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1. Introduction 

In recent years, strategic alliances between airlines have become increasingly 

popular.  The format of a strategic alliance between airlines can vary from a limited 

marketing arrangement, for example an arrangement between partner carriers that only 

makes their frequent-flyer programs reciprocal, 1  to more extensive arrangements that 

include reciprocal frequent-flyer programs as well as codesharing.  Reciprocal frequent-

flyer programs effectively allow passengers that hold frequent-flyer membership with one 

carrier in the alliance to earn and redeem frequent-flyer points across any partner carrier in 

the alliance.  A codeshare arrangement effectively allows each carrier in the alliance to sell 

tickets for seats on its partners’ airplane, i.e., partners essentially share certain facilities, in 

this case airplanes, that are solely owned by one of the partners. 

Researchers have written extensively on the impact that strategic alliances have on 

airfare [Brueckner and Whalen (2000); Brueckner (2001 and 2003); Bamberger, Carlton 

and Neumann (2004); Ito and Lee (2007); Gayle (2008 and 2013); Gayle and Brown (2014) 

among others]. 2   However, there is a paucity of work that examines the impact that 

strategic alliances may have on deterring potential competitors from entering a relevant 

market.  This is a particularly interesting aspect of strategic alliances to study since a 

substantial amount of these alliances are formed between traditional major/legacy carriers, 

who may face increasingly stiff competition from the growing prominence of low-cost-

carriers (LCCs).  Some researchers argue that hub-and-spoke network carriers form and 

use strategic codeshare alliances to better compete with low-cost-carriers, [Mantovani and 

Tarola (2007)].  So the following series of relevant questions need careful study.  First, 

does the evidence support the argument that strategic alliances between major airlines, 

among achieving other goals, serve to deter entry of potential entrants to a relevant market?  

Second, if an entry-deterrence effect is evident, is there a particular type of practice among 

                                                             

1 Membership in an airline’s frequent-flyer program allows the passenger to accumulate points each time the 
passenger flies on the airline.  The frequent-flyer program allows the passenger to be eligible for various 
rewards once the passenger accumulates points beyond certain pre-determine thresholds.  As such, frequent-
flyer programs are designed to build customer loyalty to the carrier that offers the program. 
 
2 Earlier contributions to this literature include: Oum and Park (1997); Park (1997); Park and Zhang (1998); 
and Park and Zhang (2000). 
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alliance partners that is most effective at deterring entry?  Third, does the market entry-

deterrent impact of strategic alliances vary by the identity of potential market entrants? 3  

Chen and Ross (2000) theoretically explore the anticompetitive effect of a 

particular type of strategic alliance, by which the partner airlines share important facilities 

such as airplanes, terminals etc.  They argue that this type of alliance can forestall a 

complete and competitive entry by another firm, that is, such alliances can have an entry-

deterrent effect.  The mechanism through which Chen and Ross envisioned that a strategic 

alliance may deter a complete and competitive entry is as follows.  An incumbent offers to 

form a strategic alliance with a potential entrant, which takes the form of the incumbent 

willing to share its facility with the potential entrant in order to discourage the potential 

entrant from building its own facility and entering on a larger, more competitive scale.  In 

the context of a codeshare alliance, this would translate into the incumbent offering to let 

a potential entrant sell tickets for seats on the incumbent’s plane in order to discourage the 

potential entrant from putting its own plane on the route.  So based on Chen and Ross’s 

argument, entry-deterrent codesharing should primarily take place between a market 

incumbent and the potential entrant the incumbent is intending to deter. 

Lin (2005) uses a theoretical model to show that incumbents can use codeshare 

alliances as a credible threat to deter the entry of potential entrants who do not have 

significant cost advantage.  The author uses the model to show that, owing to joint profit 

maximizing behavior between allied airlines, there exists an equilibrium in which the joint 

profit of two allied airlines is higher than the sum of their individual profits if they were 

not allied.  In addition, this higher joint profit of the allied airlines comes at the expense of 

lower profit for a new non-allied entrant.  This equilibrium implies that if market entry cost 

is sufficiently high, such that entry in the presence of an alliance between market 

incumbents is unprofitable for the new non-allied entrant, but profitable if incumbents were 

not allied, then formation of the alliance can be done to strategically deter entry. 4 

                                                             

3 In a separate, but related airline entry-deterrence literature, Oum, Zhang and Zhang (1995); Hendricks, 
Piccione and Tan (1997); Berechman, Poddar and Shy (1998); Aguirregabiria and Ho (2010) among others 
have argued that hub-and-spoke route networks adopted by many legacy carriers do give these carriers an 
incentive and the ability to deter entry of other carriers that do not use hub-and-spoke route network, which 
include many low-cost-carriers.  But this literature focuses on the entry deterrence effect of hub-and-spoke 
networks rather than more specifically on the entry deterrence effect of codeshare alliances. 
4 Lin (2008) extends this model to consider situations in which an incumbent has a relatively large hub-and-
spoke network and entry has positive spillover network effects for the incumbent.   
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Via reduced-form econometric regressions, Goetz and Shapiro (2012) empirically 

test for the presence of entry-deterrence motives behind codesharing alliances, and find 

that an incumbent is approximately 25% more likely than average to codeshare when facing 

the threat of entry by low-cost carriers.  However, Goetz and Shapiro (2012) did not 

investigate whether the entry-deterrence effect they found depends on the type of 

codesharing (Traditional versus Virtual) 5  employed by incumbent partner airlines.  In 

addition, they did not fully investigate whether the entry-deterrence effect of codesharing 

depends on the identity of the carrier that is threatening to enter the relevant market.  

Previous studies have argued that Southwest Airlines, if not the most formidable 

LCC in U.S. domestic air travel markets, is certainly among the most formidable LCCs in 

these markets.  As such, many studies have treated Southwest separately than other LCCs, 

or focused on Southwest as the sole LCC [for example see Morrison (2001), Goolsbee and 

Syverson (2008), Brueckner, Lee and Singer (2012) among others]. Brueckner, Lee and 

Singer (2012) find that the presence of potential competition from Southwest reduces fares 

by 8 percent, while potential competition from other LCCs has no fare effect.  Mason and 

Morrison (2008) find significant differences between low-cost carriers in their business 

models.  Therefore, we are encouraged to investigate whether any possible entry-deterrent 

effect of codesharing depends on whether the potential entrant is Southwest versus other 

low-cost carriers. 

While Goetz and Shapiro (2012) use a reduced-form regression analysis to 

empirically test whether domestic codesharing alliances are motivated by an entry-

deterrence purpose, to the best of our knowledge, there is no other empirical analysis of 

this issue.  We believe a structural econometric analysis of this issue is needed to take us a 

step further in examining the evidence on this type of strategic behavior by airlines. 

Advantages of using a structural econometric model are that: (1) we are able to quantify, 

in monetary terms, possible market entry barriers associated with codesharing; and (2) we 

are able to predict the extent to which a potential entrant’s market entry probabilities are 

affected by market incumbent carrier’s codesharing.   

                                                             

 

5  In the Definition and Data section of the paper we define and distinguish Traditional and Virtual 
codesharing. 
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Therefore, the main objective of our paper is to use a structural econometric model 

to investigate: (1) whether codesharing between airlines in domestic air travel markets, a 

form of strategic alliance, has a deterrent effect on the entry of potential competitors; (2) 

whether there is a particular type of codesharing among alliance partners that is most 

effective at deterring entry; and (3) whether the market entry deterrence impact of 

codesharing varies by the identity of potential market entrants.  

To assess the deterrent effect of codesharing on market entry of potential 

competitors, we proceed as follows.  First, we estimate a discrete choice model of air travel 

demand.  Second, for the short-run supply side, we assume that multiproduct airlines set 

prices for their differentiated products according to a Nash equilibrium price-setting game.  

The Nash equilibrium price-setting assumption allows us to derive product-specific 

markups and use them to compute firm-level variable profits, which are subsequently used 

in a dynamic market entry/exit game.  Third, we specify a dynamic market entry/exit game 

played between airlines in which each airline chooses markets in which to be active during 

specific time periods in order to maximize its expected discounted stream of profit.  Per-

period profit comprises variable profit less per-period fixed cost and a one-time entry cost 

if the airline will serve the relevant market in the next period but not currently serving the 

market.  The dynamic entry/exit game allows us to estimate fixed and entry costs by 

exploiting previously computed variable profits from the Nash equilibrium price-setting 

game along with observed data on airlines’ decisions to enter and exit certain markets.  It 

is the estimated effect that codesharing between incumbents have on the entry cost of 

potential entrants that allows us to evaluate whether codesharing has an entry deterrent 

effect.6  

We specify entry cost functions such that we can identify whether or not the extent 

of codesharing by incumbent airlines in a market influences the market entry cost of 

potential entrants, and whether this influence differs by type of potential entrant.  A 

potential entrant can fall into one of three categories: (1) legacy carriers; (2) Southwest 

Airlines; or (3) other LCCs.  Since the majority of codesharing in U.S. domestic air travel 

markets occurs between legacy carriers, this implies that our entry cost function 

                                                             

6 For examples of dynamic structural entry deterrence models see Sweeting (2013), Williams 

(2012), Chicu (2012), and Snider (2009). 
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specification effectively allows us to explore whether codesharing between legacy carriers 

deferentially influences the market entry of: (1) other legacy carriers; (2) Southwest 

Airlines; (3) other LCCs; or some subset of the three carrier types. 

An important aspect of our analysis is that we follow Ito and Lee (2007) and Gayle 

(2008) and decompose codesharing into two main types: (1) Traditional Codesharing; and 

(2) Virtual Codesharing.  As such, we are able to investigate whether possible entry 

deterrent effects of codesharing depend on the type of codesharing. 

Our econometric estimates from the entry cost function suggest that more 

codesharing, both traditional and virtual, between incumbent carriers in a market puts 

Southwest at a relative disadvantage to enter the market compared to all other potential 

entrants (legacy carriers and other low-cost carriers).  Specifically, each percentage point 

increase in traditional codeshare products offered by incumbents in a market raises market 

entry cost for Southwest by 0.3%, but reduces market entry cost by 0.64% and 0.39% for 

legacy and “other” low-cost carriers respectively.  However, each percentage point increase 

in virtual codeshare products offered by incumbents in a market raises market entry cost 

for Southwest by 0.08%, but reduces market entry cost by 0.14% and 0.36% for legacy and 

“other” low-cost carriers respectively.  In addition, the model predicts that Southwest’s 

market entry probabilities increase by a mean 15.81% when the parameters that capture the 

entry deterrence impact of codesharing are counterfactually set to zero in the model.  

Therefore, codesharing by market incumbent carriers has a relative market entry deterrent 

effect on Southwest.  Furthermore, the parameter estimates provide evidence that 

traditional codesharing has a larger impact on Southwest’s market entry cost compared to 

virtual codesharing. 

We argue that the entry deterrent effect is binding for Southwest but not for others 

due to the evidence that the vast majority of codesharing is done between legacy carriers, 

and competition between Southwest and legacy carriers is stronger than competition 

between other low-cost carriers and legacy carriers.  For example, as pointed out above, 

Brueckner, Lee and Singer (2012) provide evidence that incumbent legacy carriers do not 

cut fares in response to potential competition from other low-cost carriers, but cut fares by 

8% in response to potential competition from Southwest. 

The remainder of this paper is organized as follows.  Next we define and discuss 
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relevant concepts and terms used throughout this paper, and describe how we construct the 

dataset of our working sample.  Our econometric model is presented in section 3. Section 

4 discusses the estimation procedure and summarizes estimation results.  Concluding 

remarks are offered in section 5.  

 

2. Definitions and Data 

 2.1 Definitions 

A market is defined as a directional pair of origin and destination cities during a 

particular time period. For example, air travel from New York to Dallas is a different 

market than air travel from Dallas to New York.  Treating markets in a direction-specific 

manner better enables our model to account for the impact that heterogeneity in 

demographic, social and economic characteristics across origin cities have on air travel 

demand.  

An itinerary is a detailed plan of a journey from an origin to destination city, so it 

consists of one or more flight coupons depending on whether or not intermediate stops are 

required.  Each coupon typically represents travel on a particular flight.  Each flight has a 

ticketing carrier and an operating carrier.  The ticketing carrier, or sometimes referred to 

as the marketing carrier, is the airline selling the ticket for the seat, while the operating 

carrier is the airline whose plane actually transports the passenger.  A product is defined as 

the combination of ticketing carrier, operating carrier(s) and itinerary.  

A pure online product has an itinerary whose operating carrier for each flight 

coupon and ticketing carrier are the same.  For example, a two-segment ticket with both 

segments operated and marketed by United Airlines (UA), i.e. (UA/UA → UA/UA)7.  A 

flight is said to be codeshared when the operating and ticketing carriers for that flight differ.  

A traditional codeshared product is defined as an itinerary that has a single ticketing carrier 

for the trip, but multiple operating carriers, one of which is the ticketing carrier.  For 

example, a connecting itinerary between Continental Airlines (CO) and Delta Airlines 

(DL), marketed solely by Delta (CO/DL → DL/DL) is a traditional codeshared product.  A 

                                                             
7 The arrow notation divides carrier(s) information from one flight segment to the next. The two-letter code 
in front of the symbol “/” identify the operating carrier for that segment, while the two-letter code that 
immediately follows the symbol “/” identify the ticketing carrier.  
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virtual codeshared product is defined as an itinerary that has the same operating carrier for 

all trip segments, but this operating carrier differs from the ticketing carrier.  For example, 

a connecting itinerary operated entirely by United Airlines but marketed solely by US 

Airways (US) (UA/US→ UA/US), is a virtual codeshared product.8 

 

2.2 Data 

We use data from the Airline Origin and Destination Survey (DB1B) collected by 

the Office of Airline Information of the Bureau of Transportation Statistics.  The DB1B 

survey is a 10% random sample of airline tickets from certified carriers in the United States.  

A record in this survey represents a ticket.  Each ticket contains information on ticketing 

and operating carriers, origin and destination airports, fare, number of passengers, 

intermediate airport stops, market miles flown on the trip itinerary, nonstop miles between 

the origin and destination airports, and number of market coupons.  Unfortunately, there is 

no passenger-specific information in the data, nor is there any information on ticket 

restrictions such as advance-purchase and length-of-stay requirements. 

The data are quarterly, and our study uses data for the entire years of 2005, 2006 

and 2007.  Following Aguirregabiria and Ho (2012) among others, we select data on air 

travel between the 65 largest US cities. Some of the cities belong to the same metropolitan 

area and have multiple airports.  Table 1 reports a list of the cities and the relevant airport 

groupings we use based on common metropolitan areas. 

 

 

 

 

 

 

 

 

                                                             

8 Additional discussion and examples of pure online, traditional codeshare and virtual codeshare air travel 
products can be found in Ito and Lee (2007) and Gayle (2007, 2008 and 2013).  In addition, see Gayle and 
Brown (2014).   
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Table 1 

Cites, airports and population 

City, State Airports 
City pop. 

