(𝜏𝑡; 𝛾, 𝑘) is bounded between 0 and 1 as τt increases from small (negative) 

values to large (positive) values.  When 𝜏𝑡= k it has a value of 0.5.  In our applications we set k=0 

so that our model distinguishes between negative and positive values of τt, i.e., we allow regimes 

to be different for positive and negative values of τt .  We consider for the transition variable in turn 

each of the oil-market shocks, denoted 𝜀𝑖𝑡.  Therefore, we allow for negative and positive oil-

market shocks to affect exchange rates differently and in addition we allow in each case for the 

size of the oil-market shock to influence its effect on exchange rate returns.  For large values of the 

transitions speed parameter γ, the transition of 𝐹(𝜏𝑡; 𝛾, 𝑘) from 0 to 1 becomes almost 

instantaneous.  Hence, the LSTR model nests a two-regime threshold model with abrupt regime 

changes as a special case as γ → ∞. On the other hand, when γ = 0 the logistic function equals a 

constant (0.5) and the LSTR model reduces to a linear model. 
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The ESTR model is a non-monotonic alternative that is symmetric around k. It allows for 

different behavior for large and small deviations from the threshold k, regardless of the sign of the 

deviation: 𝐹(𝜏𝑡; 𝛾, 𝑘) = 1 − 𝑒𝑥𝑝 [−𝛾(𝜏𝑡 − 𝑘)2],   γ>0. 

 

The exponential function 𝐹(𝜏𝑡; 𝛾, 𝑘) → 1 as 𝜏𝑡 → − ∞  and also as 𝜏𝑡 →  ∞, and further 𝐹(𝜏𝑡; 𝛾, 𝑘) = 1 for 𝜏𝑡= k.  Setting 𝜏𝑡= 𝜀𝑖𝑡 and k = 0 allows for an inner regime around the point where shocks 

are zero (𝜏𝑡= 𝜀𝑖𝑡 = 0 and F( ∙ ) = 0 ) and the adjustment process of exchange rates becomes linear 

in equation (1).  For large shocks, in absolute terms, when 𝜏𝑡 → ±∞, the ESTR function F( ∙ ) →1 and describes an outer regime for which equation (1) becomes in the limit a different linear 

model.  The ESTR process is a generalization of a two-regime threshold model.  The adjustment 

process for positive and negative oil-market shocks is the same in the ESTR model.   

The adjustment speed γ and location parameter k can be estimated via nonlinear least 

squares.  A problem arises because equation (1) is not identified under the null hypothesis of 

linearity. Teräsvirta (1994, 1998) suggested estimating an auxiliary regression instead: ∆𝑓𝑥𝑡 = 𝛼 + 𝛽1′𝑋𝑡 + 𝛿0′𝑋𝑡𝜏𝑡 +  𝛿1′𝑋𝑡𝜏𝑡2 +  𝛿2′𝑋𝑡𝜏𝑡3 +  𝜆∆𝑓𝑥𝑡−1 +   𝜂𝑡,                   (3) 

where the null hypothesis of linearity is given by 𝛿0′ = 𝛿1′ = 𝛿2′ = 0.  Testing the LSTR against the 

ESTR model within equation (3) implies testing 𝛿2′=0, because the ESTR model requires that this 

coefficient is zero.  It is important that t is moment stationary up to a certain order.  We consider 

each of the oil-market shocks in separation to keep the nonlinear model parsimonious.   

 

   3.2 The identification of global oil-market shocks 

Our identification of the structural shocks of the global oil market is based on two alternative 

structural VAR (SVAR) models: Kilian 2009) and Kilian and Murphy (2014). In Kilian (2009), 

the global oil market consists of three variables: one supply and two demand variables. The supply 

variable is a vertical short-run oil supply curve (i.e., flow supply), a demand variable representing 

aggregate demand for global industrial commodities (i.e., flow demand) and an oil-specific demand 

variable that reflects the real price of oil (i.e., other demand). The residual demand shock thus 

captures a whole array of other shocks to oil prices besides flow demand and flow supply shocks. 

In addition to the fundamental laws of supply and demand, expectations play an important role in 

setting the price of oil. For example, concerns about future supply shortfalls or rising demand leads 

to a higher demand for crude oil inventories in the current period, causing the price of oil to rise 
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instantaneously. In this way, the change in crude oil inventories above the ground reflects 

speculative motives in regards to future oil price movements. It also highlights the degree of 

concerns about future oil supplies, including precautionary motives and strategic oil reserves. The 

main mechanism underlying these dynamics is the storability of oil, allowing oil traders to take 

advantage of both rising and falling markets. 

To account for the expectations channel of the global oil market explicitly, Kilian and Murphy 

(2014) added a speculative demand shock (measured by an unexpected change in crude oil 

inventories) to the SVAR model. In contrast, the oil-market specific demand shocks in Kilian’s 

(2009) model only indirectly identify speculative (or precautionary) oil demand shocks.  On the 

other hand, the flow oil-supply variable reflects any speculative behavior of oil producers, such as 

pumping less crude oil from below-ground in anticipation of higher future oil prices.  It must be 

noted that due to the inclusion of inventories, the SVAR of Kilian and Murphy (2014) can no 

longer be identified recursively as in Kilian (2009); instead Kilian and Murphy (2014) use a 

combination of sign restrictions and bounds on the short-run price elasticities of oil demand and 

oil supply in order to identify the four structural shocks in the model.  

 

3.2.1 Identification and estimation of the SVAR model 

3.2.1.1 The oil-market SVAR as in Kilian (2009) 

The first step of the analysis is to consider an SVAR: 𝐴0𝑦𝑡 = 𝐴(𝐿)𝑦𝑡−1 + 𝜀𝑡,                                   (4) 

where yt includes for t=1, …, n  (i) the percentage change in global oil production (prod), (ii) a 

measure of global economic activity  (rea), and (iii) the natural logarithm of the real oil price (rpo); 𝜀𝑡 denotes the vector of serially and mutually uncorrelated structural innovations. The orthogonal 

structural innovations are estimated by imposing exclusion restrictions on 𝐴0−1 (see Kilian, 2009) 𝑦𝑡 = 𝐴0−1𝐴(𝐿)𝑦𝑡−1 + 𝑒𝑡,                                                   (5) 

with et a vector of VAR errors such that 𝑒𝑡 = 𝐴0−1𝜀𝑡.  The reduced form VAR errors in equation 

(5), et , have no economic interpretation as they are correlated with each other.  However, the errors 

in the structural VAR, 𝜀𝑡, do have economic meaning.  For our three-variable VAR the identifying 

structure is as follows:  
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𝑒𝑡 = (𝑒1𝑡𝑝𝑟𝑜𝑑𝑒2𝑡𝑟𝑒𝑎𝑒3𝑡𝑟𝑝𝑜 ) = [
𝑎11 0 0𝑎21 𝑎22 0𝑎31 𝑎32 𝑎33](

