Trabelsi, Mohamed Ali (2008): Les nouveaux modèles de décision dans le risque et l’incertain : quel apport ? Published in: Revue Tunisienne d'Economie et de Gestion (2008): pp. 161-204.
Preview |
PDF
MPRA_paper_83347.pdf Download (599kB) | Preview |
Abstract
The decision theory under risk or uncertainty has object to describe the behaviour of agents facing several uncertainty perspectives, waited that every agent is characterized by his own preferences. As it is difficult to describe these preferences exhaustively, we try to represent them: thus, while associating a numeric value to each uncertain perspective, we can order an agent's preferences as merely that one orders some real numbers. The recourse to a representative function of preferences (called as function value) constitutes a long time since the usual method of behaviour description in uncertainty. The interest obvious of this method is to permit to integrate these data directly in a formalized model and, by extension, to understand the underlying optimization process to all decision. The determination of the representative function of preferences must rest on an axiomatic foundation. One hears by there that a certain number of rules or general behaviours (called axioms) are reputed common to all human beings. Of these axioms, one will drift a precise specification of the function value. The objective of this paper is to examine the historic of theories having looked for to determine satisfactory criteria to answer to the problem of decision under risk or uncertainty and to analyze the approach of these models.
Item Type: | MPRA Paper |
---|---|
Original Title: | Les nouveaux modèles de décision dans le risque et l’incertain : quel apport ? |
English Title: | The new models of decision under risk or uncertainty: What approach? |
Language: | French |
Keywords: | risk aversion, uncertainty, prospect theory, expected utility, rank dependent expected utility. |
Subjects: | C - Mathematical and Quantitative Methods > C9 - Design of Experiments > C91 - Laboratory, Individual Behavior D - Microeconomics > D8 - Information, Knowledge, and Uncertainty > D81 - Criteria for Decision-Making under Risk and Uncertainty |
Item ID: | 83347 |
Depositing User: | Professor Mohamed Ali Trabelsi |
Date Deposited: | 19 Dec 2017 00:35 |
Last Modified: | 26 Sep 2019 17:00 |
References: | [1] Abdellaoui M. (2001), A genuine rank dependent generalization of the von Neumann-Morgenstern utility theorem, Econometrica. [2] Abdellaoui M. et Munier B. (2001), Substitutions probabilistiques et décision individuelle devant le risque, Revue d’économie politique, 111,1, pp.29-39. [3] Abdellaoui M.(1995), Comportements individuels devant le risque et transformation des probabilités, Revue d’économie politique, 105,1, pp.157-178. [4] Abdellaoui M. et Munier B. (1994), Expected utility, non expected utility or contingency on risk-structure? An experimental investigation, Document de travail, GRID, Ecole Normale Supérieure de Cachan. [5] Allais M. (1986), The General Theory of Random Choices in Relation to the Invariant Cardinal Utility Function and the Specific Probability Function, the (U, ) Model : A General Overview, in : B. Munier, ed., Risk, Decision and Rationality, Dordrecht/Boston, Reidel, pp. 231-289. [6] Allais M. (1953), Le comportement de l’homme rationnel devant le risque, critique des postulats et axiomes de l’école américaine, Econometrica, vol.21, pp.503-546. [7] Arrow K. (1965), The theory of risk aversion, in Aspects of the theory of risk bearing, Yrjo J. Saatio, Helsinki. [8] Battalio R.C., Kagel J.H. et Jiranyakul R.K. (1990), Testing between alternative models of choice under uncertainty: Some initial results, Journal of Risk and Uncertainty, 3, pp.25-50. [9] Bernouilli D.(1738), Specimen theoriae novae de mensura sortis, Comentarii Academiae Scientarum Imperialis Petropolitanae,(1730-1731, publié 1738). pp. 175-192. ( traduit par Pringsheim A., Versuch einer neuen theorie der wertbestimmung von glucksfallen, Leipzig (1896)), ( traduit par Sommer L., Exposition of a new theory on the measurement of risk, Econometrica, vol.22, (1954 ), pp. 23-36. [10] Bernouilli N. (1713), Ars conjectandi, (traduit par Hausner R., Warscheinlichkeitsrechnung, Ostwald’s Klassiker der exacten Wissenschaften, 107 und 108, W. Englemann, Leipzig (1899). [11] Bouyssou D. (1984), Decision-aid and expected utility theory: A critical survey, in Hagen O. et Wenstop F., eds, Progress in Utility and Risk Theory, Reidel D., pp.181-216. [12] Camerer C.F. (1992), Recent tests of generalized utility theories, in