2005 2006 2007 

New York-Newark-Jersey LGA, JFK, EWR 8,726,847  8,764,876  8,826,288  

Los Angeles, CA LAX, BUR 3,794,640  3,777,502  3,778,658  

Chicago, IL ORD, MDW 2,824,584  2,806,391  2,811,035  

Dallas, TXa DAL, DFW 2,479,896  2,528,227  2,577,723  

Phoenix-Tempe-Mesa, AZ PHX 2,087,948  2,136,518  2,171,495  

Houston, TX HOU, IAH, EFD 2,076,189  2,169,248  2,206,573  

Philadelphia, PA PHL 1,517,628  1,520,251  1,530,031  

San Diego, CA SAN 1,284,347  1,294,071  1,297,624  

San Antonio, TX SAT 1,258,733  1,292,082  1,323,698  

San Jose, CA SJC 908,870  918,619  931,344  

Detroit, MI DTW 921,149  918,849  917,234  

Denver-Aurora, CO DEN 856,834  869,920  887,796  

Indianapolis, IN IND 789,250  792,619  796,611  

Jacksonville, FL JAX 786,938  798,494  805,325  

San Francisco, CA SFO 777,660  786,149  799,185  

Columbus, OH CMH 738,782  744,473  750,700  

Austin, TX AUS 708,293  730,729  749,120  

Memphis, TN MEM 680,515  682,024  679,404  

Minneapolis-St.Paul, MN MSP 652,481  652,003  656,659  

Baltimore, MD BWI 640,064  640,961  640,150  

Charlotte, NC CLT 631,160  652,202  669,690  

El Paso, TX ELP 587,400  595,980  600,402  

Milwaukee, WI MKE 601,983  602,782  602,656  

Seattle, WA SEA 575,036  582,877  592,647  

Boston, MA BOS 609,690  612,192  622,748  
                     a includes Dallas, Arlington, Fort Worth and Plano 
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Table 1 Continued 

Cites, airports and population 

City, State Airports 
City pop. 

2005 2006 2007 

Louisville, KY SDF 559,855  559,709  562,632  

Washington, DC DCA, IAD 582,049  583,978  586,409  

Nashville, TN BNA 579,748  586,327  592,503  

Las Vegas, NV LAS 544,806  552,855  559,892  

Portland, OR PDX 534,112  538,091  546,747  

Oklahoma City, OK OKC 532,006  539,001  545,910  

Tucson, AZ TUS 524,830  530,349  536,752  

Albuquerque, NM ABQ 497,543  508,486  517,162  

Long Beach, CA LGB 467,851  463,723  459,925  

New Orleans, LA MSY 455,188  208,548  288,113  

Cleveland, OH CLE 449,188  442,409  438,068  

Sacramento, CA SMF 448,842  449,658  455,760  

Kansas City, MO MCI 463,983  470,076  475,830  

Atlanta, GA ATL 483,108  498,208  519,569  

Omaha, NE OMA 432,148  437,523  442,452  

Oakland, CA OAK 392,112  392,076  397,441  

Tulsa, OK TUL 381,017  382,394  384,592  

Miami, FL MIA 390,768  412,460  424,662  

Colorado Springs, CO COS 393,804  398,778  399,751  

Wichita, KS ICT 354,524  356,592  360,897  

St Louis, MO STL 352,572  353,837  355,663  

Santa Ana, CA SNA 337,121  334,830  335,491  

Raleigh-Durham, NC RDU 553,294  574,065  596,049  

Pittsburgh, PA PIT 316,206  313,306  312,322  

Tampa, FL TPA 325,569  332,604  334,852  

Cincinnati, OH CVG 331,310  332,185  333,321  

Ontario, CA ONT 170,630  170,865  171,603  

Buffalo, NY BUF 277,998  274,740  272,492  

Lexington, KY LEX 278,313  283,324  287,263  

Norfolk, VA ORF 237,487  238,832  236,051  

 

 

We eliminate tickets with nominal prices cheaper than $50 and more expensive 

than $2000, those with multiple ticketing carriers, and those containing more than 2 

intermediate stops.  Within each quarter, a given itinerary-airline(s) combination is 
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repeated many times, each time at a different price, making the dataset extremely large. To 

make the data more manageable, we collapse the data based on our definition of product 

(unique itinerary-airline(s) combination) for each quarter.  Before collapsing the data, we 

aggregated the number of passengers and averaged market fare over each defined product.  

This is the process by which each defined product’s quantity and price (subsequently 

denoted by 𝑞𝑗  and 𝑝𝑗  respectively) are constructed.  For example, the nonstop itinerary 

from New York to Dallas which is operated and ticketed both by United Airlines is repeated 

3 times in the data, but with different fares $150, $250, and $100, and number of passengers 

5, 8, and 10 that purchase this itinerary at the three distinct prices, respectively.  Then we 

collapse the data to leave only one observation of this product with average market fare of 

$166.67, and aggregate number of passengers equal to 23. Products with quantity less than 

9 passengers for the entire quarter are dropped from the data. 9   Also, we eliminate 

monopoly markets, i.e. markets in which only one carrier provides product(s).  The 

collapsed data have 434,329 quarter-specific observations (products) spread across 32,680 

quarter-specific origin-destination markets. 

From the collapsed dataset, observed product market shares (subsequently denoted 

by upper case 𝑆𝑗) are created by dividing quantity of product 𝑗 sold (𝑞𝑗) by the geometric 

mean of the origin city and destination city populations (subsequently denoted by POP), 

i.e. 𝑆𝑗 = 𝑞𝑗 𝑃𝑂𝑃⁄ . 10  Other variables that capture air travel product characteristics are 

created for estimation.  One measure of travel convenience of an air travel product is 

captured by the variable, Interstops.  Interstops counts the number of intermediate stop(s) 

required by the air travel product in transporting a passenger from the origin to destination 

city.  Our presumption is that the typical passenger dislikes intermediate stops, but the 

                                                             

9 Berry (1992), Aguirregabiria and Ho (2012) among others use a similar, and sometimes more stringent, 
quantity threshold to help eliminate idiosyncratic product offerings that are not part of the normal set of 
products offered in a market. 
 

10  POP is measured by: 𝑃𝑂𝑃 = √𝑂𝑟𝑖𝑔𝑖𝑛 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 × 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛.  Due to the fact that 
population magnitudes are significantly larger than quantity sold for any given air travel product, observed 
product shares, computed as described above,  are extremely small numbers. We therefore scale up all product 
shares in the data by a common factor.  The common factor is the largest integer such that the outside good 
share (𝑆0 = 1 − ∑ 𝑆𝑗𝐽𝑗=1 ) in each market remains positive.  The common factor that satisfies these conditions 
in the data set is 35.  
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demand estimation will verify whether this presumption is consistent with consumer choice 

behavior patterns in the data.   

Another measure of the travel convenience of an air travel product is captured by 

the variable, Inconvenience.  Inconvenience is defined as the flying distance (measured in 

miles, and represented by the variable Market miles flown) required by the travel itinerary 

in getting passengers from the origin to destination city, divided by the nonstop flying 

distance between the origin and destination cities.  The minimum value for variable 

Inconvenience, which is equal to 1, implies the most travel-convenient itinerary for a given 

market.  Furthermore, for a set of products with equivalent number of intermediate stops, 

the Inconvenience variable is able to distinguish between these products in terms of the 

“directness” of the routing between the origin and destination since the locations of 

intermediate stop(s) may differ across these products, which in turn cause the flying 

distance to differ across these products.  Again, our presumption is that a typical passenger 

prefers more direct routing between their origin and destination, which will be tested by 

our demand estimation.     

We measure the size of an airline's presence at the endpoint cities of a market from 

different perspectives.  The variable Opres_out is a count of the number of different cities 

that the airline offers nonstop flights to, leaving from the origin city.  On the other hand, 

Opres_in counts the number of different cities that the airline provides nonstop flights from, 

coming into the origin city of the market.  We also construct a destination presence variable 

Dpres_out, which measures the number of distinct cities that the airline has nonstop flights 

to, leaving from the destination city. 

Opres_out is intended to help explain consumers' choice between airlines at the 

consumer's origin city.  The presumption here is that a consumer is more likely to choose 

the airline that offers nonstop service to more cities from the consumer's origin city.  On 

the other hand, the Opres_in and Dpres_out may better explain an airline's cost of 

transporting passengers in a market.  The argument is that due to possible economies of 

passenger-traffic density, an airline's marginal cost of transporting a passenger in a market 

is lower as the volume of passengers the airline channels through the market increases.  An 

airline with large measures of Opres_in and Dpres_out for a given market, is likely to 



12 

channel a large volume of passengers through the market, and therefore is expected to have 

lower marginal cost of transporting a passenger in the market.  

We only identify codeshare products between major carriers, i.e. following much 

of the literature on airline codesharing, we do not consider products between regional and 

major carriers as codeshare.  For example, a product that involves American Eagle (MQ) 

and American Airlines (AA), where one of them is the ticketing carrier and the other is an 

operating carrier, is still considered by us to be pure online since American Eagle is a 

regional airline that serves for American Airlines.  

Traditional Codeshare and Virtual Codeshare are zero-one dummy variables that 

take a value of 1 when the itinerary is identified to be traditional codeshared and virtual 

codeshared respectively.  Among the codeshare products in a market, variables Percent 

Traditional for Airline and Percent Virtual for Airline measure the percentage of these 

products of a given codeshare type (Traditional and Virtual respectively) an airline offers 

for sale to consumers. As such, the measured percentage values in each of these codeshare 

variables vary across airlines and markets.  These two variables are constructed to capture 

the extent to which each airline engages in codesharing of a given type across markets in 

the sample.  

Summary statistics of the variables used for estimation are presented in Table 2.  

The variable Fare is measured in constant year 1999 dollars.  We use the consumer price 

index to deflate Fare.  

Table 3 presents a list of ticketing carriers in the dataset according to type of 

products that each airline provides.  The first two columns show that there are 21 airlines 

involved in pure online products.  All airlines in the dataset provide pure online products. 

The next two columns in Table 3 show that, among all airlines in the dataset, 10 are 

involved in codeshare products and 7 of these airlines are the ones we classify as legacy 

carriers.  The fifth column in Table 3 reports the percent of codeshare products in the 

sample that each carrier offers for sale to consumers.  The data in this column reveal that 

the vast majority (approximately 83 percent) of codeshare products are provided by legacy 

carriers. 
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Table 2 

Summary Statistics for the Dataset  

Variable Mean Std.Dev Min Max 

Farea 166.35 52.19 45.08 1,522.46 

Quantity 149.57 508.25 9 11,643 

Opres_out 29.05 28.35 0 177 

Opres_in 29.03 28.30 0 177 

Dpres_out 29.13 28.47 0 177 

Interstops  0.87 0.40 0 2 

Market miles flown 1,542.34 695.27 67 4,156 

Nonstop miles 1,371.42 648.60 67 2,724 

Inconvenience 1.15 0.21 1 2.975 

Traditional Codeshare 0.02 0.14 0 1 

Virtual Codeshare 0.02 0.14 0 1 

Percent Traditional for Airline 3.03 13.94 0 100 

Percent Virtual for Airline 3.78 16.44 0 100 

Observed Product Shares (Sj) 0.0067 0.02 5.45E-05 0.97 

Number of Products 434,329    

Number of Markets 32,680       
Notes:  a The variable “Fare” is measured in constant year 1999 dollars. We use the  
consumer price index to deflate “Fare”. 

 

 

The last column in Table 3 reports the percent of each carrier’s codeshare products 

that are codeshared with legacy carriers.  Noticeably, almost all of each legacy carrier’s 

codeshare products are codeshared with other legacy carriers, and moreover, ATA and 

Southwest Airlines, which are low-cost carriers, do not codeshare with legacy carriers.  An 

exception to this pattern is Frontier Airlines, a low-cost carrier that has 91 percent of its 

codeshare products codeshared with a legacy carrier (typically with Alaska Airlines).  

However, the previous column shows that codeshare products offered by Frontier Airlines 

only account for 0.07 percent of total codeshare products offered.  In summary, the data 

reveal that a substantial amount of codeshare alliances are formed between legacy carriers.  
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 Table 3 

 List of Airlines in the Dataset,  
by Product type they offer to Consumers 

Airlines Involved in  
Pure online Products 

 
  

Airlines that offer  
Codeshare Products to consumers 

Airlines Name Code 

 
 

Airlines Name Code 

Percent of 
codeshare 
products in 
the sample 

Percent of each 
carrier’s codeshare 

products codeshared 
with legacy carriers   

 

  

American Airlines Inc. AA  
 Legacy Carriers    

Aloha Airlines AQ  
     American Airlines Inc. AA 13.47 98.87 

Alaska Airlines Inc. AS  
     Alaska Airlines Inc. AS 7.87 100 

JetBlue Airways B6  
     Continental Air Lines Inc. CO 5.76 100 

Continental Air Lines Inc. CO  
     Delta Air Lines Inc. DL 4.76 99.88 

Independence Air DH  
     Northwest Airlines Inc. NW 10.03 100 

Delta Air Lines Inc. DL  
     United Air Lines Inc. UA 28.75 100 

Frontier Airlines Inc. F9  
     US Airways Inc. US 12.56 99.82 

AirTran Airways  FL  
 Sub-total  83.20  

Allegiant Air G4  
 Low Cost Carriers    

America West Airlines Inc. HP  
     Southwest Airlines Co. WN 9.28 0 

Spirit Air Lines NK  
     ATA Airlines  TZ 7.45 0 

Northwest Airlines Inc. NW  
     Frontier Airlines Inc. F9 0.07 91.67 

Skybus Airlines, Inc. SX  
 Sub-total  16.80  

Sun Country Airlines SY  
 Total  100  

ATA Airlines  TZ  
     

United Air Lines Inc. UA  
     

US Airways Inc. US  
     

Southwest Airlines Co. WN  
     

ExpressJet Airlines Inc. XE  
     

Midwest Airlines YX  
     

  
           

Notes:  The carries we classify as Legacy carriers include: American Airline, Alaska Airlines, Continental 
Air, Delta Air Lines, Northwest Airlines, United Air Lines, and US Airways. 
 

Table 4 summarizes our data according to the three types of products.  Among 

codeshared products, the number of traditional codeshared products is slightly less than the 

number of virtual codeshared products, but twice as many passengers travel on virtual 

codeshared products compared to traditional codeshare products. The descriptive statistics 

in Table 4 reveal that only 1.25% of total US domestic air travel passengers travel on 

codeshare products.  With such a small percentage of US domestic air travel passengers 

using codeshare products, it is tempting to use this as justification to not study the effects 
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of codesharing in US domestic air travel markets.  However, it is important to note that 

while a small percentage of total US domestic air travel passengers travel on codeshare 

products, the distribution of the percentage of passengers that travel on codeshare products 

across  US domestic air travel markets is skewed.  In other words, even though in a majority 

of markets relatively few passengers use codeshare products, there exists many markets in 

which a substantial percentage of passengers use codeshare products.  Table 5 provides 

summary statistics evidence revealing that passengers are substantially more exposed to 

the practice of codesharing in some markets more than others, furthermore, the percentage 

of passengers using codeshare products in some markets can be substantial.             

Table 4 
Classification of Cooperative Agreement in Data Set 

Classification 
Observations/Products   Passengers 

Frequency Percent   Frequency Percent 

Pure online 416,537  95.90   64,150,292  98.75  

Traditional Codeshare 8,847  2.04   254,065  0.39  

Virtual Codeshare 8,945  2.06   558,095  0.86  

Total 434,329  100.00    64,962,452  100.00  

 

 

 

 

 

Table 5 reveals that as many as 1,513 markets have between 5% and 10% of the 

market’s passengers traveling on codeshare products, 456 markets have between 10% and 

20% of the market’s passengers traveling on codeshare products, while 46 markets have 

between 20% and 50% of the market’s passengers traveling on codeshare products.  In 

summary, the descriptive statistics in Table 5 provide sufficient reason for us to better 

understand the market effects of airline codesharing.     