𝜀1𝑡𝑠𝜀2𝑡𝑑𝜀3𝑡𝑝𝑟𝑒𝑐)                                             (6) 

The three structural shocks are attributed as follows: 𝜀1𝑡𝑠  denotes shocks to the global supply 

(production) of crude oil that is available above the ground, the “oil supply shock”; 𝜀2𝑡𝑑  denotes 

shocks to the global demand for all industrial commodities that are driven by global real economic 

activity, the “aggregate demand shock;” and 𝜀3𝑡𝑝𝑟𝑒𝑐 denotes an oil-market-specific demand shock, 

the “precautionary demand shock.” The identification of the parameters in 𝐴0−1 is achieved by 

imposing a recursive Cholesky ordering as in Kilian (2009, pp. 1059-1060), who explained in 

detail the rationale for it.  The crude oil supply production is assumed not to respond to innovations 

to the demand for oil within the same month.  Global real economic activity does respond to oil 

supply shocks within the month but responds to shocks that are specific to the oil market with a 

delay of a month, i.e., it does not respond contemporaneously.  This restriction reflects sluggish 

adjustment of global real economic activity in response to oil price shocks.  Last, the real price of 

oil is allowed to respond to shocks to both oil production and global real economic activity shocks 

within the same month. This allows for any exogenous changes in crude oil supply or the real 

economy to be immediately reflected in oil prices.  The oil-market-specific demand shock itself 

can capture shifts in the price of oil that are due to precautionary demand changes that reflect how 

concerned markets are about the availability of future oil supplies.  

For our sample period, standard DF-GLS tests of Elliott et al. (1996) show evidence in favor 

of unit roots for the global real economic activity variable and for the log of the real oil price, but 

these two variables are cointegrated (see Section 3.5.1).  On the other hand, the percentage change 

in the oil supply is stationary in levels.  Our oil-market VAR specification therefore fits the cases 

illustrated by Sims et al. (1990).   Sims et al. (1990) showed that the estimated coefficients of the 

VAR model in levels are consistent and asymptotically normally distributed when unit roots and 

cointegration are present in the data. Put differently, it is not essential to impose cointegration to 

achieve consistency of the estimates.5  

 

                                                           
5 Moreover, Hamilton (1994, pp. 651-653) cautioned against imposing invalid cointegration restrictions. Also, we 

note that it is incorrect to use first-differences of variables (that have unit roots) in a VAR when cointegration is 

present because then missing error-correction terms create omitted variables bias.   
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3.2.1.2 The oil-market SVAR as in Kilian and Murphy (2014) 

The vector yt in equations (4) and (5) is expanded to include now four variables: global oil 

inventory changes in levels (inv) are added.  The orthogonal structural innovations are again 

estimated from the reduced form estimates.  As the oil inventory data tend to show seasonal swings, 

the reduced-form VAR is estimated using seasonal dummies. Furthermore, as shown below in 

Section 3.5.1, three of the four variables in this model have unit root behavior and in addition 

exhibit a cointegrating relationship.  Therefore, a VAR in levels is appropriate for this expanded 

model as well.  The structural shocks 𝜀1𝑡𝑠  and 𝜀1𝑡𝑑  have the same interpretation as before; 𝜀3𝑡𝑖𝑑𝑖 refers 

to all other (residual) oil-market specific idiosyncratic demand shocks, labelled “idiosyncratic 

shock” that are not important determinants of the real price of oil; and 𝜀4𝑡𝑖𝑛𝑣 is a shock due to 

unexpected changes in above-ground oil inventories that capture speculative motives related to 

concerns over future oil demand and supply, an “inventory shock” or “speculative oil demand 

shock”.  

For identification, sign restrictions are imposed on the expanded 𝐴0−1 matrix: 

𝑒𝑡 = ( 
    𝑒1𝑡𝑝𝑟𝑜𝑑 𝑒2𝑡𝑟𝑒𝑎 𝑒3𝑡𝑟𝑝𝑜𝑒4𝑡𝑖𝑛𝑣 ) 

 = [ −     +          none      +−     +          none      −+     +          none      +none none     none      +   ] ( 
 𝜀1𝑡𝑠𝜀2𝑡𝑑𝜀3𝑡𝑖𝑑𝑖 𝜀4𝑡𝑖𝑛𝑣) 

 
.        (6') 

These sign restrictions are imposed only on the impact of responses. Justifications are explained 

by Kilian and Murphy (2014).  These static sign restrictions are too weak to be informative for 

identification of the shocks. Additional restrictions are needed: a joint set of dynamic sign 

restrictions is imposed so that a negative flow supply shock leads to a dynamic response of the real 

price of oil that is constrained to be positive for at least 12 months.  In addition, following Kilian 

and Murphy (2014), we restrict the impact price elasticity of oil supply to fall within a bound of 

[0, 0.025] primarily because models identified purely based on sign restrictions produce values of 

this elasticity that are too large to be economically meaningful. Finally, contrary to the existing 

literature, Kilian and Murphy (2014) suggested using the price elasticity for oil demand “in use” 

(instead of the price elasticity for oil demand “in production”), because crude oil used (demanded 

for consumption) in our model could come from flow production and from crude oil in storage. 

Given that the price elasticity of oil demand in use is weakly negative on impact, we impose -0.8 

≤ “price elasticity of oil demand in use” ≤ 0 for the initial effect.   
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Although there are several approaches for estimating sign-identified VAR models, the 

Bayesian methods are the most common approach. Typically, researchers assume a standard 

Gaussian-inverse Wishart prior distribution for the reduced-form VAR parameters and a Haar 

distribution for the rotation matrix, used to construct the structural impact multiplier matrix for the 

impulse responses. The posterior distribution of the structural impulse responses is derived by 

applying the identification criteria to each draw of the parameters and rotation matrix from those 

prior distributions.  We will repeat this procedure for five million draws and discard structural 

models that imply impulse responses not obeying the identifying restrictions.   

3.3 Specification of the Step Two Regression 

After having estimated the oil-market shocks, the next step is to include them, one at a time, 

in equation (3) in order to test the null hypothesis of linearity for the effects of the oil-market 

shocks on exchange rate returns for each of the six countries.  By construction, the shocks 

estimated in the two alternative oil-market SVARs are orthogonal to other variables (in regards to 

(6’) see Kilian and Murphy, 2014, p. 463).  The extent to which these shocks are orthogonal to 

exchange rate returns in the second stage regression depends partly on how well the SVAR in the 

first stage is specified.  In the Kilian and Murphy (2014) model, the supply, demand, and 

speculative shocks are explicitly identified, whereas in the model of Kilian (2009) the speculative 

shock is only implicitly identified. However, for the second stage regression estimates to be 

consistent it is only required that the shocks are each a predetermined variable in regards to 

unexpected changes in exchange rate returns.  In other words, pre-determinedness means that there 

is no feedback from excess stock returns to the oil-market shocks within the same month.  This is 

a commonly used assumption when analyzing the effects of oil-market shocks on financial and 

macroeconomic variables (e.g., Kilian, 2009).  Hence, exchange rate returns are allowed to respond 

contemporaneously to each one of the oil-market shocks but, on the other hand, shocks to exchange 

rate returns do not affect oil supply (production), global real economic activity, the speculative oil 

demand, nor real oil prices within the month and there is a delay of one month or more, if there is 

any effect at all.   