W. Edwards (ed.), Utility: measurement, Theories and Applications, Dordrecht: Kluwer Academic, pp. 207-251. [13] Camerer C.F. (1989), An experimental test of several generalized utility theories, Journal of Risk and Uncertainty, 2, pp. 61-104. [14] Camerer C.F. et Ho T.H. (1994), Violations of the betweenness axiom and nonlinearity in probability, Journal of Risk and Uncertainty, 8, pp.167-196. [15] Carbone E.et Hey J.D. (1994), An investigation into the determination of the error: a comparison of the estimates of EU and non-EU preference functionals arising from pairwise choice experiments and complete ranking experiments, Document de travail, Université de York. [16] Chateauneuf A. (1990), On the use of comonotonicity in the axiomatization of EURDP thory for arbitrary consequences, CERMSEM, University of Paris I, abstract presented at fifth international conference on the foundation and applications of utility, Risk and decision theory. [17] Chateauneuf A.et Cohen M. (1994), Risk-seeking with diminishing marginal utility in a non expected utility model, Journal of Risk and Uncertainty, vol.9, pp. 77-91. [18] Chateauneuf A., Cohen M. et Meilijson I. (janvier 1997), New tools to better model behavior under risk and uncertainty : An overview, Finance, vol.18, , pp.25-46. [19] Chew S.H. (1983), A generalisation of the quasilinear mean with applications to the measurement of income inequality and decision theory resolving the Allais paradox, Econometrica, vol.51, pp. 1065-1092. [20] Chew S.H., Karni E. et Safra Z. (1987), Risk aversion in the theory of expected utility with rank dependent preferences, Journal of Economic Theory, vol.42, pp.370-381. [21] Choquet G., (1953), Theorie des capacités, Ann.Institut Fourier(Grenoble),pp.131-295. [22] Cohen M. (1995), Comparison of risks and behavior in expected and non-expected utility models, The Geneva Papers on Risk and Insurance Theory. [23] Cohen M.(1992), Expected utility, security level, potential level: a three criteria decision model under risk, Theory and Decision, vol.33, pp.101-134. [24] Cohen M. et Tallon J-M. (2000), décision dans le risque et l’incertain : l’apport des modèles non additifs, Revue d’économie politique, 110, 5, pp.631-681. [25] Cohen M. et Jaffray J.Y.(1988), Certainty effect versus probability distorsion : an experimental analysis of decision making under risk, Journal of Experimental Psychology, H.P.P, vol.14, pp.554-560. [26] Cohen M. et Jaffray J.Y.et Said T.(1987), Experimental comparisons of individual behavior under risk and under uncertainty, Organisational Behavior and Human Decision Processes, vol.39, pp.1-22. [27] Demers f. et Demers M. (1990), Price uncertainty, the competitive form and the dual theory of choice under risk, European Economic Review, vol.34, pp.1181-1200. [28] Doherty N. et Eeckhoudt L. (1995), Optimal insurance without expected utility : the dual theory and the linearity of insurance contracts, Journal of Risk and Uncertainty, vol.10, pp.157-179. [29] Edwards W.(1954), The theory of decision making, Psychological Bulletin, vol.51, pp.380-417. [30] Eeckhoudt L.(1997), La theorie duale des choix risqués et la diversification : quelques reflexions, Finance, vol.18, pp.77-84. [31] Eeckhoudt L., Gollier C. et Schlesinger h.(1996), Changes in background risk and risk taking behavior, Econometrica, Vol.64, pp.683-689. [32] Ellsberg D.(1961), Risk, ambiguity and the Savage axioms, Quarterly Jounal of Economics, vol.75, pp.643-669. [33] Fishburn, P.C.(1978), On Handa’s new theory of cardinal utility and the maximization of expected return, Journal of Political Economy, vol.86, pp.321-324. [34] Friedman M. et Savage L.J.(1948), The utility analysis of choices involving risk, Journal of Political Economy, vol.56, pp.279-304. [35] Friend I. Et Blume M. (1975), The demand for risky assets, The American Economic Review. [36] Gayant J-P. (1997), Constitution d’un portefeuille et espérance non-additive de gains : suggestions prescriptives pour la combinaison optimale d’actifs financiers, Finance, vol.18, pp.85-99. [37] Gayant J-P. (1995), Généralisation de L’espérance D’utilité en Univers risqué, représentation et estimation, Revue Economique, 46, pp. 1047-1061. [38] Green J.R et Julien B.(1988), Ordinal independance in nonlinear utility theory, Journal of risk and uncertainty, vol.1, pp.355-387. [39] Hadar J. et Russel. W.(1969), Rules for ordering uncertain prospects, American Economic Review, vol.59, pp.25-34. [40] Handa J.