Table 5 

Passengers use of Codeshare Products Across Markets 
Percentage Interval of Consumers in the market that 

use Codeshare Products 
Number of Market that fall within 

the Percentage Interval 0% < 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑜𝑓 𝐶𝑜𝑑𝑒𝑠ℎ𝑎𝑟𝑒 𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠 ≤ 5% 6652 5% < 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑜𝑓 𝐶𝑜𝑑𝑒𝑠ℎ𝑎𝑟𝑒 𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠 ≤ 10% 1513 10% < 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑜𝑓 𝐶𝑜𝑑𝑒𝑠ℎ𝑎𝑟𝑒 𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠 ≤ 20% 456 20% < 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑜𝑓 𝐶𝑜𝑑𝑒𝑠ℎ𝑎𝑟𝑒 𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠 ≤ 50% 46 
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As we explain in subsequent sections of the paper, the short-run demand and supply 

sides of the model are estimated using the data at the product-market-time period level, 

while the dynamic entry/exit model is estimated using the data aggregated up to the airline-

market-time period level.  Since the data contain many more airlines than the dynamic 

entry/exit model can feasibly handle, at the stage of estimating the dynamic model, we 

impose additional restrictions to be able to estimate the dynamic model.  A restrictive 

assumption we make is that a set of the airlines in our data can reasonably be lumped into 

an “Other low-cost carriers” category and treated as if the “Other low-cost carriers” is a 

single carrier.  Similar to many studies in the literature [e.g. Brueckner, Lee and Singer 

(2012), Morrison (2001) among others], Southwest Airlines is the low-cost carrier that we 

treat separately than other low-cost carriers.  So the “Other low-cost carriers” category 

includes all low-cost carriers except Southwest Airlines. 

By using the number of passengers as a threshold to define whether or not an airline 

is active in a market, we are able to identify the number of markets that each airline has 

entered and exited. We define an airline to be active in a directional origin-destination 

market during a quarter if at least 130 passengers travel on products offered for sale by the 

airline in this market during the quarter.11  Each airline's market entry and exit decisions 

contained in the data are crucial for us to be able to estimate fixed and entry costs, since 

the dynamic entry/exit model relies on the optimality assumption that potential entrants 

will only enter a market if the one-time entry cost is less than the expected discounted 

future stream of profits, and an incumbent will exit a market when per-period fixed cost 

becomes sufficiently high relative to per-period variable profits such that the expected 

discounted future stream of profits is non-positive.  Therefore, it is useful to get a sense of 

the extent to which the data contain information relevant for identifying fixed and entry 

costs from the dynamic model.   

Table 6 reports the number of market entry and exit events by airline.  The table 

shows that each airline has several market entry and exit events, but most airlines have 

more market entry than market exit events, and overall there are substantially more entry 

                                                             
11 Our passenger threshold of 130 for a directional market is equivalent to the 260 for non-directional market 
used by Aguirregabiria and Ho (2012).  
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than exit events.  This suggests that we might be better able to identify entry cost than fixed 

cost.  

 

Table 6 

Number of market entry and exit events by airline  

Airlines 
 

Number of market entry 
events 

Number of market exit 
events 

American Airlines Inc. 498 332 

Continental Air Lines Inc. 372 303 

Delta Air Lines Inc. 348 360 

Northwest Airlines Inc. 323 309 

United Air Lines Inc. 316 259 

US Airways Inc. 655 151 

Alaska Airlines Inc. 22 12 

Southwest Airlines Co. 262 105 

Other low cost carriers  368 625 

Overall 3,164 2,456 

 

3. Model 

3.1 Demand  
Similar to Gayle (2013), air travel demand is modeled using a random coefficients 

logit model.  There are POP potential consumers, who may either buy one of J 

differentiated air travel products in a market, indexed by j = 1,…,J, or otherwise choose 

the outside good (j = 0, i.e., good 0), e.g. driving, taking a train, or not traveling at all.  

Each potential consumer, indexed by c, chooses the travel option that gives him the highest 

utility, that is, we assume each potential consumer solves the following discrete choice 

optimization problem:  

 max𝑗𝜖{0,…,𝐽}{𝑈𝑐𝑗 = 𝑥𝑗𝜙𝑐𝑥 + 𝜙𝑐𝑝𝑝𝑗 + 𝜉𝑗 + 𝜀𝑐𝑗𝑑 } (1) 

where 𝑈𝑐𝑗 is the value of travel option j to consumer c; 𝑥𝑗 is a vector of observed non-price 

characteristics of product j; 12  𝜙𝑐𝑥  is a vector of consumer-specific marginal utilities 

(assumed to vary randomly across consumers) associated with non-price characteristics in 

                                                             

12 Non-price product characteristic variables in 𝑥𝑗 include: (1) Opres_out; (2) Interstops; (3) Inconvenience; 
(4) Traditional Codeshare; (5) Virtual Codeshare; (6) Percent Traditional for Airline; (7) Percent Virtual for 
Airline; (8) quarter fixed effects; (9) year fixed effects; (10) ticketing carrier fixed effects; (11) market origin 
fixed effects; and (12) market destination fixed effects.   
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𝑥𝑗;  𝑝𝑗 is the price the consumer must pay to obtain product j; 𝜙𝑐𝑝 is the consumer-specific 

marginal utility of price, which is assumed to vary randomly across consumers; 𝜉𝑗capture 

product characteristics that are observed by consumers and airlines, but not observed by us 

the researchers; and 𝜀𝑐𝑗𝑑  is a mean-zero random component of utility. 

 The random coefficients vary across consumers based on the following 

specification:  
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 (2) 

where 𝜙𝑝 is the mean (across consumers) marginal utility of price;  𝜙𝑥 is a vector of mean 

marginal utilities for respective non-price product characteristics; 𝜙𝑣 = (𝜙𝑝𝑣 , 𝜙1𝑣, … , 𝜙𝐿𝑣) is 

a set of parameters that measure variation across consumers in random taste shocks for 

respective product characteristics; and  𝑣𝑐 = (𝑣𝑐𝑝, 𝑣𝑐1, … , 𝑣𝑐𝐿)  is a set of consumer c's 

random taste shocks for respective product characteristics.  We assume that 𝑣𝑐 follows a 

standard normal probability distribution across consumers.  

 Following much of the literature on discrete choice demand model [see Nevo 

(2000)], we assume that 𝜀𝑐𝑗𝑑  in equation (1) is governed by an independent and identically 

distributed extreme value probability density.  As such, the probability that product j is 

chosen, or equivalently the predicted market share of product j is:   

 𝑠𝑗(𝑥𝑗 , 𝑝𝑗,𝜉𝑗; 𝜙𝑥, 𝜙𝑝, 𝜙𝑣) = ∫ exp(𝛿𝑗 + 𝜇𝑐𝑗)1 + ∑ exp(𝛿𝑘 + 𝜇𝑐𝑘)𝐽𝑘 𝑑𝐺(𝑣) (3) 

where 𝛿𝑗 = 𝑥𝑗𝜙𝑥 + 𝜙𝑝𝑝𝑗 + 𝜉𝑗 is the mean utility obtained across consumers who choose 

product j; 𝜇𝑐𝑗 = 𝜙𝑝𝑣𝑝𝑗𝑣𝑐𝑝 + ∑ 𝜙𝑙𝑣𝑥𝑗𝑙𝑣𝑐𝑙𝐿𝑙=1  is a consumer-specific deviation from the mean 

utility level; and 𝐺(∙)  is the standard normal distribution function for the taste shocks.  

Since there is no closed-form solution for the integral in equation (3), this integral is 

approximated numerically using random draws from 𝐺(𝑣). 13 

                                                             

13 We use 200 random draws from 𝐺(∙) for the numerical approximation of  𝑠𝑗(∙). 
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 The quantity demand for product j is simply specified to equal to the probability 

that product j is chosen times the total number of potential consumers, POP: 

 𝑑𝑗 = 𝑠𝑗(𝑝, 𝑥, 𝜉; Φd) × 𝑃𝑂𝑃 (4) 

where Φd = (𝜙𝑝, 𝜙𝑥 , 𝜙𝑣) is the vector of demand parameters to be estimated. 

 

3.2 Supply  
The ticketing carrier of a codeshare product markets and sets the final price for the 

round-trip ticket and compensates the operating carrier for operating services provided.  

Unfortunately for researchers, partner airlines do not publicize details of how they 

compensate each other on their codeshare flights.  Therefore, our challenge as researchers 

is to specify a modeling approach that captures our basic understanding of what is 

commonly known about how a codeshare agreement works without imposing too much 

structure on a contracting process about which we have few facts.  As such, we follow the 

modeling approach outlined in Chen and Gayle (2007) and Gayle (2013). 

Chen and Gayle (2007) and Gayle (2013) suggest that for modeling purposes a 

codeshare agreement can be thought of as a privately negotiated pricing contract between 

partners (𝑤, Γ) , where 𝑤  is a per-passenger price the ticketing carrier pays over to an 

operating carrier for transporting the passenger, while Γ represents a potential lump-sum 

transfer between partners that determines how the joint surplus is distributed.  For the 

purposes of this paper we do not need to econometrically identify an equilibrium value of Γ, but in describing the dynamic part of the model, we do show where Γ enters the model. 

Suppose the final price of a codeshare product is determined within a sequential 

price-setting game, where in the first stage of the sequential process the operating carrier 

sets price, 𝑤, for transporting a passenger using its own plane(s), and privately makes this 

price known to its partner ticketing carrier.  In the second stage, conditional on the agreed 

upon price 𝑤 for services supplied by the operating carrier, the ticketing carrier sets the 

final round-trip price 𝑝  for the codeshare product.  The final subgame in this sequential 

price-setting game is played between ticketing carriers, and produces the final ticket prices 

observed by consumers. 

Each ticketing carrier 𝑖 solves the following profit maximization problem: 
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max𝑝𝑗𝑚𝑡 ∀ 𝑗∈𝐵𝑖𝑚𝑡 𝑉𝑃𝑖𝑚𝑡
= max𝑝𝑗𝑚𝑡 ∀ 𝑗∈𝐵𝑖𝑚𝑡 [ ∑ (𝑝𝑗𝑚𝑡 − 𝑚𝑐𝑗𝑚𝑡)𝑞𝑗𝑚𝑡𝑗∈𝐵𝑖𝑚𝑡 ] 

(5) 

where 𝑉𝑃𝑖𝑚𝑡 is the variable profit carrier 𝑖 obtains in market m during period t by offering 

the set of products 𝐵𝑖𝑚𝑡 to consumers,  𝑞𝑗𝑚𝑡 is the quantity of tickets for product j sold in 

market m, 𝑝𝑗𝑚𝑡 is the price of product j, and 𝑚𝑐𝑗𝑚𝑡 is the effective marginal cost incurred 

by ticketing carrier 𝑖  from offering product j.  

 Let 𝑓 = 1, … , 𝐹  index the corresponding operating carriers.  If product 𝑗  is a 

traditional codeshare product, then 𝑚𝑐𝑗𝑚𝑡 = 𝑐𝑗𝑚𝑡𝑖 + 𝑤𝑗𝑚𝑡𝑓 , where 𝑐𝑗𝑚𝑡𝑖  is the marginal cost 

that ticketing carrier 𝑖 incurs by using its own plane to provide transportation services on 

some segment(s) of the trip needed for product 𝑗, while 𝑤𝑗𝑚𝑡𝑓  is the price ticketing carrier 𝑖 
pays to operating carrier 𝑓 for its transportation services on the remaining trip segment(s).  

If instead product 𝑗 is a virtual codeshare product, then 𝑚𝑐𝑗𝑚𝑡 = 𝑤𝑗𝑚𝑡𝑓 , where 𝑤𝑗𝑚𝑡𝑓  is the 

price the ticketing carrier pays to operating carrier 𝑓  for its exclusive transportation 

services in the provision of product 𝑗.14  Last, if product 𝑗 is a pure online product, then 𝑚𝑐𝑗𝑚𝑡 = 𝑐𝑗𝑚𝑡𝑖 .  In the case of a pure online product, the ticketing carrier is also the sole 

operating carrier of product 𝑗, i.e., 𝑖 = 𝑓. 

 In equilibrium, the amount of product 𝑗  an airline sells is equal to the quantity 

demanded, that is, 𝑞𝑗𝑚𝑡 = 𝑑𝑗𝑚𝑡 = 𝑠𝑗𝑚𝑡(𝑝, 𝑥, 𝜉; Φd) × 𝑃𝑂𝑃.  The optimization problem in 

(5) yields the following set of J first-order conditions – one for each of the J products in 

the market:  

 

 ∑ (𝑝𝑘 − 𝑚𝑐𝑘) 𝜕𝑠𝑘𝜕𝑝𝑗 + 𝑠𝑗𝑘∈𝐵𝑖 = 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 = 1, … , 𝐽 (6) 

We have dropped the market and time subscripts in equation (6) only to avoid a clutter of 

notation.  The set of first-order conditions can be represented in matrix notation as follows:  

                                                             

14 The implicit assumption here is that the ticketing carrier of a virtual codeshare product only incurs fixed 
expenses in marketing the product to potential passengers. 
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 (𝛺.∗ 𝛥) × (𝑝 − 𝑚𝑐) + 𝑠 = 0 (7) 

where p, mc, and s are J×1 vectors of product prices, marginal costs, and predicted product 

shares respectively, Ω is a J×J matrix of appropriately positioned zeros and ones that 

capture ticketing carriers’ “ownership” structure of the J products in a market, .∗ is the 

operator for element-by-element matrix multiplication, and Δ is a J×J matrix of own and 

cross-price effects, where element ∆𝑗𝑘= 𝜕𝑠𝑘𝜕𝑝𝑗.  Since for purposes of the model the ticketing 

carrier is considered the “owner” of a product, in the discussion that follows, “airline” is 

synonymous with ticketing carrier. 

Equation (7) can be re-arranged to yield a vector of product markups: 

 𝑚𝑘𝑢𝑝(𝑥, 𝜉; Φd) = 𝑝 − 𝑚𝑐 = −(𝛺.∗ 𝛥)−1 × 𝑠 (8) 

Based on equations (5) and (8), and with estimates of demand parameters in hand, Φd̂, 

firm-level variable profit can be computed by:  

 
𝑉𝑃𝑖𝑚𝑡 = ∑ 𝑚𝑘𝑢𝑝𝑗𝑚𝑡(𝑥, 𝜉; Φd̂)𝑞𝑗𝑚𝑡𝑗∈𝐵𝑖𝑚𝑡  (9) 

 

3.3 Dynamic Entry/Exit Game 

In the dynamic entry/exit game, each airline chooses markets in which to be active 

during specific time periods.  An airline being active in a market means that the airline 

actually sells products to consumers in the market even though a subset of those products 

may use the operating services of the airline’s codeshare partner carriers.  Each airline 

optimally makes this decision in order to maximize its expected discounted stream of profit:  

 𝐸𝑡 (∑ 𝛽𝑟𝛱𝑖𝑚,𝑡+𝑟∞
𝑟=0 ) (10) 

where 𝛽 ∈ (0,1) is the discount factor, and  𝛱𝑖𝑚,𝑡+𝑟 is the per-period profit of airline 𝑖 in 

origin-destination market m.  Airline i’s per-period profit is: 

 

 𝛱𝑖𝑚𝑡 = 𝑎𝑖𝑚,𝑡−1𝑉𝑃𝑖𝑚𝑡 − 𝑎𝑖𝑚𝑡𝐹𝑖𝑚𝑡 (11) 

where 𝑉𝑃𝑖𝑚𝑡 represents the variable profit of airline i in origin-destination market m  during 

period t that is computed from the previously discussed differentiated products Nash price-
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setting game;  𝑎𝑖𝑚,𝑡−1 is a zero-one indicator that equals 1 only if airline i had made the 

decision in period t-1 to be active in market m during period t, therefore 𝑎𝑖𝑚𝑡 = 1 only if 

airline i makes decision in period t to be active in market m during period t+1;  and 𝐹𝑖𝑚𝑡 is 

the sum of fixed and entry costs of airline i in market m during period t.   