A further potential complication arises because the oil-market shocks are generated regressors 

when used in the second stage regressions involving exchange rate returns.  Generally, this does 

not cause problems for coefficient estimates themselves but the estimates of their standard errors 

are not consistent because the sampling variation in the generated regressors is ignored 
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(Wooldrigde, 2010). Although, the exact implications depend on the specific model and 

assumptions.  We do not include lags on the generated regressors (the oil-market shocks).6  Our 

model hence fits the Model 4 in Pagan (1984, p. 232) with γ =0.  Pagan (p. 233) showed that for γ 

=0 the second stage ordinary least squares estimators are efficient and produce consistent estimates 

of coefficients and standard errors.  Murphy and Topel (1985) extended these results to models 

that are nonlinear.  Hence, and estimation and inference can proceed as usual in our second stage 

regressions. 

Teräsvirta (1998, p. 526) suggested using for the nonlinear specification the transition variable 

that yields the smallest p-value for the null hypothesis test when comparing a transition variable 

with and without a time lag and with different lag lengths. We analyze the impact of oil-market 

shocks i on exchange rate returns so that Xt = 𝜀𝑖𝑡 in equation (1) and we also choose the ith oil-

market shock 𝜀𝑖𝑡 as the transition variable.  Further, for all oil-market shocks and all countries, the 

un-lagged transition variable is chosen with Teräsvirta’s approach, which is consistent with the 

foreign exchange market being an efficient market.  Hence, equation (3) reduces to: ∆𝑓𝑥𝑡 = 𝛼 + 𝛽1𝜀𝑖𝑡 + 𝛿0𝜀𝑖𝑡2 +  𝛿1𝜀𝑖𝑡3 +  𝛿2𝜀𝑖𝑡4 +  𝜆∆𝑓𝑥𝑡−1 +   𝜂𝑡.                                             (7) 

For the LSTR model, the null hypothesis of linearity that δ0=δ1=δ2=0 in equation (7) is tested with 

a Wald test.  The test for δ2=0 is a t-test of the LSTR versus the ESTR model.  In order to test 

linearity for the ESTR model, we impose δ2=0 and test the null hypothesis of linearity that δ0=δ1=0.  

On the other hand, the linear model itself can be tested by imposing linearity in equation (7) with 

δ0=δ1=δ2=0 and then test the null hypothesis that 𝛽1 = 0.  This is a test of the hypothesis that the 

oil-market shock in question has no (linear) effect on exchange rate returns.  

With Xt = 𝜏𝑡= 𝜀𝑖𝑡  the LSTR model for oil-market shocks takes the following form: 7 ∆𝑓𝑥𝑡 = 𝛼 + 𝛽1𝜀𝑖𝑡 + 𝛽2𝜀𝑖𝑡{1 + exp [−𝛾(𝜀𝑖𝑡)]}−1 +  𝜆∆𝑓𝑥𝑡−1 +   𝜂𝑡.                  (8)    

The linear model is given by                                                               ∆𝑓𝑥𝑡 = 𝛼 + 𝛽1𝜀𝑖𝑡 +  𝜆∆𝑓𝑥𝑡−1 +   𝜂𝑡.                                        (9) 

An identifying assumption for the LSTR model is that the adjustment speed γ>0. 

 

 

 

                                                           
6 This is consistent with efficient markets theory that implies that exchange rates should react to news without delay. 
7 In the empirical specification, we considered additional lags on ∆𝑓𝑥𝑡, however these did not improve the model fit. 
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3.4 Data 

The monthly data employed are the world crude oil production (supply), the global real 

economic activity index from Kilian (2009), real US refiners’ imported crude oil prices, above-

ground crude oil inventories, and the exchange rates.8 The sample period for the oil-market model 

start in January 1974.  The US refiners’ acquisition cost of crude oil is deflated by the US CPI to 

calculate real oil prices in dollars per barrel. Nominal exchange rates are converted to real 

exchange rates using the appropriate consumer price index (CPI) ratio between the two countries. 

We classify Brazil, Canada, Mexico, Norway, Russia and the UK as net oil exporting countries.  

The sample period used for estimating the effects of oil-market shocks on exchange rate returns of 

individual countries starts at the earliest with February 1976, due to observations used up for lag 

construction in the SVAR.  For Canada, Norway, and the UK models are estimated over the period 

from February 1976 to February 2014. For the other countries, the estimation period starts from 

the date when crawling-peg exchange rates were abandoned in favor of floating exchange rates 

(allowing for a one-period lag to calculate returns):  February 1995 for Brazil, February 1995 for 

Mexico, and October 1998 for Russia.  Brazil put in place the Plano Real in 1994 that introduced 

a new currency, and monetary and fiscal policy measures to stabilize the economy.  Mexico 

adopted floating exchange rates from 19 December 2014 and Russia after the Russian financial 

crisis from 2 September 1998 onwards.   

For all countries, the monthly real ex-post returns on exchange rates (foreign exchange returns) 

are constructed using Δfxt = 100 ln (fxt / fxt-1), where fxt is the real exchange rate in period t. Figure 

1 depicts real exchange rates for each country.  The share of the oil rent in GDP gives an indication 

of the importance of oil to the economy of each country.  In Figure 2, oil rents are the difference 

between the value of crude oil production at world prices and total costs of production.  We restrict 

our analysis to countries (and sample periods) with essentially independently floating exchange 

rates, as defined by the IMF (2004, 2014), that are among the top twenty crude oil exporters 

(Europe’s Energy Portal, 2016).   Four of these countries are classified by the IMF (2014, 2004) 

as countries with freely floating exchange rates:  Canada, Mexico, Norway and the UK.    The US 

dollar falls into this category of freely floating currencies as well, although it is not a net crude-oil 

exporter, but we use US-dollar based exchange rates.  Brazil’s real is classified as an independently 

floating exchange rate and we include it in our analysis. The Russian ruble is a more or less 

                                                           
8 Details for data sources are given in the Appendix.  
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managed floating currency with no explicitly stated anchor (IMF, 2004), however, currency 

management arrangements changed over time and it is debatable how freely the ruble has been 

floating (see Central Bank of the Russian Federation, 2014).  Nevertheless, we include Russia in 

our sample, noting that it ends before the Russian financial crisis in the second half of 2014 that 

lead to large interventions by the Russian Central Bank to support a collapsing ruble.           