(1977), Risk, Probabilities and new theory of cardinal utility, Journal of Political Economics, vol.85, pp.97-122. [41] Kahneman D. et Tversky A. (1979), Prospect theory : An analysis of decision under risk, Econometrica, vol.47, pp.263-291. [42] Karni E. et Schmeidler D. ( 1991 ), utility theory with uncertainty, in Hildenbran W. and Sonnenschein H., éditeur, handbooks of mathematical economics, North-Holland, vol.4, pp.1763-1831. [43] Kaysen C.(1946,1947), A revolution in economic theory, Review of Economic Studies, vol.14, pp.1-15. [44] Keynes J.M. (1921), A treatise on probability. London: McMillan. [45] Kimball M.(1990), Precautionary saving in the small and in the large, Econometrica, vol.58, ( 1990a ), pp.53-73. [46] Leland H. (1972 ), Theory of the firm facing uncertain demand, American Economic Review, vol.62, pp.278_291. [47] Lopes L. (1886), Between hope and fear: the psychology of risk, Advances in Experimental Social Psychology. [48] Loomes G. et Sugden R. ( 1982 ), Regret theory : an alternative theory of rational choice under uncertainty, Economic Journal, vol.92, pp.805-824. [49] Machina M. (1982), Expected utility analysis without the independence axiom, Econometrica, vol.50, pp.277-323. [50] Marschak J.(1950), Rational behavior, uncertain prospects and measurable utility, Econometrica, vol.18, pp.111-141. [51] Munier B. (1989), Calcul économique et révision de la théorie de la décision en avenir risqué, Revue d’économie politique, vol.99, pp.276-306. [52] Pratt J. (1964 ), Risk aversion in the small and in the large, Econometrica, vol.32, pp.122-136. [53] Puppe C. ( 1990 ), The irrelevance axiom, relative utility and choice under risk, Department of Statistics and Mathematical Economics, University of Karlsruhe. [54] Quiggin J.(1992), Increasing risk: another definition, in Progress in Decision, Utility and Risk Theory, Kluwer A.P. [55] Quiggin J. (1982), A theory of anticipated utility, Journal of Economic Behaviour and Organization, vol.3, pp.323-343. [56] Rothschild M. et Stiglitz J.E. (1971), Increasing risk : II. Its economic consequences, Journal of Economic Theory, vol.3, pp.66-84. [57] Rothschild M. et Stiglitz J.E. (1970), Increasing risk : I. A definition, Journal of Economic Theory, vol.2, pp.225-243. [58] Sandmo A. (1971 ), On the theory of the competitive firm under price uncertainty, American Economic Review, vol.61, pp.65-73. [59] Savage L.J., The foundations of statistics, New York, John Wiley, (second edition 1972, Dover). [60] Schoemaker P.J.H.(1991), Choices involving uncertain probabilities: Tests of generalized utility models, Journal of Economic Behavior and Organization, vol.16, pp.295-317. [61] Segal U. (1989), Anticipated utility : a measure representation approach, Annals of Operations Research, vol.19, pp.359-373. [62] Shmeidler D., Subjective probability and expected utility without additivity, Econometrica, vol.57, (1989), pp.571-587. [63] Starmer C.(1992), Testing new theories of choice under uncertainty using the common consequence effect, Review of Economic Studies, vol.59, pp.813-830. [64] Tallon J-M.(1997), Risque microéconomique et prix d’actifs dans un modèle d’équilibre général avec espérance d’utilité dépendante du rang, Finance,vol.18, pp.139-153. [65] Tallon J-M.(1997), Risque microéconomique, aversion à l’incertitude et indétermination de l’équilibre, Annales d’économie et de statistique, 48,pp.211-226. [66] Tversky A. et Kahnemann D.(1992), Advances in prospect theory: Cumulative representation of uncertainty, Journal of Risk and Uncertainty, vol.5, pp.297-323. [67] Tversky A. et Wakker P.(1994), Risk attitudes and decision weights, Document de travail, Stanford University & University of Leiden. [68] Viala P. et Briys E. (1995), Eléments de théorie financière, editions Nathan. [69] Vickrey W.(1945), Measuring marginal utility by reactions to risk, Econometrica, vol.13, pp.319-333. [70] Von Neumann J. et Morgenstern O.(1947), Theory of Games and Economic Behaviour, Princeton University Press, Princeton. [71] Wakker P. (1994a), Separating marginal utility and risk aversion, Theory and Decision, vol.36, pp.1-44. [72] Wakker P.(1993), Counterexamples to Segal’s measure representation theorem, Journal of Risk and Uncertainty, vol.6, pp.91-98. [73] Wakker P. (1990), Continuity, absolute continuity and weak convergence in anticipated utility representations, Fuqua School of Business, Duke Unversity. [74] Wakker P. et Tversky A., An axiomatization of cumulative prospect theory, Journal of Risk and Uncertainty, vol.7, (1993), pp.147-176. [75] Yaari M.E. (1987), The dual theory of choice under risk, Econometrica, vol.55, pp.95-115. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/83347 |