 It is important to note that the time subscript on indicator variable 𝑎𝑖𝑚𝑡 identifies 

the period in which the airline makes a decision regarding being active or not in a market, 

but the decision does not become effective until the subsequent period.  In other words, an 

airline that is active in a market during period t and earning variable profit 𝑉𝑃𝑖𝑚𝑡  is a 

consequence of the airline making this decision in period t -1 to be active in period t.  This 

is commonly referred to as a time-to-build assumption since it is assumed that once a 

decision is made to become active in a market, it will take a full period for the airline to 

implement the necessary plans for actual operations.  Note however, that the time subscript 

on 𝑉𝑃𝑖𝑚𝑡  identifies the period in which the variable profit is earned, and the time subscript 

on 𝐹𝑖𝑚𝑡 identifies the period in which the relevant costs are incurred and paid. 

Let 𝐹𝑖𝑚𝑡 be specified as: 

 

𝐹𝑖𝑚𝑡  = 𝐹𝐶𝑖𝑚𝑡 + 𝜖𝑖𝑚𝑡𝐹𝐶+ (1 − 𝑎𝑖𝑚,𝑡−1)[𝐸𝐶𝑖𝑚𝑡 + 𝜖𝑚𝑡𝑇𝑟𝑎𝑑 + 𝜖𝑚𝑡𝑉𝑖𝑟𝑡+ 𝜖𝑖𝑚𝑡𝐸𝐶 ] 

(12) 

where 𝐹𝐶𝑖𝑚𝑡 represents the deterministic part of per-period fixed cost of operating flights 

in origin-destination market m. The component 𝜖𝑖𝑚𝑡𝐹𝐶  represents a private firm-idiosyncratic 

shock to airline i’s fixed cost.  The fixed cost 𝐹𝐶𝑖𝑚𝑡 + 𝜖𝑖𝑚𝑡𝐹𝐶  is paid now only if the airline 

decides to be active in market m next period, i.e., if 𝑎𝑖𝑚𝑡 = 1.   

 The entry cost 𝐸𝐶𝑖𝑚𝑡 + 𝜖𝑚𝑡𝑇𝑟𝑎𝑑 + 𝜖𝑚𝑡𝑉𝑖𝑟𝑡 + 𝜖𝑖𝑚𝑡𝐸𝐶   has four components; 𝐸𝐶𝑖𝑚𝑡  is a 

deterministic component, while 𝜖𝑚𝑡𝑇𝑟𝑎𝑑 , 𝜖𝑚𝑡𝑉𝑖𝑟𝑡 , and 𝜖𝑖𝑚𝑡𝐸𝐶   represent shocks to entry cost. 

Shocks 𝜖𝑚𝑡𝑇𝑟𝑎𝑑 and 𝜖𝑚𝑡𝑉𝑖𝑟𝑡 only vary by market and time and are observed by firms, but not 

by us the researchers, while 𝜖𝑖𝑚𝑡𝐸𝐶  represents a private firm-idiosyncratic shock to airline i’s 

entry cost.  The entry cost is paid only when the airline is not active in market m at period 

t but it decides to be active in the market next period, i.e., if 𝑎𝑖𝑚,𝑡−1 = 0 and 𝑎𝑖𝑚𝑡 = 1. 

 Let the composite private firm-idiosyncratic shock to airline i’s fixed and entry costs 

be denoted by 𝜀𝑖𝑚𝑡 .  Based on equation (12), 𝜀𝑖𝑚𝑡 = 𝜖𝑖𝑚𝑡𝐹𝐶 + (1 − 𝑎𝑖𝑚,𝑡−1)𝜖𝑖𝑚𝑡𝐸𝐶  .  We 

assume that the composite private information shock, 𝜀𝑖𝑚𝑡, is independently and identically 
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distributed over firms, markets and time, and has a type 1 extreme value  probability 

distribution function. 

The deterministic portions of fixed and entry costs are specified as: 

 

 𝐹𝐶𝑖𝑚𝑡 = 𝜃0𝐹𝐶 + 𝜃1𝐹𝐶𝑃𝑟𝑒𝑠𝑖𝑚𝑡 (13) 

 

  𝐸𝐶𝑖𝑚𝑡 = 𝜃0𝐸𝐶 + 𝜃1𝐸𝐶𝑃𝑟𝑒𝑠𝑖𝑚𝑡                + 𝜃2𝐸𝐶𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑𝑚𝑡   + 𝜃3𝐸𝐶𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑚𝑡+ 𝜃4𝐸𝐶𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑𝑚𝑡 × 𝑆𝑜𝑢𝑡ℎ𝑤𝑒𝑠𝑡+ 𝜃5𝐸𝐶𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑚𝑡 × 𝑆𝑜𝑢𝑡ℎ𝑤𝑒𝑠𝑡+ 𝜃6𝐸𝐶𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑𝑚𝑡 × 𝑂𝑡ℎ𝑒𝑟_𝑙𝑐𝑐+ 𝜃7𝐸𝐶𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑚𝑡 × 𝑂𝑡ℎ𝑒𝑟_𝑙𝑐𝑐 

(14) 

where 𝑃𝑟𝑒𝑠𝑖𝑚𝑡 is the mean across size-of-presence variables Opres_in and Dpres_out for 

airline i at the endpoint cities of market m; 15 𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑𝑚𝑡 is the percent of products 

in market m during period t that are traditional codeshare; 𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑚𝑡  is the 

percent of products in market m during period t that are virtual codeshare; Southwest is a 

zero-one dummy variable that equals to one only if the airline is Southwest; 𝑂𝑡ℎ𝑒𝑟_𝑙𝑐𝑐 is 

a zero-one dummy variable that equals to one for low-cost carriers other than Southwest; 

and {𝜃0𝐹𝐶 , 𝜃1𝐹𝐶 , 𝜃0𝐸𝐶 , 𝜃1𝐸𝐶 , 𝜃2𝐸𝐶 , 𝜃3𝐸𝐶 , 𝜃4𝐸𝐶 , 𝜃5𝐸𝐶 , 𝜃6𝐸𝐶 , 𝜃7𝐸𝐶}  is the set of structural parameters 

to be estimated. 𝜃0𝐹𝐶   measures mean (across airlines, markets and time) fixed cost, while  𝜃1𝐹𝐶  

measures the effect that size of an airline's city presence has on fixed cost.  The mean 

recurrent fixed cost parameter 𝜃0𝐹𝐶  may comprise fixed expenses incurred by a ticketing 

carrier when the carrier markets a codeshare product to potential consumers.  In our 

previous discussion we define (𝑤, Γ) as a privately negotiated codeshare contract between 

partner carriers, where 𝑤 is a per-passenger price the ticketing carrier pays an operating 

carrier for transporting the passenger, while Γ  represents a potential lump-sum transfer 

between partners that determines how the joint surplus is distributed.  It was shown that 𝑤 

enters the effective marginal cost of the ticketing carrier.  However, the lump-sum transfer 

                                                             

15  As we previously defined in the section, Definitions and Data, Opres_in is a variable that counts the 
number of different cities that the airline provides nonstop flights from, going into the origin city of the 
market, while variable Dpres_out counts the number of distinct cities that the airline has nonstop flights to, 
leaving from the destination city. 
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between partners, Γ, is nested in 𝜃0𝐹𝐶 , but we do not attempt to separately identify Γ since 

knowing its value is not essential for the purposes of our paper. 𝜃0𝐸𝐶  measures mean (across airlines, markets and time) entry cost – we also allow 

mean entry cost to differ by the three carrier-types we consider (Legacy, Southwest and 

Other low cost carriers), in which case 𝜃0𝐸𝐶  would be a vector containing three parameters.  

The coefficient on 𝑃𝑟𝑒𝑠𝑖𝑚𝑡 is 𝜃1𝐸𝐶 , which measures the effect that size of an airline's city 

presence has on entry cost.  Parameter 𝜃2𝐸𝐶   measures the impact that traditional 

codesharing between incumbent airlines have on market entry costs of legacy carriers that 

are potential entrants to the relevant market, while 𝜃2𝐸𝐶 + 𝜃4𝐸𝐶   captures the impact on 

Southwest's market entry cost, and 𝜃2𝐸𝐶 + 𝜃6𝐸𝐶  captures the impact on other low-cost 

carrier's market entry cost.  Hence, testing whether 𝜃4𝐸𝐶   and 𝜃6𝐸𝐶   are positive tells us 

whether traditional codesharing among incumbents increases the barrier to entry for 

Southwest or other low-cost carriers, respectively.  In the case of virtual codesharing, 

parameter 𝜃3𝐸𝐶  measures the impact that virtual codesharing between incumbent airlines 

have on market entry costs of legacy carriers that are potential entrants to the relevant 

market, while 𝜃3𝐸𝐶 + 𝜃5𝐸𝐶  captures the impact on Southwest's market entry cost, and 𝜃3𝐸𝐶 +𝜃7𝐸𝐶   captures the impact on other low-cost carrier's market entry cost.  Hence, testing 

whether 𝜃5𝐸𝐶  and 𝜃7𝐸𝐶  are positive tells us whether virtual codesharing among incumbents 

increases the barrier to entry for Southwest or other low-cost carriers, respectively. 𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑𝑚𝑡 and 𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑚𝑡 measure the extent of codesharing that 

takes place in a market.  For the sake of not making the model overly complex and difficult 

to estimate, we chose not to explicitly model airlines' optimizing decision of whether or 

not to codeshare in a market.  However, it is reasonable to conjecture that airlines' 

optimizing decision of whether or not to codeshare is influenced by the effective cost an 

airline faces to use its own planes to begin providing service in the market (part of its 

market entry cost).  This further suggests that shocks to market entry cost that are 

unobserved to us, 𝜖𝑚𝑡𝑇𝑟𝑎𝑑  and 𝜖𝑚𝑡𝑉𝑖𝑟𝑡 , are likely to influence 𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑𝑚𝑡  and 𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑚𝑡 respectively.  As such, we formally specify the following equations: 𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑𝑚𝑡 = 𝑍𝑚𝑡𝛾 + 𝜖𝑚𝑡𝑇𝑟𝑎𝑑                                        (15) 𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑚𝑡 = 𝑍𝑚𝑡𝜆 + 𝜖𝑚𝑡𝑉𝑖𝑟𝑡                                        (16) 
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where 𝑍𝑚𝑡  is a matrix of variables that influence the extent of traditional and virtual 

codesharing that takes place in a market; 𝛾  and 𝜆 are vectors of parameters associated with 

these variables in equations (15) and (16) respectively; while 𝜖𝑚𝑡𝑇𝑟𝑎𝑑 and 𝜖𝑚𝑡𝑉𝑖𝑟𝑡 are assumed 

to be independently and identically distributed normal random variables with mean zero 

and standard deviations 𝜎𝑇𝑟𝑎𝑑 and 𝜎𝑉𝑖𝑟𝑡 respectively.  Therefore, the model accounts for 

the endogeneity of variables 𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑𝑚𝑡 and 𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑚𝑡 in the entry cost 

function.   

The variables we include in 𝑍𝑚𝑡 are: (1) the geometric mean of the origin city and 

destination city populations (POP), which is a measure of market size; (2) nonstop flight 

distance between the origin and destination; (3) one-period lag of the Herfindahl-

Hirschman Index (HHI) computed based on the relative sizes of airlines' presence at the 

market endpoint cities, where an airline's size of city presence is measured by the 

previously defined variables, Opres_in and Dpres_out; 16 (4) origin city fixed effects; (5) 

destination city fixed effects; and (6) quarter fixed effects. 

Our specified equations do not include a firm-specific component of fixed cost and 

entry cost for two reasons.  First, estimation of the dynamic model is computationally quite 

intensive, and convergence is difficult to achieve when the number of parameters being 

optimized over is large.  Even with the model restricted to 10 parameters and four quarters 

of data, optimization took approximately seven days of continuously running the computer 

program.  Second, even without firm-specific parameters, the fixed and entry cost functions 

do capture some heterogeneity across firms via the firm-specific variable 𝑃𝑟𝑒𝑠𝑖𝑚𝑡. 

 

 

Reducing the dimensionality of the dynamic game 

From the previously discussed Nash price-setting game, firm-level variable profit 

is: 𝑉𝑃𝑖𝑚𝑡(𝑥, ξ; Φd) = ∑ 𝑚𝑘𝑢𝑝𝑗𝑚𝑡(𝑥,𝑗∈𝐵𝑖𝑚𝑡 ξ; Φd) ∗ 𝑞𝑗𝑚𝑡.  Let 

 𝑅𝑖𝑚𝑡∗ = 𝑎𝑖𝑚,𝑡−1𝑉𝑃𝑖𝑚𝑡 (18) 

Note that (x, ξ) are state variables that are needed in the dynamic entry/exit game.  As 

                                                             

16 Opres_in is a variable that counts the number of different cities that the airline provides nonstop flights 
from, going into the origin city of the market, while variable Dpres_out counts the number of distinct cities 
that the airline has nonstop flights to, leaving from the destination city. 
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pointed out and discussed in Aguirregabiria and Ho (2012), 𝑅𝑖𝑚𝑡∗  aggregates these state 

variables in an economically meaningful way so that these state variables can enter the 

dynamic game through 𝑅𝑖𝑚𝑡∗ .  Therefore, as a simplifying assumption, Aguirregabiria and 

Ho (2012) recommend treating 𝑅𝑖𝑚𝑡∗  as a firm-specific state variable, rather than treating x 

and ξ as separate state variables.  Though restrictive, this simplifying assumption 

substantially reduces the dimensionality of the state space to make estimation feasible.  The 

payoff-relevant information of firm i in market m is: 

 

𝑦𝑖𝑚𝑡 ≡           {𝑠𝑖𝑚𝑡, 𝑅𝑖𝑚𝑡∗ , 𝑃𝑟𝑒𝑠𝑖𝑚𝑡, 𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑𝑚𝑡, 𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑚𝑡, 𝜖𝑚𝑡𝑇𝑟𝑎𝑑, 𝜖𝑚𝑡𝑉𝑖𝑟𝑡}
. 

(19
) 

where 𝑠𝑖𝑚𝑡 = 𝑎𝑖𝑚,𝑡−1. 

Each airline has its own vector of state variables, 𝑦𝑖𝑚𝑡 , and airlines take into 

account these variables when making decisions.  It might seem that each airline does not 

take into account the strategies that other airlines adopt.  However, an airline’s vector of 

state variables, 𝑦𝑖𝑚𝑡, depends on previous period entry and exit decisions of other airlines.  

For example, the variable profit state variable, 𝑅𝑖𝑚𝑡∗ , depends on competition from other 

incumbents currently in the market, which implies that this state variable depends on the 

previous period’s entry/exit decisions of other airlines.  Accordingly, our entry/exit model 

incorporates dynamic strategic interactions among airlines. 

Let 𝜎 ≡ {𝜎𝑖𝑚(𝑦𝑖𝑚𝑡, 𝜀𝑖𝑚𝑡), 𝑖 = 1,2, . . , 𝑁; 𝑚 = 1,2, … , 𝑀}  be a set of strategy 

functions, one for each airline.  𝜎 is a Markov Perfect Equilibrium (MPE) if the profile of 

strategies in 𝜎 maximizes the expected value of airline i at every state (𝑦𝑖𝑚𝑡, 𝜀𝑖𝑚𝑡) given 

the opponent’s strategy.  