Several other countries among the top twenty oil exporters have had fixed-peg currency 

arrangements, mostly to the US dollar (if not de jure then de facto): Kuwait, Libya, Oman, Qatar, 

Saudi Arabia and the United Arab Emirates (IMF, 2004, 2014).  The remaining countries among 

the top twenty managed and stabilized their currencies to various degrees (Algeria, Iran, Iraq, 

Nigeria, Kazakhstan and Venezuela), with some countries anchoring their currencies to the US 

dollar (Angola and Azerbaijan). In addition, several of these countries experienced political and 

civil unrest, sanctions on oil exports, and war, affecting foreign exchange market arrangements.    

 

3.5 The impact of oil-market shocks on exchange rates: results 

3.5.1 Unit roots and cointegration 

As a first step, we test the variables, as specified for the SVAR in equation (4), for unit roots 

with the DF-GLS test, using Akaike’s information criterion for lag-length selection and a constant 

term in the test regression. The percentage change in the oil supply is well described by a 

covariance-stationary process for our sample. The DF-GLS statistic takes on a value of -2.37, so 

that the null hypothesis of a unit root is comfortably rejected at the 5% level.  On the other hand, 

the percentage deviation from trend of the global economic activity index and the log of the real 

oil price show each unit root behavior.  The DF-GLS test takes on values of -0.80 and -1.05 (or -

1.59 if additionally a time trend is included in the test regression for oil prices) for these two 

variables, respectively.  The change in inventories also shows unit root behavior (the test statistic 

has a value of -1.27).  Therefore, the null hypotheses of a unit root cannot be rejected, even at the 

10% level, for all three variables.  However, the three variables are cointegrated, based on 

Johansen’s (1995) trace and maximum eigenvalue tests with p-values for the null hypothesis of no 

cointegration of 0.0005 and 0.01, respectively, and p-values for the hypothesis of at most one (two) 

cointegrating vector of 0.01 (0.11) for both tests.  This means that the evidence suggests the 

presence of two cointegrating vectors among the three variables.  There is also cointegration 

among the global economic activity index and the real price of oil: Johansen’s (1995) trace and 
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maximum eigenvalue tests produce p-values for the null hypothesis of no cointegration of 0.001 

and 0.002, respectively, and p-values for the hypothesis of at most one cointegrating vector of 0.07 

for both tests.  Engle-Granger tests confirm these findings. Our SVAR specifications hence fit the 

framework of Sims et al. (1990), as discussed in Section 3.2.1.  

In order to avoid spurious regressions due to the presence of unit roots in the second stage 

regression with exchange rates, we applied the DF-GLS test to real and nominal exchange rate 

returns.  We found empirical support of covariance stationarity for both exchange rate returns for 

all countries.  The null hypothesis of a unit root was rejected.  In addition, we tested all oil shocks 

individually and these time-series process also turned out to be stationary.9   

 

3.5.2 Results for real exchange rate returns:  Kilian’s (2009) oil-market shocks 

Table 1 reports the results for the various linearity tests for equation (7) with real exchange 

rate returns and the three structural oil-market shocks defined in equation (6) based on an SVAR 

with 24 lags.  All of the characteristic roots of the VAR are within the unit circle and the residuals 

are white noise.  Entries in bold mark significance at the 5% level. The third column of Table 1 

reports p-values for an oil supply shock for the various tests of equation (7).  We cannot reject the 

linear model with p-values of 0.11 in two cases and 0.20 or lager in all other cases, except for 

Russia.  That is we cannot reject the hypotheses that δ0=δ1=δ2=0 for the LSTR and δ0=δ1=0 for the 

ESTR model (with δ2=0 imposed) in those instances.  Next, we test for all countries whether oil 

supply shocks affect exchange rate returns in the linear model where δ0=δ1=δ2=0 is imposed in 

equation (7) and the null hypothesis that  𝛽1 = 0 is tested.  We do not find a significant linear 

influence of oil supply shocks on exchange returns, as p-values are 0.26 or larger.  On the other 

hand, the LSTR model is supported for oil supply shocks for Russia.  The hypothesis that 

δ0=δ1=δ2=0 is strongly rejected for Russia with a p-values of 0.002.  Also, the t-test for the 

hypothesis that δ2=0 is rejected with a p-value of 0.006, showing that the ESTR model with 

symmetric adjustment is rejected in favor of the LSTR model with asymmetric adjustment.  We 

note that the linear model would indicate for Russia that an oil supply shock has no impact on 

exchange rate returns due to a p-value of 0.26.  

The fourth column of Table 1 reports p-values for global aggregate demand shocks for the tests 

of equation (7).  We cannot reject the linear model for Brazil, Russia and the UK.  For these three 

                                                           
9 Detailed results are available from the authors on request.  
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countries, we test next whether aggregate demand shocks affect exchange rate returns in the linear 

model (δ0=δ1=δ2=0) in equation (7).  We find a significant linear influence of aggregate demand 

shocks only for the UK because we reject the null hypothesis that 𝛽1 = 0 with a p-value of 0.03.  

The p-values for Brazil and Russia are 0.35 and 0.62 respectively.  On the other hand, the LSTR 

model is supported for aggregate demand shocks for Canada, Mexico and Norway.   The 

hypothesis that δ0=δ1=δ2=0 is strongly rejected for these countries with p-values of 0.007 or less.  

Also, the t-tests for the hypothesis that δ2=0 are rejected for Canada, Mexico and Norway with p-

values of 0.03 or larger, thus showing support for the LSTR model.  It is interesting to note that 

the linear model would indicate instead incorrectly for Mexico and Norway that aggregate demand 

shocks have no impact on exchange rate returns because the p-values are 0.82 and 0.14, 

respectively.   

The last column in Table 1 presents results for oil-market-specific demand shocks.  At the 5% 

level of significance there is no support for the LSTR or the ESTR models for all six countries 

with p-values of 0.24 or larger, except for Norway where we get p-values of 0.09 and 0.08.  Hence, 

linearity cannot be rejected for all countries at the conventional 5% level of significance.  We test 

next whether oil-specific demand shocks have a significant linear influence on exchange rate 

returns.  The hypothesis 𝛽1 = 0 cannot be rejected for Brazil, Mexico and the UK with p-values 

of 0.20, 0.10 and 0.15, respectively.  This means that oil-specific demand shocks have no 

statistically significant effects on exchange returns for these countries.  On the other hand, the 

hypothesis that 𝛽1 = 0 is strongly rejected for Canada, Norway and Russia with p-values of 0.004 

or smaller.  Hence, oil-specific demand shocks significantly affect exchange returns for Canada, 

Norway and Russia, but only linearly.   

Table 2 reports the regression results for the nonlinear models chosen based on the analysis in 

Table 1.  The identifying assumption for the LSTR model that the adjustment speed γ>0 holds for 

all LSTR results with global aggregate demand shocks for Canada, Mexico and Norway, and with 

oil supply shocks for Russia. The nonlinear impact on the exchange rate returns, measured by 𝛽2, 
is negative for Canada, Norway and Russia, meaning that a positive shock leads to an appreciation 

of their currencies relative to the US dollar.  However, for Mexico the coefficient estimate for 𝛽2 
is positive, albeit not statistically significant at the 5% level, implying a depreciation of the 

Mexican peso.  A global aggregate demand shock affects the currencies of oil exporting countries 

through both the change in the price of oil and the change in the demand for other goods than oil 
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that they export.  An increase in global aggregate demand normally leads to an appreciation of the 

oil exporter’s currency, thus generating a Dutch disease effect.  But, depending on the share of oil 

exports in total exports, central banks may have incentives to actively counter appreciation 

pressures by accumulating foreign exchange reserves, thus lessening or reversing appreciation 

pressures (Buetzer et al., 2012).   

The 𝛽2-coefficient estimate in Table 2 is clearly statistically significantly different from zero 

for Canada (p=0.001) and is a borderline case for Mexico and Russia (p=0.07 in both cases), 

though the estimate of the adjustment speed  𝛾 is statistically significantly different from zero for 

both countries (p=0.02 and 0.01), as it is for Canada (p=0.001).  On the other hand, the 𝛽2 estimate 

is not significantly different from zero for Norway (p=0.29).  In addition, the coefficient estimate 

for 𝛾 for Norway is not significantly different from zero either (p=0.47), which indicates that an 

LSTR model does not describe adequately the nonlinear adjustment process for global aggregate 

demand shocks for Norway.  However, the results for Norway in Table 1 showed that the linear 

model is not adequate either in the case of global aggregate demand shocks.  It would seem that a 

larger SVAR model of the Norwegian economy is needed in order to capture the dynamic response 

of exchange rate returns in this case, which is beyond the scope of our paper.    

Table 3 reports the results for the shocks for which the linear model is supported by the data:  

oil-market-specific shocks for Canada, Norway and Russia, and global aggregate demand shocks 

for the UK.  All of these shocks show a negative and statistically highly significant estimate for 𝛽1 
so that a positive shock leads to an appreciation of the currencies of these countries relative to the 

US dollar, as one would expect. 

 

3.5.3 Results for real exchange rate returns: Kilian and Murphy’s (2014) oil-market 

shocks 

We estimate the four structural oil-market shocks from the SVAR, using the identification 

structure as given in equation (6’).  The SVAR was again estimated with 24 lags. We find in our 

sample 91 admissible structural VAR models that obey the identifying assumptions.  We estimated 

a value of -0.2539 for the posterior median of the price elasticity of oil demand in use.  We follow 
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Kilian and Murphy (2014) and choose among the admissible SVAR models the one that has an 

elasticity of oil demand in use closest to this value.10  

The third column of Table 4 reports p-values for an oil supply shock for the various linearity 

tests of equation (7) for real exchange rate returns.  We cannot reject the linear model for all 

countries because the p-values are larger than 0.05, with no value below 0.10, except for the UK 

for the LSTR model with a value of 0.09.  Next, we test whether oil supply shocks affect exchange 

rate returns in the linear model where δ0=δ1=δ2=0 is imposed and the null hypothesis is  𝛽1 = 0. 

We do not find a significant influence of oil supply shocks on exchange returns either, as all p-

values are 0.13 or larger. These results indicate that an oil supply shock has no impact on exchange 

rate returns for any country for the oil supply shocks derived from Kilian and Murphy’s (2014) 

SVAR. 

The fourth column of Table 4 reports p-values for global aggregate demand shocks.  We cannot 

reject the linear model for Brazil and the UK. For these two countries, we test next whether 

aggregate demand shocks affect exchange rate returns in the linear.  We find a significant linear 

influence at the 5% level for aggregate demand shocks only for the UK because we reject the null 

hypothesis that 𝛽1 = 0 with a p-value of 0.01, whereas for Brazil the p-value is 0.09.  On the other 

hand, the LSTR model is supported for aggregate demand shocks for Canada, Mexico, Norway 

and Russia. The hypothesis that δ0=δ1=δ2=0 is strongly rejected for these countries with p-values 

of 0.02 or less. Also, the t-tests for the hypothesis that δ2=0 lead to rejections of the ESTR model 

for these countries with p-values of 0.04 or smaller, showing support for the LSTR model.  The 

linear model would indicate instead incorrectly for Mexico and Russia that aggregate demand 

shocks have no impact on exchange rate returns because the p-values are 0.32 and 0.23.   

The last two columns in Table 4 present results for idiosyncratic oil-market-specific demand 

shocks and oil inventory (speculative oil demand) shocks. At the 5% level of significance there is 

no support for the LSTR or the ESTR models for all six countries with p-values of 0.12 or larger, 

except for Mexico where we get a p-value of 0.09 for the ESTR model for idiosyncratic shocks 

(“all other shocks”). Hence, linearity cannot be rejected for all countries at the conventional 5% 

level. Next, we test whether idiosyncratic and oil inventory shocks have a significant linear 

influence on real exchange rate returns.  In all cases, the hypothesis 𝛽1 = 0 cannot be rejected at 

                                                           
10 Alternatively, one could choose the most likely (or modal) model that maximizes the joint posterior density of a 

set of admissible models with the 100(1 − α)% highest posterior density. See Inoue and Kilian (2013, 2017).  
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the 5% level of significance. This means that idiosyncratic and oil inventory shocks have no 

statistically significant effects on real exchange returns for these countries.   

Table 5 lists the results for the nonlinear models chosen based on the analysis in Table 4, which 

is the LSTR model with global aggregate demand shocks in all cases. The identifying assumption 

that γ>0 holds for all countries: Canada, Mexico, Norway and Russia. The nonlinear impact on the 

exchange rate returns, measured by 𝛽2, is negative and statistically significantly different from 

zero for Canada, meaning that a positive shock leads to an appreciation of its currency relative to 

the US dollar.  However, for Mexico, Norway and Russia the coefficient estimates for 𝛽2 are 

positive, but their effects are not statistically significant at the 5% level, except for Norway.   

The estimates of the adjustment speed  𝛾 in Table 5 are not statistically significantly different 

from zero at the 5% significance level for all four countries.  Although, the coefficient estimate for 𝛾 for Canada is a borderline case (p=0.06) in terms of significance, which indicates that an LSTR 

model may describe adequately the nonlinear adjustment process for Canada.  On the other hand, 

for Mexico, Norway and Russia it would seem that a larger SVAR model of their economies is 

needed in order to capture the dynamic responses.    