 

Value Function and Bellman Equation 

For notational convenience, we drop the market subscript. Let 𝑉𝑖𝜎(𝑦𝑡, 𝜀𝑖𝑡) be the 

value function for airline i given that the other airlines behave according to their respective 

strategies in 𝜎. The value function is the unique solution to the Bellman equation: 
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𝑉𝑖𝜎(𝑦𝑡, 𝜀𝑖𝑡)= Max𝑎𝑖𝑡∈{0,1}{𝛱𝑖𝑡𝜎(𝑎𝑖𝑡, 𝑦𝑡) − 𝜀𝑖𝑡 ∗ 𝑎𝑖𝑡 + 𝛽 ∫ 𝑉𝑖𝜎(𝑦𝑡+1, 𝜀𝑖𝑡+1) 𝑑𝐺𝑖(𝜀𝑖𝑡+1)𝐹𝑖𝜎(𝑦𝑡+1|𝑎𝑖𝑡,𝑦𝑡)} 

(20) 

where 𝛱𝑖𝑡𝜎(𝑎𝑖𝑡,𝑦𝑡)  and 𝐹𝑖𝜎(𝑦𝑡+1|𝑎𝑖𝑡,𝑦𝑡)  are the expected one-period profit and expected 

transition of state variables, respectively, for airline i given the strategies of the other 

airlines. The profile of strategies in 𝜎 is a MPE if, for every airline i and every state (𝑦𝑡, 𝜀𝑖𝑡), 

we have: 

 

𝜎𝑖(𝑦𝑡, 𝜀𝑖𝑡)= 𝑎𝑟𝑔max𝑎𝑖𝑡 { 𝛱𝑖𝑡𝜎(𝑎𝑖𝑡,𝑦𝑡) − 𝜀𝑖𝑡 ∗ 𝑎𝑖𝑡 + 𝛽 ∫ 𝑉𝑖𝜎(𝑦𝑡+1, 𝜀𝑖𝑡+1) 𝑑𝐺𝑖(𝜀𝑖𝑡+1)𝐹𝑖𝜎(𝑦𝑡+1|𝑎𝑖𝑡,𝑦𝑡)} 

(21) 

The transition rules we use for state variables are described in Appendix A.  In Appendix 

B we illustrate that the MPE can also be represented as a vector of conditional choice 

probabilities (CCPs) that solves the fixed point problem 𝑷 = 𝜓(𝑷, 𝜃) , where 𝐏 ={𝑃𝑖(𝐲): for every firm and state (𝑖, 𝒚)}.   𝑷 = 𝜓(𝑷, 𝜃)  is a vector of best response 

probability mapping, where 𝜓(∙) is the CDF of the type 1 extreme value distribution. 

 

4. Estimation and Results 

4.1 Estimation of demand  

 The demand model is estimated using Generalized Methods of Moments (GMM).  

Following Berry (1994), Berry, Levinsohn, and Pakes (1995), and Nevo (2000), we can 

solve for 𝜉𝑗  as a function of demand parameters and the data, where 𝜉𝑗 = 𝛿𝑗 − 𝑥𝑗𝜙𝑥 −𝜙𝑝𝑝𝑗.  𝜉𝑗  is the error term used to formulate the GMM optimization problem: 

 

 min𝜙𝑥,𝜙𝑝,𝜙𝑣 𝜉′𝑍𝑑𝑊𝑍𝑑′𝜉 (22) 

where 𝑍𝑑 is the matrix of instruments that are assumed orthogonal to the error 

vector 𝜉 , while W is the standard weighting matrix, 𝑊 = [1𝑛 𝑍𝑑′𝜉𝜉′𝑍𝑑]−1
.  Since 

parameters 𝜙𝑝  and 𝜙𝑥  enter the error term linearly, we can restructure the GMM 
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optimization problem in (22) such that the search to minimize the objective function, 𝜉′𝑍𝑑𝑊𝑍𝑑′𝜉, is done exclusively over parameter vector 𝜙𝑣, i.e., the GMM optimization 

problem reduces to min𝜙𝑣 𝜉′𝑍𝑑𝑊𝑍𝑑′𝜉.  Once the optimization over 𝜙𝑣 is complete, we can 

recover estimates of  𝜙𝑝 and 𝜙𝑥.17      

Percent Traditional for Airline and Percent Virtual for Airline are two of the non-

price product characteristic variables in 𝑥𝑗.  Among the codeshare products in a market, 

recall that variables Percent Traditional for Airline and Percent Virtual for Airline measure 

the percentage of these products of a given codeshare type an airline offers for sale to 

consumers.  Since airlines optimally choose the extent to which to codeshare with others 

in a market, it is possible that these codeshare variables are correlated with shocks to 

demand captured in 𝜉𝑗 , making Percent Traditional for Airline and Percent Virtual for 

Airline endogenous in the demand model.  In addition, it is well-known that 𝑝𝑗 is correlated 

with 𝜉𝑗.  Therefore, our estimation of the demand model takes into account the endogeneity 

of 𝑝𝑗 , Percent Traditional for Airline and Percent Virtual for Airline.  Specifically, 

instruments for these three variables are included in 𝑍𝑑. 

 

Instruments for endogenous variables in demand model 

To obtain a set of valid instruments for price, we exploit the fact that the menu of 

products offered by airlines in a market is predetermined at the time of shocks to demand.  

Furthermore, the non-price characteristics of an airline’s products are primarily determined 

by the route network structure of the airline, and unlike price, this network structure is not 

routinely and easily changed during a short period of time, which mitigates the influence 

of demand shocks on the menu of products offered and their associated non-price 

characteristics.  As such, one set of product price instruments we use are: (1) the squared 

deviation of a product’s itinerary distance from the average itinerary distance of competing 

products offered by other airlines; and (2) the number of competing products offered by 

other airlines, where these competing products have number of intermediate stops 

equivalent to the product in question.  The rationale for these instruments is that they are 

                                                             

17 For details of this estimation algorithm of a random coefficients logit model, see Nevo (2000). 
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measures of the degree of competition that a product faces, which affects the size of a 

product’s markup. 

Similar to Villas-Boas (2007), we also exploit the time dimension of the data to 

construct another set of instruments for price.  Since jet fuel price18 vary over the time span 

of the data, these changes in jet fuel price are likely to affect airlines' marginal cost 

differently because airlines differ in the intensity with which they use fuel owing to 

differences in their route network structure and the size distribution of their aircraft fleet. 

In addition, it is reasonable to assume that airlines do not routinely change their aircraft 

fleet with each change in jet fuel price.  Given that an airline's marginal cost is correlated 

with its product price, and we assume that shocks to jet fuel price are uncorrelated with 𝜉𝑗, 

then the following are another set of valid instruments we use for air travel product price: 

(1) itinerary distance flown; (2) interaction of jet fuel price with itinerary distance flown; 

and (3) interaction of jet fuel price with operating carrier dummies.  

For the variables Percent Traditional for Airline and Percent Virtual for Airline, we 

adopt two instruments: (i) one-period lag of the squared deviation of an airline’s size 

presence at the market endpoint cities from the average size presence of other airlines at 

the market endpoints; and (ii) the interaction of (i) with nonstop flight distance.  The size 

of an airline's presence at the market endpoints is computed by averaging across variables 

Opres_in and Dpres_out, which are variables we defined in the Definitions and Data 

section.  An airline's measures of Opres_in and Dpres_out at the endpoints of a market are 

more determined by the airline's extended route network structure rather than features of 

the given origin-destination market.  Therefore, it is reasonable to assume that Opres_in 

and Dpres_out are uncorrelated with 𝜉𝑗.  In addition, lower presence for an airline at the 

endpoints of a market makes it more likely that the airline will codeshare with others that 

are already serving the market.  So Opres_in and Dpres_out are in principle good 

instruments for Percent Traditional for Airline and Percent Virtual for Airline.  Last, we 

allow the influence of an airline's size of presence at the market endpoints on its extent of 

market codesharing to depend on the nonstop flight distance of the market.  This explains 

the rationale for instrument (ii). 

                                                             

18  The jet fuel price we use is U.S. Gulf Kerosene-Type Jet Fuel Spot Price FOB from the U.S. Energy 
Information Administration. 
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4.2 Results from demand estimation  

We begin by estimating a standard logit specification of the demand model, which 

is more restrictive than the random coefficients logit demand model outlined previously in 

the sense that the standard logit model does not allow marginal utilities for product 

characteristics to vary across consumers.  Table 7 reports both Ordinary Least Square (OLS) 

and Two-stage Least Squares (2SLS) estimates of the standard logit model.  First, focusing 

on coefficient estimates for the variable, Fare (𝑝𝑗), we find that even though the sign of 

the OLS and 2SLS coefficient estimates on Fare is consistent with intuition, there is a large 

difference in the size of the two coefficient estimates.  The OLS versus the 2SLS coefficient 

estimates on variables Percent Traditional for Airline and Percent Virtual for Airline are 

also contrasting in magnitudes.  This preliminary evidence suggests that estimates in the 

OLS regression are biased and inconsistent and thus instruments are needed for these 

potentially endogenous variables.   

To formally confirm that variables Fare, Percent Traditional for Airline and 

Percent Virtual for Airline are endogenous, we perform a Hausman exogeneity test.  The 

result of the Hausman test shown in Table 7 easily rejects the exogeneity of these three 

variables at conventional levels of statistical significance.  To evaluate whether the 

instruments have statistically significant explanatory power of variations in the endogenous 

variables, we estimate first-stage reduced-form regressions for each of the endogenous 

variables.  When Fare is the dependent variable in the reduced-form regression, R-squared 

is 0.321, but when Percent Traditional for Airline and Percent Virtual for Airline are 

dependent variables, the R-squared values are respectively 0.331 and 0.327.  F-tests of the 

joint statistical significance of the instruments in these first-stage reduced-form regressions 

yield F-statistic values of F(46, 434144) = 1717.50, F(46, 434144) = 115.70, and F(46, 

434144) = 157.91 for the Fare, Percent Traditional for Airline and Percent Virtual for 

Airline regressions, respectively.  In each case the p-value for the F-statistic is 0.000, 

suggesting that the instruments do have statistically significant explanatory power of 

variations in each endogenous variable. 
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Table 7 

Demand Estimation  

 Standard Logit Model 
 Random Coefficients 

Logit Model 

  OLS   2SLS 
  

GMM 

Means (𝜙𝑝 and 𝜙𝑥) Estimates 
Robust 

Std. Error   Estimates 
Robust 

Std. Error 
 

Estimates 
Robust 

Std. Error 
  Fare (in thousand $) -0.9290*** 0.0343  -8.2570*** 0.1669  -19.12*** 0.7401 

  Opres_out 0.3973*** 0.0082  0.1841*** 0.0182  0.473*** 0.0314 

  Interstops -1.4588*** 0.0060  -1.4 71*** 0.0084  -1.495*** 0.0219 

  Inconvenience -0.9491*** 0.0064  -0.9265*** 0.0106  -0.760*** 0.0186 

  Traditional Codeshare -0.6827*** 0.0116  -5.1325*** 0.1559  -6.849*** 0.2346 

  Virtual Codeshare -0.8867*** 0.0127  -0.7232*** 0.0923  -1.122*** 0.1344 

  Percent Traditional for Airline a 0.1325*** 0.0144  9.0277*** 0.3084  12.35*** 0.4624 

  Percent Virtual for Airline a -0.1147*** 0.0115  -1.0889*** 0.1683  -0.643*** 0.2426 

  Spring  0.1111*** 0.0045  0.1570*** 0.0067  0.413*** 0.0137 

  Summer 0.0826*** 0.0045  0. 1244*** 0.0066  0.327*** 0.0129 

  Fall 0.0638*** 0.0045  0.0829*** 0.0066  0.222*** 0.0106 

  Constant -3.0333*** 0.0219  -2.0197*** 0.0376  -4.164*** 0.1135 

  Ticketing carrier fixed effects YES  YES  YES 

  Year fixed effects YES  YES  YES 

  Market Origin fixed effects YES  YES  YES 

  Market Destination fixed effects YES  YES  YES 

    
   

Taste variation (𝜙𝑣)         

  Constant - -  - -  3.225*** 0.0844 

  Price (in thousand $) - -  - -  0.346 9.847 

  Interstops - -  - -  0.099 0.2096 

    
   

R-squared 0.4417  -    

Value of GMM objective function -  -  51365.004 

Test of endogeneity  
   

     Ho: variables are exogenous  
   

Durbin-Wu-Hausman test:   3
2  = 5293.29***            Prob_Value = 0.0000 

   

Robust regression F-test: F(3, 434184) = 1818.82***     Prob_Value = 0.0000    

     

  *** indicates statistical significance at 1%.  a variable is measured in values between zero and one when variable is used in demand estimation.  
For the Standard Logit Model, the well-known linear equation used for estimating the parameters is: 𝑙𝑛(𝑆𝑗) − 𝑙𝑛(𝑆0) = 𝑥𝑗𝜙𝑥 + 𝜙𝑝𝑝𝑗 + 𝜉𝑗, 
where 𝑆𝑗 = 𝑞𝑗 𝑃𝑂𝑃⁄  is the observed share of product j,  𝑆0 = 1 − ∑ 𝑆𝑗𝐽𝑗=1  is the observed share of the outside good, and 𝜉𝑗 is the error term of 
the equation. 
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The following discussion of demand regression results in Table 7 focuses on the 

less restrictive random coefficients logit model.  The upper panel of the table reports the 

mean marginal (dis)utilities for each product characteristic (𝜙𝑝 and 𝜙𝑥), while the lower 

panel of the table reports the parameter estimates that measure taste variation across 

consumers for respective product characteristics (𝜙𝑣) . 

As expected, the coefficient estimate on Fare is negative, implying that higher 

prices are associated with lower levels of utility, ceteris paribus.  In other words, all else 

equal, passengers prefer cheaper air travel products.  

The coefficient estimate on Opres_out is positive.  This result is consistent with our 

priors, and suggests that travelers prefer to fly with airlines, all else equal, that offer 

services to more destinations from the travelers’ origin city.  This estimated effect is 

possibly in part due to the benefits of frequent-flyer programs.  Travelers are more likely 

to hold frequent-flyer membership with the airline they believe they are most likely to use 

in the future, and it is reasonable for a passenger to conjecture that they will most often use 

the airline that offers service to a relatively large number of destinations from the 

passenger’s origin city.  Once the passenger becomes invested in the airline’s frequent-

flyer program, this helps reinforce the passenger’s loyalty to the airline. 

The coefficient estimate on Interstops is negative, implying that consumers most 

prefer nonstop flights between their origin and destination compared to travel itineraries 

that require intermediate stops.  This is reasonable since passengers should prefer the most 

convenient travel itinerary from origin to destination. In addition, the coefficient estimate 

on Inconvenience is negative.  This intuitively makes sense as well since, for any given 

number of intermediate stops, passengers prefer the most direct routing to the destination.   

The coefficient estimate on Interstops divided by the coefficient estimate on the 

airfare variable, multiplied by 1000, is 78.19, which suggests that, on average, consumers 

are willing to pay up to $78.19 per intermediate stop to avoid air travel products with 

intermediate stops.  For example, if the price of an air travel product that requires one 

intermediate stop between an origin and destination is $200, then the coefficient estimates 

suggest that a typical consumer is willing to purchase a nonstop product in this market at a 

price of $278 or lower, ceteris paribus.       
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The Traditional Codeshare dummy variable has a negative coefficient estimate, 

implying that a traditional codeshare product makes passengers’ utility lower relative to a 

pure online product.  A likely reason is that the flight itinerary for a pure online product is 

typically very streamlined because an airline can better organize its own flights and 

schedules to minimize layover time, as well as efficiently organize its own gates at airports.  

Even though codeshare partners try to streamline flights across carriers to minimize layover 

times and facilitate smoother connections, the negative coefficient estimate on the 

Traditional Codeshare variable suggests that this process has not achieved parity with pure 

online products [Gayle (2013)].  The ratio of the coefficient estimates on the Traditional 

Codeshare and air fare variables suggest that a typical consumer is willing to pay up to 

$358.26 (= 6.8519.12 × 1000) extra to obtain a pure online product compared to an otherwise 

equivalent traditional codeshare product, ceteris paribus.     

The Virtual Codeshare dummy variable has a negative coefficient estimate as well.  

This result suggests that passengers perceive virtual codeshare products as inferior 

substitutes to pure online products.  For the itineraries that include virtual segments, first-

class upgrades using accumulated frequent-flyer miles are not usually available [Ito and 

Lee (2007)].  This could explain why passengers perceive virtual codeshare products as 

inferior to pure online products.  The ratio of the coefficient estimates on the Virtual 

Codeshare and air fare variables suggest that a typical consumer is willing to pay up to 

$58.58 (= 1.1219.12 × 1000) extra to obtain a pure online product compared to an otherwise 

equivalent virtual codeshare product, ceteris paribus.   

So while both types of codeshare products are inferior to pure online products, the 

evidence suggests that consumers perceive virtual codeshare products as less inferior than 

traditional codeshare products.  This consumer preference comparison across the two types 

of codeshare products make sense since virtual codeshare products do not require a 

passenger to switch operating airlines on the flight schedule, while traditional codeshare 

products do.      

Note that the coefficient estimate on Percent Traditional for Airline is positive, 

suggesting that consumers tend to choose the airlines that offer more traditional codeshare 

products in a market.  This result is consistent with the argument that airline codesharing 
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has a demand-increasing effect [Gayle and Brown (2012)].  A rationale for the demand-

increasing effect is due to the fact that codeshare partners typically make their frequent-

flyer programs reciprocal, thus allowing travelers holding frequent-flyer membership with 

one partner carrier to accumulate frequent-flyer points when flying with any partner carrier 

in the alliance.  Thus the new opportunities for travelers to accumulate frequent-flyer points 

across partner carriers can increase demand for the codeshare partners' products.  This 

result does not contradict with the previously discussed result suggesting that traditional 

codeshare products are less preferred by consumers compared to pure online products.  The 

reason is that the coefficient estimate on the Percent Traditional for Airline does not capture 

a consumer preference comparison between traditional codeshare products and pure online 

products, instead the coefficient estimate capture the impact of an airline providing more 

traditional codeshare products compared to competing airlines. 

Interestingly, the coefficient estimate on Percent Virtual for Airline is negative, 

suggesting that, unlike traditional codesharing, virtual codesharing does not have a 

demand-increasing effect.  The evidence therefore suggests that airlines use these two types 

of codesharing practices to achieve different objectives.  To the best of our knowledge, this 

paper is the first to provide rigorous formal evidence suggesting that traditional 

codesharing has a demand-increasing effect, but virtual codesharing does not. 

The demand model yields a mean own-price elasticity estimate of -3.07.  As pointed 

out by Oum, Gillen and Noble (1986) and Brander and Zhang (1990), a reasonable range 

for own-price elasticity in the airline industry is from -1.2 to -2.0.  Peters (2006) study of 

the airline industry yields own-price elasticity estimates ranging from -3.2 to -3.6.  Berry 

and Jia (2010) find own-price elasticity estimates ranging from -1.89 to -2.10 in their year 

2006 sample, while Gayle and Wu (2015) find own-price elasticity estimates ranging from 

-1.65 to -2.39 in their year 2010 sample.  Therefore, we are satisfied that the elasticity 

estimates generated from our model are reasonable and consistent with evidence in the 

existing literature.  

 As revealed by equation (8), the demand parameter estimates in Table 7 can be 

combined with the short-run supply-side Nash equilibrium price-setting assumption to 

compute product markups.  Overall, mean price is $166.35, while computed mean product 

markup is $60.18.  Since price minus markup yields marginal cost, then mean product 
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marginal cost is $106.17.  Therefore, the demand estimates combined with the short-run 

supply-side Nash equilibrium price-setting assumption suggest that marginal cost is, on 

average, approximately 64% ( ≈ $106.17$166.35 × 100) of product price.   

Financial data reported by airlines are usually categorized by accounting concepts 

rather than economic concepts.  For example, the Bureau of Transportation Statistics 

compiles financial data from US airlines in the "Form 41 Financial Schedule" database, 

and this database reports various accounting decompositions of operating expenses and 

operating revenues.  However, nowhere in the airline database will you see data on 

economically relevant concepts such as marginal cost.  In other words, financial data 

reported by airlines are typically not in a format that is directly comparable to the type of 

economically relevant estimates generated by the econometric model.  Nevertheless, it is 

still worthwhile an attempt to piece together certain reported financial data, and use them 

to roughly validate some estimates from the econometric model. 

A financial variable reported by airlines in the operating revenues section of the 

"Form 41 Financial Schedule" is "Transport-Related Revenues".  Another useful financial 

variable reported by airlines in the operating expenses section of the database is "Flying 

Operations Expenses", which according to definitions by the Bureau of Transportation 

Statistics, these are "expenses incurred directly in the in-flight operation of aircraft and expenses 

related to the holding of aircraft and aircraft operational personnel in readiness for assignment 

for an in-flight status."  It is reasonable to presume that number of in-flight passengers 

positively correlates with size of aircraft and cost of in-flight operations.  Therefore, we 

believe that the reported "Flying Operations Expenses" is correlated with the number of in-

flight passengers that need to be served, and therefore is related to in-flight variable 

expenses of an airline.  As such, an airline's "Flying Operations Expenses" as a percentage 

of its "Transport-Related Revenues" should reasonably approximate what marginal cost as 

a percentage of price ought to be.  Interestingly, for the set of airlines in our data sample, 

these reported financial data reveal that "Flying Operations Expenses", on average, is 

approximately 51% of "Transport-Related Revenues".19  Therefore, it is reassuring that our 

                                                             
19 These financial data are drawn for the four quarters of 2007 from the "Air Carrier Financial: Schedule P-
1.2"  file located in the Air Carrier Financial Reports (Form 41 Financial Data) database.  This database is 
published and maintained by the Bureau of Transportation Statistics. 
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model estimates suggest that marginal cost is approximately 64% of product price.  

Furthermore, the supply equation in (8) suggests that if the marginal costs generated by the 

model are reasonable, then the product markups generated by the model should also be 

reasonable.     

 We also use the demand estimates along with equations (8) and (9) to compute 

quarterly market-level variable profits by airline.  Equation (9) illustrates that variable 

profit is computed as product markup multiplied by product quantity sold.  As we stated 

previously in the data section of the paper, the original database, before any cleaning, is 

only a 10% random sample of air travel tickets sold.  Therefore, even though our model 

seems to produce reasonable levels of product markups, due to the data only capturing at 

most 10% of the actual number of travel tickets sold, then the magnitudes of our variable 

profit estimates are at most roughly 10% of actual variable profits.  Variable profits are 

measured in constant year 1999 dollars.  Overall, an airline's mean quarterly variable profit 

in a directional origin-destination market is $53,984.43, while the median is $17,270.3.   

 

4.3 Estimation of Dynamic Model 

The likelihood function for the dynamic model is given by, 𝐿(𝜃, 𝛾, 𝜆) =∏ ∏ ∏ 𝑃(𝒂𝑚𝑡|𝑍̃𝑖𝑚𝑡𝑃 , 𝑒̃𝑖𝑚𝑡𝑃 , 𝜖𝑚𝑡𝑇𝑟𝑎𝑑, 𝜖𝑚𝑡𝑉𝑖𝑟𝑡, 𝜃)𝑓(𝜖𝑚𝑡𝑇𝑟𝑎𝑑|𝑍𝑚𝑡 , 𝛾)𝑓(𝜖𝑚𝑡𝑉𝑖𝑟𝑡|𝑍𝑚𝑡, 𝜆)𝑇𝑡=1𝑁𝑖=1𝑀𝑚=1    (23) 

 

where 𝒂𝑚𝑡 = (𝑎1𝑚𝑡, 𝑎2𝑚𝑡, … , 𝑎𝑁𝑚𝑡) is the vector of market participation actions taken by 

airlines in period t.  Note that the likelihood function is comprised of three parts.  The first 

part, 𝑃(𝒂𝑚𝑡|𝑍̃𝑖𝑚𝑡𝑃 , 𝑒̃𝑖𝑚𝑡𝑃 , 𝜖𝑚𝑡𝑇𝑟𝑎𝑑, 𝜖𝑚𝑡𝑉𝑖𝑟𝑡, 𝜃) computes the conditional likelihood of observing 

the logit choice probabilities of airlines being active in markets across the sample during 

the time span of the data.  To obtain the full unconditional likelihood, we multiply the 

conditional likelihood by the probabilities of observing specific values of  𝜖𝑚𝑡𝑇𝑟𝑎𝑑 and 𝜖𝑚𝑡𝑉𝑖𝑟𝑡, 

where 𝜖𝑚𝑡𝑇𝑟𝑎𝑑 = 𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑𝑚𝑡 − 𝑍𝑚𝑡𝛾  and  𝜖𝑚𝑡𝑉𝑖𝑟𝑡 = 𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑚𝑡 − 𝑍𝑚𝑡𝜆  

based on equations (15) and (16).  Since we assume that 𝜖𝑚𝑡𝑇𝑟𝑎𝑑  and 𝜖𝑚𝑡𝑉𝑖𝑟𝑡  are normally 

distributed random variables with zero means and standard deviations 𝜎𝑇𝑟𝑎𝑑  and 𝜎𝑉𝑖𝑟𝑡 

respectively, then 𝑓(∙) is the normal probability density function. 
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 While joint estimation of the full set of parameters (𝜃, 𝛾, 𝜆) is desirable due to 

potential efficiency gains, such joint estimation is extremely computationally demanding 

in this dynamic model.  Fortunately, a convenient feature of the likelihood function above 

is that each of the three vectors of parameters in (𝜃, 𝛾, 𝜆) is identified by separate parts of 

the likelihood function.  Specifically, 𝑃(𝒂𝑚𝑡|𝑍̃𝑖𝑚𝑡𝑃 , 𝑒̃𝑖𝑚𝑡𝑃 , 𝜖𝑚𝑡𝑇𝑟𝑎𝑑, 𝜖𝑚𝑡𝑉𝑖𝑟𝑡, 𝜃)  is the part that 

identifies parameters in vector 𝜃, while  𝑓(𝜖𝑚𝑡𝑇𝑟𝑎𝑑|𝑍𝑚𝑡 , 𝛾) and 𝑓(𝜖𝑚𝑡𝑉𝑖𝑟𝑡|𝑍𝑚𝑡, 𝜆) are the parts 

that identify parameter vectors 𝛾 and 𝜆 respectively.  This implies that parameter vectors 𝛾  and 𝜆  can be separately estimated in a first step using likelihood functions ∏ ∏ 𝑓(𝜖𝑚𝑡𝑇𝑟𝑎𝑑|𝑍𝑚𝑡, 𝛾)𝑇𝑡=1𝑀𝑚=1  and ∏ ∏ 𝑓(𝜖𝑚𝑡𝑉𝑖𝑟𝑡|𝑍𝑚𝑡, 𝜆)𝑇𝑡=1𝑀𝑚=1  respectively.  Given 

estimates 𝛾 and 𝜆̂, we can compute 𝑓(𝜖𝑚𝑡𝑇𝑟𝑎𝑑|𝑍𝑚𝑡 , 𝛾) and 𝑓(𝜖𝑚𝑡𝑉𝑖𝑟𝑡|𝑍𝑚𝑡, 𝜆̂) and use them to 

construct the relevant parts of 𝐿(𝜃, 𝛾, 𝜆̂) in order to estimate 𝜃 in a second step.  

Based on the discussion above, we use the following pseudo log likelihood function 

to estimate parameters in vector 𝜃: 

 

𝑄(𝜃, 𝑷, 𝛾, 𝜆̂) = ∑ ∑ ∑{𝑎𝑖𝑚𝑡𝑙𝑛[𝜓(𝑍𝑖𝑚𝑡𝑃 × 𝜃 + 𝑒̃𝑖𝑚𝑡𝑃 )]𝑇
𝑡=1

𝑁
𝑖=1

𝑀
𝑚=1+ (1 − 𝑎𝑖𝑚𝑡)𝑙𝑛[𝜓(−𝑍̃𝑖𝑚𝑡𝑃 × 𝜃 − 𝑒̃𝑖𝑚𝑡𝑃 )]+ 𝑙𝑛[𝑓(𝜖𝑚𝑡𝑇𝑟𝑎𝑑|𝑍𝑚𝑡, 𝛾)] + 𝑙𝑛[𝑓(𝜖𝑚𝑡𝑉𝑖𝑟𝑡|𝑍𝑚𝑡, 𝜆̂)]} 

(24) 

where 𝑄(𝜃, 𝑷, 𝛾, 𝜆̂) is called a “pseudo” log likelihood function because airlines’ 

conditional choice probabilities (CCPs) in 𝜓(∙)  are arbitrary and do not represent the 

equilibrium probabilities associated with 𝜃, where 𝜃 is the vector of parameters in the fixed 

and entry cost functions previously specified in equations (13) and (14).  Since the focus 

now is describing how 𝜃 is estimated, in what follows we drop 𝛾 and 𝜆̂ when discussing 

“pseudo” log likelihood function 𝑄(∙) only for notational convenience.       

 We begin by implementing the Pseudo Maximum Likelihood (PML) estimation 

procedure [Aguirregabiria and Ho (2012)].  The PML requires two steps.  In step 1, we 

estimate relevant state transition equations.  Appendix A describes transition rules used for 

state variables.  In addition, nonparametric estimates of the choice probabilities 𝑃0̂ are 

computed in step1.  These nonparametric probability estimates, along with state variables 

and estimated state transition probabilities, are used to compute 𝑍̃𝑖𝑚𝑡𝑃0̂  and 𝑒̃𝑖𝑚𝑡𝑃0̂  as described 
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in Appendix B.  Using 𝑍̃𝑖𝑚𝑡𝑃0̂  and 𝑒̃𝑖𝑚𝑡𝑃0̂ , we are able to construct the pseudo log likelihood 

function, 𝑄(𝜃, 𝑃0̂).  In step 2 of the PML estimation algorithm, the vector of parameters 𝜃𝑃𝑀𝐿 is estimated by: 

 𝜃𝑃𝑀𝐿 = 𝑎𝑟𝑔 max𝜃 𝑄(𝜃, 𝑃0̂) (25) 

This PML algorithm is simple and does not require solving for an equilibrium in 

the dynamic game, and thus substantially reduces computational burden.  However, the 

two-step pseudo maximum likelihood estimator 𝜃𝑃𝑀𝐿 can have a large finite sample bias 

[Aguirregabiria and Mira (2007)].  To achieve consistency of the parameter estimates, we 

follow Aguirregabiria and Mira (2002, 2007) and use as a starting point the PML parameter 

estimates along with the non-parametric estimates of the choice probabilities to implement 

the Nested Pseudo Likelihood (NPL) estimation algorithm.  To assess robustness of 

parameter convergence in our application of the NPL estimation algorithm, we have tried 

starting the algorithm at several distinct initial sets of  𝜃 and find that the NPL algorithm 

converged to qualitatively similar 𝜃 on each run of the estimation algorithm.  In subsequent 

discussion of parameter estimates from the dynamic model, we piece together certain 

official financial data reported by airlines, and use these data where possible to roughly 

validate some estimates from the dynamic model.  We describe the NPL estimation 

algorithm in Appendix C.20  

 

Results from first-stage estimation of parameter vectors 𝜸 and 𝝀 

Table 8 reports the estimation results for first-stage estimation of parameter vectors 𝛾  and 𝜆 .  The results suggest that more concentrated airline presence at the market 

endpoints (measured by variable Lag HHI of Presence), and longer distance between 

market endpoints (measured by variable Nonstop Flight Distance) seem to incentivize 

relatively higher levels of traditional codesharing, but lower levels of virtual codesharing.  

At a minimum we can infer from these results that airlines' choice of the most prevalent 

                                                             

20 While the demand model is estimated using all three years in the data set (2005, 2006 and 2007), due to 
significant computational burden, we find that the dynamic entry/exit model can only feasibly be estimated 
using, at most, four quarters of the data.  We only use data in year 2005 when estimating the dynamic 
entry/exit model.  Even with just four quarters of data, the computer code for the dynamic entry/exit model 
took more than seven days of continuous running before convergence is achieved. 
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type of codesharing to employ in a market depends in part on certain market characteristics.   

Last, results of F-tests shown in the table suggest that all regressors as a group do explain 

variations in 𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑𝑚𝑡 and 𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑚𝑡.  

 

 

Table 8 

Estimation of Linear Equations  

for Percent Codeshare Variables 

  
Dependent Variable: 
Percent_Traditional 

Dependent Variable: 
Percent_Virtual 

Variables 

Coefficient 
Estimates (𝛾) 

Standard 
Error 

 

Coefficient 
Estimates (𝜆) 

Standard 
Error 

 

POP -2.84E-08 2.32E-07 1.37E-07 2.35E-07 

Nonstop flight distance 0.0016*** 7.68E-05 -0.0012*** 7.79E-05 

Lag HHI of Presence 0.9831** 0.4001 -3.6714*** 0.4056 

Constant -1.5868*** 0.4384 2.6997*** 0.4444 

Origin fixed effects YES YES 

Destination fixed effects YES YES 

Quarter fixed effects YES YES 

R-squared 0.2421 0.2943 

F-test 29.60     Prob>F = 0.000 38.63   Prob>F = 0.000 
              *** indicates statistical significance at 1% 
              **   indicates statistical significance at 5% 

Equations are estimated using ordinary least squares. 
 

 

4.4 Results from the dynamic model 

Table 9 reports estimates of parameters in the fixed and entry cost functions from 

the dynamic model.  The quarterly discount factor, β, is fixed at 0.99 (that implies an annual 

discount factor of 0.96).  All the estimated fixed and entry cost parameters are measured in 

ten thousands of annual 1999 dollars.  Due to previously discussed properties of our data 

sample, the reader is reminded that the magnitudes of our computed variable profits that 

feed into the dynamic model are at most roughly 10% of actual magnitudes, which in turn 

implies that the magnitudes of our fixed and entry cost estimates are at most 10% of actual 

magnitudes. 

Point estimates of parameters in the fixed cost functions are unreasonably small 
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and imprecisely estimated.  As such, we cannot draw reliable inferences about the size of 

fixed cost.  Fortunately, based on the objectives of our study we are most interested in 

parameter estimates in the entry cost function, which is where we now focus the remainder 

of the discussion.  

 

 

Table 9 

Estimates of Parameters in Fixed and Entry Cost Functions 

Variables 

Parameter Estimates 
(θ)  

(In ten thousand $) 
Standard 
Errorsa 

Fixed cost (quarterly):   

    Mean fixed cost 5.00E-10 0.0145 

    Size of Presence at market endpoints 7.06E-11 1.01E-04 

   

Entry costs:   

   Mean entry cost for Legacy carriers 3.0755*** 0.0153 

   Mean entry cost for Southwest 3.3499*** 0.0164 

   Mean entry cost for Other LCCs 2.7467*** 0.0135 

   Size of Presence at market endpoints -0.0072*** 9.85E-05 

   Traditional Codesharing  -0.0197*** 8.67E-04 

   Virtual Codesharing  -0.0042*** 5.42E-04 

   Traditional Codesharing × Southwest 0.0295*** 0.0011 

   Virtual Codesharing × Southwest 0.0069*** 0.0016 

   Traditional Codesharing × Other LCCs 0.0090*** 7.18E-04 

   Virtual Codesharing × Other LCCs -0.0058*** 6.53E-04 
*** indicates statistical significance at 1% 
a Standard errors are computed via bootstrapping. The bootstrapping procedure is  
described in Appendix D.   

 

 

It is difficult to obtain data separate from those used in this study to validate market 

entry cost estimates generated by the model.  One reason for this difficulty is that the cost 

an airline faces to enter a market may in part be in terms of opportunity cost, i.e., the 

revenue forgone by not being able to use aircrafts in an alternate market.  With this caveat 

in mind, we now discuss parameter estimates in the entry cost function.               

Since the median variable profit is $17,270.3, then for a given directional origin-

destination market an airline generates, on average, less than $17,270.3 profit each quarter.  
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Estimates from Table 9 show that the average estimated cost to enter an origin-destination 

market is approximately $30,574, which is at least 1.77 times (=$30,574/$17,270.30) as 

large as quarterly profit.  It is notable from the estimates that mean entry cost differs by the 

carrier categories considered.  Southwest has the highest mean market entry cost followed 

by legacy carriers and other low-cost-carriers, $33,499, $30,755 and $27,467 respectively.  

Furthermore, the pairwise difference between any two of these three mean market entry 

costs is statistically significant at conventional levels of statistical significance.  The 

decision of market entry is forward-looking, and our estimates suggest that it will take an 

airline slightly more than one quarter of profits to recoup the one-time sunk entry cost 

investment. 

The estimated entry cost coefficient on “Size of Presence at market endpoints” is 

negative and statistically significant at conventional levels of statistical significance, 

suggesting that an airline’s market entry cost decreases with the size of the airline’s 

presence at the endpoint cities of the market.  In other words, larger endpoint city presence 

makes it easier for the airline to actually start servicing the route.  This result is consistent 

with how the literature believes airline markets work [see Berry (1992); Goolsbee and 

Syverson (2008); Gayle and Wu (2013) among others]. 

The coefficient estimates on traditional and virtual codesharing variables are 

negative and statistically significant.  Based on our previous discussion of the interpretation 

of parameters in the entry cost function (equation (14)), the coefficient estimates on these 

two codeshare variables essentially capture the influence of codesharing on the market 

entry cost of potential entrants that are legacy carriers.  Therefore, these coefficient 

estimates suggest that an increase in the extent of codesharing by incumbent carriers in a 

market reduces the market entry cost of potential entrants that are legacy carriers. 

Recall that our descriptive statistics in Table 3 show that: (1) the vast majority of 

codeshare products are provided by legacy carriers; and (2) almost all of each legacy 

carrier’s codeshare products are codeshared with other legacy carriers.  Therefore, the 

econometric evidence in Table 9 suggesting that more codesharing in a market makes it 

less costly for potential entrant legacy carriers to enter the market may in part be driven by 

the Chen and Ross (2000) argument, which is that incumbents may offer to share their 

facility (in our context, predominantly airplane seats owned by legacy carriers) with some 
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potential entrants (apparently other legacy carriers) in order to discourage the potential 

entrant from entering on a larger, and more competitive, scale by exclusively using its own 

plane on the full route.  In other words, entry may be encouraged, as reflected by the lower 

entry cost, in a way that limits the scale of entry. 

A key result is that the coefficient estimates on the two interaction variables 

between codesharing and the Southwest dummy variable are both positive and statistically 

significant.  In addition, the total effect (rather than the relative effect) of each type of 

codesharing on Southwest’s market entry cost is positive.  As previously discussed, the 

total effect of each type of codesharing is captured by the sum of the coefficients on the 

relevant codeshare variable and its interaction with the Southwest dummy variable.  As 

such, the total effect of traditional codesharing on Southwest’s market entry cost is 0.0098 

(= 0.0295 – 0.0197), while the total effect of virtual codesharing on Southwest’s market 

entry cost is 0.0027 (= 0.0069 – 0.0042).  So, even though each type of incumbent 

codesharing has a positive effect on Southwest’s market entry cost, the parameter estimates 

provide evidence that traditional codesharing has a larger impact on Southwest’s market 

entry cost compared to virtual codesharing.  In contrast, the total effect of each type of 

codesharing on other LCC’s market entry cost is negative.  The total effect of traditional 

codesharing on other LCC’s market entry cost is -0.0107 (= 0.0090 – 0.0197), while the 

total effect of virtual codesharing on other LCC’s market entry cost is -0.01 (= -0.0058 – 

0.0042).  In summary, the coefficient estimates suggest that incumbent codesharing raises 

the market entry cost for Southwest, but reduces market entry cost for all other carriers 

(legacy and other LCC).  In other words, market incumbent codesharing puts Southwest at 

a relative disadvantage to enter the market compared to potential entrants. 

 A useful feature of the structural econometric model is that the model allows us to 

monetize the extent to which codesharing by market incumbent carriers influences market 

entry barriers faced by potential entrants.  Parameter estimates in the entry cost function 

suggest that each percentage point increase in traditional codeshare products offered by 

incumbents in a market raises market entry cost for Southwest by 0.3%   (= $295−$197$33,499 ×100 ), while each percentage point increase in virtual codeshare products raises market 

entry cost for Southwest by 0.08% (= $69−$42$33,499 × 100).  In contrast, each percentage point 
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increase in traditional codeshare products offered by incumbents in a market reduces 

market entry cost by 0.64% (= $197$30,755 × 100) for potential entrant legacy carriers, and by 

0.39% (= $197−$90$27,467 × 100 ) for potential entrants that are other LCCs.  Similarly each 

percentage point increase in virtual codeshare products in a market reduces market entry 

cost by 0.14% (= $42$30,755 × 100) for potential entrant legacy carriers, and by 0.36% (=$42+$58$27,467 × 100) for potential entrants that are other LCCs. 

We argue above that a possible reason why potential entrant legacy carriers find it 

less costly to enter markets with more codesharing is due to the fact that the incumbents 

that codeshare are typically legacy carriers, and legacy carriers typically codeshare with 

other legacy carriers.  However, what is the rationale for the econometric results suggesting 

that codesharing between legacy carriers make it more difficult for Southwest, but less 

difficult for other LCCs to enter a market?  Codesharing alliances between legacy carriers 

prompt consumer loyalty through the carriers’ reciprocal frequent-flyer programs and more 

available product options, which requires Southwest to exert more effort to secure its 

consumer base.  For other LCCs, perhaps a large set of consumers served by them does not 

have significant overlap with the set of consumers served by legacy carriers, and therefore 

the two carrier types only weakly compete with each other.  However, Southwest has a 

unique crossover strategic position in which it effectively competes with both legacy and 

other LCC carriers’ for their respective consumer bases.  As such, a relative entry-deterrent 

effect for Southwest translates into a relative ease of market entry for both legacy and other 

LCC carriers. 

 

Counterfactual Experiment 

Another useful feature of the structural econometric model is that we can use it to 

perform counterfactual experiments.  Details on the general technical procedure of how we 

use the dynamic entry model to perform counterfactual experiment are laid out in 

Aguirregabiria and Ho (2012, pp. 170 -171).  However, the simple intuitive idea of the 

counterfactual experiment is the following.  We first generate market entry probabilities 

from the model using the factual set of parameter estimates reported in Table 9.  These 
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market entry probabilities can be referred to as the factual market entry probabilities.  Next, 

we generate market entry probabilities from the model using a counterfactual set of 

parameters, which can be referred to as the counterfactual market entry probabilities.  Since 

the objective is to analyze the impact of market incumbent carrier's codesharing on the 

probability that Southwest enters the market, the distinction between the factual and 

counterfactual sets of parameters is that the coefficient estimates on all codeshare variables 

are set equal to 0 in the counterfactual set of parameters.  When the entry cost function 

parameter estimates associated with codesharing are counterfactually set to zero in the 

model, this effectively lowers (increases) the market entry cost for Southwest (other 

carriers).  A comparison between Southwest's factual market entry probabilities with its 

counterfactual market entry probabilities reveals the impact that codesharing has on the 

probability that Southwest enters various markets.       

The factual market entry probabilities for Southwest range from 0.02 to 0.089 for 

markets in which codesharing impacts Southwest's probability of entering.  Our model 

predicts that Southwest’s market entry probabilities increase by a mean 15.81% when the 

parameters that capture the entry deterrence impact of codesharing are counterfactually set 

to zero in the model.  If we focus on the subset of markets in which Southwest’s market 

entry probabilities range from 0.02 to 0.05, then its market entry probabilities are predicted 

to increase by a mean 17.15% when the parameters that capture the entry deterrence impact 

of codesharing are counterfactually set to zero in the model.  So the markets in which 

Southwest have lower entry probabilities tend to have larger predicted percent increases in 

its entry probabilities.  These mean percent increases in Southwest’s market entry 

probabilities are statistically significant at the 1% level.   

Figure 1 illustrates the distribution of the market entry-deterrent impact of 

codesharing over the sample range of market entry probabilities for Southwest.  

Specifically, the figure plots the relationship between Southwest’s market entry probability 

and the predicted percent change in Southwest’s market entry probability due to 

counterfactual removal of the entry-deterrent impact of incumbent codesharing.  First, it is 

evident from Figure 1 that counterfactual removal of the entry-deterrent impact of 

incumbent codesharing increases the probability that Southwest enters a market over the 

sample range of Southwest’s market entry probabilities.  However, the extent of the 
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percentage increase in Southwest’s market entry probability is not uniform across its 

market entry probabilities.  It is evident that the predicted percent increases in entry 

probabilities have a bimodal feature over our sample range of Southwest’s market entry 

probabilities.  In particular, the entry-deterrent impact of incumbent codesharing on 

Southwest’s market entry probabilities is distinctively larger at two different levels of its 

market entry probabilities; specifically, counterfactual removal of the entry-deterrent 

impact of incumbent codesharing yields an approximate 60% predicted increase at market 

entry probability levels 0.02 and 0.056 respectively. 

 

 

  
 

 

In summary, the empirical analysis suggests that codesharing between market 

incumbent airlines results in a relative increase in Southwest’s market entry cost and a 

decrease in the probability that Southwest will enter the relevant market, which can be 

interpreted as an entry deterring effect to Southwest.  Importantly, we also find that the 

entry deterrent impact of incumbent codesharing is not linear with respect to the 

likelihood/probability of Southwest’s market entry. 
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Figure 1:  Relationship between Southwest's Market Entry Probability and 
Predicted Percent Change in its Market Entry Probability due to Counterfactual 
Removal of Entry-Deterent Impact of  Codesharing by Market Incumbents
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5. Concluding Remarks 

The main objective of our paper is to use a structural econometric model to 

investigate: (1) whether codesharing between airlines in domestic air travel markets, a form 

of strategic alliance, has a deterrent effect on the entry of potential competitors; (2) whether 

there is a particular type of codesharing among alliance partners that is most effective at 

deterring entry; and (3) whether the market entry deterrence impact of codesharing varies 

by the identity of potential market entrants.  Advantages of using a structural econometric 

model are that: (1) we are able to quantify, in monetary terms, possible market entry 

barriers associated with codesharing; and (2) we are able to predict the extent to which a 

potential entrant’s market entry probabilities are affected by market incumbent carrier’s 

codesharing. 

We find that more codesharing, both traditional and virtual, between incumbent 

carriers in a market puts Southwest at a relative disadvantage to enter the market compared 

to all other potential entrants (legacy carriers and other low-cost carriers).  Specifically, 

each percentage point increase in traditional codeshare products offered by incumbents in 

a market raises market entry cost for Southwest by 0.3%, but reduces market entry cost by 

0.64% and 0.39% for legacy and “other” low-cost carriers respectively.  However, each 

percentage point increase in virtual codeshare products offered by incumbents in a market 

raises market entry cost for Southwest by 0.08%, but reduces market entry cost by 0.14% 

and 0.36% for legacy and “other” low-cost carriers respectively.  In addition, the model 

predicts that Southwest’s market entry probabilities increase by a mean 15.81% when the 

parameters that capture the entry deterrence impact of codesharing are counterfactually set 

to zero in the model.  Therefore, codesharing by market incumbent carriers has a relative 

market entry deterrent effect on Southwest.  Furthermore, the parameter estimates provide 

evidence that traditional codesharing has a larger impact on Southwest’s market entry cost 

compared to virtual codesharing. 