Table 6 lists the results for the global aggregate demand shock for the UK for which the linear 

model is supported by the data.  A negative and statistically significant estimate for 𝛽1 means that 

a positive shock leads to an appreciation of the British pound relative to the US dollar, as expected.   

 

3.5.4 Results for nominal exchange rate returns: Kilian and Murphy’s (2014) oil-market 

shocks 

In this section, we use nominal exchange rates instead of real exchange rates for calculating 

exchange rate returns.  This specification is motivated by the wealth channel that emphasizes the 

effects on nominal exchange rates, whereas the terms of trade channel mainly works through 

relative prices so that real exchange rates instead are more relevant (Beckmann and Czudaj, 2013).  

The results for the linearity tests with nominal exchange rate returns for equation (7) are reported 

in Table 7.   

For oil supply shocks, the test statistics support the same model specifications as in the model 

with real exchange rate returns in Table 4 in terms of LSTR, ESTR or linear specifications, even 

though individual p-values differ somewhat. For global aggregate demand shocks, qualitative 

results are again unaffected when real exchange rate returns are replaced with nominal ones, except 
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for Brazil, Russia and the UK.  The tests now support a linear model for Brazil and the ESTR 

model for the UK, whereas there are no significant effects at all for Russia.  For idiosyncratic oil-

market shocks the qualitative results align again with the results for real returns in Table 4, except 

for Norway, where the linear model is supported.  For speculative oil-inventory shocks, the results 

for the effects are unchanged in comparison with Table 4.  Estimation details for the statistically 

significant adjustment processes are reported in Tables 8 and 9.  The qualitative results are broadly 

consistent with those for real exchange rates in Tables 5 and 6 for Canada, Mexico and Norway.   

All shocks concerned are global aggregate demand shocks, except for Norway with linear 

idiosyncratic shocks affecting nominal exchange rates in Table 9.    

 

3.5.5 Overall assessment of the empirical results 

Generally, we find that the results obtained with the oil-market shocks from the SVAR of 

Kilian (2009) are broadly speaking similar to those derived from the SVAR of Kilian and Murphy 

(2014).  The only exceptions are the results for the oil-market specific shocks of Kilian (2009) as 

compared to the inventory shocks and idiosyncratic shocks of Kilian and Murphy (2014).  The 

speculative demand shocks are not explicitly identified in Kilian’s (2009) model and are defined 

as residual shocks in the oil market that are not due to either oil production (supply) or global 

aggregate demand (demand for oil in use).   The advantage of Kilian and Murphy’s (2014) SVAR 

is that it explicitly identifies shocks due to speculative behavior in the crude oil market and 

separates them form residual idiosyncratic shocks that are not important systematic drivers of oil 

prices.  We therefore rely on the model of Kilian and Murphy (2014) when assessing the effects 

of oil-market shocks on the exchange rates of major oil exporting countries. 

 We find that oil supply shocks are not driving the exchange rate movements of oil exporting 

countries, whether one looks at real or nominal exchange rates.  This result is in line with the 

findings of Kilian (2009) and Kilian and Vigfusson (2011a, 2011b) for US real GDP, and Basher 

et al. (2016) using a Markov-switching model.  Real and nominal exchange rates are instead driven 

by shocks to the global aggregate demand of crude oil in use.  Speculation in the crude oil market 

does not exert any systematic influence on the movement of exchange rates of the oil exporters 

relative to the US dollar, with the possible exception of the nominal exchange rate for Norway.  

Furthermore, the idiosyncratic shocks are indeed empirically unimportant in regards to exchange 

rates.   
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Global aggregate demand shocks, which are shocks to the global demand for industrial 

commodities, relate in a nonlinear way to real exchange rates for Canada, Mexico, Norway, and 

Russia, and in a linear way for the UK.  The relationship is also nonlinear for nominal exchange 

rate effects for Canada, Mexico, Norway, and the UK, and linear for Brazil.  That real and nominal 

exchange rates react differently to aggregate demand shocks is consistent with the theories 

discussed earlier for the channels through which oil-market shocks affect exchange rates. 

Furthermore, we note that a linear analysis would have concluded incorrectly that global aggregate 

demand shocks have no statistically significant effects on exchange rate returns for several cases. 

 

4. Conclusions and implications  

We examined the response of monthly exchange rate returns to oil price shocks for six major 

oil exporting countries with (more or less) flexible exchange rate regimes.  Other major oil 

exporting countries have had instead regimes of pegged or managed exchange rates.  We used two 

alternative structural VAR models: Kilian’s (2009) model with three oil-market shocks and Kilian 

and Murphy’s (2014) model with four oil-market shocks.  In contrast to the previous literature on 

oil-market shocks and exchange rates, we considered flexible nonlinear forms for adjustments to 

shocks, besides linear adjustment.  We specified logistic (asymmetric) and, alternatively, 

exponential (symmetric) nonlinear adjustment processes of the form that have been successfully 

employed before in the literature on empirical modelling of the dynamics of exchange rates 

themselves. This methodology allowed us to estimate quite parsimoniously a flexible reaction 

function for exchange rate returns to each of the oil-market shocks.  

Our findings are that the explicit identification of speculative oil-market shocks proposed by 

Kilian and Murphy (2014) is important for properly assessing the effects of shocks other than oil 

supply and global aggregate demand shocks.  Overall global oil supply shocks have no statistically 

significant effects on real and nominal exchange rate returns of oil exporting countries, for linear 

as well as nonlinear specifications. Nominal and real exchange rates are instead driven by crude 

oil demand “in use” that depends on global business cycle fluctuations and the demand for 

industrial commodities.  Our result are relevant for the debate on the role of oil price shocks, with 

Hamilton (2003, 2011, and 2016), among others, emphasizing oil supply shocks as the main driver 

on one side of the debate, and Kilian (2009), Kilian et al. (2009), Kilian and Vigfusson (2011a, 
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2011b), and Kilian and Murphy (2014) emphasizing global aggregate demand and speculative 

crude oil price shocks on the other side.    

Our study also showed that shocks directly originating in the oil market, that is oil supply and 

speculative oil demand shocks, have no asymmetric effects on real and nominal exchange rate 

returns.  Instead, the effects are either linear or symmetrically nonlinear, if they are significant at 

all.  This result is different from the results reported by Basher et al. (2016) for oil-market specific 

demand shocks derived in Kilian’s (2009) set-up: all oil exporters’ real exchange rates are 

statistically significantly affected in at least one regime in their nonlinear Markov models, looking 

at the preferred models in their Tables 5 and 6 based on regime classification measure values.      

Compared to the other three shocks, our results are different for global real economic activity 

shocks measured with the index of the global production of industrial commodities.  We should 

point out that, unlike other available monthly measures of output, this index includes emerging 

economies such as China and India (Kilian and Zhou, 2017).  We found empirical support for 

nonlinear asymmetric effects of aggregate demand shocks.   

 Our findings imply for future research that a structural vector autoregressive model with 

alternative nonlinear features, such as time-varying parameters, and additional macroeconomic 

variables would be a worthwhile venue for modelling the dynamics in the case of aggregate 

demand shocks.       
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Figure 1. Monthly real exchange rates 
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Figure 2.  Oil rents (% of GDP), annual figures 
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Table 1.  P-values for tests for equation (7) with real exchange  

                rate returns for the three oil-market shocks from 

                Kilian’s (2009) model 

  
     
Country Model  

tested 

Oil supply 

shock 

Aggregate 

demand 

shock 

Oil-

market 

specific 

shock  

     

Brazil LSTR 0.11 0.15 0.54 

 ESTR 0.31 0.86 0.80 

 Linear 0.85 0.35 0.20 

     

Canada LSTR 0.73 0.0001 0.44 

 ESTR 0.71 0.0004 0.36 

 δ2=0 -- 0.0001 -- 

 Linear 0.32 0.0001 0.0001 

     

Mexico LSTR 0.25 0.0004 0.94 

 ESTR 0.20 0.0003 0.85 

 δ2=0 -- 0.009 -- 

 Linear 0.35 0.82 0.10  

      

Norway LSTR 0.79 0.007 0.09  

 ESTR 0.60 0.02 0.08  

 δ2=0 -- 0.03 --  

 Linear 0.91 0.14 0.001  

      

Russia LSTR 0.002 0.40 0.72  

 ESTR 0.02 0.23 0.59  

 δ2=0 0.006 -- --  

 Linear 0.26 0.62 0.004  

      

UK LSTR 0.20 0.15 0.24  

 ESTR 0.11 0.13 0.69  

 Linear 0.39 0.03 0.15  

     
 

Notes: The tests for the LSTR model are Wald tests for the null hypothesis  

            that δ0=δ1=δ2=0. The tests for the ESTR model impose δ2=0 and test  

            the null hypothesis that δ0=δ1=0. The test of δ2=0 is a t-test of the  

            LSTR versus the ESTR model. The linear model test imposes  

            δ0=δ1=δ2=0 and tests that 𝛽1 = 0, which is a test of whether the oil 

            shock has any linear influence on exchange rate returns. Entries  

            in bold mark significance at the 5% level.    

      

 

 
  



27 

 

Table 2.  Estimates for the LSTR model in equation (8) with real exchange rate  

                returns for the three oil-market shocks from Kilian’s (2009) model  

 

       

Country Type of shock  Coefficient estimates 

  α β1 β2 γ λ 

       
Canada Global aggregate --  -- -0.06 24.8 0.28 

 Demand   (0.001) (0.001) (0.001) 

       

Mexico Global aggregate --  -- 0.08 8.3 -- 

 Demand   (0.07) (0.02)  

       

Norway Global aggregate --  -- -0.03 1.86 0.33 

 Demand   (0.29) (0.47) (0.001) 

       

Russia Oil supply --  -- -0.57 93.8 -- 

    (0.07) (0.01)  

       
 

Notes: A dashed line indicates that the variable associated with the coefficient was left out of  

           the model because it did not enter the regression statistically significantly at the 5% level. 

           We report p-values in parentheses with those values that are 0.05 or smaller in bold.   

 

 

 

 

 

 

 

 

 

Table 3.  Estimates for the linear model in equation (9) with real exchange  

                rate returns for the three oil-market shocks from Kilian’s (2009) model 
 

      

Country Type of shock  Coefficient estimates 

  Α β1 λ1 λ2 

 
Canada Oil-market- -0.21 -0.07 0.28 -- 

 specific demand (0.002) (0.001) (0.001)  

      

Norway Oil-market- --  -0.06 0.33 -- 

 specific demand  (0.001) (0.001)  

      

Russia Oil-market- --  -0.09 0.20 -- 

 specific demand  (0.004) (0.01)  

      

UK Global aggregate --  -0.05 0.33 -010 

 Demand  (0.02) (0.001) (0.03) 

      
 

Notes: See the notes to Table 2.  λ1 is the coefficient of ∆𝑓𝑥𝑡−1 and λ2 is the  

           coefficient of  ∆𝑓𝑥𝑡−2. 
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Table 4.  P-values for tests for equation (7) with real exchange rate returns  

                for the four oil-market shocks from Kilian and Murphy’s (2014)  
                model 

 
       
Country Model  

tested 

Oil supply 

shock 

Aggregate 

demand 

shock 

All other 

shocks  

Oil 

inventory 

shock 

      

Brazil LSTR 0.35 0.35 0.69 0.51 

 ESTR 0.22 0.21 0.57 0.45 

 Linear 0.57 0.09 0.87 0.76 

      

Canada LSTR 0.56 0.0001 0.37 0.76 

 ESTR 0.39 0.0001 0.24 0.56 

 δ2=0 -- 0.0001 -- -- 

 Linear 0.65 0.0001 0.32 0.60 

      

Mexico LSTR 0.44 0.0001 0.14 0.99 

 ESTR 0.50 0.0006 0.09 0.99 

 δ2=0 -- 0.001 -- -- 

 Linear 0.55 0.32 0.52 0.41  

       

Norway LSTR 0.85 0.002 0.31 0.91  

 ESTR 0.97 0.02 0.98 0.78  

 δ2=0 -- 0.008 -- --  

 Linear 0.22 0.005 0.05 0.51  

       

Russia LSTR 0.37 0.02 0.70 0.53  

 ESTR 0.72 0.06 0.99 0.36  

 δ2=0 -- 0.04 -- --  

 Linear 0.75 0.23 0.09 0.37  

       

UK LSTR 0.09 0.10 0.62 0.12  

 ESTR 0.13 0.10 0.75 0.64  

 Linear 0.13 0.01 0.47 0.86  

      
Notes: See Table 1. 

 

 

Table 5.  Estimates for the LSTR model in equation (8) with real exchange rate returns  

                for the four oil-market shocks from Kilian and Murphy’s (2014) model 
 

       

Country Type of shock  Coefficient estimates 

  Α β1 β2 γ λ 

       
Canada Global aggregate --  -- -0.59 9.68 0.28 

 Demand   (0.0001) (0.06) (0.0001) 

       

Mexico Global aggregate 0.20 -664.9 1329.6 0.001 -- 

 Demand (0.007) (0.94) (0.95) (0.95)  

       

Norway Global aggregate --  -- 440.2 0.0006 0.30 

 Demand   (0.0001) (0.99) (0.95) 

       

Russia Global aggregate 

demand 

-0.70  

(0.005) 

-0.85 

(0.03) 

1.41 

(0.24) 

0.68 

(0.43) 

0.09 

(0.02) 

       
Notes: See Table 2. 
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Table 6.  Estimates for the linear model in equation (9) with  

                real exchange rate returns for the four oil-market shocks  

                from Kilian and Murphy’s (2014) model 
 

     

Country Type of shock  Coefficient estimates 

  Α β1 λ1 

 
UK Global aggregate -- -0.32 0.30  

 Demand  (0.01) (0.0001) 

     

     
Notes: See Table 3. 