We argue that the entry deterrent effect is binding for Southwest but not for others 

due to the evidence that the vast majority of codesharing is done between legacy carriers, 

and competition between Southwest and legacy carriers is stronger than competition 

between other low-cost carriers and legacy carriers.  Consistent with this argument, 

previous work provides evidence that incumbent legacy carriers do not cut fares in response 
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to potential competition from other low-cost carriers, but cut fares in response to potential 

competition from Southwest [Brueckner, Lee and Singer (2012)]. 

We also find that an airline’s market entry cost decreases with the size of the 

airline’s presence at the endpoint cities of the market.  This finding is consistent with 

findings in Aguirregabiria and Ho (2012), and may be due to economies of scale and scope 

by concentrating most operations in a hub airport. 

The focus of our study is on U.S. domestic air travel markets, however future work 

may investigate whether results similar to ours exist for codesharing in international air 

travel markets.   

 

Appendix A: Transition Rules for State Variables 

 
The state variables we observe are: {𝑠𝑖𝑚𝑡, 𝑅𝑖𝑚𝑡∗ , 𝑃𝑟𝑒𝑠𝑖𝑚𝑡, 𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑𝑚𝑡, 𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑚𝑡} . We utilize Vector 

autoregressions (VAR) to model transition rules for the state variables 𝑅𝑖𝑚𝑡∗  , 𝑃𝑟𝑒𝑠𝑖𝑚𝑡 , 𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑𝑚𝑡 , and 𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑚𝑡.  
Let 𝑍𝑚𝑡𝑣𝑎𝑟 = {1, 𝑅1𝑚𝑡∗ , … , 𝑅9𝑚𝑡∗ ,    𝑃𝑟𝑒𝑠1𝑚𝑡, … , 𝑃𝑟𝑒𝑠9𝑚𝑡, 𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑𝑚𝑡, 𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑚𝑡}.  
 
Transition rules for the state variables are as follows: 
 

   𝑠𝑖𝑚,𝑡+1 = 𝑎𝑖𝑡       (A1) 

 

   𝑅𝑖𝑚,𝑡+1∗ = 𝑎𝑖𝑚𝑡(𝛼𝑅𝑍𝑚𝑡𝑣𝑎𝑟 + 𝜁𝑖𝑚𝑡𝑅 )     (A2) 

 

 𝑃𝑟𝑒𝑠𝑖𝑚,𝑡+1 = 𝛼𝑃𝑟𝑒𝑠𝑍𝑚𝑡𝑣𝑎𝑟 + 𝜁𝑖𝑚𝑡𝑃𝑟𝑒𝑠      (A3) 

  𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑𝑚,𝑡+1 = 𝛼𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑𝑍𝑚𝑡𝑣𝑎𝑟  + 𝜁𝑚𝑡𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑    (A4) 

 

 𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑚,𝑡+1 = 𝛼𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑍𝑚𝑡𝑣𝑎𝑟 + 𝜁𝑚𝑡𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙      (A5) 

 

where 𝜁𝑖𝑚𝑡𝑅 , 𝜁𝑖𝑚𝑡𝑃𝑟𝑒𝑠 ,  𝜁𝑚𝑡𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑 , and 𝜁𝑚𝑡𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙  are assumed to be normally 
distributed.  

The joint transition probabilities of the state variables are determined by: 
 𝐹𝑖𝜎(𝑦𝑡+1|𝑎𝑖𝑡,𝑦𝑡) ={ 1{𝑠𝑖,𝑡+1 = 1} ∗ Pr𝑅 ∗ Pr𝑃𝑟𝑒𝑠 ∗ Pr𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑 ∗ Pr𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑡𝑢𝑎𝑙 ∗ Pr𝑐𝑜𝑚𝑝 1{𝑠𝑖,𝑡+1 = 0} ∗ Pr𝑅′ ∗ Pr𝑝𝑟𝑒𝑠 ∗ Pr𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑 ∗ Pr𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑡𝑢𝑎𝑙 ∗ Pr𝑐𝑜𝑚𝑝  (A6) 
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where 
 Pr𝑅 = 𝐹𝑅(𝑅𝑖𝑡+1|𝑅𝑖𝑡) ∗ ∏ 𝐹𝑅(𝑅𝑗𝑡+1|𝑅𝑗𝑡)𝑗≠𝑖       (A7) 

 Pr𝑃𝑟𝑒𝑠 = 𝐹𝑃𝑟𝑒𝑠(𝑃𝑟𝑒𝑠𝑖𝑡+1|𝑃𝑟𝑒𝑠𝑖𝑡) ∗ ∏ 𝐹𝑃𝑟𝑒𝑠(𝑃𝑟𝑒𝑠𝑗𝑡+1|𝑃𝑟𝑒𝑠𝑗𝑡)𝑗≠𝑖    (A8) 

 Pr𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑 = 𝐹𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑(𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑𝑡+1|𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑𝑡)  (A9) 

 Pr𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙 = 𝐹𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙(𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑡+1|𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑡) (A10) 

 Pr𝑅′ = 1{𝑅𝑖,𝑡+1 = 0} ∗ ∏ 𝐹𝑅(𝑅𝑗𝑡+1|𝑅𝑗𝑡)𝑗≠𝑖       (A11) 

 Pr𝑐𝑜𝑚𝑝 = ∏ 𝑃𝑟(𝑠𝑗𝑡+1 = 𝜎𝑗(𝑦𝑗𝑡, 𝜀𝑗𝑡)|𝑦𝑗𝑡)𝑗≠𝑖       (A12) 

 

 

Appendix B: Representation of Markov Perfect Equilibrium (MPE) 
using Conditional Choice Probabilities (CCPs) 

 
Recall that expected one-period profit function, 𝛱𝑖𝑚𝑡(𝑎𝑖𝑡, 𝑦𝑡), is specified as: 
 

 𝛱𝑖𝑚𝑡(𝑎𝑖𝑡, 𝑦𝑡) = 𝑅𝑖𝑚𝑡∗ − 𝑎𝑖𝑚𝑡(𝐹𝐶𝑖 + (1 − 𝑠𝑖𝑚𝑡)𝐸𝐶𝑖),  (B1) 

where parametric specifications for 𝐹𝐶𝑖 and 𝐸𝐶𝑖 were previously given in equations (13) 
and (14).  Based on equation (B1): 
 
 𝛱𝑖𝑚𝑡(0, 𝑦𝑡) = 𝑅𝑖𝑚𝑡∗  (B2) 

and 
 𝛱𝑖𝑚𝑡(1, 𝑦𝑡) = 𝑅𝑖𝑚𝑡∗ − 𝐹𝐶𝑖 − (1 − 𝑠𝑖𝑚𝑡)𝐸𝐶𝑖 (B3) 

Let 
 𝑧𝑖𝑚𝑡(0, 𝑦𝑡) = {𝑅𝑖𝑚𝑡∗ , 0,0,0,0,0,0,0,0,0,0} (B4) 

and 

 

𝑧𝑖𝑚𝑡(1, 𝑦𝑡)    =   {𝑅𝑖𝑚𝑡∗ , −1, −𝑃𝑟𝑒𝑠𝑖𝑚𝑡,−1,   − (1 − 𝑠𝑖𝑡)𝑃𝑟𝑒𝑠𝑖𝑚𝑡 ,             − (1 − 𝑠𝑖𝑡)𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑𝑚𝑡   ,    −(1 − 𝑠𝑖𝑡)𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑚𝑡 ,−(1 − 𝑠𝑖𝑡)𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑𝑚𝑡 × 𝑆𝑜𝑢𝑡ℎ𝑤𝑒𝑠𝑡,−(1 − 𝑠𝑖𝑡)𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑚𝑡 × 𝑆𝑜𝑢𝑡ℎ𝑤𝑒𝑠𝑡,   − (1 − 𝑠𝑖𝑡)𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑𝑚𝑡 × 𝑂𝑡ℎ𝑒𝑟_𝑙𝑐𝑐,    −(1 − 𝑠𝑖𝑡)𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑚𝑡 × 𝑂𝑡ℎ𝑒𝑟_𝑙𝑐𝑐 } 

(B5) 

and 
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 𝜃 = {1, 𝜃0𝐹𝐶 , 𝜃1𝐹𝐶 , 𝜃0𝐸𝐶 , 𝜃1𝐸𝐶 , 𝜃2𝐸𝐶 , 𝜃3𝐸𝐶 , 𝜃4𝐸𝐶 , 𝜃5𝐸𝐶 , 𝜃6𝐸𝐶 , 𝜃7𝐸𝐶} (B6) 

Therefore, we can re-write: 
 𝛱𝑖𝑚𝑡(0, 𝑦𝑡) = 𝑧𝑖𝑚𝑡(0, 𝑦𝑡) × 𝜃 (B7) 

and 
 𝛱𝑖𝑚𝑡(1, 𝑦𝑡) = 𝑧𝑖𝑚𝑡(1, 𝑦𝑡) × 𝜃 (B8) 

As discussed in Aguirregabiria and Ho (2012), the MPE can be represented as a 
vector of conditional choice probabilities (CCPs), P.  P = {Pi(y): for every firm and state 
(i, y)} that solves fixed point problem 𝑷 = 𝜓(𝑷, 𝜃) is a vector of best response mapping: 

 
{𝜓 (𝑍̃𝑖𝑃(𝑦) 𝜃𝜎𝜀+ 𝑒̃𝑖𝑃(𝑦)) : 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑓𝑖𝑟𝑚 𝑎𝑛𝑑 𝑠𝑡𝑎𝑡𝑒 (𝑖, 𝑦)} 

(B9) 

where in our study 𝜓(∙) is the CDF of the type 1 extreme value distribution, and 
 

 
𝑍̃𝑖𝑃(𝑦) = 𝑍𝑖(1, 𝑦) − 𝑍𝑖(0, 𝑦) + 𝛽[𝐹𝑖,𝑦𝑃 (1) − 𝐹𝑖,𝑦𝑃 (0)] × 𝑤𝑧,𝑖𝑃 , (B10) 

 

 
𝑒̃𝑖𝑃(𝑦) = 𝛽[𝐹𝑖,𝑦𝑃 (1) − 𝐹𝑖,𝑦𝑃 (0)] × 𝑤𝑒,𝑖𝑃 , (B11) 

 

 
𝑤𝑧,𝑖𝑃 = (1 − 𝛽 ∗ 𝐹𝑖,𝑦𝑃̅̅ ̅̅ )−1 × {𝑃𝑖(𝑦) ∗ 𝑍𝑖(1, 𝑦) + [1 − 𝑃𝑖(𝑦)] ∗ 𝑍𝑖(0, 𝑦)}, (B12) 

 

 
𝑤𝑒,𝑖𝑃 = (1 − 𝛽 ∗ 𝐹𝑖,𝑦𝑃̅̅ ̅̅ )−1 × [𝑃𝑖(𝑦) ∗ 𝑒𝑖𝑃] (B13) 

 

and 
 

 
𝐹𝑖,𝑦𝑃̅̅ ̅̅ = [(𝑃𝑖(𝑦) × 1𝑀′ ) ∗ 𝐹𝑖,𝑦𝑃 (1) + ((1 − 𝑃𝑖(𝑦)) × 1𝑀′ ) ∗ 𝐹𝑖,𝑦𝑃 (0)]. (B14) 

 

where F𝑖𝑦P (0) and F𝑖𝑦P (1) are state transition probability matrices for 𝑎𝑖𝑡 = 0 and 𝑎𝑖𝑡 = 1 
respectively; 𝑤𝑧,𝑖𝑃  and 𝑤𝑒,𝑖𝑃  are vectors of valuations that depend on CCPs and transition 
probabilities, but not on the dynamic parameters being estimated. Since 𝜀𝑖𝑚𝑡 is assumed 
type 1 extreme value distributed, 𝑒𝑖𝑃  is a function vector equal to 𝑒𝑖𝑃 = 𝛾 − 𝑙𝑛(𝑃𝑖(𝑦)) 
where γ = 0.5772 is Euler’s constant. 
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Appendix C: Implementing the Nested Pseudo Likelihood (NPL) 
Estimator 

 Nadaraya-Watson kernel nonparametric regression is used to get nonparametric 

estimate. Given the PML estimator, 𝜃𝑃𝑀𝐿, and the initial nonparametric estimate of CCPs, 𝑃0̂, we construct a new estimator of CCPs, 𝑃1̂,using the best response CCPs equation 𝑃1̂ =𝜓(𝑦, 𝑃0̂, 𝜃𝑃𝑀𝐿).  Then we redo the maximization of the pseudo likelihood function to obtain 

a new estimate of 𝜃 using 𝑃1̂, instead of  𝑃0̂, in the pseudo log likelihood function, that is, 

we solve 𝜃2 = 𝑎𝑟𝑔 max𝜃 𝑄(𝜃, 𝑃1̂).  The process is repeated K times, and the Kth estimates 

of 𝜃  and P are obtained by 𝜃𝐾 = 𝑎𝑟𝑔 max𝜃 𝑄(𝜃, 𝑃𝐾−1̂)  and 𝑃𝐾̂ = 𝜓(𝑦, 𝑃𝐾−1̂, 𝜃𝐾) 

respectively.  The algorithm is terminated on the Kth iteration only if the CCP vector 𝑃𝐾̂ is 

“close” to 𝑃𝐾−1̂ based on a stipulated tolerance level.  Based on this algorithm, an NPL 

fixed point is defined as a pair (𝜃𝐾, 𝑃𝐾−1̂).  In our estimation, the algorithm is terminated 
when K=5. Aguirregabiria and Mira (2002, 2007) argue that this NPL estimation algorithm 
can reduce significantly the finite sample bias of the two-step PML estimator. 
 

Appendix D: Bootstrapping Standard Errors for Parameter Estimates in 
the Dynamic Entry Model 

First, we assume that parameter estimates from the first-stage regressions are 
normally distributed with means equal to the point estimates of the parameters, and their 
variances and covariances equal to the estimated variance-covariance matrix for these 
parameters.  This assumption allows us to generate normal random draws of the parameter 
estimates from the first-stage regressions.  The first-stage regressions are: (1) the demand 
model; and (2) the traditional codeshare, and virtual codeshare linear regressions (these are 
equations (15) and (16) in the paper).  Specifically, we generate 35 random draws from a 
multivariate normal distribution.  The multivariate normal distribution we use has means 
equal to the existing first-stage parameter estimates, and variance/covariance equal to the 
variance/covariance matrix of the first-stage parameter estimates.  A single draw from the 
multivariate normal distribution produces a set of first-stage parameter estimates.  As such, 
we effectively generate 35 sets of first-stage parameter estimates from this random draw 
process. 

For each draw of the first-stage parameter estimates, we re-estimate the dynamic 
entry model to obtain a set of dynamic parameter estimates associated with each of the 35 
sets of first-stage parameter estimates, respectively.  In other words, the dynamic entry 
model is re-estimated 35 times, where each estimation uses a different set of first-stage 
parameter estimates.  This procedure is extremely computationally intensive since a single 
estimation of the dynamic entry model can take several weeks of continuous computer 
running to achieve convergence of the estimation algorithm.  

Once we have 35 different sets of dynamic parameter estimates, we then use simple 
descriptive statistics to compute the standard errors across the 35 data points for each 
structural parameter estimate.  This produces a bootstrap standard error for each dynamic 
parameter estimate.    
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