 

 

 

Table 7.  P-values for tests for equation (7) with nominal exchange rate returns  

                for the four oil-market shocks from Kilian and Murphy’s (2014) model 

 
       
Country Model  

tested 

Oil supply 

shock 

Global 

aggregate 

demand shock 

All other 

(idiosyncratic) 

shocks  

Oil 

inventory 

shock 

      

Brazil LSTR 0.29 0.26 0.77 0.61 

 ESTR 0.17 0.16 0.69 0.56 

 Linear 0.46 0.04 0.89 0.69 

      

Canada LSTR 0.85 0.0001 0.42 0.51 

 ESTR 0.70 0.0001 0.24 0.31 

 δ2=0 -- 0.0001 -- -- 

 Linear 0.60 0.0001 0.57 0.61 

      

Mexico LSTR 0.05 0.002 0.77 0.79 

 ESTR 0.26 0.03 0.58 0.63 

 δ2=0 -- 0.004 -- -- 

 Linear 0.24 0.12 0.13 0.80  

       

Norway LSTR 0.72 0.0007 0.24 0.97  

 ESTR 0.75 0.008 0.84 0.96  

 δ2=0 -- 0.007 -- --  

 Linear 0.43 0.0008 0.04 0.35  

       

Russia LSTR 0.96 0.60 0.76 0.09  

 ESTR 0.97 0.66 0.61 0.33  

 Linear 0.21 0.22 0.34 0.17  

       

UK LSTR 0.09 0.03 0.61 0.19  

 ESTR 0.11 0.02 0.69 0.69  

 δ2=0 -- 0.21 -- --  

 Linear 0.30 0.008 0.69 0.77  

      
Notes: See Table 1.  
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Table 8.  Estimates for the LSTR model in equation (8) with nominal exchange rate  

               returns for the four oil-market shocks from Kilian and Murphy’s (2014) model 

 

       

Country Type of shock  Coefficient estimates 

  α β1 β2 γ λ 

       
Canada Global aggregate --  -- -0.21 152.4 0.17 

 Demand   (0.09) (0.60) (0.0001) 

       

Mexico Global aggregate -- -514.9 1029.3 0.001 0.21 

 Demand -- (0.59) (0.57) (0.95) (0.08) 

       

Norway Global aggregate 0.19  -55.6 4370.6 0.0006 0.35 

 Demand (0.09) (0.005) (0.09) (0.99) (0.0001) 

       

UK Global aggregate 0.11  -0.56 15276.3 14.8 0.30 

 Demand (0.54) (0.12) (0.41) (0.28) (0.0001) 

       
Notes: See Table 2.  

 

 

 

Table 9.  Estimates for the linear model in equation (9) with  

                nominal exchange rate returns for the four oil-market  

                shocks from Kilian and Murphy’s (2014) model 

 

     

Country Type of shock  Coefficient estimates 

  α β1 λ1 

 
Brazil Global aggregate -- -0.49 0.40  

 Demand  (0.04) (0.0001) 

     

Norway Idiosyncratic -- -0.25 0.37 

   (0.04) (0.0001) 

     
Notes: See Table 3. 
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Appendix: Data Sources 

Monthly data are used. The world oil supply (crude oil production in millions of barrels per 

day) is taken from the US Energy Information Administration (EIA) at 

http://www.eia.gov/totalenergy/data/monthly/index.cfm.  The percentage deviation from trend for 

the global real economic activity index is from Lutz Kilian’s website at the University of Michigan 

http://www-personal.umich.edu/~lkilian/paperlinks.html. On the usefulness of this index for 

measuring real global economic activity, see Kilian and Zhou (2017).  Data on US refiners’ 

acquisition cost of crude oil are from http://www.eia.gov/petroleum/data.cfm#prices. 

Global crude oil inventories are defined as crude oil stocks in storage above the ground. They 

are approximated by OECD crude oil inventories.   We updated the data available from Kilian and 

Murphy (2014) beyond August 2008.  For this purpose, we used data from the EIA and data 

adjustments kindly supplied to us by Lutz Kilian.  The OECD database does not report crude oil 

inventories but only petroleum inventories. Therefore, following Kilian and Murphy (2014), we 

scaled US crude oil inventories with the ratio of OECD petroleum stocks to US petroleum stocks.   

Kilian and Lee (2014) studied the reliability of using this proxy variable for crude oil inventories 

above the ground. They found that an alternative measure of inventories derived from proprietary 

data leads generally to similar results, despite the correlation between the two inventory measures 

being not very high.   

Nominal exchange rates for Brazil, Canada, Mexico, Norway, and the UK are taken from the 

Federal Reserve Bank of St. Louis’ FRED database, retrieved at 

http://research.stlouisfed.org/fred2/categories/15.  Except for the UK, exchange rates are quoted 

as foreign currency per US dollar.  For the UK, we inverted the exchange rate to make it directly 

comparable to that of the other countries.  The CPI data were sourced from the OECD data web 

site:  http://stats.oecd.org/Index.aspx?querytype=view&queryname=221.  The exchange rate 

between the Russian ruble and the US dollar was taken from Quandl (https://www.quandl.com/).  

The annual data on oil rents in Figure 2 (as of 18 March 2016) are from the World Development 

Indicators site at http://wdi.worldbank.org/table/3.15. Data for Russia are available from 1989 

onwards. 

 

http://www.eia.gov/totalenergy/data/monthly/index.cfm
http://www-personal.umich.edu/~lkilian/paperlinks.html
http://www.eia.gov/petroleum/data.cfm#prices
http://research.stlouisfed.org/fred2/categories/15
http://stats.oecd.org/Index.aspx?querytype=view&queryname=221
https://www.quandl.com/
http://wdi.worldbank.org/table/3.15

	where yt includes for t=1, …, n  (i) the percentage change in global oil production (prod), (ii) a measure of global economic activity  (rea), and (iii) the natural logarithm of the real oil price (rpo); ,𝜀-𝑡. denotes the vector of serially and mutu...
	,𝑦-𝑡.=,𝐴-0-−1.𝐴,𝐿.,𝑦-𝑡−1.+,𝑒-𝑡.,                                                   (5)
	with et a vector of VAR errors such that ,𝑒-𝑡.=,𝐴-0-−1.,𝜀-𝑡..  The reduced form VAR errors in equation (5), et , have no economic interpretation as they are correlated with each other.  However, the errors in the structural VAR, ,𝜀-𝑡., do have ...
	For identification, sign restrictions are imposed on the expanded ,𝐴-0-−1. matrix:

